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Abstract: A notion of topological entropy for endomorphisms of local (7*-algebras
is introduced as a generalisation of the topological entropy of classical dynamical
systems. The basic properties are derived and a series of calculations are presented.

0. Introduction

The purpose with the following pages is to propose a definition of topological entropy
for endomorphisms of (7*-algebras or, more generally, local C*-algebras. In view of
the significance of the topological entropy for the study of topological dynamical
systems it is natural to try to extend this notion to non-commutative dynamical
systems. In fact, several notions of entropy have already been introduced in the non-
commutative setting, in particular by the work of Connes and St0rmer [4], Connes [3]
and of Connes, Narnhofer and Thirring [5]. See [14] for an overview. However, the
classical model for these definitions is the measure theoretic entropy, and while this is
natural for endomorphisms of von Neumann algebras, it seems that for C*-dynamical
systems it may be more appropriate to generalize the topological entropy rather than
the measure theoretical. With the right definition it might even be possible to relate
the non-commutative topological entropy to the entropy of Connes, as defined in
[3], through a non-commutative version of the variational principle which relates the
topological entropy to the measure theoretic in the commutative case.

Hudetz has proposed a definition of topological entropy for C*-algebraic dynam-
ical system in his thesis, [10, 11], and his work has been an inspiration for the work
we present here. The definition we offer is even more elementary than the "pedes-
trian" approach of Hudetz and this may be the reason that the algebraic properties
are better than with his. However, we share the problems with the continuity; good
continuity properties of the entropy should compensate for the lack of something
like a non-commutative Kolmogoroff-Sinai theorem as in case of the Connes-St0rmer
entropy or the notion of refinements in the case of the classical topological entropy.
The entropy we define here does have some continuity properties, we derive these
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in Sect. 2 below, but they are far from satisfactory. Another parallel with Hudetz'
approach is that we can almost imitate his calculations with our entropy (see Sect. 3
below) even though it may be impossible to relate our definitions directly.

The topological entropy h(φ) of a continuous selfmap φ:X —» X of a compact
Hausdorff space X enjoys the following properties:

i) h(idx) = 0 and h(φ~l) - h(φ) when φ is a homeomorphism.

ii) When π: X —» Y is a continuous surjection and ψ: Y —> Y a continuous map
such that ι/> o π = π o φ, then /ι(ι/0 < /ι(0).

iii) When Y C X is a closed subset such that φ(Y) C y, then ft(0|y) < Λ(<£)

iv) When ψ:Y —> F is a continuous map and ττ:JΓ —> F a homeomorphism such
that ψ oπ = π o φ, then /ι(^) = h(φ). (This follows from ii).)

v) h(φk) = fcft(0), k G N.
These properties have been our guiding line in the quest for the right definition; in

the next section we shall show that they can all be generalized to the non-commutative
case.

1. Definition and Basic Properties

A local C*-algebra A is a *-subalgebra of a C*-algebra A which is closed under
holomorphic functional calculus, cf. [2, 1]. We shall only consider unital local C*-
algebras in this paper and take the existence of a unit as part of the definition.

When QJ , α2, . . . , αn are subsets of A we set

Q! V α 2 V . . . V α n = (J {α 1 α 2 . . .α n :α, G ασ(ί),ϊ - 1,2, . . . , n} ,
σe£n

where we take the union over all elements of the symmetric group Σn. When α C A
we set αα* = {αα*:α G α} and α*α = {α*α:α G α}. When α is a finite set we
let ΣOL denote the sum of the elements in α. Recall that a C A is selfadjoίnt when
α G α => α* G α.

Definition 1.1. A partition in A is a finite self adjoint subset α C A such that
Γα*α > 0.

Note that a partition α automatically has ΣΌ^α* > 0. For any partition a. C A set

AΓ(α) = min{#β:β C α, Σ1/?/?* > 0, Γ/3*/3 > 0}

and
N^ά) = min{#β:β C α, Σ1/?*/? > 0} .

Clearly,
Nl(a)<N(a)<2Nl(a), (1.1)

Set ίί^α) = logΛ/Ί(α) and jFJ(o ) = logΛΓ(α). When al,a2, . . . , an are partitions
then so is al V o;2 V . . . V an. Since (QJ V α2 V . . . V α fe) V (αfe+1 V o;fe+2 V ... V αn) C
α t V α2 V . . . V an we have that

H(a{ V α2 V . . . V αn)

< H((a, V α2 V . . . V α fc) V (αfc+1 V αfc+2 V ... V αn)). (1.2)
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Since N(a V β) < N(ά)N(β), (1.2) yields that

H(al V α2 V ... V αn)

< H(a{ V α2 V . . . V α fe) + #(αfc+1 V αfc+2 V ... V αn)). (1.3)

Finally, it is not difficult to see that

H(a V a V . . . V α) < ίf(α), (1.4)

regardless of how many times α is repeated in a V a V . . . V a.
Let now π: A —> A be a unital *-endomorphism. π induces a map on the subsets

of A in the obvious way and we have that

ff(π(α)) < Jf/(α) (1.5)

for any partition α. Combining (1.2) with (1.5) it follows that the sequence H(a V
πk(a) V π2/c(α) V ... V π^71"1^^), n G N, is subadditive in n so that the limit

k ' n-+oo kn k

exists and equals inf — H(a V π/c(α) V ... V πfc(n~1)(α)) for all fc G N. Note that
n kn

(1.1) implies that

ftfc^,a)= lim — ίfjία V π^ία) V ... V πfc(n~ "

Set

where we take the supremum over all partitions a and all k G N.

Theorem 1.2. ft generalizes the topological entropy of dynamical systems; i.e.
X w a compactHausdorffspace and φ:X ^ X a continuous map, then ft(τr^) - h(φ\
where π^ is the *-endomorphism ofC(X) induced by φ (viz. ττφ(g) = goφ, g G C(X)).

Furthermore, we have the following:

i) ft(id^) = 0 when idA denotes the identity map of the local C*-algebra A and
f ι ( θ ~ l ) = h(θ), when θ is a *-automorphism of A.

Let Abe a local C*-algebra and π:A-^Aa unital *-endomorphism.

ii) When B is a local C*-subalgebra of A such that π(B) C B, then ft(π B) < ft(π).

iii) When B is a local C*-algebra, q:A —> B a surjective *-homomorphism and
j:B-^Ba unital *-endomorphism such that 7 o q = q o TT, then ft(7) < ft(ττ).

iv) W/z^n 5 z'51 a local C*-algebra, π{:B —+ B a unital *-endomorphism and
9\A—>Ba ^-isomorphism such that θ o π = πl o 0, then ft(ττ) = ft(πj).

v) h(πk) = feft(π), /c G N.

Proo/. The proof of the first statement is almost straightforward. The essential points
are the following: Every partition α of C(X) defines a cover ?̂  = {α~1(C\{0}):α G
tt} of X. Then TV(α ) is the minimal number of elements in a subcover of .̂
Conversely, every finite open cover of X gives rise to a partition in C(X) by choosing
a partition of unity subordinate to it. The cover defined by this partition is a shrinking
of the given cover. We leave the details to the reader.
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i) It follows immediately from (1.4) that Tι(iάA) = 0. To prove the identity
h(θ~l) = h(θ\ it suffices to note that

H(a V θ~k(a) V ... V θ~kn+k (a)) = H(a V θk(a) V ... V θkn~k(a))

for every partition α in A and all n, k G N.

ii) is trivial.

iii) Let β be a partition in B. It is easily seen that there is a finite selfadjoint set
aQ C A such that q(aQ) = β. Since q(ΣθίQaQ) > Σβ*β > 0, there is a δ > 0

such that q(ΣθίQ α0 - <51) > 0. Since B is a local C*-algebra, g(Σαo α0 - <51) = e6

for some b = b* G B. If α = α* G A such that ς(α) = 6, then y = ea > 0
in .A and x = ΣOL^OL^ — δl — y G kerg. For K > 0 sufficiently large we have
that K2x2 + x + δl > 0. If x / O w e can choose K so large that Kx φ α0. Set
α = α0 U {Kx}. Then Σa*a = ΣcξaQ + K2x2 = δl+y + x + K2x2 > 0, showing
that α is a partition in A. Note that q(a) = β U {0}. Thus ftfc(7, /?) = ftfc(7, <?(°0) for
all k G N. Since

H(q(a) V 7fc(g(ce)) V ... V 7fcn"fcto(α)))

- H(q(a V πfc(α) V ... V πkn~k(a))) < H(a V πfc(α) V ... V πkn~k(a))

for all fc,n G N, we see that hk(^,β) = hk('j,q(a)) < hk(π,oϊ) < h(π) for all k.
Since β was an arbitrary partition in B we see that ^1(7) < h(π).

iv) follows immediately from iii) but can of course also be shown directly.

v) Let α be a partition. Then by definition and (1.2),

suphk(πm,β) > hk(πm, a V πk(a) V π2k(a) V ... V πkm~k(a))
β

> lim — H(a V πk(a) V π2fc(α) V ... V πnmfe~fc(α)) - mft f r(π, α)
n^oo kn

for all partitions α and all A; e N. Hence ^(πm) > mh(π). On the other hand we have
also that h^π^.β) = mhkπι(π,β) for all k G N and all partitions /?. Hence

^(πm) = supfi^^771,/?) = msuphkm(π,β) < msuphk(π,β) = mfι(π) . D
β,k β,k β,k

We conclude this section by showing that h behaves in the expected way with
respect to direct sums.

Proposition 1.3. Let Al and A2 be local C* -algebras and τττ:Az — •> Ai unital
*-endomorphisms, i = 1,2. Let π{ (& π2:A{ ® A2 — > ^4j Θ ^42 denote the direct
sum endomorphism. Then

H(ττl Θ π2) = maxl^πj),^^)} .

Proof. It follows from Theorem 1.2 iii) that max{h(π{), fι(π2)} < ^(^ι θττ2). To prove
the reverse inequality, let α be a partition in A{ θ A2 and write α = (α{ί α2) for each
element α G α. Then α^ = {ατ :α G α} is a partition in Aϊ9 i = 1,2, and it is easily
seen that

N(α V (πl θ π2)
fc (α) V (̂  θ π2)

2fc V . . . V

< N(α{ V πf (Q!) V ... V πίlfe~fc(α1)) + N(α2 V ττ^(α2) V ... V πjfe~fe(α2))

for all n, fc G N. Hence ^(πj Θπ2,α) < max{hk(πl,αl),hk(π2,α2)} <
h(π2)} for all A: G N. Since α was an arbitrary partition in Al θ A2, the proof is
complete. Π
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2. Continuity Properties

The purpose of this section is to show that the numbers fιk(π,a) do depend
continuously on a in a certain very weak sense. For this purpose we consider the
partitions in A as a metric space with the Hausdorff distance D as metric:

D(OL, β) - max ί sup dist(α, /?), supdist(fr, oί)\ .
\ aea 6G/3 /

If a is a partition in A which contains at least one element > 0 and we set
aε = {α + ε l :α G α}, then nk(π,aε) = 0 since aε contains an invertible
element. Since D(α, aε) < ε, this shows that a simple continuity statement like
lim D(α ,α) = 0 =Φ> lim ^(π,^) = ftfc(π,α) can impossibly hold. In fact, even

i—»oo i—>oo

when we fix n, fc G N, the number /f(α V ττfc(α) V ... V Tr**71"1^)) does not depend
continuously on a in any straightforward way. We must therefore seek for a more
subtle form for continuity.

Let α be a partition. For each ε > 0, let M(α, ε) be the least number of elements
in any subset β of a with the property that for all states ω of A there is an element
b G β such that ω(b*b) > ε; in symbols: Mω G SA 3b G β:ω(b*b) > ε. We call then
β for an ε-subset. We set M(α, ε) = oo if no such subset exists. Then

M(α,0) = ̂ (α) (2.1)

and
0 < ε < δ =» M(α, ε) < M(α, (5). (2.2)

Furthermore, we assert that

M(α V ̂ , ε5) < M(α, ε) M(/3, ε). (2.3)

To prove this we may assume that both M(α,ε) and M(β,δ) are finite. Take an
ε-subset a' C a and a <5-subset β' C /?. Then 7 = {6α:α G α',6 G β'} is a subset
of aV β. Since #7 < (#α') (#/?')» it suffices to show that 7 is an ε<5-subset. So let
ω G SΛ. There is an α G a1 such that α;(α*α) > ε. Then ^(a*^"1 cj(α* α) defines a
new state on A and hence there is a 6 G β' such that α;(α*α)~1c^(α*6*6α) > δ. But
then 6α G 7 and ω(a*b*ba) > εδ.

It is clear that
M(π(α),ε) < M(α,ε). (2.4)

We set Hι(a,ε) - logM(α,ε). Now (2.3) and (2.4) show that the limit

k ' ' n-^oo kn l

exists in [0, oo] and equals

inf — Hλ(a V Έh(a) V π2/c(α) V ... V ̂ ^"^(α), εn)

for all A: G N and all ε G [0, oc[. Note that ίf^π, α, 0) - ίf^π, α) and ftfc(π, α, 0) =

Lemma 2.1. The function ε —» ?ιk(π,a,ε) is non-decreasing and upper semi-
continuous on [0, oo[. In particular, limft, fc(τr, α, ε) = f ι k ( π , oί).
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Proof. It follows from (2.2) that Tιk(π, α, ε) is non-decreasing in ε. So we only have
to show that lim ftfc(π, α, ε) = hk(π, α, ε0) for all ε0 € [0, oo[. Let δ > 0 and choose

ε|ε0

n e N such that — H^a V πk(ά) V ... V πfc(n~1}(α), εj) < hk(π, α, ε0) + 6. Then
Λ/77/

ίf^α V πfc(α) V ... V π^*1"1^^), £n) = H^a V πfc(α) V ... V π*5^"1^^, εj) for all
ε > ε0 sufficiently close to ε0. Thus

ftfc(π, α, ε) < — H^a V πfc(o;) V ... V πk(n~l\a), εn) < hk(π, α, ε0) + δ
KTL

for all ε > ε0 sufficiently close to ε0. D

Proposition 2.2. Let a a partition in A and let an, n - 1,2, . . . , be a sequence of

partitions in A such that lim — logD(α, αn) = — oo. For each k G N we have

a) sup ftfe(π, α, 5) < liminf — flΊ(αn V ττfc(αn) V ... V π^71"1^^), ̂ n)

< limsup -i- Hγ(an V πfc(αn) V ... V πfc(n-1}K), εn)

for all ε E]0, CXD[. In particular,

hk(π, a) = lim ( limsup -̂ - ίf,(αn V πfc(αn) V ... V π
ε|0 y n AvTT-

b) Ifδn G]0, CXD[ Z5 a sequence such that lim δ = 0 αnJ
n-^oo

lim ( log δn -- log D(α, αn) ) =00,
—

^(τr,α)= lim 1 f ί ,(α n Vπ f c (α n )V. . .V7r f e ( n - 1 ) (α n ),O
71 ^OO rCTT/

a) Since lim D(α,αn) = 0, there is a M > 0 such that ||α|| < M for all
—n — » oo

a e a U U an. Then
n=l

V π(α) V ... V n-(a), a V π ( a ) V ... V

Let 0 < 6± < ε and 62 > ε. By assumption D(an,ά) < - — ΆLn-ι ^or a^

sufficiently large n. It follows that if α; is a state of A and α an element of
αn V π/c(θ!n) V ... V πfc(n~1}(αn) such that cj(α*α) > εn, then there is an element b
of α V π*(α) V ... V πk(n-l\ά) such that α;(6*6) > εn - δf > 6γ for all sufficiently
large n. Hence

— ffiίαVπ^αjV... V πfc

A n

V ... V π«n-»(«„), ε")
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for all sufficiently large n. In a similar way we conclude that

± H,(an V πk(an) V ... V τrfc<"- Vj, εn)

< -ί- H^a V τrfc(α) V ... V τrfc("- l\ά), f%)
kn

for all sufficiently large n. Hence

hk(ιr, M,) < lim inf ̂  ίfjK V τrfc(αn) V ... V ̂ "-"(αj, εn)

< lim sup -ί- Hι(αn V τrfc(αn) V ... V 7rfe(™-1)(αn),εn)
TJ, rCTl

Since δ{ < ε was arbitrary and lim hk(π,a,δ2) - hk(π,a,ε) by Lemma 2.1, we get
the desired inequalities. δ^ε

b) Let ε > 0. By Lemma 2.1 there is a δ > 0 such that ftfc(τr, α, δ) < ^fc(ττ, α) + ε.
If α is an element of αn V πk(an) V ... V π/c(n"1)(α ) and ω a state of A such
that cj(α*α) > δJJ, then there is an element & G α V 7r(α) V ... V π^'^ία) such
that α;(6*6) > ^ - 2nM2n-"1L>(α,αn) > 0 for all sufficiently large n. If instead
α 6 α V ττfc(α) V ... V TΓ^'^ία) and α;(α*α) > (2<5n)

n, then there is an element
b G αnVπ f c(αn)V. . .Vπ^-^αJ such that cj(fe*6) > (2δn)

n-2nM2n-lD(a,an) >
δn+δn~ 2kM2n~lD(a, aj > δ% for all sufficiently large n. Thus

Hλ(a V πk(a) V ... V πk(n~l\a), 0) < ̂ (αn V ττk(aj V ... V πfc(n-1}(αn), ̂ )

< H^a V πfc(α) V ... V πk(n~l\ά), (2δnΓ)

< Hλ(θL V πΛ(α) V ... V π^-^ία), ̂ n)

for all sufficiently large n. Consequently

ftfc(π, α) < liminf -̂
n KiTi

< lim sup

< lim -ί J?ί1(αnVπ / e(Q : n)V...
n-»oo to

= ftfc(ττ, α, δ) < f ι k ( π , α) + ε .

Since ε > 0 was arbitrary the conclusion follows. D

n— > oo
In general it is not true that lim — ίΓ1(αn V τrfc(αn) V ... V π

ftfc(π,α), no matter how rapidly αn approaches α. But we have the following
conclusion:

Corollary 2.3. Under the assumption of Proposition 22 it follows that

hk(π, a) > lim sup -̂  ̂ (an V πfc(αn) V ... V π^-^ί^)) .
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If, furthermore,

lim -i- ff,(αn V τrfc(αn) V ... V ̂ n-l\an), ε")
71 »OO

= inf - - £Γι(αn V 7rfc(αn) V ... V π^-Vj, ε") ,
fi> KTl

for all sufficiently small ε > 0, then we have that

hk(π,a)= lim ±- H{(an V πfe(αn) V . . . V π^Vj) .
n — > oo KTl

Proof. By a) of Proposition 2.2,

ftfc(π, α,ε) > lim sup — Hl(an V πfc(αn) V ... V τ^k(n~l\an))
n ft ft

for all ε > 0. Since lim fιk(π,a,ε) = hk(π,a) by Lemma 2.1, we get the stated

inequality. To prove the equality, note that under the given assumption we can prove,
as in Lemma 2,1, that

= lim
n— »oo

The equality therefore follows by letting ε — > 0 in a) of Proposition 2.2. D

3. Calculations

In this section we calculate the topological entropy of a series of *-endomorphisms
of local algebras that are generated by a sequence of finite dimensional C*-algebras.
Fundamental to our calculations is the following simple lemma whose proof we leave
to the reader. We use the notation D(B) for the dimension of a maximal abelian
(7* -subalgebra of a finite dimensional (7* -algebra B.

Lemma 3.1. Let Abe a local C* -algebra and a a partition in A. Assume that B is a
finite-dimensional unital C* -subalgebra of A and that a C B. Then N(a) < D(B).
(In other words, if B * Mn (C) Θ Mn (C) Θ . . . Θ Mn (C), then N(a) < nλ + n2— 1 2 k

D

We shall also need the following lemma which is the analogue of 3.2.9 in [10].

Lemma 3.2. Let Al C A2 C A3 C . . . be an increasing sequence of finite dimensional
C* -algebras with the same unit and set A - \J A^ Then A is a local C* -algebra. Let

zeN
π:A-^Abea unital injective *-endomorphίsm satisfying the following conditions:

i) For each j,m G N, D(C*(A^(A3\ . . . , πm~ l(A^) < D(AJ+rn\

ii) For each j 6 N, there is an integer n G N such that Aj commutes with π^^A^)
for all k G N and the natural *-homomorphism

A3 0 πn^ (Aj) 0 7r2n^ (Aj) (g) . . . <8> πknι (A,.)



Topological Entropy for Endomorphisms of Local C*- Algebras 189

is an isomorphism for all k G N.

ni — j
iii) lim -̂  — - = 0 .

J^OO J

Then
,, , Γ log£(A,)
ti(π) = lim sup - — .

j 3

Proof. Let a be a partition in A. Then α C ̂  for some j G N. By use of (1.3),
(1.5), condition i) and Lemma 3.1, we find that

7L(τr, α) - lim — H(a V πk(a) V ... V πk(n~l\a))
κ n-^oo kn

< lim — (ff(α V πk(a) V . . . V πk(n~j\a))
n— »oo

+ H(πk(n~j+l) (α) V ... V π^

< lim sup -— (log D(A, + H r 7_n,, ) + H(a V π (a) V . . . V -
n kn J M ;

< lim sup
J

for all /c G N. This shows that h(π) < lim sup —-—r— -̂ On the other hand, if we
3 3

now let Oίj denote the partition in A^ consisting of the minimal non-zero projections

in a maximal abelian C*-subalgebra of Ay, the assumption ii) and the injectivity of
π gives the following estimate:

= lim H(aΛ

 N

- lim
n

logD(A1) logD(Aj)
for all j G N. Hence h(π) > lim sup - — . Since lim sup - —

logD(AΊ)
- —

njΊ
lim sup - — by iii), the proof is complete. D

3 i
Thus we have the same conclusion as in Theorem 3. 2. 9 in [10], except that we

log£>(A,)
have not shown that the sequence - : — — is actually convergent. This follows
from the proof in [10]. 3

Example 3. 3. Let B be a unital C* -algebra and let A = (g) B be the infinite tensor
nGN

product C* -algebra of a countable number of copies of B. For each k G N the
simple tensors of the form b{ ®b2®b3 <g> . . . ®bk<g> I <8> I ® . . . generate a unital
C*-subalgebra Ak of A which is *-isomorphic to the tensor product B ® B <g) . . . 0 B
of k copies of B. Thus A = \J Ak is a local C*-algebra such that A is the closure

k
of A. Let σ:N — > N be an injective map. For each b G J5, let 6(f) denote the element
1 0 1 0 . . . ( 8 ) l Θ & 0 1 0 l Θ . . . , where 6 occurs as the ith tensor factor, i G N.
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There is then a unique unital *-endomorρhism πσ of A given by the condition that
πσ(b(i)) = b(σ(ϊ)\ 6 G £, z G N. Then

i) h(πσ) = 0 unless σ has an infinite orbit in N,

ii) h(πσ) = oo if σ has an infinite orbit in N and B is infinite dimensional, and

iii) fι(ττσ) = rlogD(B) when B is finite dimensional, where r is the number of
infinite orbits of σ in N.

Proof, i) Let a be a partition in A. Then a C Am for some ra G N. If σ has
no infinite orbit in N there is an integer N such that π^ is the identity on Am. In
particular π*N(θi) = α for all k G N. It follows that for each k € N and all sufficiently
large n, TV(α V π*(α) V ... V π^(n~1}) can not exceed N(a V π*(α) V ... V π*N(α))
and therefore ?ιk(πσ, a) = 0.

ii) Let N G N be arbitrary. If £? is infinite dimensional there is an infinite
dimensional unital abelian C*-subalgebra D of B. By using this it is easily seen that
B contains a partition β = {6 l7 62, . . . , fr^} in D with the property that for every
i G {1,2, . . . , TV} there is a state ωi of 5 such that ω^b^ = 1 while ω^) = 0,
i i j. Now let m G N be an integer such that {σn(m)\n G N} is infinite. Then
α = {^(ra), 62(m), . . . , 6^(777,)} is a partition in A such that hk(πσ, α) > log TV for
all A: G N. Since TV G N was arbitrary we conclude that h(πσ) = oo.

iii) We first derive the following expression for the number r of infinite orbits:

r = lim ( inf \ #Fn U σ(Fn) U σ\Fn) U . . . U σfc(Fn)) , (3.1)
n—>oo Y /c6N /C J

where Fn = {1,2, . . . , n}. To prove (3.1) note first that by subadditivity we have
that

lim -#F(Jσ(F)U...Uσk(F)
fc->oo k

= inf γ#F U σ2(F) U . . . U σ2(F) U . . . U ̂ (F)
/ceN A;

for any finite set F in N. If now F is such a subset we can write F = Fl U F2, where
Fj is the elements of F whose orbit under σ is finite and F2 is the compliment. Then

#F U σ(F) U σ2(F) U . . . U σfc(F)

^^UaiF^U.^Ua^Fj)

+ #F2 U σ(F2) U σ2(F2) U . . . U σk(F2), '

and since there is a /c-independent upper bound on #Fl U σ(Fl) U . . . U σk(Fl) we
conclude that

lim - ^F U σ(F) U σ2(F) U . . . U σk(F)
k-^oo K

= lim i ^F2 U σ(F2) U . . . U σfc(F2).
k-^ oo K

Since the latter limit is < #F2 < r and the right-hand side of (3.1) equals

sup ( lim \ (#F U σ(F) U σ2(F) U ... U σfc(F)) ) ,
F k-^oo K
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where we take the supremum over all finite subsets of N, we have proved one of the
inequalities in (3.1). Let next il,i2, - - - , im be elements of N with disjoint infinite
orbits under σ and set F = {i^, - - > ^m} Then

lim ~#F U σ(F) U . . . U σk(F) = #F = m ,
k-*oo K

proving that the right-hand side of (3.1) is > ra. We have now established (3.1) and
proceed to the calculation of h(πσ). If F is a finite subset of N we let AF denote the
*-algebra generated by the elements of the form b(ϊ), b G B, i G F. Then AF is a
finite dimensional C* -algebra and D(AF) = D(BfF. Note that AFn = An, n G N.
Let a be a partition in A. Then a C Am for some m G N and

a V πk(σ) V τr^(α) V ... V 7Γk

σ

(n~l\a) G AG ,

where G = FnUσ/c(Fn)Uσ2/c(Fn)U. . .Uσfc(n~1}(Fn), fc,n G N. By using Lemma 3.1
and (3.1) we find that

= lirn^ (#Fn U σk(Fn) U . . . U σ«n-l\Fn))

< lim -ί- (#Fn U σ(Fn) U σ2(Fn) U . . . U σkn(Fn)) < r .
n — >oo KiTί

It follows that h(πσ) < rlogD(B). To prove the reverse inequality, take n € N
and let β = {e l5 e2, . . . , ed} be a partition in B consisting of the minimal non-zero
projections in a maximal abelian C*-subalgebra of B. For each m G N, let αm be
the partition in AFrn given by the simple tensors

i 1 ?i 2, . . . , im G {1,2, . . . , d}. Thus am consists of D(B)m mutually orthogonal
projections. It is easy to see that

(log D(B)Γl H(am V πσ(αm) V π2

σ(am) V ... V π£(αm))

= #Fm U σ(Fm) U σ2(Fm) U . . . U σ^(Fm)

for all n G N, so that

(\0gD(B)Γίhl(πσ,am) = mf I #Fm U σ(Fm) U . . . U σfe(Fm) .

Since this holds for all m G N, we conclude from (3.1) that ft(πσ) > rlogD(B). D

Example 3.4. Let 0 < r < 1. As shown by Jones in [12], the hyperfinite II\ factor
R is generated by the unit 1 and a sequence of projections e0, e1? e2, . . . such that

(a) eΛ±1e- =re^

(b) e βj = ejei for \i - j\ > 2, and

(c) ^(we^ = τir(w) when w is a word in 1, e0, e1 ? . . . , en_ l 5

K
\ — ^ ^

4 cos2 — ) : m G N, m > 3 > . There is a tr-preserving
ray J

unital *-endomorphism #r such that 0r(ef) = eί+1 , z = 0, 1,2, . . . . Let An be the
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C*-subalgebra of R generated by 1, e0, el, e2, . . . , en and set .A = |J An . Then A is
a local C*-algebra and 0r(A) C A. We have that n

— i logr , when r G < ( 4cos2 — j :m G N, m > 3 >

log 2, when r G (0, |] .

Proof. By using iii) it is seen that the conditions of Lemma 3.2 are satisfied (with
logD(Ai)

rij = j + 2). Thus fι(θτ\A) = limsup :——. This number is easily found from
j 3

the literature: If r > ^ the inclusion pattern for Aλ C A2 C ... is periodic (of period

. 1
2) in the sense of [8] and hence, by [10], Lemma 3.2.7, limsup - — = - log/?,

3 i 2

where β is the Perron-Frobenius eigenvalue for the inclusion matrix of Aj C A^+2 for

all sufficiently large j. It is well-known that β = τ~l. If instead r < -, the Bratteli

diagram of Al C A2 C . . . was described by Jones in Sect. 5 of [12]. In particular,
one finds that

^ n) n + 2 kl(n-k

and it follows easily that lim - — = log 2 . D
j-^oo J

The Connes-St0rmer entropy of θτ with respect to the trace state of R was
calculated by Choda in [8], Example 2, and it interesting to compare with the

result above. For r > ^ the results agree, but for r < - Choda gets the value

-tlogt— (l-ί)log(l-t), where r - t(l—t), while Tι(θτ A) = log 2 is r-independent.
Note that -ί log -(1 - ί)logί(l - t) < log 2 for all t e]0, 1[.

There is also an automoφhic version of θr obtained from a twosided sequence
{ei:ί G Z} of generating projections in R satisfying almost the same relations as
above, see [13, 8]. Again there is a canonical local C*-subalgebra A generated by
an increasing sequence of finite dimensional subalgebras of R such that θr(A) = A.
By the same arguments as above, using [7] in place of [12], we get exactly the same
values for h(θr A) as before.

Example 3. 5. Let 5 be a finite subset in N and n G N. There is then a sequence
{ul :i = 0, 1, 2, . . .} of unitaries, which generates the hyperfinite IIλ factor R, such
that uf = 1 for all i^uiu3 = exp(2πi/ri)UjUi when i — j\ G S and u^j = u^ui

when ί — j\ φ S. Furthermore, there is a unital *-endomorphism θ of R such that
0(Ui) = UM , i = 0, 1, 2, . . . . See [6] for all of this. The C*-algebra An generated by

^0,^1,^2? ' un is finite dimensional, and hence A = [jAn is a local C* -algebra
n

such that Θ(A) C A. Lemma 3.2 applies to θ: A —> A and by the same arguments as

in 3.4 (for the case r > |) we get that h(θ\A) = ^ logn; the same value as Choda

gets in [8] for the Connes-St0rmer entropy with respect to the trace. Again there is
also an automoφhic version, see Example 3 of [8], giving the same value. D
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Example 3.6. There is a canonical way to associate an AF-algebra to a given subshift
of finite type (also called a topological Markov chain), containing the subshift as a
canonical diagonal D, in such a way that the shift can be extended from the diagonal
to a *-automorphism θ of the AF-algebra, see [9] and [10]. The union of the finite
dimensional C*-algebras defining the AF-algebra is a local C*-algebra A left globally
invariant by θ. Then h(θ\AnD) - h(θ\A) = log λ, where λ is the spectral radius of the
matrix defining the subshift. It follows that Tι(θ\B) = log λ for every local C*-algebra
such that AΠD CB C A. D

Concluding Comment 3.7. In all the examples considered above the *-endomorphisms
are restrictions of *-endomorphisms of an enveloping (7*-algebra, in fact most of them
extend to a canonical enveloping von Neumann algebra. It is an interesting question
to decide if the values of the *-endomorphisms on the topological entropy of the
C*-algebra level (and maybe even on the von Neumann algebra level) remains the
same as the ones obtained here. The continuity results of Sect. 2 show at least that the
entropy on the C*-level depends only on how the *-endomorphism acts on partitions
in the finite-dimensional subalgebras. However, the results of Sect. 2 are not strong
enough (or else the author is not strong enough) to decide if the values are no larger
on the C*-level. D
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