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Abstract: Inspired by a recent work of Frenkel-Zhu, we study a class of (pre-)vertex
operator algebras (voa) associated to the self-dual Lie algebras. Based on a few ele-
mentary structural results we propose that if, the category of Z+-graded prevoasF
in which V [0] is one-dimensional, is a proper setting in which to study and clas-
sify simple objects. The category if is organized into what we call the minimal kth

types. We introduce a functor Γ - which we call the Frenkel-Lepowsky-Meurman
functor - that attaches to each object in if a Lie algebra. This is a key idea which
leads us to a (relative) classification of the simple minimal first type. We then study
the set of all Virasoro structures on a fixed minimal first type V, and show that
they are in turn classified by the orbits of the automoφhism group Aut(Γ(F)) in
cent(Γ(Ύ)). Many new examples of voas are given. Finally, we introduce a gen-
eralized Kac-Casimir operator and give a simple proof of the irreducibility of the
prolongation modules over the affine Lie algebras.
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1. Introduction

The theory of vertex operator algebras (voas) since its inception, has undergone
many developments [1, 2, 7, 8, 9, 11, 15, 16, 24-27, 31] - both at the level of
structural theory and at the level of new examples (see the introduction in [9] for
a historical review).

This work is an attempt - partly inspired by a recent paper of Frenkel-Zhu - to
understand certain basic aspects of the structure of voas. As a result, we discover a
large class of new voas. Recall that Frenkel-Zhu attach to every finite dimensional
simple Lie algebra g, a family of voas I(g, Cχ) (among other things). One of the
main results of the present work is the observation that the family of voas attached
to g fits naturally into a much larger class of voas, each of which is associated to
a finite-dimensional self-dual Lie algebra. We propose studying this new family of
voas as a first step toward classifying the simple voas.



Classification of Simple Vertex Operator Algebras 309

We begin with an outline of our motivations and goals.

1.1. Conformal Field Theory, Quantum Groups and Chern-Simons-Witten The-
ory. Voa theory is deeply rooted, aside from the theory of the Monster, in string
theory and conformal field theory (CFT). This work is partly motivated by two
classes of CFTs.

One of the richest classes of CFTs is the Wess-Zumino-Witten (WZW) mod-
els[28, 13, 18]. These models were discussed originally within the framework of
semίsimple groups G - partly inspired by similar models associated with abelian
groups. When G is compact, the corresponding WZW models are relatively well-
understood. For example, it can be shown that the genus-zero and genus-one proper-
ties of these models are substantially captured by the properties of the corresponding
voas (WZW voas) [18, 26, 11]. For non-compact semisimple G, some partial re-
sults on WZW models are known (see [21] and references therein). No example is
known beyond the case of a reductive G. However, there are hints that non-reductive
WZW-type models might exist.

In the case of a compact G, the genus-zero correlation functions of WZW
models are known to be governed by the Knizhnik-Zamolodchikov (KZ) differential
equations. These equations also bear some connections with the theory of quantum
groups. In particular, the monodromy of the KZ equations is related to the tensor
product structure of the representations of a quantized enveloping algebra [4]. On
the other hand, DrinfeΓd has recently pointed out that the KZ equations can in fact
be formulated for any finite dimensional Lie algebra with an invariant bilinear form.
But it was not known whether such equations actually arise in CFT (see [10] for
a related discussion). Still this is a first hint that there might exist non-reductive
WZW-type models and their voas. This is one of the motivations of the present
work.

Another interesting class of CFTs are the super unitary CFTs. It has been shown
[14] that the super chiral algebra of such a CFT is a tensor product of "spin half
fermion" theories and a Z+-graded chiral algebra V with one-dimensional V [0].
The chiral algebra V lies in what we call the category Ψ*. This category is the
starting point of the present work (Sect. 3). Thus this paper may be viewed as an
extension of the work of Goddard-Schwimmer.

In one of his papers, Witten has uncovered a deep connection between a certain
gauge theory and 2 + 1-dimensional gravity [29]. The gauge theory he studied was
the Chern-Simons actions with gauge group ISO(2,1). This group may be viewed as
the semi-direct product SL(2,R\<sl(2,Rf) where 5Z(2,R) acts on the vector subgroup
sl(2,R)' via the coadjoint action. The complexified Lie algebra of this group is
g — sl2\κsl'2. One of the key ingredients that were used to construct the Chern-
Simons action was the non-degenerate symmetric ^-invariant pairing between Sl2

and sl'2 [29].
There is in fact a host of other examples of non-compact groups similar to

SL(2,R|x.s7(2,R)/, i.e. the ones of the form H |xλ', where H is any Lie group, and
hi is the dual of the Lie algebra of H. Its Lie algebra g clearly has a non-degenerate
form, just as one does in the case above. Thus one can at least write down the
Chern-Simons action for each of these "self-dual" groups - groups with invariant
metrics. We have no idea whether it makes sense to quantize such an action.

Now in [30], it is shown that Chern-Simons theory based on the group SU(N)
gives rise to the WZW models based on the same group. More precisely, the con-
formal blocks of the two-dimensional models arise as the physical Hubert spaces
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of the three-dimensional theory. Thus it is plausible that the conformal blocks of
some other WZW-type models (perhaps one that might arise from self-dual group
IS0(2,1) may be related, in a similar fashion, to the quantization of the corre-
sponding Chern-Simons theory. This suggests that we should look for non-reductive
WZW-type models.

Where do we look? We know that the current algebra of SU(N) leads to a
WZW voa and to a conformally invariant quantum field theory. The local conformal
transformations are effected by the action of the Virasoro algebra. Is there a voa
associated to a general self-dual group? If so, what is the Virasoro action in the
case?

1.2. The Virasoro Action. Motivated by quantum conformal field theory, one re-
quires that a voa be equipped with an action of the Virasoro algebra, satisfying a
number of "physical" conditions. This action corresponds to local conformal trans-
formations on a conformally invariant physical system. This requirement of having
a Virasoro action is clearly independent of the Jacobi identity, for there are in fact
many interesting objects - similar to voas - which satisfy the Jacobi identity, and
yet carry no action of the Virasoro algebra. The space I(g, Cx) mentioned above
with χ equal to the negative of the dual Coxeter number of g, is one such example
[11, 5].

From an abstract point of view and the point of view of classification, it seems
advantageous to begin with only the fundamental axiom and with no auxiliary as-
sumption. The Jacobi identity is clearly fundamental. A Virasoro action on what we
call a pre-vertex operator algebra should be viewed as an auxiliary structure. (To
see how prevoa is related to existing notion, see Sect. 2.) Therefore it is important
for us to start with the notion of prevoas. Once an interesting category of such
objects is identified, we can then ask for the existence of a Virasoro structure.

Closely related to the question of the existence of Virasoro action is the follow-
ing problem in representation theory. Let g be any Lie algebra with a symmetric-
bilinear invariant form (|). To the pair (g, (|)), we can attach the loop algebra g 0
C[t,t~ι] and its canonical central extension g. The Virasoro algebra Vir acts on
g canonically with zero central charge. Thus we can form the semi-direct product
Z-graded Lie algebra Vir \κg. Given a positive energy ^-module M, when can we
extend it to a Vir \κg -module?

We should point out that this problem has well-known solutions in a number of
special cases:

(i) When g is a finite dimensional simple Lie algebra with its Cartan-Killing
form (I), then a ^-module M under suitable conditions, admits a Virasoro action.
This action is given by the Suguwara-Sommerfield formula of Laurent series

Here hv is the dual Coxeter number of g, χ is the central character of g with
χΦ — hυ, and Ui(z),uι(z) are the vertex operators associated to the dual bases vectors
uuu

{ of g,

(ii) Similarly, when g is finite dimensional abelian with a non-degenerate in-
variant form (I), then a ^-module M admits the Virasoro action
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This is the original Virasoro formula.
(iii) In the abelian case, there is actually a more general action of the Virasoro

algebra which subsumes (ii) above. It is the Chodos-Thron-Feigin-Fuchs action:

ΣLnZ~"-2 = ^-Σ(: ufeWiz) : +a~u\z)) , (1.3)

where the αt are arbitrary scalar constants. This action is known to be of fundamental
importance, both in physics and in mathematics (see [20, 6] and references therein).

All three cases are strongly related to voa theory. In view of the formal resem-
blance that they have, one should wonder whether there might be a natural common
root to all three in the context of voa theory.

We now summarize the problems, motivated by the above discussion, to be
studied in this paper.

1.3. Problem Statements. 1. What is structurally special about the objects in cat-
egory Y, i.e. prevoas V with a one-dimensional V [0]?

2. Given a Lie group with an invariant metric, construct an analogue of the
WZW (pre-)vertex operator algebra.

3. A WZW prevoa is generated by its weight one elements. Describe all the
prevoas V generated by V[l] (minimal type ones), in category Y.

4. Classify all simple minimal type ones.
5. Classify in Virasoro elements on each minimal type one.

1.4 Organization. In the following outline, the main results of this paper are high-
lighted with bold-faced characters.

In Sect. 2, we discuss the notion of a pre-vertex operator algebra and the asso-
ciated enveloping algebra. We show that there is a distinguished derivation in every
prevoa. This derivation plays an important role throughout this work. We also make
a short excursion to the notions of normal ordering and operator product expansion.

In Sect. 3, we study the category Y consisting of the prevoas with one-
dimensional V[0]. We use some elementary structural results to demonstrate the
importance of restricting to Y (Proposition 3.1, Corollary 3.3, Theorem 3.7). We
organize this category by the notion of the minimal kth types.

In Sect. 4, we begin with the construction of a prevoa structure on I(g, C). The
main results in this section are Theorems 4.7 and 4.11. Theorem 4.7 generalizes
Theorem 2.3.3, Theorem 2.3.4 and the second part of Theorem 2.4.1 of Frenkel-Zhu
[11], while Theorem 4.11 describes the type ones in category Y.

In Sect. 5, we classify the simple type ones in terms of the self-dual Lie algebras
(Theorem 5.4). We discuss many examples of self-dual Lie algebras - all of which
correspond to new simple prevoas.

In Sect. 6, we classify the Virasoro elements of a type one prevoa (Theorem 6.4,
Corollary 6.7, Theorem 6.11, Theorem 6.14). We discuss the Virasoro elements
in those new examples we give in the last section. As an application, we use the
Virasoro elements to study the reducibility problem of the prolongation modules
in the generic case (Theorem 6.19). We also use the action of the automorphism
group on a self-dual Lie algebra to classify the vertex operator algebra structures
on I(g,Cχ) (Theorem 6.22). We then conclude with a few remarks.

1.5 Notations. The bold-faced characters: C,R, Z, Z + denote respectively the com-
plex numbers, the reals, the integers and the non-negative integers. Let V be a
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Z-graded vector space over C. We denote the nth graded piece as V[ή\. Thus we
have V = 0 n V[ή\. Iff is a linear map of Z-graded vector spaces, i.e. / preserves
the grading, the f[n] denotes the restriction of/ to the nth graded piece. If a G V
is homogeneous element of weight n, we write \a\ —n. If A is a linear operator on
V such that AV[n] C V[n + m], then we write \A\ = m. The restricted dual of V is
V = 0 M V[n\\ where V[n]' is linear dual of V[ή\.

V[[z,z~1]] denotes the linear space of formal Laurent series with coefficients in
V. The subspace of elements with at most finitely many powers of z " 1 is denoted

Given a rational function /(z, w) of two variables on the Riemann sphere, we
denote the Laurent series expansions in the domains \z\ > \w\, \w\ > |z|, and |w| >
\z — w\ respectively as ιz,wf(z, w), ιw,2/(z, w), and ιWfZ-wf(z, w). For example,

Other notations used in this paper will be defined locally as we go along.

2. Preparations

We begin with some basic definitions. We review the notion of the universal en-
veloping algebra associated to a voa, introduced in [11]. We then discussed the
notions of normal ordering and operator product expansion. To every prevoa, we
attach a canonical derivation which plays an important role throughout our discus-
sion. Some of the results in this section are straightforward generalizations of those
in [8].

2.1 Pre-Vertex Operator Algebras.

Definition 2.1 [2,9]. A prevoa is a pair (V, Y(—,z)) where V is a Z-graded vector
space, Y(—,z) is a linear map V —> (EndF)[[z, z" 1]] with a ^-^ J2nanz~n~Δ for
each a G V[A]. In addition, for homogeneous a,b G V, we have

VI. Y(a,z) = 0 iff a = 0;
V2. There is a distinguished l v G V with Y(lv,z) = iάy;
V3. anV[m] G V[m - n] for all m,n;anb = 0forn^>0;
V4. The Jacobi identity: for all m, n,

- w)b,w)(z - w)mιw^w{w + (z - w))n)

7(a,z)7(Z>, w)ιz,w{z - w)mzn)

- Resz(Y(b,w)Y(a,z)ιw,z(z - w)mzn) . (2.1)

The formal Laurent series Y(a,z) is called the vertex operator associated with a,
and \γ is called the vacuum vector.

When the context is clear we often denote (V,Y(—,z)) simply as V, and \γ
as 1. For convenience, we often write Y(a,z) = Y^a(n)z~n~ι. Thus the an and the
a(n) are related by an = a(n — 1 + A) whenever a G V[A]. The advantage of the
notation a(n) is that it is meaningful even when a itself is not homogeneous. We
often denote Y{a,z) simply as a(z).
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A prevoa here is what's called a vertex algebra with Z-grading in [2]. If a
prevoa is equipped with a distinguished element ω e F[2], known as the Virasoro
element satisfying certain conditions, it is called a vertex operator algebra (voa)
[9]. Not every prevoa admits a Virasoro element. If a prevoa admits an ^^-action
satisfying some additional conditions, it is called a quasi-voa [8].

Definition 2.2 An ideal I of the prevoa (V, Y(—,z)) is a graded subspace of V such
that Y(I,z)V eI[[z,z~ι]]andY(V,z)I e I[[z,z~1]]. A subprevoa V of(V,Y(-z)) is
a graded subspace of V such that (V\ Y(—,z)\v') is a prevoa is simple if the only
ideals are the prevoa. itself and (0).

For a discussion of this and other categorical notions (homomorphisms, modules,
etc.) in voa theory, see [8]. It is easy to check that if / is an ideal of the prevoa
V, then the quotient space V/I is also a prevoa in a natural way.

The following is an elementary but useful result [8]. It tells us how to recover
a from the corresponding vertex operator 7(α,z).

Lemma 2.3. Let a,b £ V. Then we have

(i) O(-l)l)O) = a(n) for all n9 i.e. a = β(-l)l;
(ii) a(n)\ = 0 for all n^O.

Proof
(i) The first part of (i) is a direct consequence of the Jacobi identity V4 in the

case b = l,m = —l,n — 0. Now we have 7(α(- l ) l — a,z) — 0. From VI, it follows
that a = α ( - l ) l .

(ii) This part is a consequence of V4 in the case Z> = 1,/M^0,Λ = 0 •

2.2. Universal Enveloping Algebra. Following Frenkel-Zhu [11], we can define
the universal enveloping algebra of a prevoa. Again, we weaken their definition by
lifting the existence of a Virasoro element. Much of the detail is the same as in
Sect. 1.3 of [11]. We will describe briefly the construction.

Let A be any Z-graded associative algebra. A formal Laurent series b(z) —
Σib(i)z~ι~ι in ^[[z,z - 1]] is called regular of weight A if \b(i)\ — Δ — i — 1 for
all i. The subspace spanned by the regular series in ^[[z^" 1 ]] is denoted as A(z).

Let (F,7(—,z)) be a prevoa, S(V) be the Z-graded free algebra generated by
the symbols as(i), where a £ V and ί G Z, subject only to the conditions that

(i) the as{ι) are linear in a;

(ϋ) 1 (̂0 = ^,-11;
(iii) \as(ι)\ = \a\ — i — 1 whenever a is homogeneous.

Let S(V) be a suitable completion of S(V) (see [11] for details). Let Ys(a,z)
denote the Laurent series of formal symbols: ^2i as(ί)z~ι"~ι. The completion above
is defined so that it is a Z-graded associative algebra containing the following
elements:

,z - w)b,w)(z - w)mιw^w(w + (z - w))nwι)

)Ys(b,w)ιz,w(z - w))mznwι)

, w)Ys(a,z)ιz,w(z - w))mznwι) (2.2)
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where m, n, I are integers, and a,b are homogeneous elements in V. the universal
enveloping algebra U(V) of the prevoa V defined to be quotient of S(V) by the
two-sided ideal generated by the above elements (2.2).

By an abuse of notation, we will denote the image of the as(i) in U(V)
simply as a(i). Similarly, Y(a,z) will denote the formal series Σia(i)z~ι~ι 6
LΓ(F)[[z,z~1]]. We will call Y(a,z) the vertex series attached to a. When viewed
as a formal series of linear operators acting on some F-module M,Y(a,z) will be
called the vertex operator attached to a.

Since the elements (2.2) are themselves homogeneous elements of S(V), it fol-
lows that U(V) becomes Z-graded. Note that if a homogeneous element of V, then
the vertex series Y{a,z) is regular of weight \a\. Thus we have the linear map

Y(-,z): V->U(V)(z). (2.3)

Note that by construction, Y(—,z) also satisfies the Jacobi identity V4, but with
Y(a9z) viewed as a vertex series in U(V)(z).

2.3. Normal Ordering. Given two vertex operators Y{a,z\ Y(b,z) acting on F, it
is general meaningless to speak of their product uY(a,z)Y(b,z)" because the coef-
ficients of the zn in this formal product are in general not a well-defined operator
on V. Let

Y(a,z)+= ΣΦK"" 1 . ( 2 4 )

y(β,2Γ = Σβ(»>~"" 1 (2-5)
«<0

By V3, Y(b,z)c e V((z)) and Y(a,z)+c e V[z,z~1]. Thus both Y(a,z)-Y(b,z)c
and Y(b,z)Y(a,z)+c are elements of F((z)). Note that both Y(a,z)-Y(b,z) and
Y(b,z)Y(a,z)+ also make sense as elements of U(V)(z).

Definition 2.4. For a, b in V, we define the normal ordered product of the two
vertex series Y{a,z),Yφ,w) by the following series:

: Y(a9z)Y(b9w) := Y(a,z)~Y(b,w) + Y(b,w)Y(a,z)+ .

Part (ii) of the following lemma shows that: Y(a,z)Y(b,w): is nothing but the
non-singular part of the ordinary product.

Lemma 2.5 For a,b is V, we have

(i) [φ), γ(b9z)] = Σ ^

(ii) 7(fl?z)Fft w) = Σ^o W 0 * ^ ) ^ ( z - w)-1-^ : 7(fl,z)7(i, w) :

(iii) Y(a(-2)l,z)=£γ(a,z).

(iv) Y(a(-i - l)6,z) = i : (J£) Y(a,z)(b,z) : .

Proof
(i) This is the Jacobi identity for vertex series in the case m = 0.

(ii) Using the definition of the normal ordered product, we get

) - : Y(a9z)Y(b9w) := [F(α,z)+, Y(b,w)] . (2.6)
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Applying part (i) to compute the right-hand side, we get the desired result,
(iii) This is the Jacobi identity in the case b = l ,m = —2 and n — 0.
(iv) This is the Jacobi identity in the case m — —i — l,n = 0. D

Let's define the normal ordered product of n vertex series A\(z\...,An(z) in-
ductively by

: Aλ(z).. .An(z) := Ax(z)~ : A2(z).. .An(z) : + : A2(z)...An(z) : Aλ{zγ . (2.7)

Now applying Lemma 2.5(iv) repeatedly, we get

Corollary 2.6. For a\,...,an G V and non-negative integers i\,...,in> we have

(2.8)

Lemma 2.5(i), (ii) show that the singular part of Y(a,z)Y(b,w) completely de-
termines the commutators [a(n),b(m)]. In fact there is a quick way to compute such
commutators. Given a F-module M and its restricted dual Mf, for v' e M\v G M
and a,b G V it can be shown using the Jacobi identity [9] that (ι/, Y(a,z)Y(b,w)v)
converges to a rational function Rvvt(a,z;b,w) with poles at z — 0,w = 0,z = w, in
the region \z\ > \w\. Thus we can define the rational function

singjfΌ(a9z;b9w)=Rυ,tΌ(a9z'9b9w) - (v\: Y(a9z)Y(b9w) : υ) . (2.9)

Note that the last term in Eq. (2.9) is a Laurent polynomial in z,w. By Lemma
2.5(ii), we have

sing^foz; b9 w) = ^ (v\ Y(a(i)b9w)υ)(z - w)"^ 1 . (2.10)

This will be called the singular part of the operator product expansion of Y(a,z)
and Y{b, w). For convenience, we often write

Y(a9z)Y(b9w) - Σ γ(a(i)b,w)(z - w)'^1 (2.11)

to mean Eq. (2.10).

Lemma 2.7. Let CQ be a contour around 0, and Cw around w but not 0. Then we
have

(v\[a(n)9b(m)]v) = γ^—^f /sing,, v(a,z;b,w)znwmdzdw .
\lπι) cocw

Conversely, we have

i (a z' b w) = Y^ (t/ Γ̂ ^1"̂  v ί U ™w*\*,—n—\

Proof. Eq. (2.10), we have
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1

J f singy/ v(a9z; b, w)znwmdzdw
cocw

1

= ^-JW, [a(n),Y(b,w)]v)wmdw

=WΦW#). (2.12)

The converse follows immediately from Eqs. (2.6) and (2.9). D

2.4. Derivations. It is interesting to consider the Jacobi identity V4 in the case
m = n = 0. One gets

Y(a(0)b,w) = a(0)Y(b,w) - Y(b,w)a(0). (2.13)

We call a linear map d: V —» V a derivation of the prevoa (F, 7(—,z)) if for every
a,b e V, we have d(Y(a,z)b) = Y(da,z)b -f Y(a,z)db. A derivation is called inner if
d = β(0) for some α G F. In particular, α(0) is an inner derivation for every a G V.

It is trivial to show that the linear space Der V of derivations of the prevoa, V, is
a Lie algebra whose bracket is given by the commutator. The inner derivations Inn
V form a Lie subalgebra of Der V. Among the derivations, there is one which will
play an important role. This derivation is in effect acting as a formal differentiation
operator on the prevoa.

Theorem 2.8. Every prevoa, V has a distinguished derivation L_i satisfying the
following: for a, b in V,

0) |£-i| = i;

(ii) [L-\,a(ι)] = —ia(i — I) for all z,i.e, Y(L-\a,z) = 4-Y(a,z). In particular,

L-\ centralizes Inn V in Der V\

(iii) (L-{ja = i\a(-i - 1)1 for z^O;
(iv) Y(a,z)l = e^a;
(v) Y(a,z)b = ezhx Y(b, -z)a;

(vi) L_i stabilizes every ideal of V;
(vii) A submodule M of the adjoint module is an ideal iff M is stabilized

by ! _ , .

Proof.
(i) Define Z,_i by I_iα = α(-2)l. Thus if a is homogeneous, we have

|L_,α| = |fl(-2)| = |β(-l) | + 1 = |α| + 1 . (2.14)

The last equality follows from Lemma 2.3(i).
(ii) Let b be a fixed but arbitrary element of V. Fix / and let

v = (L-\a(i) — a(i)L-\)b + ia(i —1)6

= (a(i)b)(-2)l - a(i)b(-2)\ + iα(ί - 1)6 . (2.15)

We will show that v = 0 for all /. For i < 0, using Lemma 2.5(iii) and (iv), we
have
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. . . 1 d (

= 0 (2.16)

By VI, v = 0. This proves part (ii) for / < 0. We now do induction on z^O. First
observe that by Lemma 2.5(iii), for every a we have

Y(L-ia,z) = Y(a(-2)l,z) = ̂ -Y{a,z) (2.17)
dz

Also, recall that a(0) is a derivation, for every a in F. Thus for i — 0, we have

Y(v,z) = Y(L^a(0)b - a(0)L-ιb,z)

- 0 (2.18)

Thus we have v — 0. Suppose that v = 0 for / = 0,1,.. ., k — 1. We want to show
that it holds for i — k. This requires a lengthy calculation for

Y(υ,z) = Y(L-ιa(k)b,z) - Y(a(k)L-ιb,z) 4- kY(μ(k - l)b,z). (2.19)

First by Lemma 2.5(i), we have

[a(k\ Y(b9 z)] = Y(a(k)b9 z) + E ( V " ^ ( 0 * , *) ( 2 2 0)

Differentiating this and applying Eq. (2.17), we get

[a(k)9 Y(L-ιb9z)] =Y(L-ia(k)b,z) + E(0(^ ~ ΐ^'^Yiμ^b.z)

+ Σ\V~^-itf(0M (2.21)

Applying Eq. (2.20) again, but with b replaced by L-\b, we can replace the left-
hand side of Eq. (2.21) by a new expression, i.e. Eq. (2.21) becomes

) + Σ\/)/~ Z W ) £ - i b,z)

) + *f)(0(* - i>*-'-'Y(a(ί)b,z)
ί=0

Σ(*)z*~'r(£-iflO>,z) (2-22)
ι=0
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Isolate the term Y(L-\a(k)b,z)- Y(a(k)L-φ9z) and substitute it into Eq. (2.19).
Then using the inductive hypothesis

Y(L^a(i)b,z) - Y(a(ί)L_φ,z) = -iY(a(i - l)b,z), i = 0,1,...,k - 1 (2.23)

to simplify the resulting equation, we get

Y(v,z) =Σ(i)zk->iY(a(i - \)b,z) - Σ(j)(k - ly- '- yoKOA.z)
i=0 i=0

+ kY{a(k-\)b,z)

= Σ(i + l)zk~'-l(i + l)Y(a(ί)b,z) - *fJ(O(* - O^-'"1 W)δ,z)
i=o ;=o

+ kY(a(k- \)b,z)

Σ * ' 1

z=0

= 0 . (2.24)

The last equality follows from the fact that the term [...] in the summand is
identically zero. Now by VI, we conclude that v = 0. Thus we have proved that
[L_i,β(/)] = -ia{i - 1). Combining this with Eq. (2.17), we get

Y(L-Xa9z) = ^Y(a,z) - [L-UY(a9z)] . (2.25)
az

This completes the proof of part (ii).

(iii) 7(L_iα,z) = -^Y(a,z) implies that

Y((L^γa,z) = (Jλ Y(a9z). (2.26)

This in turn implies that

((Z,_i)'aX-l) = i ! α ( - ί - l ) . (2.27)

Thus by Lemma 2.3(i), we have

(I_1)
Iα = i ! f l(-/-l) l (2.28)

(iv) follows immediately from (iii).
(v) This part is also a lengthy calculation:

Y(a9z)b =Y(a9z)b(-l)l

= -[b(-l\Y(a,z)]l-

= -ΣO>-1-ir(*(i>
j

h b(-l)Y(a,z)l

{i)a + b{-\)e^a

1 (Lemma 2.5)

(part (iv))
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—e
zL-\

-i,..ί times..[L_ub(-l)]J times..]\(-z)1

—e'
zL-\ a (part (//))

=ezL~Ύ(b,-z)a. (2.29)

(vi) Let / be an ideal of V, and a in /. Then by definition, Y(a,z)l = Σi Φ)lz~ι~ι

is in /[[ZjZ""1]]. In particular, L_iα = α(-2)l is in /.
(vii) Let M be a submodule of the adjoint module V. This means that

Y(V,z)M c M[[z,z~1]]. Suppose M is stabilized by L_i. We need to show that
Y(M,z)V C M[[z,z-{]]. So let a be in M9b in V. Thus Y(b,-z)a is in M[[z,z~1]].
By assumption, ezL~ιY(b,—z)a is also in Mff^z""1]]. It follows from part (v) that
Y(a,z)b is also in MfjZjZ"1]]. Part (vi) provides converse. D

3. Prevoas With One-Dimensional V[0]

From now on, we assume that a prevoa V is Z+-graded. In this section, we present
three structural results (Proposition 3.1, Corollary 3.3, Theorem 3.7), for the cate-
gory Ψ~ consisting of the prevoas with one-dimensional V[0]. We use some new
information concerning the structure of prevoas, to demonstrate the importance of
restriction to i r .

3.1. A Commutative Algebra Associated to a Prevoa. In this section, we attach
a commutative associative algebra to every prevoa V. The point of this exercise is
to indicate that in order to get some kind of classification of prevoas (or voas), we
must somehow restrict the level zero V[0]. This is why we will later begin with
the case in which V[0] is one-dimensional.

Let (F, Y(—,z)) be a prevoa. Define a bilinear operation * on F[0] by (cf. *
operation in [31]).

a*b = a(-l)b. (3.1)

Proposition 3.1. The space V[0] is a commutative associative algebra with the
product *

Proof.

The unit. Obviously, 1 is in V[0]. Also by Lemma 2.3, we have

0 * 1 = a(-\)l = a,

1 * a — 1(— X)a — a .

Commutativity. By Lemma 2.5(i), we have
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[a(n), b(m)] = Σ (ί)(a{ΐ)b)(m + n-i) (3.3)

for all integers m,n, and a,b in V[0]. By definition

|α(ί)6| = | α | - / - l + | 6 | - / - l . (3.4)

This means that a(i)b = 0 for all i ̂  0. Thus

[a(n),b(m)] = 0. (3.5)

In particular, we have

a * b = α ( - l ) A ( - l ) l = b(-\)a(-l)\ = b(-l)a = b*a. (3.6)

Associativity. Consider

= ReswResz_w7(7(α,z - w)b,w)c(z - w)"ιw~ι

= ReswReszY(a,z)Y(b,w)cιz,w(z - w)~ιw~ι

— ReswResz7(Z>, w)7(α,z)cιw?z(z — w)~ιw~ι (Jacobi identity)

-i - 2)a(i)c

= a(-l)b(-l)c (\b(n)\ = -n - 1 and V[m] = 0 for m < 0)

= a * (* * c). (3.7)

This completes our proof. D

It is easy to show that if V, V are two prevoas, the commutative algebra
attached to the prevoa V 0 V is the tensor product V[0] (g> V'[0]. Using this, we
can show that there is a prevoa V with V[0] = A for any commutative algebra A.
This is the first reason for us to restrict our consideration to the case in which V[0]
is one-dimensional. We now discuss the second reason.

3.2. The Maximal Ideal. We will denote by f, the category of prevoas V with
one-dimensional V[0].

Let a,b be elements of the prevoa V. According to Lemma 2.5(i), the coefficients
a(n), b{m) of the vertex series satisfy [2, 9]

[a(n)9b(m)] = ΣOOWWO* + m - i) . (3.8)

If a, b are homogeneous, we can write

[an,bm] = Y:Γli\a(ί)b)n+m . (3.9)

Note that \an\ — ~n with respect to the grading of U(V). Thus the subspace of
U(V) spanned by the coefficients, an, form a Z-graded Lie algebra whose bracket
is given by the commutator (3.9). We denote by Ξ(V) the Lie algebra spanned by
the an's.
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The prevoa V is clearly a module, cyclically generated by 1, over the graded
Lie algebra Ξ(V). Let Jv be the sum of all proper (graded) Ξ(F)-submodules in
V. Since every proper submodule M has M[0] = 0, we have Jγ[Qi\ — 0. Thus Jγ
is the unique maximal submodule over the Lie algebra Ξ(V). It is clear that Jγ is
also the maximal submodule over the prevoa V.

Proposition 3.2. The derivation £_i of V stabilizes Jv.

Proof. Suppose L_i« does not belong to J>, for some a G Jγ. We will obtain a
contradiction. Since Jγ is graded, we may assume that a is homogeneous. We know
that Jv = Θn^n0Jv[n] for some «0 > 0. So let a be an element of lowest weight
in Jv for which L^\a ^Jγ. Then by the maximality of Jγ as S^-submodule, we
see that L-\a generates V. In particular, we have

1 £ UΞ(V)L-ιa , (3.10)

where UΞ(V) is enveloping algebra Ξ(V). By PBW theorem, we have the decom-
position

UΞ(V) = UE(V)+UΞ(V)[0]UΞ(V)_ , (3.11)

where Ξ(V)± = φ±n>0Ξ(V)[n]

Now Eq. (3.10) means that there is an element P G UΞ(V), homogeneous of
weight —\a\ — 1, such that PL_\a — 1. By Eq. (3.11), we may choose P to be in
UΞ(V)Ξ(V)-. So there must be some b G V and m > 0 such that bmL-\a $. Jγ. For
otherwise it would mean that Ξ(F)_Z_i« C Jy, and hence PL-\a G Jγ (Jγ is UΞ(V)
invariant).

Now by Theorem 2.8(ii), we have

bmL-Xa = L-ιbma + (m - 1 + \b\)bm^a . (3.12)

The last term is in Jv because a is. Since the first term is not the Jγ, neither is
the second. But then bma £jy,\bma\ = \a\ — m < \a\ and yet L^\bma $Jv> This
contradicts the minimality of |α|. D

Corollary 3.3. The V-submodule Jγ is also the unique maximal ideal of V. In
particular, VjJv is a simple preγoa.

Proof Since every ideal of V is, in particular, a submodule of the adjoint module,
it follows that Jv contains all the ideals. But Jv itself is also an ideal, by Theorem
2.8(vii) and Proposition 3.2. D

This suggests that there is an abundance of simple objects in i^, and that the number
of simple quotients of each object is well under control. There is a third reason for
this category to be interesting to look at. It turns out to be intimately connected
with Lie algebras of a certain type.

3.3. The Functor Γ. For every object V in y , we identify the one-dimensional
commutative algebra V[0] with C, by 1 = 1.

Lemma 3.4. Let V be an object Y. Let a, b be elements of V[\\ Then the
components a(n), b(m) of the formal series Y(a,z),Y(b,z) in U(V)(z) satisfy

[a(n),b(m)] = (a(0)b)(n + m) + na{\)bδn+m^\ .
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Proof. By Lemma 2.5(i), we have

= znY(a(O)b,z) + nzn-ιY{a(\)b,z) (b G V[\]) (3.13)

Extracting the coefficients of the z~m~~ι on both sides, we obtain

[a(n\ b(m)] = (a(0)b)(n + m) + /i(fl(l)6)(n + m - 1). (3.14)

But then α ( l ) i € F[0] = Cl = C. This means that (a(l)b(n + m - 1) = <5n+m,ol- •

Lemma 3.5. Let V be an object in y. For a, b in V,

(i) aφ)b = -b(0)a;
(ii) a(l)b = b{\)a.

Proof, (i) Applying Lemma 3.4 in the case m = 0, we get

(a(0)b)(n) + (b(0)a)(n) = [a(n),b(0)] + [b(0),a(n)] = 0 (3.15)

for all n. Thus (i) follows.

(ii) Applying the same lemma again in the case m — — n = 1, and using part (i),
we get

(a(l)b - ft(l)*)l - [*(1), &(-!)] - (α(0)δ)(0) + [6(-lλ«(l)l ~ (*(0)«)(0) - 0 D
(3.16)

It is important to emphasize that Lemma 3.5 does not hold in general if V[0] is
not one-dimensional.

Definition 3.6. Define two bilinear maps

[l] —+ F[l]

^ C . (3.17)

For a,b in V[l], let

V[0] = C . (3.18)

This definition has been indicated by Frenkel-Lepowsky-Meurman in the special
case, in which V = Vι is the untwisted voa associated to an even positive definite
lattice (see [9], Remark 8.9.1).

Theorem 3.7. The space V[l] is a Lie algebra with the bracket [ , ], and the
V[l]-invariant symmetric form ( | ) We will denote the pair (K[l],(|)) by Γ(V).
Iff: V —> V is a homomorphism in Ψ", then it induces a Lie algebra homo-
morphism Γ(f) which preserves the invariant forms. Moreover if f is injectίve
(surjective), then so is Γ(f).

Proof. Let a,b,c be elements of V[l].
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Skew-symmetry. By Lemma 3.5(i), we have

[a,b] = a(0)b = -b(0)a = -[b,a] . (3.19)

Lie algebra Jacobi identity. By definition,

-[α, [c, b]] + [c, [a, b]] + [6, [c, α]] = -a(0)c(0)b + c(0)α(0)i + 6(0)c(0)α

= [c(O),a(0)]b - (c(0)a)(0)b (Lemma 3.5(i))

- 0 (Lemma 3.4). (3.20)

Symmetry. Lemma 3.5(ii) implies that

(a \b) = a(\)b = b(\)a = (b \a). (3.21)

V[l]-invariant form. By definition,

« M ] | c ) = -([«, 6] |c)

= -(a(0)b(l)c

= -c(\)(a(0)b) (Lemma 3.5(ii))

= [a(0\c(l)]b-a(0)c(l)b

= (a(0)c)(\)b (Lemma 3.4; a(0)c(l)b G a(0)V[0] = 0)

(3.22)

Functoriality of Γ. Let / : F —> V be a prevoa homomoφhism. Let Γ(f) be the
restriction of/ to F[l]. Then

\fa,Jb] = σfl)(0)y& =/(«(0)ft) =/[«,6] ,

= Ua){\)β =f(a(l)b) =f((a\b)lv) = (a\b)\v, . ( ' ]

The fact that Γ preserves injectivity and surjectivity of / is clear from the
definition. D

We call Γ(V) the Frenkel-Lepowsky-Meurman Lie algebra of V.

Proposition 3.8. If J is a proper ideal of V, then J[l] is a proper ideal of the Lie
algebra Γ(V). Moreover, J [ l ] is a subalgebra of the kernel of the invariant form
(I). Let's denote J[l] by Γ[J]. Then there is a natural isomorphism Γ(V/J) =
Γ(V)/Γ(J).

Proof Let a G Γ(V) = V[l],b G J[l]. By definition, Y(J,z)V, Y(V,z)J C J[[z,z~1]]
and J[0] = 0. In particular, [a,b] = a(0)b G J[\] and (a\b) = a(\)b G J[0] = 0. This
proves the first two parts.

From the projection p: V —> V/J in f̂ , we get a surjective Lie algebra homomor-
phism in S£,T{p)\ Γ(V) = V[l] —> Γ(V/J) = (V/J)[\]. The kernel of this map is
obviously J [ l ] = Γ(J). D

Lemma 3.4 and Theorem 3.7 clearly suggest that the aίfinization of a Lie algebra
[17] arises naturally in every object V with F[l]Φ0.
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3.4. Affinization of Γ(V).

Definition 3.9. Let i f be the following category: Obj if: the pairs (g, (|)), where
g is any Lie algebra with the g-invariant symmetric bilinear form (|).

Morphisms: homomorphisms of Lie algebras φ: (#,(|)) —> (#'>(|)0> which pre-
serve the invariant forms: (φ(x)\φ(y)y = (x\y) for all x, y in g.

We define the following functorΛ: i f —> if, called the affinization. Thus given a
pair (#,(D), we will define a new pair (g,(\)j, called the affine Lie algebra associated
with the pair (g,(\)).

Given a pair (#, (|)), define the loop algebra associated to g as the Lie alge-
bra g®C[t,t~ι] whose bracket is given in an obvious way. Let g be the one-
dimensional central extension:

0 —> C —> g —- g®C[t, r ! ] —- 0 , (3.24)

defined by
[α<g)Λ 6<g)ίM] = [fl, Z>]<g)/n+m + n(a\b)δn+m,oζ , (3.25)

where ζ is the basis element 1 £ C (we use ζ to avoid confusing it with 1 of a

prevoa). Now g admits a derivation d — t—. We let g be the semi-direct product
at

algebra
g = Cd\ x g . (3.26)

JFe cα// ζ α«<i ί/ respectively the canonical central element and the canonical
derivation of g.

We now define (|)Λ. For a,b in g and m,n integers, let

(ζ\d) = 1 , (3.27)

and extended (|)~ by bilinearity and symmetry. It is trivial exercise to check that
(|)Λ is a well-defined ^-invariant form. This completes the construction of the pair
(#MI)) Note the Lie algebra g is naturally Z-graded, with \a 0 tn\ = — n and \ζ\ =
\d\ = 0. It is also trivial to check that every morphism φ: (g,(\)) —> (gf'1(1)0 induces
the new morphism φ: (g9(\)f) —> (g'\(\)), defined by

φ(μ <g> f) = φ(a) (g) t\

Φ(ζ) = ζ ,

φ(d) = d . (3.28)

This morphism also respects the new invariant forms:

= (x\y) • (3.29)

Let £ b e a any g-module. Let/? be the subalgebra φ r t < 0 g n - Let χ be a fixed scalar.
We extend E to become a $0 = g Θ C ( θ Cί/-module ϊsχ, by letting ζ act by scalar
χ and c/ act by zero. Now fiirther extend Eχ to become a j9-module by letting gn

with n < 0, act by zero. We now form the induced module:
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χ ) . (3.30)

We call this the prolongation of ^ χ [ 19,21,22]. Note that I(g,Eχ) is Z+-graded
according to the eigenvalues of —d. When ζ acts by the scalar 1, we write I(g,E).
When E is the trivial ^-module C, we will often denote the vector 1 0 1 as 1, and
will call this the vacuum vector of I(g, Cχ). In this case, we have I(g, Cχ)[0] = Cl.

The ^-module I(g,Eχ) can be characterized by the following universal property.
Let Eχ be the /7-module as defined above. Then there is a unique pair (Eχι), where
Eχ is a ^-module and i: Eχ —> Eχ is a /7-module map, satisfying the following
property: for every ^-module M and every /^-module map / : Eχ —> M, there is
a unique ^-module map / : Eχ —> M such that / o i = / , Clearly we have Eχ =

We now return to the discussion of prevoas. By Theorem 3.7, from every V in
TΓ, we obtain an object in if: Γ(F) = (F[l],(|)). By Lemma 3.4, we have a natural
Lie algebra homomorphism Γ(V) —> C/(F), with α 0 ίn ι-> β(«) e C/(F),C »-> 1.
Now every F-module M is a t/(F)-module. This means that M is also a Γ(V)~
module. Since M is Z-graded, we can let the canonical derivation d of the affine
algebra Γ(V) act by d\M[n] — —w. The space M now becomes a Γ(F)-module. We
summarize this as follows:

Proposition 3.10. Let V be an object in Ψ*. Then every V-module M is a module

over the affine Lie algebra Γ(V) whose action on M is defined above.

Let's consider the Γ(F)-module, M = V itself. Clearly according to the action given
by the Proposition 3.10 above, the one-dimensional subspace V[0] satisfies

(a 0 f) b = a(n)b = 0 ,

d b = 0 (3.31)

for all a in Γ(V),n^0 and b in K[0]. Here ζ and rf are the canonical central

element and the canonical derivation of Γ(V) respectively. Thus by the universal

property of the induced module /(Γ(F),C), we have a Γ(F)-module map

/(Γ(K),C)—+V, l ^ l v . (3.32)

This leads us to the following natural questions: is I(Γ(V),C) a preyoaΊ If so, is
the map (3.32) a prevoΆ homomorphisml

We first organize the category *V. We say that a prevoa V is generated by a
subset S of V, if V is spanned by the elements [8]

aι(iι)...an(in)a (3.33)

where aι,...,an9a, range over the S and iι,...,in are integers. We say that / is an
ideal of V generated by the subset S C V, if / is the smallest ideal containing S.

Definition 3.11. Let i^^ where &^0, be the subcategory of Ψ* in which every
object V is generated by the subspace ®Q<t<k V[ϊ\. We call an object of Y^ a
prevoa, of the minimal kth type.
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Thus the only zeroth type is the commutative algebra C. It is obvious that we have
foCfi C One of the main tasks of this paper is to describe all the (minimal)
type ones.

4. The Prevoa I(g, C)

Let (0,(1)) be a pair in the category S£. We begin with the construction of a prevoa
structure on /(#,C). The main results in this section are Theorems 4.7 and 4.11.
Theorem 4.7 generalizes Theorem 2.3.3, Theorem 2.3.4 and the second part of
Theorem 2.4.1 of Frenkel-Zhu [11], while Theorem 4.11 describes the type ones
in category Y.

To define the vertex operators on I(g,C% we use many ideas of Frenkel-Zhu[ll]
where they consider the case in which g if finite dimensional and simple. However
we emphasize that to prove Theorem 4.7 here, while following the general strat-
egy of [11], we use different ingredients. For example, Frenkel-Zhu begin with an
explicit formula for the "Λ-point correlation function":

(ι/,α,(Z l) ••««(*«»)• (4.1)

This formula requires the use of multilinear trace form on g. In our general setting,
however, where g may be infinite dimensional and (|) may be degenerate, a multi-
linear trace form may not exist. Thus we must prove the required properties of the
n-point function abstractly.

4.1. The Frenkel-Zhu construction. Let (#,(|)) be a pair in the category JSf. Recall
that g is the one-dimensional central extension, as defined in Sect. 3.4, of the loop
algebra of g, and that g is the affinization of g. Let ζ be the canonical central element
of g. Let A°°g be the completed universal enveloping algebra of g (for definition,
see [32, 11]). We denote as U°°g the quotient of A°°g by the ideal generated by
ζ — 1. As before, we denote by U°°g(z) the subspace spanned by the regular series
in U°°g[[z,z~1]]. For a C g, we write a(n) = a®tn and let a(z) = Σn

a(n)z~n~l>
viewed as an element of U°°g(z).

Definition 4.1. For every regular series b(z) — Σnb(n)z~n~ι in U°°g(z}, and
a G g we define the action of a{ή) on b(z) by

a(n) b(z) = Resw(a(w)b(z)ιw,z(w - zf - b(z)a(w)ιz^(z - w)n) . (4.2)

Then applying a similar argument as in [11], we show that Eq. (4.2) defines a
^-module structure on the space U°°g(z). Moreover if b{z) is a regular series of
weight A — n then a(rί) b(z) is a regular series of weight A — n. Thus if we let
the weights of the regular series define a Z-grading on the space U°°g(z), then this
space becomes a graded module, i.e. it is now a ^-module, where the canonical
derivation acts by d b{z) = Ab(z).

Now the regular series 1 satisfies

d l =0

C l = i
a{n) 1 = 0 (4.3)

for all n ̂  0. Thus by the universal property of /(#, C), we have a ^-module map
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Y(-,z):I(gX)-^U°°g(z),

a\(h)'' α«0«)l »-+ a\(h) α«0«) 1 (4.4)

In particular, this map respects the Z-grading. Thus if a G /(#, C) is homogeneous,
then Y(a,z) = Σna(ή)z~n~ι is a regular series of weight |α|, i.e. |α(«)| = \a\ — n — 1
for all n.

Since /(#, C) is a C/°° ^-module, we have a homomorphism

ί/°°<7 —+ End 7(0, C ) . (4.5)

Composing this homomoφhism with Y(—,z) (and using the same notation), we get

7(-,*):7(0,C) —> End 7fo,C)(z> . (4.6)

Proposition 4.2. Lei ^(—,z) 6e given by Eq. (4.6), am/ V = I(g,C) be graded
according to the eigenvalues of —d. Then (V,Y(—,z)) satisfies VI, V2 aπJ V3 of
Definition 2.1.

The proof is similar to the one for the first part of Theorem 2.4.1 of [11]. We now
prepare for the proof of the Jacobi identity for modules. In the rest of this section,
we let M be a g-module with M[n] = 0 for n <^ 0, and M1 be the restricted dual
Thus we have an algebra homomorphism %M' U°°g —> EndM.

4.2. The ΛJ-point Functions

Proposition 4.3. For any fixed v G M,v' G M ;, and a,b G g, the Laurent series
(ι/', a(z)b(w)v) converges to a rational function Rvf v(a,z;b,w) in the domain \z\ >
\w\, with possible poles at z — 0, w = 0, z = w.

Proof. A simple calculation shows that

(v',a(z)b(w)υ) = (υ1\υ)(a\b)ιZtW(z - w)'1

= +(v\ [a,b](w)v)ιz,w(z - wΓι + (v\: a(z)b(w): v) , (4.7)

where the normal ordered product is given by

: a(z)b(w): - a(zyb(w) + b{w)a(z)+ . (4.8)

Since (v\ [a,b](ή)v) = 0 for all but finitely many n, we see that {v',[a,b](w)v) is
a Laurent polynomial in w. Therefore the first two terms on the right-hand side of
Eq. (4.7) converge to a rational function.

Since a(n)v = 0 for n ̂ > 0,a(z)+v is a Laurent polynomial. Thus (vf, b(w)a(z)+v) is
a Laurent polynomial in z,w. Similarly for (v', a{z)~b(w)v). Thus the last term of
Eq. (4.7) is a Laurent polynomial in z, w. D

Proposition 4.4. The rational function above Rv/V(a,z;b,w) satisfies

Rv,,v(a,z;b,w) = Rv,,v(b,w;a,z). (4.9)

Proof From the proof of Proposition 4.3, we have

W f l , z ; M ) =(v\v)(a\b)(z - w)-2 + (v\[a,b](w)v)(z - w)~ι

+ {vf,:a(z)b{w):v) , (4.10)
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Rv,,v(b,w;a,z) ={v\v)(b\a)(w - z)~2 + {v'9[b,a](z)v)(w - z)" 1

+ (v',:b(w)a(z):v) . (4.11)

One should keep in mind that all the terms of the form (v',- υ) are Laurent
polynomials in z,w.

Now to prove our claim, it is enough to show that Rvf v(b, w; a,z) — Rvrv(a,z; b, w)
is zero is the domain \z\ > \w\ > \z — w\. This will involve a straightforward but
rather lengthy calculation:

= (υ\[b,a](z)v)(w-zΓι - (ι/,[β,Z>](w»(z - w)~ι

+ <i/,: b(w)a(z): υ) -\v',: a(z)b(w): v)

- (v',[a(zT,b(wΓ]v) - (v',

/>«>0 M '

+ Σ> (~* ~ 1)(-* ~ 2) • (-* - n)w-k-»-1 (v1, [a,b](k)v)(Z ~ ^ "

- (v',[a(zΓ,b(wΓ]v) - (v',[b(w)+,a(zγ]υ)

= Σ W, [a, b](-l)v)(zι~2 + z'~3w +•••+ zw1-3 + w'~2)

, n-\

- Σ ( Σ ( ΐ ) ( — f )(υ',[aM(k)v}w-"-2)

- (υf

9[a(z)~9b(w)~]v) - (υ'9[b(w)+

9a(z)+]v)

• Σ (vf,[a,b](-m - n)v)zm-lwn~l

m,π>0

- Σ ( Σ z-"-V+1 j (f'.

- (v',[a(zΓ,b(wΓ]v) ~ (υ',

= 0 D (4.12)

Proposition 4.5. For v £ M,v' EM', and a\,...an E g, the Laurent series (v',a\
(zi) an{zn)v) converges to a rational function /fo/>u(αi,zi • • αn,zn) in the domain
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\z\\ > > \zn\, with possible poles at z{ — 0 and z\ = z, for i+j. We call the
rational function an n-point function.

Proof When n — 1, we get a Laurent polynomial in one variable. When n — 2,
we have Proposition 4.3. Suppose our claim holds for the ^-variable case. Let's
consider the n -f 1-variable case:

an(zn)v)

= (v',ao(zo)~aι(zι) an(zn)v) + (υf, [ao(zo)
+,aι(zι) an(zn)]v)

+(ί/,α1(z1) an(zn)ao(zo)
+v)

= (vf,ao(zoyai(zi) an(zn)v)

+ Σ (v',aι(zι) - ak(zk) an(zn)v}(ao\ak)ιz^Zk(zo - zk)~2

4- Σ (^βl^O tflOj^K^ ΛnC n̂Mϊzo.zjfĉ O-̂ )"1

+ (ι;/,β l(z1) αn(zw)αo(zo)
+ί;) . (4.13)

Since αo(zo)+ί; is a polynomial, the last term has at most finitely many pow-
ers of z0. The coefficient of each power of z0 converges to an 72-point function.
Thus by inductive hypothesis, the last term of Eq. (4.13) converges to a n+ 1-
variable rational function with the desired properties. Similarly, the second and the
third sums also converge to (sums of) rational functions. Thus we only need to
check that the first term also has the desired properties. It is enough to show that
(υ\ao(m)a\(z\) an{zn)υ) = 0 for all but finitely many m < 0. Without loss of gen-
erality, suppose that both v\υ are homogeneous. If (v'9ao(m)a\(zι) an(zn)v) φθ,
then

{vr,av{m)ax{h)--an{in)v)^ (4.14)

for some i\, - Jn with \υ'\ = \v\ — m — i\ — - in and \v\ — i\ — — in ̂ .N, be-
cause the grading of M is bounded from below by N. This means that m^
N-\v'\. D

Proposition 4.6. For the same hypotheses as in Proposition 4.5, the n-point func-
tion is permutation invariant, i.e.

RvrtV(auzι'9' - -;an,zn) = Rv?,v(ah, z, ,; ;ain, zin) (4.15)

for any permutation (/,...,/«) of ( 1 , . . . , ή).

Proof The n — 2 case is given by Proposition 4.4. Assume that the claim holds
for «-point functions, and consider the n + 1-case where n > 1. If the permutation
(io,h,...,in) of (0,1,...,«) stabilizes 0, then form the recursion formula (4.13) that
defines RV/)V, it is clear that Eq. (4.15) holds. Therefore, it is enough to show that
Eq. (4.15) holds for the permutation (l,0,2...,w).

By a similar calculation as in the proof of Proposition 4.5, we get

(v',ao(zo)ai(zi)---an(zn)v)

= {v'9an(zn)~~ao(zo) -an-.ι(zn-ι)υ)
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+ Σ (ι/,α0Oo) * ak(zk) an-ι(zn-.i)υ)(an\ak)ιZktZn(zk - zny
2

+ £ (v',ao(zo) [ak, an](zk) an-ι)υ)ιZktZn(zk - zn)~ι

+ ( ^ φ ) fl«-i(ViKW^) (4.16)

Now we know that this Laurent series converges to the left-hand side of Eq.
(4.15). But by inductive hypothesis, Eq. (4.16) shows that this series also converges
to a rational function that is invariant under the interchange of (ao,zo) and (α, ,zz )
for any i < n - in particular for / = 1. This completes our proof. D

4.3. The Jacobί Identity

Theorem 4.7. Fix v' eM\v e M.
(i) Let bu...,bn be elements of I(g,C). Then the series

(v'9Y(buZl).-.Y(bn,zn)O) (4.17)

converges to a rational function Rvf)V(b\,z\; ;bn,zn) in the domain \z\\ > >
\zn\, with possible poles at Zi = 0 and zz = zj for i+j.
(ii) For every permutation (i\, , in) of (1, , n), we have

Rυ'tυΦuz\\ '' '>bn,zn) = Rυ>^φiχziχ\ - ;bin,zin). (4.18)

(iii) The series

{v',Y(Y(buz-w)b2,w)v) (4.19)

converges to the rational function Rv'υ(b\,z;b2,w) in the domain \w\ > \z — w\.
(iv) Let YM(-,z) = πMo 7(-,z):/(#,C) —> End M(z). Then the Jacobί identity
holds for {MJM{-z)\

We note that Theorem 4.7(i)-(iv) here generalize respectively the following four
results of Frenkel-Zhu[ll]: the two parts of Theorem 2.3.3, Theorem 2.3.4, and the
second part of Theorem 2.4.1. In the proofs of their results, their Proposition 2.3.1
was the key ingredient. Propositions 4.5 and 4.6 above are stronger versions of their
Proposition 2.3.1. By using the same line of argument as Frenkel-Zhu did for their
Theorems 2.3.3 and 2.3.4, but with the key ingredients Propositions 4.5 and 4.6
above replacing their Proposition 2.3.1, one can easily generalize their proofs to the
current setting for Theorem 4.7(i)-(iii). Thus we refer the readers to the reference
[11].

As for Theorem 4.7(iv), one might first try to imitate Frenkel-Zhu's argument
for their Theorem 2.4.1. But the argument, aside from using their Theorems 2.3.3
and 2.3.4, also relies on the following fact: given a finite dimensional simple Lie
algebra #, the Killing form (|) of g, and an irreducible ^-module E, the ^-module
I(g,Eχ) is irreducible for generic values of χ. It is easy to show that this breaks
down in general. In fact, for a general pair (g, (|)) in the category JSf, I(g,E) is
always reducible, whenever (|) is degenerate. Even when (|) is non-degenerate, it is
not obvious how to prove the irreducibility property.

The way we bypass this difficult in our setting is by first strengthening the key
ingredient - replacing their Proposition 2.3.1 by Propositions 4.5 and 4.6 above. This
leads to stronger versions - namely Theorems 4.7(i)-(iii) above - of their Theorems
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2.3.3 and 2.3.4. We now see that for proving the Jacobi identity, Theorems 4.7(i)-
(iii) suffice.

The first part of the following theorem summarizes the results given by Propo-
sition 4.2 and Theorem 4.7(iv).

Theorem 4.8. For every pair (g, (|)) in the category J£f, I(g,C) is a prevoa in 'V.
Moreover, we have Γ(I(g9C)) = (g,(\)).

Proof. We only need to prove the second part. By definition, we have

{α(-l)l|αeff}. (4.20)

Using the PBW basis of I(g, C), it is easy to see that a ι—> α(—1)1 defines a linear
isomorphism g —• I(g,C)[\]. Now by definition, the bracket on Γ(I(g,C) is given
by

[a(-\)l,b(-l)l] = β(0)δ(-l)l = [a,b](-l)ί (4.21)

for all a,b G g. Similarly, the bilinear form on Γ(I(g, C)) is given by

(α(-l)l|i(-l)l) = a(l)b(-l)l = a(l)b(-l)l = (a\b)gl = (α|i), . (4.22)

This completes the proof. D

4.4. Functorίality. Next we show that the construction of the prevoa /(#, C), is
functorial.

Let φ: (#,(!)) —> (o'Λlϊ) be a morphism in the category j£f. As seen in Sect.

3.4, this induces a morphism φ:(g,( | ) Λ )—•(0 / ,( | ) / Λ ) . Let £ be any #'-module.

The #'-module I(g'9E) becomes a ^-module 0 I(gf,E) by pull back. On the other

hand, the g'-module E becomes a ^-module φ*E. Now in an obvious way, we get

a/>-module map (p = @n^Q)gn)φ""E —> φ I(g\E). Thus by the universal property

of the prolongation module, we have a ^-module map

φ:I(g9φ*E)—+φΊ(g',E),

αi(fli) ak(nk) (g) e ̂  (φa\)(nx) (φak)(nk) 0 e (4.23)

for fli,...,ak G g,e G £" and integers n\,...,nk. More generally we have

aγ(nι) ak(nk)'b ^ (φaλ)(nλ) (φak)(nk) • φ-b . (4.24)

Now we restrict to the case where £ is the trivial g;-module. By the second part
of Theorem 4.8, we can identify I{g, C)[l] with g. Thus by Corollary 2.6, for
a\,...,an e g = I(g,C)[l] and non-negative integers i\,...,in9 we have

7(fli(-ίi - 1) an(-in - l)l,z) = 1 . . . - L : Γ ^ ax(z) (j\ an(z): .

(4.25)
Since the prevoa (/($, C), Y(—,z)) is generated by its level one elements, it follows
that the image of Y(—,z) is spanned by those expressions in (4.25). The same holds
for g' and the prevoa (I(g\C),Y(—,z)). It is now clear from Eq. (4.24) that

φ Y(a, z)b = Y(φa9 z)φb (4.26)
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for every α, b in 7(g, C). To summarize, we have

Proposition 4.9. The correspondence (g,(|)) -»I(g,C) is a functor from

se to rh

We now return to a question which we raised at the end of Sect. 3. Given a prevoa

V in the category 'V, we considered the Γ(F)-module map

ΓV:I{Γ{V)X)—>V

a\(n\) - - ak(nk)l H-> a\(n\) ak(nk)lv (4.27)

for αi , . . . ,α£ E Γ(V) and integers «!,...,«#• By a n argument similar to that of
Proposition 4.9, we have

ΐvY(a,z)b = Y(Γva,z)fvb (4.28)

for all a,b £ 7(Γ(F),C). Thus the map iγ above is a prevoa homomorphism.
Let / : V —> V be a morphism in the category y. By functoriality of TJ

induces a morphism Γ(f):Γ(V) —> Γ(Vf) in the category 5£\

Proposition 4.10. Given a commutative diagram in if:

g -* g'

I i (4.29)

Γ(V) —> Γ(V)

we have a commutative diagram in Ψ~:

I(g,C) — + I(g',C)

I I (4.30)

V —y V

Proof. By the functoriality of /(—,C) (Proposition 4.9), we have the following
commutative diagram in Ψ~:

I(g,C) -^ I(g',C)
i I (4.31)

C)

Since z> and ẑ  are prevoa homomorphisms, we have yet another diagram in Ψ*'.

v -ί-* v

Thus we need to show that diagram (4.32) is commutative, for then combining
diagrams (4.31) and (4.32) gives the desired result.

Let's denote the vacuum vectors of V, V, I(g,C), I(g',C) respectively as \y,
\yi, 1, 1' . For any a,b e V, we have

fY(a,z)b = Y(fa,z)fb . (4.33)
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In particular, if a\,...,an G Γ(V) — V[l] and i\,...Jn are integers, then

f{ax{h) an(in)lv) = (fai)(h) (Jan\in)\v, (434)

Now by Eqs. (4.23) and (4.27), we have

? (ίi) *' *πfti)l) = Waύίh) • (fanχin)ϊ

= foΓv(ai(iι)...an(in)l). (4.35)

This completes our proof. D

Theorem 4.11. Every minimal type one is a quotient of I(g,C), for some pair
(g,(\)) in the category <£. Conversely, every quotient of I(g,C) by an ideal is a
minimal type one.

Proof Let V be a minimal type one. By definition, V is spanned by elements of the
form a\(i\) an(in)a, where the α's are elements of V[l] + F[0]. But F[0] = C 1 F .
Thus without loss of generality, we may assume that a — \ v and a\,--,an G V[l].
This means that the prevoz map z> : I(Γ(V\C) —> K in onto.

Conversely for every quotient V of /(#, C), we have an onto map I(g, C) —> K.
Since I(g,C) is generated by 7(^,C)[1], it follows that K is generated by F[l]. D

4.5. Modules over I(g,C)

Proposition 4.12. Lei M be Z-graded space with M[n] = 0 for n <̂C 0. M is a
I(g,C)-module iff it is a U°°g-module.

Proof Let (M, 7^(-,z)) be an I(g, C)-module. By Theorem 4.8,1(g,C) is a prevoa
in ΊT and f(I(g,C)) = (^,(|)Λ). Thus by Proposition 3.10, M is a ^-module in
which ζ acts by 1. Since M[n] = 0 for « <C 0, it is also a ^7°°^-module.

Conversely given such an algebra homomorphism nM : ί/°°^ —> End M, we obtain
YM(—,Z) = UM O ZY(—,Z) which satisfies the Jacobi identity according to Theorem
4.7(iv). Obviously, YM(1,Z) = IUM - Since both maps πM and Y(—,z) respects the
Z-grading, so does YM(—,Z). This completes the proof. D

5. The Simple Minimal Type Ones

In this section, we prove that the simple objects in YΊ are in one-to-one correspon-
dence with the self-dual Lie algebras (Theorem 5.4). A pair (g, (|)) in the category
££ is called self dual if (|) is non-degenerate. We discuss many examples of self-dual
Lie algebras all of which correspond to new simple prevoas.

5.1. The Radical of V. Let E be an irreducible g-module Let J be the maximal
^-submodule of the ^-module I(g,E), and let L(g,E) be the irreducible quotient. By
Proposition 4.12, it is clear that J is also the maximal submodule of the adjoint
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module over the prevoa /(#, C). Thus by Proposition 3.2, J is the maximal ideal of
the prevoa I(g, C). In particular, its unique simple quotient prevoa is L(g, C).

Definition 5.1. Given a pair (g,(|)) in 5£ we denote as rad (|) the radical of the
bilinear form (|). Given a minimal type one V in Y, we let rad V be the ideal of
V generated by rad (\)r(V) (Recall that Γ(V) is identified with V[l].) Whenever
possible, we will drop the subscript Γ(V) from (|).

Theorem 5.2. For any minimal type one V in Y, we have

rad V = Σ Φ)v (5Λ)
αGrad(|)

Moreover, rad V is a proper ideal

Proof. Call the right-hand side of Eq. (5.1) K. By definition rad V contains all of
rad (I). Since rad V is an ideal, it must also contain the coefficients of the Laurent
series Y(a,z)b, for all a G rad (|) and b e V. Thus K is clearly a subspace of rad
V. Now K contains a(—l)ly = a for all a G rad (|). Since rad V is the smallest
ideal containing rad (|), we need to show that K is an ideal and that K is proper.

First we show that K is a K-submodule of the adjoint module. Consider the action
of the affine Lie algebra Γ(V). Now rad (|) is an ideal in the Lie algebra Γ(V).
This means that for a G rad (|), b G Γ(V), n, m G Z, we have

b(m)a(n)V = (a(n)b(m) + [b,a](m -f n) + m(b\a)δm+nβ)V

C K + [b9a](m + ή)V ,

C K . (5.2)

Thus K is Γ(F)-stable. Since V is generated by V[\], Corollary 2.6 tells us that K
is stable under any b(m), b G V.

Now we show that K is stable under L-\. By Theorem 2.8(vii), this means that
K is an ideal. For a G rad ( |), n integer, we have

L_xa(n)V C [I_i, a(n)]V + a(n)L_xV . (5.3)

The second term on the right-hand side is clearly contained in K. The first term is
too, by Theorem 2.8(ii). Thus K is stable under L_i.

Finally, we want to show that 1 0 K. We suppose otherwise and will get a
contradiction. Since K is a sum of graded spaces a(n)V, a G rad (|), we may write
1 as a sum of homogeneous elements of the form a(n)b having weight zero, i.e.

1 = ai(rn)bi + - - + ak(nk)bk . (5.4)

Since V is in category Ψ", we have V[0] — Cl. Thus each ai(ni)bi is a multiple of
1. So we may assume that 1 = a(ή)b for some a G rad (|), be. V.

Since F is generated by F[l], fr must be a sum of elements of the form
b\(m\) bkinik)\, where the 6,'s are in V[l]. Again because V[0] is one-
dimensional, we may assume that

l = a(n)bι(mι) .'bk(mk)l. (5.5)
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Let c = c\(n\) Ck(rik)l9 where the Q'S are in V[l] and at least one of the Q'S is
in rad (|). We will show by induction that if \c\ = 0, then c = 0. This means that
Eq. (5.5) is impossible.

For k = 1, |ci(«i)l| = — n\ = 0 implies that c = ci(0)l = 0. Consider the k + 1-
case: suppose |c| = 0, i.e. «i + + n/t+i = 0. If all «/ = 0, there is nothing to
show, so let rij > 0 for some j . We move ^(^y) to annihilate 1, by commuting it
through cy+i(wy+i),...,C£+i(w£+i) Using the fact that one of the cz 's is in rad (|)
(which is a Lie algebra ideal in V[l]\ it is easy to see that c is now expressed
as a sum of terms of the form c[(n[) ^ ( H J ^ I - having weight zero and with at
least one of the c 's in rad (|). By inductive hypothesis on k, each of these terms
must be zero. Thus c = 0. This completes the proof. D

Corollary 5.3 Let V be any minimal type one in ̂ , (g, (|)) be any pair in Jδf.
Then we have

(i) Γ (rad V) = rad (\)Γ(V) .
(ϋ) Γ(Frad V) Sέ Γ(Frad ( | ) Γ ( K ) .

(iii) //" F « simple, then Γ(V) is self-dual.
(iv) The maximal ideal Jy of V has Γ{Jy) = rad (\)r(V) •
(v) |

Proof.
(i) We will drop the subscript of (|). By Proposition 3.8 and the fact that rad

V is a proper ideal of V, we have Γ(rad V) C rad (|). By definition, Γ(rad V) =
(rad V)[l]. By Theorem 5.2, we see that α = a(-l)ly G rad K for every α G rad (|).
This gives rad (|) C (rad F)[l].
(ii) This follows from Proposition 3.8 and part (i).

(iii) If V is simple, then rad V — 0. Now use part (ii).
(iv) From the projection in i^\

(5.6)

we get the surjective morphism (Theorem 3.7, Proposition 3.8)

Γ(p):Γ(V)-^Γ(V/Jv) (5.7)

with ker Γ{p) = Γ(JV). By part (iii), Γ(V/JV) is self-dual. This means that ker
Γ(p) must coincide with rad (|)r(F)
(v) By definition, L(g, C) = I(g, C)/J, where J is the maximal ideal of I(g, C). By

Theorem 4.8, Γ(I(g,C)) = (g,(\)). Thus the desired result follows from part (iv)
and Proposition 3.8. D

5.2. Correspondence between the Simple Objects of YΊ and if. In Theorem 4.8,
we saw the "universal objects" I(g, C) in Ψ" are in one-to-one correspondence with
the objects in 5£'. To refine the relation between the two categories, we have

Theorem 5.4.
(i) Every simple minimal type one is isomorphic to L(g, C) for some self-dual

pair fe(D) in S£.
(ii) For any simple minimal type ones V, V\ we have V ~ V <̂> Γ(V) = Γ{V).

(iii) The simple objects in Y\ are in one-to-one correspondence with the self-dual
objects in j£f.
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Proof.
(i) Let V be a simple minimal type one and Γ(V) = (#, ( |)) By Corollary

5.3, (g, (I)) is self-dual. By the proof of Theorem 4.11, we have an onto map
ίv : I(g, C) —> F. Since L(#, C) is the unique simple quotient of I(g, C), the map
above induces an isomorphism L(g, C) —>• F.
(ii) Obviously, F ^ F' implies that Γ(F) ̂  Γ(F') . By part (i), we have F ^

Z(Γ(F), C) and F' ^ L(Γ(F')> Q . Thus Γ(K) ̂  Γ(K ; ) implies that K ** F ' .
(iii) follows from parts (i) and (ii). D

Let's briefly recapitulate what we have established so far. In Sect. 4, we see how to
attach to each pair (g9 (|)) in the category if, a prevoa I(g,C) of the minimal type
one. By taking quotients, we exhaust all the minimal type ones. The prevoas of the
kind I(g, C) are constructed in an utterly general fashion - with little assumption on
(#, (I)). In this section, we describe the simple type ones in terms of the self-dual
Lie algebras. What is still lacking, however, is a description of the class of self-
dual Lie algebra themselves. For example, we know that among them are the finite
dimensional reductive Lie algebras. But are there any other interesting examples?

5.3. Examples: Self-Dual Lie Algebras. We now describe a number of important
classes of examples of self-dual objects in the category if.1

5.3.1. Double Extensions. In Sect. 3.4, we saw that affinization is a way of getting
new objects out of old ones in the category 5£\ Here we will describe a procedure
- known as double extension - that generalizes affinization. The original context
in which this procedure was discussed is the geometry of real groups with pseudo-
Riemannian invariant metric [23]. For completeness, we review the construction
here.

Let (#,(!)) be an object in if. We denote by Der(#, ( |)) the Lie algebra of
derivations d which are skew-symmetric on g with respect to (|), i.e. (da\b) =
—(a\db) for all a,b G g. Let h be any finite dimensional Lie algebra with a homo-
morphism θ: h —• Der(#, (|)). Let hf be the linear dual of h.

Define a bilinear form β: g x g —» h' as follows:

(β(a9b),c) =(a\θ(φ) (5.8)

for a,b G g and c G h.

Lemma 5.5. β is a two-cocycle.

Proof Let a,b,e g and d eh. Then

(β(a,b) + ]8(M), d) = (a\θ(d)b) + (b\θ(d)a). (5.9)

Now the right-hand side vanishes because θ(d) is skew-symmetric. This means that
β is skew-symmetric. Similarly, we have

< β( [a, b],c) + β( [c, ά],b) + β( [b, c], a), d)

= ([a, b] I θ(d)c) + ([c, a] I θ(d)b) + ([b, c] | θ(d)a)

(a\[θ(d)b,φ-(a\θ(d)[b,c]). (5.10)

I thank G. Zuckerman for pointing out many examples to me.
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This right-hand side vanishes because θ(d) is a derivation on g. Thus β is a cocycle.
D

We now regard hf as an abelian Lie algebra. Then using β, we can form the
central extension - which we denote by g 0 ^ h\ θf.

Lemma 5.6. θr defines an action of h on g 0 ^ h' by Lie algebra derivations.

Proof Let a,b £ g, and c, d £ h. Then we have

(β(a,b) o adhc)d = (β(a,b),[c,d])

= (a\θ([c,d])b)

= (a I θ(c)θ(d)b) - (a \ θ(d)θ(c)b)

= -(θ(c)a\θ(d)b) + (θ(d)a\θ(φ)

= -(β(θ(c)a,b), d) - (β(a,θ(c)b), d) . (5.11)

This means that

β(a,b) o adhc = -β(θ(c)a,b) - β(a,θ(φ). (5.12)

Let μ,v G h'. Consider

θ'(c)[(a,μ),(b,v)] = θ'(c)([a,b],β(a,b))

= (θ(c)[a,b], -β{a,b) o adhc), (5.13)

[θ'(c)(a, μ), (b, v)] + [(a, μ), θ'(c)(b, v)]

= [(θ(c)a,-μ o adhc),(b,v)] + [(a,μ), (θ(c)b,-v o adhc)]

= ([θ(c)a,bl β(θ(c)a,b)) + ([a,θ(c)b], β(a,θ(c)b))

= (θ(c)[a,b], β(θ(φ,b) + β(a,θ(φ)). (5.14)

By Eq. (5.12), we see that right-hand sides of Eqs. (5.13), (5.14) agree. This means
that θ'(c) acts on g @β h' by derivation. D

Definition 5.7. Let Δ{g,g;θ) denote the semi-direct product Lie algebra h\<eι
(gζ&βh1). It is called the double extension 0/(0, (|)) by (h θ).

Proposition 5.8. A(g,g; θ) has an invariant form (1)^ such that there is an inclusion
(g,(\)) ^ (A(g,h; θ), (\)Δ) in the category if.

Proof. As vector spaces,

A(g,h;θ) = h®g®ti. (5.15)

For a,b G g, c,d G h and μ,v G h!, we let

((c,a,μ)\(d,b,v))Δ = (μ\b)g + (μ,d) + (v,c) . (5.16)
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Checking the invariance property of (|)j is an easy exercise. Now it is obvious that
we have the desired inclusion map. D

The following is a direct consequence of the construction above.

Proposition 5.9. The pair (A(g,h; θ), ( |)j) is self-dual iff (g, (|)) is. More precisely,
we have rad (|)j = rad (|)^.

5.3.2. A Few Special Cases. Given a pair (g, (|)) from Ĵ f, the loop algebra Lg =
g 0 C[t,t~ι] has a canonical invariant form defined by

(a®tn\b®tm)Lg = (a\b)δn+m,0 (5.17)

for a,b e g and integers m,n.
Let Cd be the one-dimensional abelian Lie algebra which acts on Lg by θ: Cd —>

Όer(Lg, (| )Lg): θ(d)a ®tn =na®tn . Then the affinization (g, (|) Λ) of
(#, (j)) is the double extension of (Lg,(\)Lg) by (Cd θ). Moreover, ( |)Λ is non-
degenerate iff (I) is.

If we take h — g and θ = ad, we get

(β(a9b)9c) = -([α,δ]|c) (5.18)

for all a,b,c G g. Thus the central extension g (&β g' is a split extension. Thus we
have A(g,g; ad) = g|x (# Θ gr7), where g acts on #' by adjoint and coadjoint action
respectively.

Clearly, the construction in Sect. 5.3.1 makes sense even when g is the zero
algebra. In this case, the double extension of 0 by h is nothing but the semi-direct
product A(x h\ where h acts on h! by the coadjoint action.

We call A(x h! the self-dual double of h, and denote it by δ(h). Note that the
invariant form given by Eq. (5.16) in this case is nothing but the (non-degenerate)
pairing - denoted by (|)^ - between h and h1. In fact even when g is nonzero, we
have an inclusion map (δ(h), (\)$) ̂  (A(g9h; θ), (\)A) in the category S£.

5.3.3. DrinfeΓd Lie Bialgebras and Manin Triples. Let g f b e a Lie a lgebra w h i c h

admits a Lie coalgebra structure g-* f\2 g9 such that δ is a one-cocycle. then g is
called a Lie bialgebra. This notion, first introduced in [3], may be used to construct
examples of quantum groups.

It has been pointed out by DrinfeΓd that Lie bialgebras are in one-to-one corre-
spondence with certain self-dual Lie algebras known as the Manin triples. A Manin
triple (h,h\9h2) consists of a Lie algebra h with a non-degenerate invariant form,
and two isotropic subalgebras h\9 A2, such that h — hx^h^ as vector spaces. Thus
given a Lie bialgebra, g, we can let h\ — g, A2 = g' and h — g^g1. The bracket
[ J ] 9 x 9f —> h is defined so that the natural pairing between g and g! is A-invariant.
Thus corresponding to the Lie bialgebra g is the triple (g Θ g', g, g').

Let h be any Lie algebra. Then h can be endowed with the trivial coalgebra
structure, i.e. let h —> f\2 h be the zero map. Hence h becomes a Lie bialgebra. It is
easy to show that the Manin triple corresponding to h is nothing but (A(κ hi\h,h'),
where h\< h! is the self-dual double of h discussed above.

DrinfeΓd has constructed many examples of quantized objects Uqg out of certain
Lie bialgebras g. It is an interesting problem to compare these quantized objects
with the vertex operator algebras I(g Θ g\ C), corresponding to the Manin triple
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6. A Classification of the Virasoro Elements

In this section, we classify the Virasoro elements of a prevoa of minimal type
one (Theorem 6.4, Corollary 6.7, Theorem 6.11, Theorem 6.14). We discuss the
Virasoro elements in those new examples we give in the last section. As an ap-
plication, we use the Virasoro elements to study the reducibility problem of the
prolongation module in the generic case (Theorem 6.19). We also use the action
of the automorphism group on a self-dual Lie algebra to classify the vertex oper-
ator algebra structures on I(g, C) (Theorem 6.22). We then conclude with a few
remarks.

6.1 Uniqueness of the Virasoro Element

Definition 6.1 [9] Let (F, Yv(-,z)) be a prevoa. An element ω e V is called
a Virasoro element if the vertex operator Yy(ω,z) — ΣnLn

z~n~2 satisfies the
following:

(i) [L-l9Yv(a,z)] = £γv(a9z);

(ii) L0\V[n] =nid;

(iii) [Lm Lm] = (n- m)Ln+m + ^(n3 - n)δn+m,0

for all a E F, integers m, n. The fixed scalar c is called the central charge of ω.

Although (i)-(iii) above are stated in terms of vertex operators acting on V, these
conditions are equivalent to the following conditions on vertex series:

(i)' [L-l9Y(a,z)] = £γ(a9z);

(ii)' [Zo, Y{a,z)} = zfz Y(a9z) + \a\ Y(a,z)

(iii)' [Ln9 Lm] = (n- m)Ln+m + ^(n3 - n)δn+m>0

The proof of the equivalence is a straight forward application of Lemma 2.5. Hence
we use the two sets of conditions interchangeably without explicitly stating so.

In this subsection, we assume that V is a prevoa in 'V with a Virasoro element
ω. We use our further Γ, to obtain information about ω.

Proposition 6.2. Given a Virasoro element ω ofV, there is a unique Γ(V)~character
λ e (Γ(V)/[Γ(V%Γ(V)]Y such that

[Ln,a(m)] = -ma(n + m) + n(n

for all a £ V[l] and integers m,n.

Proof By Lemma 2.5(i) and the fact that Ln — ω(n + 1), we have

[Ln,Y(a,z))] = Σ ( " ΐ 1 )z"-i+1Y(ω(ί)a,z)

= zn+ιY(L^a,z) + (n+ l)z"Y(Loa,z)

+ ^n(n+l)z"- 1 Y(Lya,z). (6.1)

Since L\a e Cl is linear in a € F[l] = Γ(V), we have
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Lxa = 2(λ,a) (6.2)

for some λ e Γ(V)f. Now extracting the coefficients of the powers of z from Eq.
(6.1), we get

[Ln,a(m)] = -main + m) + n(n + \){λ9a)δn+mt0 (6.3)

To show that λ is zero on [Γ(V)9 Γ(V)], we compute [Ln9 [a(m)9 b(l)]] for a9b G
F[l] , in two ways. First we have

[Ln,[a(rn),b(l)]] = [LΛ9 [a9b](m + 1)]

= -(m + l)[α,6](/i + 7w + /)

+ n(/i+l)(λ, [α, 6])δ Λ + w + /, 0 . (6.4)

But we also have

+ m),

l)[a9 b](n

= -(w + l)[a9 b](n + m + /) . (6.5)

Equations (6.4), (6.5) show that (A, [a,b]) = 0 for all a,b G F[ l ] .
Uniqueness of A is obvious. D

Theorem 6.3. Suppose V is a minimal type one such that V admits a Vira-
soro element coo, Γ(V) is self-dual and finite dimensional. Then there is a unique
Vίrasoro element ω satisfying

[Ln9a(m)] = -ma(n + m)9 (6.6)

where Ln = ω(n -f- 1), for all a £ V[l] and integers m,n.

Proof Let Ao be the r(K)-character determined by ωo By Proposition 6.2, we
have

[ωo(/ι + 1), a(m)] = -ma(n + m) + Λ(Λ + l)(λo9a)δn+mto . (6.7)

By hypotheses, we can pick (uniquely) ε <E Γ(V) such that

( φ ) = (Ao, α> (6.8)

for all « e V[l], We let
ω - ω o + ε ( - 2 ) l . (6.9)

We now check that ω has the desired properties. For a,b e Γ(V), we have

= (s\[a9b]) = (Ao, [a9b]) = 0 . (6.10)

Since (\)r(V) is non-degenerate, this means that ε is in the center of Γ(V). By
Lemma 2.5(iii), we have
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Ln = ω(n + 1) = ωo(n + 1) - (n + l)e(π) . (6.11)

Using Eq. (6.7), (6.8) and the fact that ε is in the center of Γ(V% we get

[Ln,a(m)] = - main + m) + /i(/ι + l)(A,fl)δΛ+Wj0

- (n 4- l)[e,α](w + m) - φ + l)(ε|α)4+m,0

= -ma(n + m). (6.12)

This gives Eq. (6.6).
By Eq. (6.11), we have ω(0) = ωo(O). Since ωo is a Virasoro element, coo(0)

satisfies Definition 6.1(i). Hence so does ω(0). Since ε is in the center of Γ(V), it
follows that ε(0) commutes with a(n), for all a G V[l] and integers n. Now V is
generated by V[l], Thus ε(0) commutes with 7(Z?,z), for all b G V. In particular,
we have ε(O)Z> = ε(0)6(-l)l = 0, i.e. ε(0) acts by zero in V. Thus by Eq. (6.11),
we have ω(l)|^[rt] = coo(l)|κ[«] = n id, i.e. ω(l) satisfies Definition 6.1(ii). Finally,
suppose the Virasoro element ω 0 has central charge c. Then we have

[Ln, Lm] = [ωo(n + 1) - (n + l)ε(w), ωo(m + 1) - (m + l)ε(m)]

= (n - m)ω(n + m + 1) + — (n3 - n)δn+m^

- n(n + \)ε(n + w) + w(m -f l)(w + 1)(AO, ε)

-f wι) - n(n 4- l)(/w

— (n — m)(ωo(n H-m+1) — (w + m-h l)ε(« + m))

+ ^ ( w 3 - «)(5w+m,o + m(m + 1)(Λ 4-

= (/i - m)Zn + m + C + 1 ^ ( ε | β V - «)5n+Wfo (6.13)

Thus ω is a Virasoro element of V with central charge c 4- 12(ε|ε)r(F)
To prove uniqueness, let ω, ωf be two virasoro elements satisfying Eq. (6.6).

This means that [ω(n) — ω'(n\ a(m)] = 0 for all a G V[l] and integers m,n. Since
F is generated by V[l], it follows that ω(n) — ω(«); commutes with Y(b9z) for all
Z? G F. In particular for Z>o = ω(l), we have

L0(ω - ωr) - [Lo, ω ( - l ) - ω ^ - l ) ] ! = 0 . (6.14)

On the other hand because ω, ωf G F[2], the left-hand side of Eq. (6.14) is equal
to 2(ω — ωf). Thus we have ω = ω'. This completes the proof. D

Theorem 6.4. Let V be a prevoa, satisfying the hypotheses of Theorem 6.3.
Then the set of Virasoro elements of V is the affine subspace of V[2] given by
{ωo 4- ε(—2)l|ε G cent(Γ(F))}. Thus if exists, the set of Virasoro elements ofV is
classified by cent (Γ(V)). Moreover if ωo has central charge c, then ωo 4- ε(—2)1
has central charge c 4- \2{ε\έ)r(v)
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Proof. Using a similar argument as in Theorem 6.3, we can show that if ω0 is a
Virasoro element, then so is ωo + ε(—2)1 for every ε £ cent(Γ(F)). The same proof
shows that conversely, every Virasoro element differs from ωo by exactly ε(—2)1
for some ε G cent(Γ(F)). This gives the first of our claims.

For the second claim, let's assume that ε G cent(Γ(F)) and ε(—2)1 = 0. We

need to show that ε = 0. By Lemma 2.5(iii), we have 0 = 7(ε(-2)l, z) = 4- Y(ε,z).

This implies that ε(n) = ε(— l)<5n,_i. In particular, (ε\a)r(v) = ε(l)α = 0 for all

a G Γ(V). By hypothesis, (\)r(V) is non-degenerate. This means that ε = 0.
The last claim of the theorem follows from the proof of Theorem 6.3. D

In proposition 6.2, we see that every Virasoro element gives rise to a Γ(V)-
character in a natural way. One wonders whether the converse is true. Indeed,
under the same hypotheses in Theorem 6.3, this holds. In fact if one considers
the map cent(Γ(K)) -> (Γ (V) / [Γ (V) Γ (V)])f, ε ι-> λε, with (λε, a) = (ε\a) for a £
Γ{V), then one can easily show that this map is well-defined and bijective. By
virtue of Theorem 6.4, we see that the Γ(V)-characters also classifies the Virasoro
elements, if they exist.

6.2. Characterizing the Virasoro Element. All of the discussion in the last subsec-
tion would not have been worthwhile, if there were no new examples of Virasoro
elements beyond the known ones in the case in which Γ(V) is reductive. But where
do we look for new examples? A partial answer is provided by Theorem 6.3. It
tells us that we should look at those prevoa V satisfying the hypotheses, and look
at elements ω G V[2] for which

[ω(n + 1), aim)] = -main + m) (6.15)

holds for all a £ V[l] and integers m,n. In fact, as we will see, this condition
actually characterizes the existence of a Virasoro element.

Definition 6.5. Let (g, (|)) be a finite dimensional self dual pair in JSf, {uf) be

dual bases (w^w-7) = iuJ\ui) = δ\. If φ is any linear map of g, we let Ωg = Uiφu1

(sum over i) be an element of the enveloping algebra of g. In a context in which

only one pair (g,(\)) is being considered, we write Ω^ instead of Ωg. When φ is

the identity map, we write Ω instead of Ωιά. The operator representing Ω^ in the

adjoint representation is denoted adgΩg, or simply ad Ω^.

Throughout this subsection, we assume that a prevoa V is of minimal type one
with finite dimensional self-dual Γ(V). Thus {ui) and {u1} are dual bases of Γ(V).

Since V is generated by V[l], the most general element of V[2] must take the
form

ω = Uii-tyφu* + r(-2)l, (6.16)

where φ is some linear map on V[\], and v is some element of V[l]. We claim
that, without loss of generality, one can assume that φ is symmetric with respect
to (\)r(v) Fo r if we let φ^ be the adjoint of φ, it is easy to show that

Ui{-\\φ - 0 V = [Ui, Φu'](-2)l . (6.17)

Thus Eq. (6.16) becomes
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\ V \ A »)(-2)l (6.18)

So from now on, φ in Eq. (6.16) is assumed symmetric.

It is obvious that every graded piece V[n] of V is a Γ(F)-module in a natural
way, i.e. every a £ Γ(V) = V[l] acts by the operator a(0). We denote the subspace
of Γ(F)-invariants by V[n\Γ{v).

Theorem 6.6. Let ω — Ui(—l)φuι 4- v(—2)1 where φ is some (symmetric) linear
map on V[\\ and v E V[\\ Then the following are equivalent:

(i) For all a e K[l] and integers m,n,

[ω(n -1-1), tf(m)] = —ma(n + m

(ii) For flί/ίiG F [ l ] ,

β ( w ) da(x , x
Y(ω,z)a(w)

(z - w ) 2 z — w

( i i i) i; = 0 α « J / o r all aeV[l],

lφu1, [uha]](w) = α(w

- 2: Uί(w)[φi/9a](w): = 0 .

(iv) t; = 0

ω G V[2]fW.

(v) ω w α Virasoro element with v — 0, α«d central charge c — 2tr φ.

Proof (i)^==^(ii) : This is a direct application of Lemma 2.7 to the commutator
given by (i) and the operator product expansion in (ii).

(iii) : By definition, F(ω,z) =: Ui(z)(φuι)(z): +dv(z). By applying repeatedly

[α(z)+, b(w)] = (a\b)ιz,w(z - w)~2 + [α,i](w)iZfW(z - w)" 1 (6.19)

for a,b e F[ l ] , we can easily get the operator product expansion:

Y(ω,z)a(w) ~2ui(w)(φι/\a)(z - w)~2 + 2dui(w)(φui\a)(z - w)" 1

+ 2 : Ui(w)[φu\a](w): (z - w)~l + [0K*, [^ ,α]](w)(z - w)~2

+ 2(ϋ|α)(z - w)-3 - [v9 a](w)(z ~ w)~2 . (6.20)

Note that the invariant form (|) is non-degenerate.Thus comparing Eq. (6.20) with
part (ii), we see that (ii) and (iii) are equivalent.

) : By Lemma 2.3(i), the first equation of part (iii) is equivalent to

By the symmetry of φ, this becomes the first equation of part (iv).
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By Lemmas 2.3(i) and 2.5, the second equation of part (iii) is equivalent to

[φu\ [«,,β]](-2)l - 2u,(-l)lφt/,a](-l)l = 0 . (6.22)

Now computing α(0)ω (with v = 0), one sees that it is equal to the left-hand side
of Eq. (6.22). Thus parts (iii) and (iv) are equivalent.
(iv)=Φ-(v): Since we have already shown the equivalence of parts (i)-(iv),
we can use any one of them here as hypotheses. Applying part (i) to the case
a = wz , we get

[Y(ω9z)9 Ui(w)-] = Ui(z)ιZtW(z - w)-2 . (6.23)

Applying part (ii) to the case a = φuι, we get

+ :Y(ω,z)(φui)(w): . (6.24)

Part (iii) implies that v = 0. So we can write

Y(ω,z) =:u,(zχφt/χz): . (6.25)

We also know that for α,b G V[l], we have

a(z)b(w) = (a\b)ιz,w(z - w)~2 + [a,b](w)ιz,w(z - w)~ι + : a(z)b(w): . (6.26)

We now apply Eqs (6.23)-(6.26) to compute the product:

Y(ω,z)Y(ω9w)

= Y(ω9z)(Ui(wr(φt/)(w) + (φiS)(w)ui(w)+)

= (Uilφuy^iz - w)~4 + [uh φu^iw^iz - w)~3

+ : Ui(w)(φuι)(w): ιZ}W(z - w)~2+ : Ui(z)φu\w): ιz^(z - w)~2

+ : Ui(w)d(φif)(w): Ϊ,,W(Z - w)~ι+ : Ui(w)Y(ω^iφu'Xw): . (6.27)

The term with (z — w)~3 vanishes by the symmetry of φ. Extracting the singular
part of the right-hand side of Eq. (6.27), we get

Y(ω,z)Y(ω9w) - (tr φ)(z - w)~4 + 2Y(ω,w)(z - w)~2 + dY(ω,w)(z - w)~ι .
(6.28)

Now apply Lemma 2.7, we get

[ω(n + 1), ω(m + 1)] = (n - m)ω(n + m + 1) + ^ γ / ( " 3 ~ Ό < W o (6,29)

This verifies Definition 6.1 (iii). Applying part (iii) again, we get

[ω(0), a(z)] = jza(z) (6.30)

for all a e V[l]. Since V is generated by V[l], Corollary 2.6 tells us that for any
b G V, Y(b,z) is a linear combination of
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(6.31)
Now Definition 6.1(i) can be easily checked by induction on n, using Eqs (6.30),
Similarly, applying part (iii) again:

[ω(l), a(m)] = -ma(m). (6.32)

one can check as well that Definition 6.1(ii) also holds.
(v)=>(i): Suppose ω is a Virasoro element with V = 0. By Proposition 6.2, there
is a unique Γ(F)-character λ such that

[ω(n + 1), a(m)] = -ma(m + n) + Λ(Λ + l)(A,α)δw+mjo (6.33)

for all a G F[l] and integers ra,«. Using Lemma 2.7, we translate this into

Y(ω,z)a(w) ~ Λ(W)(Z - w)~2 + da(w)(z - w)~ι + 2(λ,α>(z - w)"~3 . (6.34)

But Eq. (6.20) also holds with υ = 0. Comparing it with Eq. (6.34), we see that
(λ,a) ~ 0 for all a e V[l]. Thus Eq. (6.33) coincides with part (i). This completes
our proof. D

From now on, given φ we denote Ui(—\)φuι G V[2] as a>φ. Combining Theorem
6.6 and Theorem 6.3, we have

Corollary 6.7. V admits a Virasoro element iff there is a symmetric map φ sat-
isfying

2φ + adΓ(κ)Ωr(n = i d > ( 6 3 5 )

ωφ G V[2]Γ ( n . (6.36)

Thus we need to solve those two conditions above.
A few comments about the conditions are in order. Based on the known cases

of prevoa V in which Γ(V) is a simple Lie algebra, one is tempted to guess that in
the general case, there might be a Virasoro element of the form (again sum over i)

ω = kuii-iy , (6.37)

where k is some fixed scalar, i.e. φ = k id. Unfortunately, the first condition in
Corollary 6.7 does not hold in this case unless ad Ω acts semi-simply on Γ(V).
This means that ω above does not give a Virasoro element in general For example,
if we let g be the self-dual double of a finite dimensional simple Lie algebra h and
consider the prevoa V = /(#, C), then Theorem 4.8 tell us that Γ{V) = (g, (|)) which
is self-dual. In this case, one can easily show that ad^Ω^ is a non-trivial square
zero operator on g. Thus Eq. (6.37) is a poor choice in the general case.

In the case when Γ(V) is simple, we know that (\)r(V) is a scalar χ times the

Killing form, say (|). One can easily verify that the two conditions in Corollary

6.7 have the solution φ = ~r jf LV\ , provided that χΦ — hv, where h° is the dual

Coxeter number of Γ{V). This gives us the Virasoro element
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where the wz and uι are dual bases with respect to (|)r(F) This is of course the
well-known formula of Suguwara-Sommerfield.

When Γ(V) is abelian, it follows from Corollary 6.7 that φ — \. This means
that

ω = ^ / ( - i y . (6.39)

This gives the original Virasoro action.

6.3. Existence of the Virasoro Element. Our task in this subsection is to solve Eq.
(6.35), (6.36). To simplify notations, we denote Γ(V) as g in this subsection. We
begin with an observation which generalizes the fact that the second Casimir of the
self-dual Lie algebra g, lies in the center Z(g) of U(g).

Lemma 6.8 If φ intertwines the adjoint module g, then Ωφ G Z(g).

Proof. Let a G g. Then for each z, we have

\aM-a\uj (6.40)

for some constants &{. Using the non-degenerate invariant form of g, we get

a{ = ([a,Ui]\uJ) = -(Ui\[a,uή) , (6.41)

implying that

[a,uJ] = -ajy . (6.42)

Using Eq. (6.40), (6.42) and our hypothesis, we have

[a,Uiφuι] = [a9ut]φi/ + Ut[a,φuι]

= a^Ujφu1 - Uiφa)uj = 0 . D (6.43)

Proposition 6.9 Suppose φ satisfies Eq. (6.35). Then the following are equivalent:
(i) φ intertwines the adjoint module;

(ii) Ω* e Z(g);
(iii) (2

Proof, (i) => (ii) is given by Lemma 6.8.
(ϋ) =ή> (iϋ) : Obviously if Ω^ commutes with Γ(F), then ad Ω^ intertwines the
adjoint module.

Thus by Eq. (6.35), so does φ . But if φ intertwines, then for every a e Γ(V) we
have

ΆάΩφa = [φu\ [ui9 a]] = [u\ [uh φά\] = (adΩ) o φa . (6.44)

Thus Eq. (6.35) becomes
2φ + (adΩ) o φ = id (6.45)

(iϋ) =4> (ί): Since Ω G Z(g), ad Ω intertwines the adjoint module. Now (iii) implied
that φ also intertwines. D

In preparation for the next theorem, consider the subspace V^ of V spanned
by 1 a,a(-l)b, where a,b e V[l]. Let O(F ( 2 )) be the subspace of F ( 2 ) spanned by
elements of the form [a,b](—2)1 + [a,b] G F ( 2 ) , where a,b G g. It is important to
note that the only homogeneous element in O(V^) is zero. It is easy to show that

V\ 6>(F(2)) are <?-submodules of V.
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Let Pg be the ίth tensor power of our Lie algebra g. Let
©o</<2 Tιg Then T^g carries a ^-action induced by the adjoint action of g. Let
O(T^g) be the subspace of T^g spanned by a 0 b - b <g) a — [a, b], where a,b e g.
Then it is obvious that the kernel of the natural map Tg —> Ug, restricted to tensors
of at most rank 2, is given by O(P2)g). Thus we write U{2)g = T^g/O(T^g) as
a subspace of Ug.

We now define a linear m a p / : Γ(2)g —> V^ which maps 1, a,a®b onto 1,
a,b(—l)a respectively, for all a,b £ g. Then O(T^g) is a g-submodule of T^g f
is a ^-module map which maps O(T^g) into 0(F ( 2 ) ) . This induces the surjective
m a p / : t/(2)<? —• F<2Vθ(K(2)).m a p / : t / < ? • F V θ ( K ) .

Proposition 6.10. if Ωφ e Z(g), then ωφ e V[2ψ

Proof. Let a e g and [a, Ωφ] = 0. The by the syProof. Let a e g and [a, Ωφ] = 0. The by the symmetry φ, we have

[a, φt/]ui + φuXa, Ui] = 0 . (6.46)

Under the m a p / : U{2)g —> F ( 2 )/O(F ( 2 )), this equation turns into

Ui(-l)[a9φuι] + [a,φui](-l)φi/ = 0 mod O ( K ( 2 ) ) . (6.47)

The left-hand side of this equation is obviously a(0)ωφ which is homogeneous of
weight 2. By definition, the only homogeneous element in O(V^) is zero. This
completes the proof. D

Theorem 6.11. If2 + adΩ is invertible, then V admits a Virasoro element given
by ω = w/(—1)(2 + &dΩ)~ιuι. Moreover, its central charge is c = 2tr(2 + adΩ)"1

Proof By hypothesis, (2 + adί2) is invertible. Call the inverse φ. Obviously ad Ω,
and hence φ, is a symmetric intertwining map of the adjoint module g. By Lemma
6.8, Ωφ e Z(g). Thus Eq. (6.36) follows from Proposition 6.10.

Since φ intertwines the adjoint module, we have ad Ωφ = adΏ o φ. This means
that

id = (2 + ad Ω) o φ = 2φ + ad Ωφ, (6.48)

which gives Eq (6.35).
Finally, the formula for the central charge of ω is given by Theorem 6.6 (v). D
Combining Theorems 6.4 and 6.11, we get

Corollary 6.12. If 2 + ad£2 is invertible, then the set of Virasoro elements of V
is the affine subspace of V [2] given by {«,-(—1)(2 + 2iάΩ)~ιuι +L_iβ|ε e cent(gf)}.
Moreover, the element corresponding to ε has central charge c = 2tr(2 + adΩ)"1 +
12(ε|ε).

We now consider the converse of Theorem 6.11. Here we need a further as-
sumption on V. Recall that in Subsect. 4.4, we studied a natural prevoa map
iv : I(Γ(V),C) —> V. Let's denote by ϊγ[ή\ the restriction of the map to the sub-
space of homogeneous elements of weight n. By construction, this restriction map
is injective for n = 0,1.

Proposition 6.13. if ΐυ [2] is injective, then ωφ e V[2]9 implies that Ωφ € Z(g).
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Proof. First let's consider the g = Γ(Ύ)-module map / : U^g —> V^/O(V(2))
introduced above. This map is surjective and sends Ωφ to <x>φ -f O(F ( 2 )) by con-
struction. We will show that under the hypothesis here, / is also injective. If we
can do this, then it follows t h a t / " 1 pulls the coset ωφ + O(F ( 2 )) back to Ωφ.

Suppose ofiuiiij + β G U^g (sum /, j) is in the kernel of/, for some β G g —
Γ(V) = V[\]. Without loss of generality, we may assume that (α^) is a symmetric
scalar matrix, for the antisymmetric part can be absorbed by β. Then under the
action of/ we get

aPuji-l)ui + β = 0 mod<9(F(2)). (6.49)

This means that the left-hand side takes the form /?(—2)1 + β. This gives

β(-2)l = ^uJ(-l)ui. (6.50)

By hypothesis, iγ [2] is injective. In particular, V[2] has a basis of the form
{ui(-l)uj + Uj{-l)uhUi(-2)l(dimV[l])^i^j^0}. This means that both sides of
Eq. (6.50) must vanish. It follows from Eq. (6.49) that β G O(F ( 2 )). But β has
weight 1, while zero is the only homogeneous element in O(V^). Thus β — 0.
This completes the proof. D

Theorem 6.14. Suppose iγ [2] is injective. Then V admits a Virasoro element iff
2+adΩ is invertitle.

Proof. Theorem 6.11 gives the "if" part. Suppose V admits a Virasoro element.
Then by Corollary 6.7, V admits a Virasoro element ωφ satisfying conditions (6.35),
(6.36). Now by Proposition 6.13, we get Ωφ G Z(g). By Proposition 6.9, finally, we
see that (2 + adΩ) is invertible. D

We now recast the results in this section in more familiar notations.

Corollary 6.15. Let (#,(|)) be any finite dimensional self-dual pair, and χ be any
nonzero scalar. Then the preyoa I(g, Cχ) admits a Virasoro element iff 2χ + adgΩg

is invertible. If exists a Virasoro element is given by ω — U[{— l)(2χ + eLάgΩg)~~ι uι,
where {ui} and {u1} are dual bases of (g,(\)). Moreover, ω has central charge

ι

Proof We take V = I(g,Cχ) and use the fact that (Theorem 4.8) Γ(V) = (

and hence ΩΓ(v) = X~lΩgΛx~Ίui}Λx~^ul} a r e dual bases of Γ(V). Clearly iγ is
an isomorphism in this case. Thus the first statement of our claim follows from
Theorem 6.14. Applying Theorem 6.11, we get the Virasoro element

ω = ΓιUi{-\\2 + χ'ι3dgΩgrW . (6.51)

The central charge is computed the same way we did in Theorem 6.6. D

6.4. Some Special Cases. In Sect. 5.3, we study the notion of the double extension
of a pair (#,(|)) in category, jSf, by a Lie algebra h acting in g by anti-symmetric
derivations. This construction offers a large pool of concrete examples of self-dual
objects in the category j£?. In turn, these examples lead to new examples of prevoas
V of type one for which the radical radF = 0. Then in the last section, restricting
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ourselves to cases in which Γ(V) is finite dimensional, we classify the Virasoro
elements on V. Thus we obtain a large class of new vertex operator algebras.

In this subsection, we wish to consider the Virasoro structures on these new
voas. We try to illuminate the new ones by comparing them to the ones that are
well-known. First let's recover some well-known examples. We call a scalar μ a
critical value of the self-dual pair (#,(|)) if 2μ + ad^f^ is singular.

Let g = φ z g(/) be a finite dimensional semisimple Lie algebra with simple com-

ponents g{{). Let (|)z be the standard Killing form on g^y, {«/(/)}/> W^} be some dual

bases with respect to (|) ί5 and h^ be the dual Coxeter number of g^y Then we have

adgΩg\g(ι) = 2Λfo . (6.52)

Let (I) denote the standard bilinear form of g. Thus given any nonzero scalar χ,
the critical values of of the pair (g9χ(\)) are —χ~ιhv^y By Theorem 4.8, the prevoa
V =I(g,Cχ) has Γ(V) = (g,χ{\)). Since this pair is self-dual, every quotient V/J
of V by an ideal J has Γ{V/J) = Γ(F), according to Proposition 3.8. Thus Γ(V/J)
has the same critical values —χ~ιhv^. Hence if χΦ - h^ for any ί, then Theorem
6.11 tells us that V/J admit the Virasoro element

which we call the Suguwara-Sommerfield formula. Since cent (g) is trivial, it fol-
lows from Theorem 6.4 that Eq. (6.53) also gives the only Virasoro element of
/(#,C χ) and its quotients. Moreover the central charge of ω, by Theorem 6.11, is
given by

Now let's turn to the other extreme: let (#, (|)) be a finite dimensional self-dual
pair with an abelian g. In this case, ad^Ω^ is of course zero. Let {u1}, {w/} be some
dual bases of (#,(|)), and χ be any nonzero scalar. Consider the prevoa V = I(g,Cχ)
and its quotients. Note that as before, any quotient V/J of V has Γ(V/J) = (g,χ(\)).
By Theorems 6.4 and 6.11 (the case φ = | ) , the most general Virasoro elements
of V/J are given by

ω = -L Ui(- i y + ε(-2)l (6.55)

with ε G cent(gf) = g. Equation (6.55) is the Chodos-Thorn-Feigin-Funchs formula.
The central charge of ω is given by Corollary 6.12:

c = άimg + 12χ(ε|ε)^ . (6.56)

Thus we see that Theorems 6.4 and 6.11 unifies the above two extreme cases in a
natural way. In particular, Eq. (6.53) and (6.55) are actually two special cases of a
general formula. The same is true for Eq. (6.53) and (6.56).

We now consider a third special case: (g,(\)g) is the self-dual double of an
arbitrary finite dimensional Lie algebra h, i.e. g = h\<h'', where h acts on h! by the
coadjoint action. Thus (\)g is the canonical pairing between h and h'. Let {m} and
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{uι } be bases - dual to each other - of h and h' respectively. Then it is easy to
check that

β β = « I-« / /+ι/ Iι I, (6-57)

(didQΩg)a = —uι o ad^α o ad^w; + uι o ad/, [ui,a] G h , (6.58)

(ad,β,)|A/ = 0 . (6.59)

In particular, we have
(ad,β,) 2 = 0 . (6.60)

This implies that, for any nonzero scalar χ,

(2χ + ad^Ω^)"1 = γ^(2χ — adgΩg) , (6.61)

tr(2χ + adgΩgy
ι = —dimg = χ"1dimA . (6.62)

Equation (6.60) also implies that the only critical value of the pair (g, χ(|)) is zero.
Thus if we consider the prevoa V = /(#, Cχ) and its quotients, we find that, by
Theorem 6.11 (the case φ = (2 + χ~ιa.dgΩg)~ι

9I(g9Cχ) and its quotients always
admit Virasoro elements. By Eqs. (6.59), (6.61) and Theorems 6.4, 6.11, every
Virasoro element takes the form

ω = —{ui(-\y + /(-l)w,) - it'(-\)(2άgΩg)ui + ε(-2)l , (6.63)

where ε E cent(gf). By Corollary 6.12 and Eq. (6.62), the central charge of ω is

c = 2dim/ϊ + \2χ(e\έ)g . (6.64)

Even in the case above, there are yet two extreme subcases: (i) h is semisimple;
(ii) h is the abelian. In subcase (i), we have cent (g) = 0. Thus there is a unique
Virasoro element given by Eq. (6.63) with ε = 0. In this case, the central charge
is independent of χ. In subcase (ii), we have cent (g) = h 0 h!9 and hence we have
the "maximal" number of Virasoro elements.

We now go to the fourth special case which, in fact, subsumes the case of self-
dual double (see Sect. 5.3). Consider the finite dimensional self-dual Lie algebra A =
A(g,h;θ), obtained from the double extension of a self-dual pair (g9(\)g) by a Lie
algebra h acting on (g,(\)g) via skew symmetric derivations, θ: h —> Der(g, (|)^).

Obviously, this setting is much more general than the case of self-dual double.
Thus it is more difficult to obtain detailed information about the Virasoro elements in
this setting. For in general, ad^Ώj no longer acts nilpotently. It is therefore difficult
to describe the Virasoro elements of V = I(A,Cχ) in terms of the constituents g9h9 θ
etc. We will however give a few general properties of the operator ad^Ωj. These
properties may simplify and facilitate the computation of the Virasoro elements in
concrete situations.

Let {u1} and {w/} be dual bases of(g9(\)g). Let {vJ } and {vj} be bases - dual to
each other - of h! and h respectively. To simplify notation, we will identify h, g, hι

as the appropriate subspaces of A. For example, we regard a as the same thing as an
element of the form {a, 0,0) in A = g 0 g 0 h'. Thus {VJ9 u\ υι } and {vJ , wz , Vj} are
regarded as two ordered bases of A which are dual to one another. Then we have
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ΩA = VjVJ + ux\i -f £>7 Vj . (6.65)

Note that we may also regard the self-dual double δ = δ(h) = (h\<h',(\)δ) of h, and
(g,(\)g) canonically as subalgebras of (zl,(|)^) in the category jSf.

It is straightforward to compute the action of ΩΔ on each of the subspaces:
h9g9h'. For a e h, b e g, a' £ hf, we get

(3dΔΩΔ)(a9090) = (0, [θ(a)ui9ij] 9βφ(a)uutί) + (μdδΩδ)a),

(ad^)(0,Z>,0) = (09(3dgΩg)b9β(ui9 [u\b])),

(ad^Ω4)(0,0,α/) = 0 . (6.66)

In particular, it follows that every eigenvector corresponding to a nonzero eigenvalue
λ must have the form

(0,b,λ-ιβ(uh[S,b])), (6.67)

where b is an eigenvector of ad^Ω^ :

{?iάgΩg)b = λb . (6.68)

This means that ad j ί^ is nilpotent iff ad^ί2^ is nilpotent. The eigenvectors of
ad^Ω^ with zero eigenvalue are those (a,b,af) satisfying

{2άΔΩΔ\a9b9cί) =(0, [θ(a)ui9tί] + (ad,Ω,)Z>,

β(β(a)ui9tt) + (ad5θa)fl + ̂  , [^,6]))

= 0 . (6.69)

Let χ be a nonzero scalar such that both 2χ + ad^f^ and 2χ + ̂ gΩg are in-
vertible. Let's consider the prevoa I(A,Cχ) and its quotients V/J of V by any ideal
/ . In this case, we have Γ(V/J) = (A,χ(\)Δ). Then by Theorem 6.11 and Corollary
6.12, the set of Virasoro elements in V/J consists of

ω =vj(-l)(2χ + adjΩ^)" V"' + n/(-l)(2χ + adjO^)"1!!1"

/ 1 ^ + ε(-2)l, (6.70)

where ε ranges over the center of A. Equation (6.70) can be expressed in terms of
the constituents g9h,θ, of A using Eqs. (6.66). The central charge of ω is given by

c = 2χtr^(2χ + *dΔΩΔ)-1 + l2χ(ε\ε)A

= lάimh + 2χtr,(2χ + ndgΩgΓ
ι + l2χ(ε\ε)A . (6.71)

Note that dim g = dim A — 2dim/z. Thus if g itself is a double extension of some
lower dimensional Lie algebras in S£9 then Eq. (6.71) may be viewed as a recur-
sion formula in which tr^(2χ + as^Ώ^)"1 can in turn be computed in terms of the
constituents of G itself.

6.5. Representation Theory of g. From the construction of the afrme Lie algebra

g = Cd Θ (g 0 C [t9Γ
ι])φ Cζ , (6.72)
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it is clear that the Lie algebra of derivations DerC [V,*"1] acts canonically on the

subalgebra g = g ®C[t,t~ι] ® Cζ. Namely, we have

f^-(a <g> tm,ζ) = m(a <g> tn+m~\θ). (6.73)
at

But the Virasoro algebra Vir projects onto DerC [t,t~ι] . The kernel of this projec-
tion is the one-dimensional center of Vir. Via this projection, Vir acts canonically
on g with zero central charge. Using this action, we define the semi-direct prod-
uct algebra Vir \κg. Note that the affine Lie algebra g may be identified with a
subalgebra of Vir|x^, with d identified with —Lo-

in this subsection, we will use the above action and the theory of the Virasoro
elements developed in the last section to study the following two questions:

(i) Given a graded g-module M, when can we extended the ̂ -action to a Vir |x in-
action?

(ii) When is the g-module I(g, Cχ) irreducible for generic values of χ?

We assume that (g, (|)) is a finite dimensional self-dual pair in the category Sέ\
Thus the notations used in the last section remain valid here. As before, we restrict
ourselves to the (Z-graded) ^-modules M in which M [n] = 0 for all n « 0 , and ζ
acts by a nonzero scalar χ.

Proposition 6.16. If2χ-\-adgΩg is invertible, then every g-module M of the type
above extends to a Vir|x g-module.

Proof. By Proposition 4.12, M is a module over the prevoa I(g,Cχ). By hypothesis
and Corollary 6.15,I(g,Cχ) admits a Virasoro element of the form ω — wz(—l)(2χ -f
ad^Ω^)"1^. By Theorem 6.6, the coefficients of the vertex series Y(ω,z),Y(a,z)
satisfy

[ω(n + 1), a(m)\ = -ma(n + m), (6.74)

where a € g. As operators on the I(g, Cχ)-module M, the ω(n -f 1) and the a(m)
must satisfy the same relations. But these relations coincide with the Lie bracket of
the Ln and the a 0 tm in the algebra Vir|x^. It follows that M carries the Vir |x in-
action which extends the ^-action. D

Note that the proof above also gives an explicit formula for the operators by
which Vir acts. Namely

Y(ω,z) =: Ui{z) [(2χ + a d Λ Γ V ] (z) : . (6.75)

We now move on to question (ii) above. We begin by defining a generalization
of the Kac-Casimίr operator [17]. As noted above, g can be identified as a sub-
algebra of Vir|x<? by identifying d with — LQ. But a priori, the extension given by
Proposition 6.16 need not respect this identification. That is, the action of — LQ on
M given by the extension need not coincide with the original action of d on M.
This is because one can shift the action of d by a scalar constant - hence change
the action of $-while preserving the ^-module structure. However, once the action
of d is fixed on M, the operator d -f- L$ turns out to have a nice property.

Definition 6.17. Given a g-module M, we call the operator d -\-L0 on M (where Lo

is given by Proposition 6.16) the generalized Kac-Casimίr operator on M. Note
that by convention, the action of d on I(g, Cχ) is fixed by d\ = 0.
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Proposition 6.18. If 2χ + adgΩg is invertible, then the generalized Kac-Casimir
operator on M commutes with the action of the prevoa I(g, Cχ).

Proof Since I(g,Cχ) is generated by I(g,Cχ) [1] , it is enough to show that d + Lo

commutes with the a(πί) , where a G I(g,Cχ) [1]. But this just follows from

[d + Lo, a(m)] = ma(m) — ma(m) = 0 (6.76)

for all a G g. D

Theorem 6.19. The g-module I(g, Cχ) is irreducible for generic values of χ.

Proof Suppose otherwise. We will obtain a contradiction. Let's denote I(g,Cχ) by
Vχ, the vacuum vector of Vχ by l χ . Now every homogeneous element v of weight
n in Vχ can be written as ulχ9 for a unique u G Ug+ [n]. Note also that whenever
Vχ is reducible, it has a nonzero homogeneous singular vector v G Vχ [n] for some
n > 0, i.e. a(m)v — 0 for all a G g and m > 0.

If our supposition were true, then there would be a nonzero element u G Ug+ [ή]
for some n > 0, such that wlχ is singular/or α// χ. This can be easily shown using
the determinant of the Shapovalov form). Suppose 2χ + &dgΩg is invertible. By
Proposition 6.18, we have the operator d + LQ which commutes with the action
of g. Applying this operator on the singular vector ulχ, we get

(d + L0)ulχ = Ui(P)(φχtΐ)(P)ulχ - nu\χ , (6.77)

where (2χ + ad^Ω)"1 = φχ. But since d + LQ commutes with u, the left-hand side
of Eq. (6.77) is zero. By rearranging the terms slightly, we get

[«, (O),[(0χ«
Iκθ),«]]lχ = ««l χ. (6.78)

Using the canonical isomorphism I(g,Cχ) = Ug+, Eq, (6.78) gives a relation in
Ug+:

[ [ ] ] = n u , (6.79)

which holds whenever 2χ + ad^Ω^ is invertible. Now φχ = (2χ + adgΩg)~\ where
zdgΩg is a fixed linear operator on #. Thus the left-hand side of Eq. (6.79) clearly
depends on χ, while the right-hand side does not. Hence our supposition must be
false. "

6.6 The Automorphisms ofI(g,C). We assume here that for the finite dimensional
self-dual pair (g, (|)),2 + &dgΩg is invertible. We write V = I(g,C).

Let Aut(F) denote the prevoa automorphism group of V, and Aut(Γ(F)) be the
automoφhism group of the object Γ(V) in category if. It is clear from Theorem 3.7
that, every automorphism/ of V induces an automorphism Γ(f) of Γ(V). By the
functoriality of Γ, it preserves the identity, inverses as well as compositions. This
means that we have a group homomorphism

Aut(F) —> Aut(Γ(F)). (6.80)

By an abuse of notation, we denote this homomorphism as Γ.
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For every automorphism φ of Γ(V) = (#,(!)), the functor/(—, C) induces (Propo-

sition 4.9 an automorphism φ of the prevoa V = I(g, Cχ). By construction (Sect.

4.4), it is clear that Γ(φ) is φ itself. This means that the map (6.80) is surjeetive.
We claim that it is injective, i.e. every automorphism of V is determined by

its restriction to V[l]. L e t / G Aut(F) with Γ(f) = idr(vy By definition, we have
f(Y(a,z)b) = Y(fa,z)fb, i.e. f(a(n)b) = (fa)(n)fb for all a,b G V and integer n.
Being generated by F [ l ] , V is spanned by a\(n\) ak(rik)l with the α, G F [ l ] .
Since Γ(/), which is the identity map, is also the restriction of/ to V [1], we have

(fak)(nk)fl = ai(m) Λ*(/I*)1 . (6.81)

Hence/ is the identity map. To summarize we have

Proposition 6.20. The map Aut(F) —> Aut(Γ(F)) is a group isomorphism. In par-
ticular, every prevoa, automorphism of V is determined by its value on V [I].

Proposition 6.21. The Virasoro element ω = Ui{—1)(2 + adΩ)~1w/ is fixed by
Aut(F).

Proof L e t / G Aut(F) and a G V[1]. Then we have

= [fui,[fuija}}

= [ui9 [u\fa]} using (fin \fuι) = δ^

= adΩ/α . (6.82)

This means that/ commutes with (2 + adΏ)~ ι on F [1]. Thus we have

= tt,(-1)(2 + adΩ)" !u { using (/«,-1V) = δ\

= ω Π (6.83)

Theorem 6.22. Jfe Virasoro element ω = «,-(—1)(2 + adΏ)~V + ε(—2)1, corr^-
spondίng to ε G cent(Γ(K)), w ^ e r f ftj Aut ("Fj iff ε w^xerf 6y Aut(Γ(F)). Γfe
orbits of AuX(Γ(V)) in cent(Γ(F)) are in one-to-one correspondence with the equiv-
alence classes of vertex operator algebra structures on V = I(g, C).

Proof By Proposition 6.21, ω is fixed by Aut(F) iff ε(—2)1 is. Suppose that/ G
Aut(F) fixes ε(-2)l .
Then we have

(/β)(-2)l - ε(-2)l , (6.84)

implying that

^ ε , z ) = 0 . (6.85)
dz

Since/ε -εeV [1], Eq. (6.85) means that Γ(/)ε =/ε = ε. Thus if ε(-2)l is fixed
by all of Aut(F), then ε is fixed by all of Aut(Γ(F)) by Proposition 6.20. The
converse is similar.

Given the prevoa F, a voa structure on V is specified by a Virasoro element
ω. Two voa structures, ω,ω' on V are equivalent iff V admits an automorphism
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sending ω to ωf. By Theorem 6.4, the set of Virasoro elements in V consists of
ω + ε(—2)1 where ε ranges over cent(Γ(F)), and ω = MZ (— 1)(2 + adΩ)~ιuι. Now
the second part of our claim follows from Proposition 6.21. D

6.7 Concluding Remarks. In the present work, the contributions that are made to-
ward the understanding of vertex operator theory may be summarized as follows:

(i) establishing a precise correspondence between the category cSf of Lie algebras
with invariant forms and the category V of prevoas, using a new functor Γ;

(ii) Classifying the simple minimal type ones in i^\
(iii) Classifying the Virasoro structures on each minimal type one F, with finite

dimensional self-dual Γ(V);
(iv) revealing new examples of vertex operator algebras;
(v) extending the ^-action to a Vir|x ̂ -action.

Recall that the critical values of a finite dimensional self-dual pair (g,(\)) in
if, are the eigenvalues of — ^ad^Ω^. Strictly speaking, we have done (iii) only for
the case in which 1 is not a critical value of Γ(V). The case of a general V for
which Γ(V) admits the critical value, 1, is as yet unsolved. The real difficultly,
amounts be the fact that when the map iγ [2] (see Theorem 6.14) fails to be
injective, it is not clear how to solve the two linear conditions (6.35), (6.36) in
Corollary 6.7. However, we believe that Theorem 6.14 still holds even when iγ [2]
is not injective. In other words, when Γ(V) has 1 as a critical value, those two
conditions (6.35), (6.36) should have no solution. We have verified this in the case
when Γ(V) is semisimple. It is worth noting that the conditions (6.35), (6.36) are
invariant under the automorphism group Aut(Γ(F)), i.e. if φ is a solution, so are
its Aut(Γ(K))-conjugates. This should be a useful fact for analysing the solutions to
those conditions. It can be shown that when V is simple prevoa, i.e. V = L(g, C),
condition (6.35) implies (6.36). Thus the problem reduces to proving the following
(purely Lie theoretic) conjecture:

2φ + adΩ^ = idg has no solution φ unless 2 + ad Ω is invertible (6.86)

Again, we have verified this in the case where g is simple.
Based on our knowledge about the semisimple case, we expect that interesting

phenomena [5] should occur when 1 is a critical value of Γ(V). For example when
g is simple, (|) is the standard bilinear form of g, and V = I(g9C), we know that 1
is a critical value of Γ(V) iff χ is equal to the negative of the dual Coxeter number
of g. At this critical value, V admits a large algebra of intertwining operators. It is
an interesting problem to realize something similar in the non-reductive case.

As pointed out in our introduction, one of the motivations behind this work is
the attempt to understand some new examples which come up in conformal filed
theory, quantum groups, and Chern-Simons-Witten theory. While having solved
the problems we stated in the introduction, we have not attempted to resolve all of
the issues raised there. This is not the purpose of the present work. The purpose
here is to find the most general context in which those issues may be discussed.
For instance, in view of the known connections between WZW voas and quantum
groups via KZ equations in the reductive case, we may now at least ask for similar
connections in the non-reductive case. A good point to begin may be to study
WZW-type models based on certain Manin triple (g 0 g\ g, gr), where g is one of
DrifePd's Lie bialgebras [3].
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Historically in representation theory and related subjects, non-reductive groups

have received much less attention than their reductive cousins. So what we have

done in the present work runs counter to the conventional wisdom. But the reward

we get is a glimpse of a whole new world beyond reductive groups.

Acknowledgement. I am grateful to Gregg Zuckerman for conversations we have had over the
course of this work. Particularly, he pointed out to me many inspiring examples of self-dual Lie
algebras. I especially thank Alex Feingold for proof-reading part of this paper, and for his interest
in this work. I thank Jim Cogdell and Igor Frenkel for some helpful discussions, and Richard
Borcherds, Jim Lepowsky, Yongchang Zhu for commenting on the early version of this paper. I
also thank the Yale Departments of Mathematics and Physics for their hospitality during my recent
visits.

References

1. Belavίn, A., Polyakov, A.M., Zamolodchikov, A.A.: Infinite conformal symmetry in two di-
mensional quantum field theory. Nucl. Phys. B24a, 333 (1984)

2. Borcherds, R.E.: Vertex operator algebras, Kac-Moody algebras and the Monster. Proc. Natl.
Acad. Sci. USA. 83, 3068 (1986)

3. Drinfel'd, V.G.: Quantum Groups. ICM Proceedings, Berkeley, California, USA 798 (1986)
4. Drinfel'd, V.G.: Quasi-Hopf algebras. Leningrad Math. J., vol. 1, no 5, 1419 (1989)
5. Feigin, B.L., Frenkel, E.: Affine Kac-Moody algebras at the critical level and Gelfand-Dikii

algebras. Kyoto Univ. preprint, RIMS-796
6. Feigin, B.L., Fuchs, D.B.: Representations of the Virasoro Algebra. New York: Gordon and

Breach, 1989
7. Feingold, A., Frenkel, I., Ries, J.: Spinor construction of vertex operator algebras, triality and

Eg1^ Contemp. Math., to appear
8. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras

and modules. Yale-Rutgers preprint, Dept. of Math., 1989
9. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebra and the Monster. New

York: Academic Press, 1988
10. Frenkel, I.B., Reshetikhin, N.Yu.: Quantum affine algebras and holonomic difference equations.

Preprint 1992
11. Frenkel, I.B., Zhu, Y.: Vertex Operator Algebras associated to affine Lie algebras and the

Virasoro algebra. Duke Math J. 66, 123 (1992)
12. Friedan, D., Shenker, S.: The analytic geometry of two-dimensional conformal field theory.

Nucl. Phys. B281, 509 (1987)
13. Gepner, D., Witten, E.: String theory on group manifolds. Nucl. Phys. B278, 493-549 (1986)
14. Goddard, P., Schwimmer, A.: Factoring out free fermions and superconformal algebras. Phys.

Letts. 214B, 209 (1988)
15. Huang, Y.-Z.: On the geometric interpretation of vertex operator algebras. Rutgers Thesis,

Dept. of Math., 1991
16. Huang, Y.-Z., Lepowsky, J.: Toward a theory of tensor products for representations of a vertex

operator algebra. In: Proc. XXth International Conference on Differential Geometric Methods in
Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, Singapore: World Scientific,
1992

17. Kac, V.: Infinite dimensional Lie algebras. Boston: Birkhauser, 1983
18. Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two di-

mensions. Nucl. Phys. B247, 83-103 (1984)
19. Lepowsky, J.: Generalized Verma modules, loop space cohomology and MacDonald-type iden-

tities. Ann. Scient. Ecole Norm. Sup., 169 (1979)



Classification of Simple Vertex Operator Algebras 357

20. Lian, B.H., Zuckerman, G.J.: New Selection Rules and Physical State in 2D gravity; Conformal
Guage. Phys. Lett B, 254, No. 3,4, 417 (1991); 2D gravity with c=l matter. Phys. Lett. B266,
21 (1991)

21. Lian, B.H., Zuckerman, G.J.: An application of infinite dimensional Lie theory to semisimple
Lie groups. Lecture presented at a conference on Symmetric Spaces and Representations of
Real Lie Groups, University of Maryland, May 3-5, 1991

22. Lian, B.H., Zuckerman, G.J.: BSRT cohomology and non-compact coset model. Lecture pre-
sented at the 20th Conference on Differential Geometric Methods in Theoretical Physics,
Baruch College, June 3-7, 1991

23. Medina, A., Revoy, Ph.: Caracterisation des groupes de Lie ayant une pseudo-metrique bi-
invariante. Applications. Seminaire Sub-Rhodanien de Geometrie III, Journees lyonnaises de
la Societe Mathematique de France, 1983

24. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys.
123, 177-254 (1989)

25. Segal, G.B.: The definition of conformal field theory. Differential Geometric Methods in The-
oretical Physics, eds. Bleuler, K., Werner, M. Academic Publishers, 1988, pp. 165-171

26. Tsuchiya, A., Ueno, K., Yamada, Y.: In: Advanced Studies on Pure Math. vol. 19, 1989
27. Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl.

Phys. B300, 360-376 (1988)
28. Witten, E.: Non-abelian bosonization in two-dimensions. Commun. Math. Phys. 92, 455-472

(1984)
29. Witten, E.: 2+1 dimensional gravity as an exactly soluble system. Nucl. Phys. B311, 46-78

(1988/89)
30. Witten, E.: Quantum field theory and the Jones polynomial. IAS preprint HEP-88/33
31. Zhu, Y.: Vertex Operator Algebra, Elliptic Functions and Modular Forms. Yale Thesis, Dept.

of Math., 1990
32. Zuckerman, G. Course lecture notes on the representation theory of infinite dimensional Lie

algebras. Dept. of Math., Yale Univ., Fall 1991

Communicated by A. Jaffe






