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Abstract: We give a concrete description of an isometry v from /2(N x Z x TL x Έ)
to /2(M x 2£ x M x TL] whose existence has recently been discovered by Woronowicz
[11]. The isometry v gives the comultiplication δ on the C*-algebra A of the
quantum group SU(2)€ through the formula δ(x) = v(x® l)υ*(xεA\ where 1 is the
identity operator on £2(TL x TL). The matrix entries of v are described in terms of
little g-Jacobi polynomials. Using v, we give a concrete description of a unitary
operator V on Hη®Hn such that (πη®πη)δ(x)=V(πη(x)®l)V*, where
Hη = S2(N x Z x N) and πn: A-^L(Hη) is the GNS representation associated with
the Haar state η on A. The operator V satisfies the pentagonal identity of Baaj and
Skandalis [ 1].

1. Introduction

The C*-algebra A of the quantum group SU(2)g, where 0<g<l, is a unital
C*-algebra with generators α, c and relations that make

a unitary element of M2(A\ namely

α*α + c*c = αα* + q2c*c = 1 ,

ac = qca, ac* = qc*a, cc* = c*c. (1.2)

There is a natural representation of A on the Hubert space /2(M x Ίί\ which was
described by Woronowicz [9] as follows. For any set /, denote the standard
orthonormal basis of S2(I) by {̂ : ie/}; if J is another index set then we identify
^2(/)®/2(J) with /2(7 x J) by the correspondence εt ® £j++£(ij) (ίe/,y'eJ), &nd we
abbreviate ε(ίj) to ε/7 . Define bounded linear operators a, c on /2(N x Έ) by

€Z) . (1.3)
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Then it is easy to check that α, c satisfy the relations (1.2) and therefore define an
action of A on /2(N x Z), which we call the fundamental representation of A (not to
be confused with the "fundamental corepresentation" of A9 which is the unitary
element of M2(A) given by (1.1); the potential for confusion is compounded by the
fact that many authors take the dual category to be more basic, and hence describe
as "representations" what we call "corepresentations").

The algebra A becomes a bialgebra if we define a comultiplication δ on the
generators by

δ(ά) = a®a — qc*®c, δ(c) = c®a + a*®c . (1.4)

In general, a comultiplication on a unital C*-algebra is a *-homomorphism
δ: A -+A®A (where the tensor product is the minimal C*-algebraic tensor prod-
uct) satisfying the coassociativity condition (i® δ)δ = (δ® ϊ)δ. It is frequently con-
venient to describe a comultiplication by specifying its action on a set of generators,
as in (1.4), and there is then a problem of showing that the specified mapping
extends to a well-defined *-homomorphism on the algebra. For the SU(2)β algebra,
Woronowicz solved this problem in [9] by the following strategy. He observed that
the elements δ(a\ δ(c) given by (1.4) satisfy the same relations (1.2) as a and c. He
then proved that the fundamental representation of A has a universal property: if a',
c' are elements of a C*-algebra B which satisfy (1.2), and α, c are given by (1.3), then
the mapping απ+α', c\~*c' extends to a *-homomorρhism from A to B.

Another strategy, which works well in the case of the comultiplication on
a group C*-algebra (see [5]) is this: given a C*-algebra A acting on a Hubert space
H, look for a unitary operator v on H ®H such that

δ(x) = v(x (x) IH)U* (1.5)

whenever x is a generator of A. The right-hand side of (1.5) evidently defines
a *-homomorphism of A, so the extension problem becomes trivial.

In a recent paper, Woronowicz [11] has shown that a variant of this construc-
tion can be applied to the SU(2)^ C*-algebra. He constructs a unitary operator
v: H®K^H®H such that

δ(x) = υ(x®lκ)v* (xeA), (1.6)

where H = ̂ 2(N x Έ) (the Hubert space for the fundamental representation of A)
and K = £2(ΊίxΊL\ The construction of v is very ingenious and conceptually
attractive, involving a contraction procedure from SU(2)g onto E(2)g, but it is too
indirect to be useful for computational purposes. It also has the methodological
defect of using the comultiplication on A to define v, which rules out the possibility
of using (1.6) to define δ. Our first aim in this paper is to present a self-contained
and explicit construction of a unitary operator υ:H®K-^H®H which satisfies
(1.6) for x = a and x = c, and which therefore in principle enables (1.6) to be used to
define the comultiplication on A.

The construction of v leads us to the consideration of a family of little q- Jacobi
polynomials. It is not surprising that these polynomials should arise, since little
q-Jacobi polynomials have previously been encountered in the analysis of the
irreducible corepresentations of SU(2)β by Masuda et al. [6], Vaksman and
Soibelman [8] and Koornwinder [4]. We discuss these polynomials more fully in
Sect. 3; but we want to indicate in this Introduction a difference between the series
of little g-Jacobi polynomials that occur in our analysis of the fundamental
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representation of A and those that arise from the irreducible corepresentations of
A. In both cases, one is concerned with sequences of polynomials pfc(x; a, b; q2) (see
(3.3) for the definition). In the study of the (finite-dimensional) irreducible corep-
resentations, the parameter b is a positive power of q2, but in the case of the
fundamental representation, we shall encounter the (degenerate) case b = 0.

In addition to its fundamental representation, the C*-algebra A has another
very natural and important representation, namely the regular representation. It is
shown in [9] that A has a distinguished state η, the Haar state, given by the formula

It is evident from (1.7) that the regular representation of A, which by definition is
the GNS representation πη associated with η, is (unitarily equivalent to) a direct
sum of N copies of the fundamental representation, so that nη(x) can be identified
with x® 1 acting on the space Hn = (2^ x TL x N). We denote the elements of the
standard orthonormal basis of Hη by

εα (fc, αeM, ΐeZ)

to emphasize that nη acts like the fundamental representation on the first two
(subscript) factors, whereas the third, superscript, factor just indicates multiplicity.
It follows from (1.7) that the vector

(1-«T* ΣΛ (1-8)
k = 0

in Hη has η as its associated vector state. But each term in the sum (1.8) is only
determined up to a phase, and it will be convenient for us to take

ξη = (l-q2Γ*Σ(-<l)kεkkQ (1-9)
k = 0

as the cyclic vector for the Haar state.
It follows from the general theory developed in [1] and [10] that the equation

V πη(x)ξη®ζ = (πη®πη)δ(x) ξη®ζ(xeA9ζeHη) (1.10)

defines a unitary operator on Hη®Hn. This unitary satisfies the pentagonal
identity that Baaj and Skandalis use as the foundation for their duality theory for
Hopf C*-algebras. They use the term "multiplicative" to denote a unitary that
satisfies this identity, but most of the recent literature refers to V as the "funda-
mental" unitary (yet another use of the word) of its associated quantum group, in
this case SU(2)β. We shall give a formula connecting V with υ9 but first we need to
introduce a bit more notation.

We shall use the now-standard "leg-numbering" notation for operators on
tensor-product spaces (see [1] or [7] for an explanation of this notation). For
example, if xeA9 then we could denote the element πη(x) of L (Hη) by x12, meaning
that it acts like x on the first two factors of /2(N)®/2(Z)®/2(]N) and like the
identity on the third. Let K be the Hubert space *f 2(N x TL x N x TL x Z x N). We
denote the standard basis vectors of K by

, α, eN, n, /
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where (as in the case of Hn®Hn) the third and sixth components appear
as superscripts to indicate multiplicity. Then ^1245 is the unitary operator from
K to Hη®Hη which acts like υ on the subscript indices and leaves the superscripts
alone.

If H = H i (x) H 2 ® ® Hk is a tensor product of Hubert spaces and σ is
a permutation of (1, . . . , & } , then we denote by Σσ the unitary operator from H to
Hσ(i) <8> ' * * ®Hσ(fc) obtained by permutating the factor spaces in the obvious way.
The formula that we shall derive for V is

The proof that we give for this formula in Sect. 4 is just a computational verifica-
tion, and provides very little insight into why the result should be true. It would be
desirable to have a more conceptual proof of (1.11) which would help one to
understand why this relation should hold.

2. A Simple Example

In this section we describe a "quantum semigroup" which exhibits in a very simple
form some aspects of the construction that we shall make in Sect. 4.

Let C*(s) be the C*-algebra generated by a non-unitary isometry s on a Hubert
space. The structure of C*(s) is well known [2], and it is independent of the
multiplicity of s.

So if t is also an isometry then there is a unique *-isomorphism from C*(s) to
C*(t) which maps s to ί. In particular, s®s is an isometry, so there is a unique
*-homomorphism δ: C*(s)->C*(s)®C*(s) such that δ(s) = s®s. Since
(ι®δ)δ(s) = (δ® ι)δ(s) = s® s® s, it is evident that δ is a comultiplication on C*(s).
We call (C*(s), δ) the quantum semigroup generated by an isometry. It does not
have an antipode and cannot be made into a quantum group, but in some ways it
serves as a prototype for the more complicated construction that we shall make
later.

If we wish to obtain a concrete description of the comultiplication on C*(s)
then we can proceed as follows. Take 5 to be the (forwards) unilateral shift
on /2(M), whose action on the canonical orthonormal basis {εn: rceN} is given
by sεn = εn+1.

Then 5® s is a shift of infinite multiplicity on /2(N x N). Define a bijective map
g: M x IN ->N x Z by g(m, n) = (m Λ n, n — m), whose inverse is given by
g~1(k, ϊ) = (k — i Λθ, fc + ivO). (Here, x v y means max{x, y} and x Λ y means

We define a unitary mapping v : /2(M x Z) ->^ 2(M x N) by v εkί = εmn

(ίceN,ieZ), where (m,n)=fif~ 1 (fc j i) K is easy to verify, and evident from the
following diagram, that v converts 5® 1 to δ(s) in the sense that v(s®l) =
where 1 is the identity map on /2(Z).
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Hence <5(x) = φ;<g)l)t;* (xeC*(s)).
Since /2(N) and /2(Z) are both separable Hillbert spaces they are isomorphic,

and we could use a unitary mapping between these spaces to convert the domain
space of v from /2(N x Έ) to *f2(]N x N). In that way we could construct a unitary
operator on ^2(NxN) which would intertwine the actions of C*(s)(χ)l and
δ(C*(s)) in the same way that v does. But there is no canonical way of doing this,
and it is clear from the above construction that the "natural" domain space for v is
*?2(N x Έ) rather than *f 2(N x N). We shall find that an exactly similar situation
occurs with the C*-algebra of SU(2)^ and the unitary that describes its comultipli-
cation.

3. A Family of Orthogonal Polynomials

We need to investigate some properties of a family of little g-Jacobi polynomials.
We use the book of Gasper and Rahman [3] as a general reference for basic
hypergeometric series, and we shall adopt their notation. The basic hypergeometric
series r+ι</> r(αι, . . 9ar+i;bi9. . . 9br; q,z) is defined by

, , h , v
r+1φr(al9. . . ,ar+1,bί9. . . 9br;q9z)=

where

(fl «λ4 ' ίπ=°>
I (l-flXl-fl^. ίl-fl^-1) if ΐ ^ l .

We assume throughout that 0<g<l. We also define

i-> oo

We shall require Cauchy's q-binomial theorem in the form ([3, (1.3.2)])

(3.1)

from which one deduces the finite form ([3, (1.3.14)])

(3.2)
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The little g-Jacobi polynomials pk(x;a,b;q) are defined by

pk(xia,bιq) = 2φι(q-k,abqk + ί;aqιq,qx) . (3.3)

We shall be concerned almost exclusively with the case b = Q.

Proposition 3.1. For 0<a<q~ί and b>0 we have

f t pk(x a^q} = ( - (3.4)

(ii) pk(wb 9q)J*~l*~l\k^ .
(aq; q)k

(3.5)

Proof, (i) is a straightforward application of the transformation formula of Sears
([3, (1.5.6)]). To prove (ii), we use the technique of inversion ([3, Ex. 1.4(i)]) and
then Jackson's transformation formula ([3, Ex. 1.15 (iii)] ) to get

and the result follows from (i).

Corollary 3.2. For 0 < a < q ~ 1 ,

(i) Pk(x',a^q) = - 3φ2(q-k,χ-l,a-lq-k'90,Q 9q,q)9 (3.6)

(ii) pk(xla^q) = —-— -2φi(qk,xιQiq-1,a-1q-k-ί) . (3.7)
(04; tf)k

Proof. These follow from (3.4) and (3.5) as b->0. (The symbol ί j denotes

a binomial coefficient.) ^ '
We next state some orthogonality relations for the little g-Jacobi polynomials,

for the case b = 0.

Proposition 3.3. For 0 < a < q ~ 1,

Proof. The first of these is just a special case (b = 0) of the standard orthogonality
result for little g-Jacobi polynomials, proved in Sect. 7.3 of [3]. The proof of the
dual formula (3.9) is a bit more elaborate, and to simplify the notation we shall
adopt the convention of [3] that (#! , . . . , an\q}k means (aί;q)k' -(an;q)k. In the
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following sequence of calculations, (3.10) uses (3.6), and (3.11) uses a partial
inversion. We have

(3.10)

(3.11)

v

=lolo
oo r

Σ v v"i ι V4 5«i;i i / -s -k-i -i -k-i A A \ /o ι^\
^ —r ^ 3Φ2W ># >β ^ j'0,0;^, g). (3-12)

If we can prove that

^ ^(fc + θ(r+s) > 13φ2(q~s

9q~k~\a~1q~k~lιQ9Qιq9q) = δrs---^-jr, (3.13)

then (3.9) will follow from (3.12) because of Cauchy's result that

- qk2zk 1
(3.14)

(cf. [3,(1.6.3)]). It will suffice to prove (3.13) under the assumption that s^r. We
then have, by (3.2),

i = 0

r s

(g~j;g)n

i(m+n+ί} i ί(r+s-m-n}αmfen i(m+n+ί} y

In this last expression, fix m and n, and consider the sum over). This should go from
7 = max{m, n] to j = s9 but we shall make it go from j = 0 to j = s9 since all the
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additional terms are zero. Using (3.2) again, we have

y (q 8iq)j (a-

^
= y y y > « / - j + mγ /? ,

(«ί), (<?;<?)* (««),
<?"";<?)/? mq + nff y P?"^ <?)j /(„,-« + „

(3.16)

The indices in the product represented by the final term in this expression cannot
all be negative. So for the product to be nonzero we must have

and hence m + n^is + a + β^s. But then, by the same sort of reasoning, the final
term in (3.15) must be zero, unless s — m — n=—r. Since mgjrgs, this only happens
when m = n=j = s = r. Thus for (3.15) to be nonzero we must have s = r, in which
case the only nonzero term in the summation (3.15) is

Replacing a by q~k and b by a~lq~k and substituting into (3.13), we have the
desired result.

We shall also require some ^-contiguity results for the little g-Jacobi poly-
nomials, as follows.

Proposition 3.4. For 0<a<q~1,

(i) (l-x)pk(xq~1',a,Q'9q) = aqk + ipk(χ 9a,Q 9q)

+ (l-α^+1)pk+1(x;α,0;^), (3.17)

(ii) (1 -α)pk(x; aq~ 1,0; <?) = (! -aqk)pk(x; α, 0; <?)

(iii) xpk(x;a^,0;(?) = (l-a^)[pk(x;a,0;^f)-pk+1(x;a,0;^)] . (3.19)

Proof. These are easily verified by comparing powers of x.

The orthogonality results from Proposition 3.3 enable us to construct a family
of unitary operators on ^

Proposition 3.5. For 0<q<l and n^O, there is a unitary operator un on
whose action on the basis vectors is given by

2n+2 2\ / 2»
J o o V 4 - . .

)£k -
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Proof. Denote by /(fc,n,r) the coefficient of εk in (3.20). Then

The adjoint operator w* must be given by tι?εk = 5^L0 /& n' r)ε' The conditions
for un to be unitary are

It is easy to see that these conditions are the same as (3.8) and (3.9), so Proposition
3.5 follows from Proposition 3.3.

4. Construction of v and V

Define u in L (/2(N x Z x TL x Z)) by

(4.1)

By Proposition 3.5, w is unitary. (There is no significance in the fact that the basis
vectors are designated by multiple subscripts on one side of (4.1) and by a tensor
product notation on the other side. It just seems more convenient to use multi-
subscripts when the indices are single letters, and the tensor product notation
otherwise.) Thus (uεrnij = ulnl<S)l®sr®s~r)εrnij ,where s is the bilateral shift on

Also, define a unitary operator w: *f2(N xZxZx Z)-^2(N x Z x IN x Έ) by

(4.2)

where x = k — n/\Q and y = k + nvO. Note that (x, y) = g~1(k, n), where g is the
function defined in Sect. 2. Let v = wu. Using (3.20), (4.1) and (4.2), we can express
v explicitly by

00

(4.3)

where x = k — W Λ U , y = /c + n v O and

2n + 2 2 / 2n +( 2
> n + ί k 2 r 2 n 2 , (4.4)

as in the proof of Proposition 3.5. It is easy to check from (4.3) that the adjoint
operator υ* is given by

(4.5)

It will be convenient for the proofs that follow to introduce some notation, as
follows. For /ceN we write (q)k = (l— #2k)% and
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We also write («)„! for lim^te),!. Thus ((<?)*!)2 = (<?2;Λ, and (q2n+2;q\
= ((β)π+*!/(«)» !)2 With this notation, it follows from (4.4) and (3.6) that

9 Q )kΓ f H + U r - t / 2

!(A! (~* } ft(β

-w^ov^ , 2r//-2. + 2 . 2 l 2 302 W >

(4.6)

Notice that this last expression is symmetric in k and n + k.
We now make a simple but useful observation: if k, t eN then the unordered

sets {k, f } and {k Λ /, fe Λ *f + |<f — /c|} are the same. It follows from the symmetry in
(4.6) that

ίfί\ U_/

W-kW= (qWqWM 3<t>2(<l-2',q-2k,q-2f;0,0;q2,q2). (4-7)

Putting (4.7) into (4.5) greatly simplifies the formula for t?*.
We now prove that v has the property claimed in the Introduction. The proof of

Theorem 4.1 consists of an uninformative verification, but this is followed by an
indication of where the formula for v actually comes from.

Theorem 4.1. For all xinA,δ(x) = υ x®\ υ*9 where 1 denotes the identity operator
onS2(ZxZ).

Proof. It will be sufficient to verify that δ(x)v = v x <g> 1 for the cases x = a ana x=c.
When x = α, we have

= Σ (<l\f(k,\n\,r-l)εx®£i-r+l+y®εy®εj+r-l-x, (4.8)
k = 0

where x = k — n Λ θ and y = fe + n v O a s before; whereas, from (1.3) and (1.4),

oo

δ(α)v εrnij=

fc = 0

In the first term of this last expression, we replace k by fc+1. Noting that this
changes x to x + 1 and y to y + 1, and observing that the unordered sets {k, k + \n\ }
and {x, y} coincide, we see that

δ(a)v εrnίj= 2

»-ι (4-9)
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Comparing coefficients in (4.8) and (4.9), we see that we need to check that

|ιι|,r-lM

But this follows in a routine way from (4.4) and (3.17).
The verification that v c®\=δ(c)v is similar, and we omit the details: it is

necessary to consider separately the cases n > 0 and n ̂ 0 and to use (3.18) and (3.19)
for the respective cases.

How might one set about determining v without prior knowledge of the result?
As a preliminary to this, consider the problem of reconstructing the canonical
orthonormal basis {εkί: fceM, ίeZ} of /2(N x Έ) from a knowledge of the action of
A on this space. It would be sufficient to know ε0o

: for then we can obtain skί from
the fact that

α**c*ίεoo = (9)*!β J k j. (4.10)

But ε00 is in the kernel of α, which is also the eigenspace of c*c corresponding to the
eigenvector 1. Since 1 is an isolated point in the spectrum of c*c, the projection
p0 onto this space is an element of A. Take any unit vector ε'0o in the range of p0,
and let είi = ((q)k\)~1a*kc*iεΌ0. This reconstructs {εki}9 as required, modulo a uni-
tary in the commutant of A (which is the von Neumann algebra generated by
a bilateral shift on the second coordinate space).

If a unitary operator υ satisfying (1.6) exists then it must map {ε0wi7 : n, iJeZ} to
an orthonormal basis for the kernel of <5(α). So it is natural to look for elements of
/2(N x Έ x N x TL) in the kernel of δ(a). It does not take much experimentation to
discover that the vectors ζnίj (n,ije%) satisfy δ(ά)ζnij = Q, where

Σ '

Furthermore, it is easy to check that

ί C n - l i - l j

(4.11)

(n<0).

(4.12)

and an application of (3.14) shows that || ζ n i j \ \ = l/(g)oo!. So {(q)^\ζnij'- n, iJeZ,} is
an orthonormal basis for the kernel oΐδ(a) and (apart from some shifts in the i and
j coordinates) we can identify it with the image under v of (ε0«o': n, ijε%} To find
vεrnij, it is necessary (by (4.10)) to compute δ(a*Yζnij, and this is done as follows.
Since (by (1.2))

it follows from the ^-binomial formula (Exercise 1.35 in [3]) that

r ΓrΊ
γ=Σ (-(2)r"α(fl*®α*)α

<x = θ|_αJ<ϊ 2
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where the symbol denotes the g-binomial coefficient, given by
Lα_l«2

(see Appendix I in [3] ). Therefore

(4.14)

We now combine (4.14) and (4.11). For simplicity, we treat only the case w^O, and
we suppress the indices on the second and fourth coordinate vectors (replacing
them with a bullet symbol). We obtain

ΓVΊ
f -y- αf

ϊ „ i~4J
αϊ LαJί2

®ε fe+n+α(x)ε.

= V Y 1 I ' I (-nY-«(nU ^k+2n.n-2^ n(n+2k-2*)(r-a)

After some straightforward calculations using (4.13) and an inversion (cf. proof of
Proposition 3.1), the coefficient of εfc. k+nm is seen to be

αO β2,^). (4.15)

This leads us to the expression for v given in (4.6).
The formula for v is not unique (and indeed may not coincide with that given by

Woronowicz [11]), since v is only determined up to premultiplication by a unitary
in the commutant of A® I. We now move on to consider the operator V, whose
structure is much more tightly controlled than that of v, by the formula (1.10). In
effect, the nonuniqueness in v is "cancelled out" by the presence of v* as well as v in
the formula (1.11). We shall prove (1.11) by the following strategy. It follows from
(1.9) that

where p0 denotes, as before, the projection onto the kernel of α (so that πη(p0) is the
projection onto the subspace spanned by {εoi: ieZ, AeN}). Therefore

and by (1.10)

(4.16)
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In order to compute the right-hand side of (4.16), we need the following result
about δ(p0) .

Proposition 4.2. // p0 is the projection onto the kernel of a then

δ(po)εkUj=f(kΛt,\t-k\,tyv ε0®ε,-k®εi^®εj+k (k,^eN,yeZ) , (4.17)

where f is given by (4.4) or (4.7).

Proof. Since {ε0nΛβ'. n, α, βeZ} is an orthonormal basis for the range of p0® 1> it
follows from Theorem 4.1 that {vε0nΆβ} is an orthonormal basis for the range of
δ(pQ). Therefore

<5(Po)βfcιv./= Σ (vεonaβ,εkiίjyvε0naβ. (4.18)
«,«, β

From (4.3) it follows that the inner product on the right-hand side of (4.18) is zero
unless n = ̂  — k,(x, = i — ̂  and β=j-\-k, in which case it IS/(/CΛ/, \f — fc|,0).

Theorem 4.3. The operator V defined by (1.10) satisfies

^=y 1245 Σ(i3)(452) ̂ 1 245 Σ(i34)(52) = ̂ 1245^(354)^*532 j

where the notation is as explained in the Introduction.

Proof. We compute the right-hand side of (4.16). First, by arguing as in
(4.14)-(4.15) we obtain

= ( _

Then, by Proposition 4.2 together with (4.7),

Σ
y.aUjr

where we have written ι/ for ^1245.
Next, we apply (π^®π^)(5(α*kc*ί) to both sides of (4.19). Since

K ® τtη)δ(a*kc^)v' = vf πη(a*kc*i) ® 1 ,

we see that (π(7®πl/)ί(α*kc*Ipoβα)"^®εo is equal to an expression which looks
just like the right-hand side of (4.19) except that the basis vector is replaced by
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We write this latter expression as (#)fe!εί I since none of the suffixes will change
during the remainder of the calculation. It follows from (4.16) that

As in (4.14)-(4.15), this expression simplifies to

= vf\ Σf(^A/)\/-^δ)εδ

ki+,-δ

β

Λ-,j-ΰί
Lδ = θ

(4.20)

But by (4.5) we have

Thus the expression in square brackets in (4.20) is the same as would be obtained
by making v* act on coordinates 4, 5, 3 and 2 of εϊ$j and carrying them to
coordinates 3, 4, 5 and 2 (leaving coordinates 1 and 6 unaffected). This is the same
as the action of Σ(354)ι;ί532 or Σ(13)(452)i?i245Σ(134)(52), and so the proof of the
theorem is completed.

This paper has been entirely devoted to the spatial analysis of the single
quantum group SU(2)β. But this object has played the role of a prototype in the
study of quantum groups, and it seems important to have a thorough understand-
ing of it. As is apparent from the results of this paper, there are aspects of the
C*-algebraic structure of SU(2)^ that still await investigation.
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Note added in proof. I am grateful to G. Gasper for pointing out to me that the dual orthogonality
relation proved in Proposition 3.3(ii) for the little g-Jacobi polynomials pk(qr', α, b\ q) in the case
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