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Abstract: Let VΓl be the self-dual (or holomorphic) bosonic conformal field theory
associated with the spin lattice Γ/ of rank / divisible by 24. In earlier work of the
authors we showed how it is possible to establish the existence and uniqueness of
irreducible g-twisted sectors for FΓj, for certain automorphisms g of VΓl, and to
establish the modular invariance of the space of partition functions Z($,/ι, τ)
corresponding to commuting pairs g, h of elements in certain groups G of automor-
phisms of VΓl. In the present work we show that if we take / = 24 and G the sporadic
simple group M24, then the corresponding orbifold has the genus zero property.
That is, each Z(g,h, τ) is either identically zero or a hauptmodul, i.e., it generates the
field of functions on the subgroup of SX2(IR) which fixes Z(g,h, τ), which then
necessarily has genus zero.

1. Introduction

The most famous example of a holomorphic (or self-dual) conformal field theory
(CFT) is undoubtedly the Moonshine module whose automorphism group is the
Monster M ([Bl, FLM]). In their equally famous paper [CN], Conway and
Norton laid out an impressive set of data related to their conjecture that for each
meM, the graded trace of m on V* (sometimes called the Thompson series of m, and
denoted Tm(τ)) is a particular kind of modular function called a hauptmodul That is,
the subgroup of SL2(]R) which leaves Tm(τ) invariant is a discrete group Γm

commensurable with SL2(TL] and such that the compactified orbit space
Xm = Γm \ I) * for the usual action on the upper half-plane ί) is topologically a sphere.
Furthermore, the field of meromorphic functions on Xm is precisely (C(Tm); that
is, each such function is a rational function of Tm. These conjectures have
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been established by Borcherds [B2], but even before this Norton introduced his
notion of generalized Moonshine (see the appendix to [Ml]) involving pairs of
commuting elements in M and suggested that there was an extension of the
Conway-Norton conjectures to this more general situation, except that the Thom-
pson series corresponding to a commuting pair may now be either constant or
a hauptmodul. We refer to this general situation as the genus zero property.

Subsequently it was realized in [DGH] and elsewhere, that generalized Moon-
shine was intimately related to the theory of so-called orbifolds (see below), and
indeed recently Tuite [Tu] has given heuristic (but compelling) arguments that the
generalized CN-conjectures are consequences of natural conjectures concerning
the structure of the Monster orbifold based on V*. However it seems likely that it will
be some time before these conjectures are put on a rigorous mathematical footing.

In this paper we will give a completely rigorous account of a CFT VΓl of central
charge 24 which admits the Mathieu group M24 as automorphisms and is such that
the corresponding orbifold has the genus zero property for commuting pairs as
discussed above. Conway-Norton made precise conjectures [CN] concerning the
nature of the fixing group of the corresponding hauptmodul, and we shall verify
their assertions for the M24 orbifold. Thus one can in every way think of the
Mathieu orbifold as a toy version of the Monster orbifold in which all of the
relevant conjectures are theorems.

An important point is that our arguments are almost always general in nature
and do not involve examination of individual Fourier expansions. Essentially, the
genus zero property is shown to be a consequence solely of group-theoretic
properties of M24 itself.

The results of the present paper were announced awhile ago [M2], but at that
time it was not realized that there was a CFT underlying the theory. This was
subsequently established in [DM].

The paper is arranged as follows: in Sect. 2 we give some background from
[DM] concerning the bosonic orbifolds. We also cover here some results from
[M2] about modular-invariance which are crucial in later sections. In Sect. 3 we
state the main theorems A, B and C, together with a table of useful data concerning
the individual modular functions that arise. Proofs are given in Sects. 4-6, and
includes verification of all of the CN-conjectures that are relevant to the present
situation. Most of the proofs are based on the theory of modular forms.

2. Background

A vertex operator algebra (VOA) is a Z-graded vector space ^ =]JneZ Vn such that
dim Vn < oo and Vn = 0 if n is sufficiently small, and such that there is a linear map

(v,z) = £ vnz-»-1 (υneEndV) . (2.1)
neZ

A number of axioms are also required, most of which we shall pass over here,
referring the reader to [FLM or DM], for example. We do, however, mention the
Virasoro axiom, which posits the existence of ωe V2 such that ωn + 1=L(n), that is

)=Σ i(Φ'""2, (2.2)
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and is such that the operators L(ri) generate a representation of the Virasoro
algebra of central charge c. That is, we have

[L(m),L(n)]=(m-n)L(m + n)+— (m3 -m)δm + n,0c ,

L(0)ι; = nt; = (wtφ for v<=Vn (2.3)

for w, neZ. We denote the vertex operator algebra just defined by (F, Γ, 1, ω) (or
briefly, by F) where 1 e F0 is the vacuum vector.

An automorphism of (F, 7, 1, ω) is an invertible linear transformation g on
F which preserves 1 and ω and satisfies

gY(v9z)g-l = Y ( g υ , z ) . (2.4)

If 0 is an automorphism of F of finite order N, a g-twisted module for F is
a Q-graded vector space Λf = ]JΛ6Q Mn such that dimM«< oo and Mπ = 0 for n is
sufficiently small, and such that there is a linear map

F-+(EndM)[[z1/JV,z-1/]V]] ,

v^Yβ(v9z)= X ^z-'-^eEndM). (2.5)

»4Z

Axioms analogous to those for (F, 7,1, ω) are imposed in this situation. We denote
this module by (M, Yg).

If g = 1 we call (M, Y1 ) a V-module. Moreover (M, Vg) is called irreducible in case
no nonzero proper subspace of M is invariant by all υn for i e Fand rceQ. The VOA
F is called holomorphic (or self-dual) in case F is the unique irreducible F-module
(up to isomorphism).

Our main example of a holomorphic VOA is constructed as follows (see
[DM]). Let ( , •) be a nondegenerate symmetric bilinear form on A~(£21 (/^l)
with a polarization A = A+ © A ~ into maximal isotropic subspaces. Let
GL(A + ) = GL(l) act on A~ via the dual representation (i.e., geGL(A + ) acts as
(0T1 on A~\ and if geGL(A + } has finite order N, set η = e2πί/N and

|̂  = ̂ fl}, (2.6)

Aktβ = A£g®Aϊtff (2.7)

for /ceZ. Next define

Σ ^.ί®^' (2 8)

X Λ,,®ίn / N~1 / 2 (2.9)

= 0 if JV is odd) where ί is an indeterminant and
With Z = ZorZ+^setA(Z,g) = A + (Z, 0) © Λ. ~ (Z, gf). Then there is a polar-

ization of A(Z,g) with respect to the extension of ( , ) to A(Z,g) given by
(a(m),b(n)) = (a,b)δm+nt0 for a,beA. Here we have set α(m) = α(m)® tm if Z = ΊL,

me— Z, α(m) being the component of a in ^,w; and similarly if Z =
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There is an infinite-dimensional Clifford algebra C(A(Z, α)) with generators
A(Z, g) and relations a(m)b(n) + b(n)a(m) = (a(m), b(n)). Thus if J( ) denotes tensor
algebra then we have

CA(Z, g)=T(A(Z, g))/{a(m)b(ri) + b(n)a(m) — (α(m), b(n))} , (2.10)

where α, be A and m, neQ. Let C+(^4(Z, g)) be the subalgebra of C ( A ( Z , g ) )
generated by A + (Z, α), and let lZtβ span a 1-dimensional C + (,4(Z, #))-module
annihilated by A + (Z, g) and with 1 acting as the identity. Define

There are linear isomorphisms CM(Z, g)~A(A~(Z, α)) (Λ( ) denotes the exterior
algebra), so we obtain four spaces CM (Z,g), where r = Q or 1 refers to
Aeven(A~(Z, g)) or Aodd(A~(Z, g)) respectively.

Write CM(Z) and CMr(Z) instead of CM(Z, g) and CM'(Z, 1) in case 0=1.
Similarly write lz instead of l z > 1. Then G acts on CMr(Z) naturally such that
αlz —lz and ga(m)g~l= (ga)(m) for geG, aeA and me^Z.

From now on, we consider a finite subgroup C^SO(l, IR) embedded in the
standard way in GL(A + ). Thus ge G acts on A = A+ ® A~ as (g, 0).

Theorem 2.1 ([DM]). Lei F=CM°(Z+i)θ CM°(Z). Then there is a linear map
Y\ F-+(End K)[[z, z"1]] and an element ωeCM°(Z + i) swc/z ίnaί (F, 7, lz+i, ω)
Z5 a VOA with central charge I which is holomorphic i f 8 \ l . Moreover the natural
action of G on V identifies G with a group of automorphisms of V.

Theorem 2.2 ([DM]). Let the notation be as in Theorem 2.1 and let 8 |/ . For each
geG there is εg = Q or 1 and a l-dimensional CG(g)-module Ng such that

J

9 (2.12)

satisfies the following: there is a linear map Yg: F->(End F(g))[[z1/]V, z~1/]V]]
(N — order of g) such that (V(g\ Yg) is the unique irreducible g-twisted V-module.

Furthermore assume that the space of G-invariants on A+ is non-zero. Then for
g, heG there are invertible linear maps φ(h): V(h~1gh)-+V(g) which intertwine the
corresponding Y-maps, that is

φ(h) Yh-ίgh(uι z)9(h)~x = Yg(hu, z) (2.13)

for veV. If h commutes with g then φ(h) coincides with the natural action of h on
V(g).

From now on we assume that indeed G^SO(l, IR) has non-trivial invariants on
A+, and that 241/.

Let B2 (x) = x2 — x -f ^ be the second Bernoulli polynomial, and for g e G of order
ΛΠet

We graded CM(Z, g) as follows: the degree of the "vacuum" lz>g is equal to

i f Z = Z
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Then CM(Z,g) is graded using (2.15), (2.11) and the natural grading on A(Z,g)
which arises if we set dega(n) = — n for aeA and neQ. We may then set

CM(Z,0) = [jCM(Z,0)π (2.16)
n

to indicate this decomposition into graded subspaces. We emphasize that part of
our theory is that CM(Z, g)n is precisely the eigenspace of L(0) corresponding to
the eigenvalue n. We set

Z(g,h,τ) = q-l^Σir(φ(h)\V(g}n)qn , (2.17)
n

where V(g) inherits its grading form (2.16). Also heG commutes with g, φ(h) is as in
Theorem 2.2, q = e2πίτ and τe{ze(C|imz>0}.

Theorem 2.3. ([M3], [DM]). Ify = [a }eSL2(Z) then there is a root of unity
V ά)

σ(y , 0, h) such that if g, heG and gh = hg then

Z ( g 9 h 9 γ τ ) = σ ( y - 1

9 g 9 h ) Z ( ( g 9 h ) γ 9 τ ) . (2.18)

The function σ in Theorem 2.3 is a 1-cocycle of Γ = SL2 (%) in the sense that we
have the relation

•jS

<r(yι72, g, h) = σ ( y l 9 ( g 9 h ) y 2 1 ) σ ( y 2 , g, h) (2.19)

0 -1
for yl , y2eSL2C^). Its values are thus determined by those it takes on 5 = .

To explain what these values are, decompose A into a direct sum
Xi ® ' ' ' ® Xι of / 2-dimensional (C<g, /ι)-modules Xj which are such that
Xj = <£® Yjϊor an JR<#, /z>-module Yj satisfying <#, hy^SO(Yj). This is always
possible. Then choose 1-dimensional <gι, /z>-submodules UjdXj on which g, h have
eigenvalues e2πiXj, e2πiyj respectively, where x f, yt are chosen as follows. For 1 ^j^l,

y^O ifx 7. = 0or 1/2. (2.20)

Theorem 2.4. ([M3]). Let(xl9 . . . , x/), (j; l5 . . . , yι) be the sequences associated to
g, h respectively as above. Let α fo^ ί/ie dimension of the subspace of A + on which both
g, h act as —1, and let β be the dimension of the subspace of A + on which g acts as — 1.
Then

σ(S-\g,h) = (-iγ Yl e-2*** , (2.21)
X j , y j < l / 2

σ(T-\g,h) = (-\yi2 Π e-2**5 . (2.22)
X y < l / 2

Remark, (i) /? is always an even integer.
(ii) σ(S-1

9g9h) = σ(S-l

9h9g).
(iii) σ('Γ1

9g9h)2 = σ(S-1

9g9gΓ1.

It would be nice (though this is perhaps unrealistic) if there were a simple closed
formula for σ(γ~1, g, h) for all
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3. Statement of Results

Throughout the rest of this paper we will take / = 24 with Fas in Theorem 2.1. Thus
V is a self-dual VO A of central charge 24. Now let Γ24 be the Neimeier lattice of
rank 24 whose root system is of type D24 (cf. [V]). In [DM] we call this the spin
lattice, and it is shown that Vis isomorphic (as VOA) to the bosonic theory based
on Γ24. That is we have the boson-fermίon correspondence (cf. [F, DM])

where K/*24 is the self-dual VOA based on Γ24 ([Bl, FLM]).
We also take G = M24 with its usual permutation representation of dimension

24 arising form its action on 24 letters [C]. Then indeed M24 fixes a non-zero vector
of A+, so Theorems 2.1-2.4 of Sect. 2 apply.

Theorem A. With previous assumptions, let g, h be a pair of commuting elements in
M24 with Z(g, h, τ) the corresponding partition function (2.17). One of the following
holds:

(a) <($, hy has a cyclic Sylow 2-subgroup and Z ( g , h, τ) is a hauptmoduL
(b) (g, hy has a non-cyclic Sylow 2-subgroup and Z ( g , h, τ) is identically zero.

We can be more precise concerning part (a). To explain this we introduce some
critical invariants associated to an element geM24 considered as a permutation on
24 letters and decomposed into a product of disjoint cycles:

n~ n(0) = longest cycle,

m = m(g) = shortest cycle, (3.1)

m, m odd

m/2, m even ' Π 2)

N = N(g) = hn .

Remark, (i) n = order of g.
(ii) m divides n.

(iii) Either ra= 1 or m = n (mod 2).

Define the discrete subgroup ΓgdSL2(Sί) as follows:

(3.3)

Here we are using a modified version of the notation of Conway-Norton [CN].
Namely,

where as usual

(in h\
: = 0(mod/U;
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and the notation "odd" in (3.3) means that we adjoin to Γ0(n\h) all of the
Atkin-Lehner involutions Wt for odd Hall divisors ί of n/h (cf. [CN]).

Theorem B. Z(l, g, τ) is an eίgenf unction for Γg and each yεΓg satisfies

for some hth root of unity c(y).
The kernel of this action is a subgroup Γ'g ofΓg of index h. Moreover, Γ'θ has genus

zero, Z(l, g, τ) is a hauptmodulfor Γg, and Γg is the largest subgroup 0/5X2 (IR) which
leaves Z(l, g, τ) invariant.

Remark. Conway-Norton have conjectured this result [CN] for the Monster.

By results in [M4], there are just two types of non-cyclic abelian groups in
M24 which are generated by two elements and which have a cyclic 2-Sylow. These
groups are denoted (loc cit.) TL^xTL^A and Z3 x Z3£, having the indicated isomor-
phism type. We can take generators (g, h) so that in each case g has cycle
decomposition 1636, while h is of type 1636 or 38 respectively.

Theorem C. Let g, h generate TL^xTL^A or TL^xTL^B as above, and let Z ' ( g , h , τ ) =
Z(g,h93τ).Set

ThenZ'(g, h, τ) is an eίgenf unction for Γg^h and each yeΓ9ίh satisfies

Z ' ( g 9 h 9 γ τ ) = c ( γ ) Z ' ( g 9 h 9 τ )

for some cube root of unity c(y).
The kernel of this action is a subgroup Γg,h ofΓ9ίh of index 3. Moreover Γ9ίh has

genus zero, Z(l, g, τ) is a hauptmodul for Γ g ί h , and Γ9ίh is the largest subgroup of
SL2(1R) which leaves Z ' ( g , h , τ ) invariant.

Next we list the explicit ^-expansions and other pertinent data.
Column 1 lists pairs (g, h) of commuting elements, giving the cycle decomposi-

tion of each element. The second column lists the "balancing number" N0 defined via

N0 = N0(g)N0(h), (3.5)

where N 0 ( g ) is as in (3.1). Column 3 is the group Γg or Γ9th (as defined in Theorems
B and C). Column 4 gives the name of the Monster class with the same group.
Column 5 gives a formula for Z(l, h, τ). If h has odd order this always has the form

Z(l,M = θh(τ)/ι?Λ(τ), (3.6)

where in (3.6) Θh(τ) denotes the theta-function of the sublattice of Γ24 fixed by
heM24 under the natural action of M24 on Γ24. Also, τ/j,(τ) is as in [CN], namely, if
h has cycle decomposition Ieι262 . . . , then

ηh(τ) = η(τγiη(2τγ* . . . 9 (3.7)

and η is the Dedekind eta-function. If h has even order the formula always takes the
form (const) -h "Frame shape," where by ^Frame shape we mean the eta-product
corresponding to the indicated partition. For example if h= 1828 then Table (3.4),
line 2 tells us that Z(l, h, τ) is equal to 27 plus the eta-product η(τ)24/η(2τ)24.
Finally, we give the explicit constant term for each Z(l, Λ, τ) since, unlike the
Monster case, they are in general non-zero.
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Table (3.4)

Pair (g, h)

(1, 124)

(1, 1828)
(U12)

(1,1636)

(U8)
(1, 2444)
(1, 142244)

(1, 1454)

(1, 12223262)

(U373)

(1,12 2 4 82)
(1,22102)

(1,12112)

(1,2 4 6 12)

(U 2 7 14)

(1,1 3 5 15)

(1,3-21)

(1,1-23)

(1636, 1636)
(1436,38)

No

1

2
4

3

9
8
4

16

5

6
36

7

8
20

11

24
144

14

15

63

23

9
27

Group

rod)

Γo(2)-

Γ0(3) +

Γ0(3|3)
Γo(4)-

Γ°(4|2)-

Γ0(5) +

Γ0(6) + 3
Γ0(6|3)

Γo(7) +

Γ°(10) + 5

ΓodlH

Γ0(12) + 3
Γ0(12|6)
Γ0(14) + 7

Γ0(15) +

Γ0(21|3) +

Γ0(23) +

Λ>(3|3)

M elt.

1A

2B
2B

3A

3C
4C
4C

5Λ

6C
6F

7A

105

1U

12 J
14B

15Λ

21C

23^4

3C
ghost

Formula

Θh/ηh

(27)+l24/224

!24/224

ΘΛ/%

18/48
Λ

(25)+l8/48

212/412

Θh/ηh

(23)+l636/2666

38/68

.̂
(23)+l442/2284

1454/24104

*/*
1232/42122

64/124

(2) + l373/23143

θk/ηk

Θh/ηh

Θh/ηh

C. Dong, <

Const, term

C)
104
-24

(")
0
-8
24
0

G)
2
0

G)
4
-4

G)
-2
0
-1

Θ
0

G)

4. Preliminaries

First recall that the elements of M24 are "balanced." More precisely, the integer
N0 = N(g) defined for #eM24 by (3.1) can also be characterized as follows: if g has
cycle decomposition r^rf2 . . . rf' with I^r!<r 2< <rt and βi>0, then each rf

( JV \e< f N V'-1 /NoV1

— J I I — is again the cycle decomposition of g.
rt J \rt-ιj \ rι /

See [K] for the relation of this to the theory of the eta-product ηg(τ) (3.7).
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Lemma 4.1. Let cz g be as in (2.15). Then

V 2 - -

95

N0(gY

- +

1,

N0(gY

n(sf) odd

= Ίί+^, n(g) even,

, n(g) even, m(0)=l

Proo/ Let B(g) be as in (2.14). We claim that

(4.1)

The "contribution" to £(#) made by a single cycle of length s is equal to

1 t l± y : ι . ± u
2

1

'Ϊ2s

So if g has cycle decomposition rf' r|2 . . . rf< then

e;* V= uίt
J

17i

 = Σ eiΓi =

as Σ!=1 ^^ = 24. So (4.1) holds.
As / = 24, we are done by (2.15) if Z = TL. We also have

Now if Z =

), w(0) odd

4NQ(g2), n(g) even, m ( g f ) > l .

2N0(g2), n(g) even, m ( g f ) = l

we are done by (4.2) and (2.15). The lemma is proved. Π

(4.2)

There is an important consequence of Lemma 4.1 for the partition functions
Z ( g , h, τ), namely

- 1
Lemma 4.2. (i) Ifn(g) is odd then Z ( g , h, τ) = qN^} + higher powers.
(ii) If n(g) is even then Z ( g , h, τ) is holomorphic at oo.

Proof. This follows from Lemma 4.1, (2.17) and the accompanying discussion of
the grading of CM (Z, g). Π

Lemma 4.3. We have

where T2 is the Hecke operator corresponding to 2.

Proof. This is a basic result of [M3] - see in particular (7.13) of that paper and the
attendant discussion. Π
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Corollary 4.4. All poles of Z(l, g, τ) are at the cusps.

Proof. This is because ηg(τ) does not vanish in the upper half-plane. Π

Corollary 4.5. Z(l, g, τ) is a modular function on Γ0(N(g)).

Proof. It is well-known [K] that if π = rf1 r2

2 . . . rf' is a partition of some multiple
of 24 then the corresponding eta-product is a modular form of level /, where

/ satisfies r t \ l for z = l, . . . , ί, and also / £ — = 0 (mod24). Thus if 0eM24 then
i = ι rί

f/^(τ) is certainly a form on Γ 0 ( N 0 ( g ) ) by balance. Moreover if m(#) is even then
ηg(τ)2 is a form on Γ0(Λ/o(g)/2). Now the lemma follows from Lemma 4.3 together
with Definitions (3.1) and (3.2). Π

Now it is well-known [O] that the cusps of ΓQ(N(g)) may be taken to be

rationals of the form -, where c\N(g) and (α, c) = 1. We call the cusp - odd in case
c c

c is divisible by the 2-part of n(g), and otherwise - is called an even cusp of
Γo(N(g)). °

Lemma 4.6. Z(l, g, τ) is holomorphic at all even cusps.

Proof. Let - be an even cusp, and let y = { } lie in SL2(%). By (2.18) we have
c \c a )

Z ( l , g , y τ ) = σ(y-\lg)Z(gc,gd,τ). (4.3)

Now gc has even order by construction, so according to Lemma 4.2 (ii),

Z(gc, gd, τ) is holomorphic at oo. As y: oo i—>-, then Z(l, g, τ) is holomorphic at - as
c c

required. Π

Lemma 4.7. The poles o/Z(l, g, τ) are precisely at the odd cusps of Γ 0 ( N ( g ) ) .

Proof. All poles are cuspidal by Corollary 4.4, hence are among the odd cusps by

Lemma 4.6. But if - is an odd cusp then from (4.3) and Lemma 4.2 (i) we see that
c a

Z(l, g, τ) indeed has a pole at - since σ(γ 1, 1, g) never vanishes. Π
c

Lemma 4.8. Let g, h be commuting elements o/M24.

(i) Suppose that < g, /ι> has a non-cyclic Sylow 2-subgroup. Then in the 24-
dimensional permutation representation ofM24 there are l-dimensional (g, hy-invari-
ant subspaces Ul9 U2, ί/3, U4 such that g acts as 1 on C/i, U2, and as — 1 on C/3, U4

whereas h acts as 1 on U2, C/3, and as —1 on U^ U4.
(ii) Suppose that g has odd order and h has even order. Then there are subspaces

U5, Uβ such that g is 1 on C/5, U6, h is 1 on U5, — 1 on U6.

Proof. Straightforward. Π

Lemma 4.9. Let g, heM24 be as in either (i) or (ii) of Lemma 4.8. Thenfor r = ΰ or 1,
the graded trace o f h on CMr(%, g) is identically zero.
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Proof. As discussed following (2.11), there are isomorphisms of graded (/^-mod-
ules CJVΓ(Z, g)~Λ(A(Z, g)~). Moreover from (2.8) we get

/ < o

where A^g is the subspace of A~ fixed by g.
Now h acts on A~, and by Lemma 4.8 there are eigenvectors for h in A~

corresponding to the eigenvalues 1 and — 1. The existence of the eigenvalue
1 means that A°(A(Z,gΓ)^A1(A(Έ,gΓ) as </ι>-modules (cf. [DM], (7.5)),
whereas the —1 eigenvalue forces the trace of h on A(AQiβ) (and hence on
A(A(ΊL, g)~) to be zero (cf. [M3], Lemma 2.3)). The lemma follows. Π

Lemma 4.10. Let g, heM24. be as in (i) of Lemma 4.8. Then the graded trace ofh on
2% g) is identically zero.

Proof. The proof is essentially that of the previous lemma. We just use (2.9), the
action of h on A~{g)/2,g, and Lemma 4.8 (i). Π

We next consider the 1-cocycle σ. Recall the generators S = l

1, n(g) even, m(g)=l

Lemma 4.11. (i) σ(T~l, g, h) is independent ofh.

(ii) σ(T-',g,h) = σ(T\g9hγ.

(iii)

Proof, (i) follows from (2.22) and (ii) is a consequence of the 1-cocycle property
(2.19). Finally, (iii) can be computed from (2.22), but it is quicker to use identity
(2.18) together with Lemmas 4.1 and 4.2. We leave the easy details to the
reader. Π

Lemma 4.12. Let xeM24 either have odd order; or have even order which is not
a power of 2 and satisfies m(x)=l. Then if <#, /ι) = <x) and yeSL2(%] then
σ ( y ~ 1 , g, h) is a root of unity of odd order.

Proof. Because of the cocycle property, it is enough to prove the lemma for
y = Sor T.

If y = T then the result follows from Lemma 4.11 (iii) since if m(x)=l then
m(g)=\ too.

So assume that y = S. If x has odd order then the result is clear from (2.21).
Otherwise x is one of the elements I2 22 33 62 or 1 2 7 14 in M24, in particular
n(x) is square-free. In each case the integer α which intervenes in (2.21) is even, and
we see from that formula that if σ(S~1,g,h) is not an odd root of unity then
<#> = </z> = <x> (recall that each of the pairs (xJ9 y7 ) in (2.21) occur an even number
of times). So we may take g — x,h = xb for some b coprime to n(g}. Now the result is
an easy calculation using (2.21). Π
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Of course we can in principle calculate σ(y~1

9 g, h) for all yeSL2(%\ g, heM24.
using (2.21) and (2.22). Though we wish in general to avoid explicit calculations, we
illustrate with an example that we use later.

Lemma 4.13. Let y = ( J and g = 2 4 6 12. Thenσ(y~\ 1, 0)=1.

Proof. We have y^ST^ST, so the cocycle property (2.19) yields

The last term is 1 by (2.21), and a calculation similarly yields σ(S ~ ί, g, g4) = 1. On
the other hand Lemma 4.11 yields σ(T~1,g4,g~l) = e~2πi/3> and also
σ(Γ~4, g9 l) = elβ"i/24. The lemma follows. Q

The partition functions satisfy a crucial symmetry property:

Proposition 4.14. Let g and h commute and have coprime orders, and assume that
g has odd order. Then

Proof. Bearing in mind the definition (2.17) o f Z ( g , h, τ), let us first concentrate on
the first summand of V(g) in (2.12), more precisely we consider the space
CM(2£+i,g). Since g has odd order, the discussion in Sect. 2 shows that as
^-graded CM24(g)-module we have

Ίl/n-ί/2\

where / runs over all integers satisfying l/n> 1/2, and we have also set n = n(g).
It follows from this (cf. [M4]) that the graded trace of h on CM(Z+i,#,

N0(g)τ) is equal to

^ Π Π f[(l+e2™q(l+Jlk-i/2)N°M), (4 4)
leZj^O k 7=1

where fc runs over the cycles of g in its cycle decomposition on 24 letters, and where

e2πicc js a typical eigenvalue of h on the corresponding g-eigenspace.
As h has order coprime to the order of g then each #-eigenspace is a rational

</ι>-module, so h has a Frame shape I f ί 2 f 2 . . . ,/i e2ζ on each 0-eigenspace. Then
the "contribution" of a cycle of length s from this Frame shape to (4.4) is given by
(assuming that s is odd for a moment):

(If 5 is even the plus sign becomes minus.) So we see that (4.4) is equal to (taking h of
odd order for now):

4"1 Π Π(1+
ι>o
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where the second product ranges over the various choices for kj, s corresponding
to the 24-dimensional representation of M24. Now

By balance, N0(g)/k ranges over the cycle lengths of g as k does, so sN0(g)k ranges
over the cycle lengths of gh. And for fixed fe, kl+j — k/2 ranges over r — 1/2>0,
The upshot is that the graded trace of h on CM(Z+i, g , N 0 ( g ) τ ) is equal to

where t ranges over the cycles of gh. But this is precisely the trace of gh on
CM (Έ +i, 1, τ). If h has even order the same argument applies as long as certain
plus signs are replaced by minus as explained above.

It remains to treat second summand of V(g) in (2.12), and as before we consider
the full exterior algebra CM(Z, g) (g) Ng9 where Ng is a 1 -dimensional representation
of CM24(g) as discussed in [DM] and [M3, Sect. 8] (where it is denoted by χ ( g , )).

There are two cases to deal with. First, if h has even order then, since g has odd
order, Lemma 4.9 shows that h has trace 0 on CMr(ΊL, g) for r = 0, 1, and similarly
gh has trace 0 on CMr(Z, 1). So in this case the proposition is proved.

If h has odd order then one computes from the description of Ng (loc cit.) that
Ng(h)=ί. The argument in the first part of the proof then shows that the graded
trace of h on CM(Z, g, N0(g)τ) ® Ng is equal to that of gh on CM (Z, 1, τ). Since the
trace of h on CMr(TL, g, τ) is independent of r = 0, 1, the proposition now follows in
its entirety. Π

5. The Case

We deal in this section with the proof of Theorem B in case h(g) = l, and also show
how Theorem A reduces to proving Theorems B and C.

Lemma 5.1. Part (b) of Theorem A holds.

Proof. Take g, h commuting elements of M24 with <#, Λ> having non-cyclic Sylow
2-subgroup. Comparing Lemmas 4.9 and 4.10 with (2.12) and (2.17), the result
follows immediately. Π

Now suppose that <#, /ι> has a cyclic Sylow 2-subgroup. By [M4] either <g, ft>
is of type Z3xZ3A or Z3 x Z3B and we are in the situation of Theorem C, or else
(g^hy = <x> is itself cyclic.

In this latter situation, let A be the largest subgroup of SL2(IR) which leaves
Z(l, x, τ) invariant. We can find yeSL2(Z) such that (g, h)γ = ( l , x), in which case
yΔy~1 is the largest subgroup of SL2(IR) which leaves Z ( g , h, τ) invariant - as one
sees easily from (2.18). The upshot is that Theorem A is a consequence of Theorems
B and C.

For the rest of this section, then, we will fix #eM24 such that h(g) = ί (cf. (3.2)).
We then let n = n(g\ N0 = N0(g\ etc. In order to prove Theorem B in this case we
must establish.

Theorem 5.2. F0 = Γ0(rc)-f odd is the largest subgroup of 5L2(1R) which leaves
Z(l, g, τ) invariant. Moreover, Γg has genus zero and Z(l,g,τ)isa hauptmodulfor Γg.
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Lemma 5.3. Theorem 5.2 holds if n is a power of 2.

Proof. Because h(g) = 1 then N = n, so as n is a power of 2 then Γ0(ri) has only one
odd cusp (which is equivalent to oo). By Lemma 4.2 (i) and Lemma 4.7, Z(l, g, τ)
has a pole of order 1 at oo and no other poles in a fundamental domain for Γ0(n).
Since Z(l, g, τ) is a function on Γ0(n) (Corollary 4.5) then Γ0(n) must have genus
zero and Z(l, g, τ) is a hauptmodul for Γ0(n).

Finally, we must show that Γ0(n) is the largest subgroup of 5L2(1R) leaving
Z(l, g, τ) invariant. If β leaves Z(l, 0, τ) invariant then from the above argument we

A Λ
see that β fixes the cusp oo of Γ0(n), so β = (S I 1 for some reR and (5eΓ0(n). So

/I Λ
we may take j8 = l J . As Z(l, g,τ) = q 1 + then we must have reZ, so

βeΓQ(n) as required. Π

We refer the reader to [CN] for information concerning the Atkin-Lehner
involutions We of Γ0(N). We call We an odd Atkin-Lehner involution of Γ0(N) in
case e is odd.

Lemma 5.4. The group generated by the odd Atkin-Lehner involutions of Γ0(N) is
transitive on the odd cusps of Γ0(N).

Proof. Let a/c be an odd cusp of Γ0(N). So c\N and N/c is odd, moreover (α, c) = 1.
Let e = N/c.

Now # has order TV, so gc has odd order e and by a property of M24,g
c has

square-free order. Thus (ae, c) — 1 and we can find integers u, v such that
aue — vc=l.

Set

we/ c

which has determinant e. Indeed We is an odd Atkin-Lehner involution. As We:
vo\-^ae/N = a/c, the lemma follows. Π

Proposition 5.5. Z(l, g, Weτ) = Z(\, g, τ)for each add Atkin-Lehner involution We of
Γ*(N).

This being the case, it follows from Lemmas 4.7 and 5.4 that Z(l, g, τ) is
a function on Γ0(Λf) + odd with a simple pole at oo and no other poles in
a fundamental domain for Γ0(AΓ) + odd. Then Theorem 5.2 follows as in the proof
of Lemma 5.3.

So to prove Theorem 5.2, it is enough to establish Proposition 5.5. To this end,
(a v\

let y = ( \£$L2(Έ) be as in (5.1). By (2.18) we get
\c uej

Z(l,g, Weτ) = σ(y~\ l,g)Z(gc,g»e,eτ) . (5.2)

Now gc has odd order e while gue has order c. Furthermore N0(gc) = n(gc) = e, so we
may apply Proposition 4.14 to conclude that Z(g°, gue, eτ) = Z(l, g, τ). As a conse-
quence, to complete the proof of the proposition we see from (5.2) that we must
establish

Lemma 5.6. With previous notation, we have
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Proof. We have already established that

so as We acts as involution then certainly σ(y ~1, l,g)=± 1.
Suppose first that g has odd order, or else even order which is not a power of

2 and such that m(g)=l. Then Lemma 4.12 tells us that σ(y~1, 1, g) is a root of
unity of odd order. So it must be 1 in this case, as required.

After Lemma 5.3 we may assume that m(g) = 2 and n(g) is even but not a power
of 2. The only possibilities are g = 22102 or 2 4 6 12. In the second case we may

take y = \ 1 , in which case the present lemma follows from Lemma 4.13.
4 3

/I 2\
In case g = 22102 then we may take y = I 1, and we invite the reader to again

\2 5J
verify the lemma for themselves as in the proof of Lemma 4.13. (To this end, note

This complete the proof of Theorem 5.2.

6. The Case/r(#)>l

In this section we complete the proof of Theorem B. Throughout we fix
such that h = h(g)> 1, and let N0 = N0(g\ n = n(g\ etc. Note that as h(g) divides 24
then if h is odd it must be equal to 3.

We shall give a precise formulation for the action of Γg on Z(l, g, τ):

Theorem 6.1. There is a group homomorphism

c\ Γg = Γ0(n\h) + odd -> {hth roots of unity}

defined by Z(l, g, γτ) = c(γ)Z(l, g, τ). Moreover

Ί I//ΪN

0

~2πίl\ n odd

I ' e 2 π i l \ ' ^ j

c(w)= 1, for all odd Atkin-Lehner involutions w of Γ0(n\h). (6.3)

Remarks, (i) According to [CN] the elements I 1 , ί j generate ΓΌ(n\h)/

Γ0(ΛΓ), and the homomorphism c is determined completely by (6.1)-(6.3).
(ii) Conway-Norton have conjectured exactly this result for Monster elements

[CN, Sect. 5]. (But note: the signs ± in (6.2) are the opposite of those proposed in
[CN].)

(iii) Theorem 6.1 in case h= 1 was established in Sect. 5.

We proceed in a sequence of lemmas.

Lemma 6.2. Equation (6.2) holds.
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Proof. y = (1 JeΓo(n), so (2.18) yields

so we must compute <τ(y ~1, 1, 0) ( = 0(7) in the notation of Theorem 6.1).
Now y = ST~nS, so using Theorem 2.4 and the cocycle property we find that

Again σ(S, gf, 1)= 1 by Theorem 2.4, while Lemma 4.11 (iii) shows that

Now (6.2) follows from this and (3.2). Π

Lemma 6.3. Equation (6.1) holds.

Proof. In this case, ίϊ y = ( ' j then Z(l, g, γτ) = Z(l9g9τ + 1/Λ). To evaluate

this we use the nature of Z(l, #, τ).
If g has cycle decomposition r?1^2 . . . , then m = m(g) divides each r ί? so the

eta-product ηg(τ)2 takes the form

»/,(τ)2 = « 2 f ; α l ( Γ ί . (6.4)
1 = 0

Case 1: m odd. In this case we have h = m = 3 and n is odd. So ^(τ)2 has odd level
and some weight k (as a modular form), so that

00 00

T2η,(τ)2=q £ α2ig"" + 2*-V £ α,ί2"' . (6.5)
1 = 0 1 = 0

Because h = 3 we see that replacing τ by τ -f l//ι merely multiplies expression (6.5) by
e2πί/h, whereas the same operation multiplies (6.4) by e4πί/h. Now (6.1) holds in this
case by Lemma 4.3.

Case 2: m even. In this case m = 2h by (3.2) and ηθ(τ)2 has even level. So now

T2ηg(τ)2 = q £ aιq

hl ,
/ = o

as we see from (6.4), and the result follows as before. Π

It remains to deal with the odd Atkin-Lehner involutions of Γ0(n\h). In our
situation, there is only one class of elements in M24 for which n/h has an odd divisor
greater than 1, namely 0 = 3 21, where n = 2l, h = 3.

In this case the only non-trivial Atkin-Lehner involution is

/3 0\/0 -Λ/3 0\ /21 0

Oί? θ)(θ lMθ 1/3

Now (2.18) yields
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But σ(S~1,l,g)=l by Theorem 2.4, and since N0(g) = 63 then Z(0, 1, 63τ) =
Z(l, g, τ) by Proposition 4.14. This completes the proof of Theorem 6.1.

Lemma 6.4. Let Γ'g be the kernel of the homomorphism c ofTheoremβ.l. ThenΓ'g acts
transitively on the odd cusps of Γ0(N).

Proof. Certainly Γ'g acts on the odd cusps of ΓQ(N) by Lemma 4.7, while the

stabilizer of the cusp oo is generated by I 1 . After Theorem 6.1, in particular

(6.1), it is enough to show that \Γ'g\ Γ0(N)\ is equal to the number of odd cusps.
Now the order \Λ: Γ0(ΛΓ)| of the full normalizer Λ = Γ0(n\h)+ of Γ0(N) in

SX2(IR) (modulo Γ0(N)) is well-known (cf. [O]). It is equal to 2rh2s, where r is the
number of distinct prime factors of N, and (in our case) s = 2β if 3\h and is
otherwise 1. Let us note at this point that g is one of the possibilities: 38, 64, 122, 46,
3-21.

Now if N is odd then Γ^ = Γ0(w|ft) + 5 whereas if N is even then in each case
n/h = 2 and then \Λ:Γg\ = 2. So we get

2Γ+1, n odd, (A = 3)

I = 2rh/3, n even, 3 |Λ
r - / z , n even,

Explicitly, we have the table

9
\Γg: Γ0(N)\

38

4

64

4
122

8

46

2

3 12

8

On the other hand the number of cusps of ΓQ(N) is just ΣC\N ^((c> ^/c)), and we

calculate that in each case we have number of odd cusps = 2ΣC\N Φ((c> N/c)), an(*
that this coincides with the index \Γ'g: Γ0(N)\. The lemma follows. Π

Theorem B is an immediate consequence of Theorem 6.2 and Lemma 6.4.
The proof of Theorem C is completely analogous, and we leave details to the

interested reader.
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