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Abstract: This paper proves the existence of a non-trivial critical point of the SU(2)
Yang-Mills-Higgs functional on E? with arbitrary positive coupling constant. The
critical point lies in the zero monopole class but has action bounded strictly away
from zero.

1. Introduction

This paper establishes the existence of a non-globally-minimizing critical point with
monopole number zero for the SU(2) Yang-Mills-Higgs equations on R3 with positive
coupling constant λ. The Yang-Mills-Higgs equation on R3 are a system of second
order non-linear equations:

* DA * F = [DAφ, φ] YMHλ(l),

* DA * DAφ = ^φ(\φ\2 - 1) YMHλ(2).

Here, the variables are A, a connection on a principal SU(2) bundle and φ, a section
of the vector bundle E = su{2) x R? called the Higgs field. DA is covariant
differentiation and F is the curvature of the connection A, F = dA + A Λ A.

These equations can be viewed as the variational equations of the action functional:

A(A,φ) = -\\FA\\l + -\\DAφ\\l + -| | \φ\2 - l | β .

If we restrict to finite action solutions, then the Higgs field approaches an
asymptotic limit. Namely we have

lim |0(x)| = 1,
|a;|->oo
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uniformly with \x\ (see [JT]. p. 156). There is a topological invariant associated with
the model, called the magnetic charge or monopole number,

k = — tr / F Λ DAφ.

B?

This monopole number is an integer, as was shown by Groisser [G2], This integer
equals, in fact, the degree of the homotopy class of maps S2 —» S2 obtained by

restricting the normalized Higgs field, —r to large spheres in R3.
\Φ\

A framework for analyzing the Yang-Mills-Higgs equations in terms of the
Calculus of Variations was first established by C. Taubes ([Tl, T2J). Observing that
the Palais-Smale condition fails for these equations, Taubes developed a form of
Ljusternik-Schnirelman theory of handle the analytic difficulties presented by the non-
compactness and established the existence of a critical point with monopole number
zero for the Yang-Mills-Higgs functional in the λ = 0 case that was non-minimizing
even locally. In unpublished work, D. Groisser ([Gl]) extended this result to the case
λ sufficiently small. In this paper we show that there is a non-globally-minimizing
solution with monopole number zero and λ an arbitrary positive constant. (Remark.
It is possible that this solution is a local minimum.)

Theorem 1.1. There exists a configuration c with monopole number zero that satisfies
the Yang-Mills-Higgs equation (YMHλl) and (YMHλ2)/or arbitrary positive X and
such that c is not a global minimum of the action A(A, φ).

The proof draws heavily on the work of Taubes ([Tl, T2]) and in many cases
the proofs given are modifications of his arguments to show that the framework he
established for λ = 0 holds in the more general case.

The outline of the paper is as follows: In Sect. 2 we give definitions and notation
that will be useful in the main development. In Sect. 3 we establish the existence of a
configuration that achieves the minimum action over all classes of configurations with
non-zero monopole numbers. This result was previously unproved and interesting in
its own right. In Sect. 4, we use this minimum to construct a non-trivial loop of
configurations that generates the homotopy class for the min-max procedure. The key
part of the section in the upper bound on the action that allows the min-max procedure
to work. In Sect. 5, we execute the min-max argument and show that the critical point
obtained must be non-globally-minimizing.

2. Definitions and Notation

As stated before, the variables for the SU(2) Yang-Mills-Higgs equations are a
connection A on the principal bundle SU(2) x R3 and a section φ of the vector
bundle su(2) x R3. Thus A is a Lie Algebra valued 1-form and we write A = Ai dxι,
where A^x) is a 2 x 2 traceless anti-hermitian matrix. Denote sections of a bundle
by JΓ. Denote compactly supported connections by Γc.

Definition 2.1. A configuration, c, is an ordered pair c = (A, φ), where A £
Γ(W 0 ^ * ) and φ e Γ(&) and for this problem & = su{2).

The action A(c) is not finite for every possible configuration c, so we restrict
ourselves to the subset of configurations that yield finite action and so that φ satisfies
the boundary conditions described in Sect. 1.
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Definition 2.2. Define the configuration space C, by C = {c = (A, φ) £ Γ(J? ®
jT*) x Γ(W) I A(c) < oo α^d lim |<£(a;)| = 1}.

|oj|->oo

The topology on C is taken to be the intersection of the C°° topology with the
weakest topology which renders continuous the functions:

ι \

2. \\l-\φ\2\\2:C->R.

3. \φ\ : C -» C°(R3), where C°(JR 3 ) is the set of continuous functions on B? with
the topology induced by the sup norm.

Define the configuration space C, by C = {c = (A, φ) £ Γ(S? ® y*) x Γ(&) \

A(c) < oc and lim \φ(x)\ = 1}.
|cc|—>oo

The topology on C is taken to be the same as the topology on C save condition
2. Taubes [Tl, T3] proved that π^C) ^ π^Maps (S2,S2)) ^ π 3 (5 2 ). The inclusion
C ^> C induces a homomorphism between π^C) and π^C).

The following operations will be used throughout the course of the paper and we
establish notation for them here:

The Lie Algebra su(2) as the vector space of 2 x 2 traceless anti-hermitian matrices
has a positive definite inner product we denote by (, ). Thus if σ1, σ2 £ sii(2), then
( σ

1 ,σ 2 ) = - 2 trace (σ\σ 2 ) .
We denote by f\T* the space of p-forms on R3, p = 0, 1, 2, 3. Take the usual

p

Euclidean metric on T*. This induces a positive inner product on /\ T* via the Hodge
v

star operator. Together these two metrics induce an inner product on S?<g>f\JF'*, also
v

denoted by (, ). The norm induced by this inner product will be denoted by | |. Thus

forω
v

An L2 inner product on Γ(SP 0 Λ ^ * ) ^s defined in the usual way:

(ωι,ω2)2 = d2x(ωuω2)(x),

where ωi G Γ(3?
p

We denote the norm induced by this inner product by || ||. Thus

\\ω\\ =

The covariant derivative on sections of & is denoted by DA :
5 ) ^ * ) and is defined by DAφ = dφ + [A, φ]. We can extend the covariant

derivative to p-forms in two ways. The first extension we also denote by DA:

DAω = dω + [A, ω].
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The second extension is denoted by V^.

3 / r\

( + [ Λ ] ) ® dχi-

Definition 2.3. For c E C, the gradient of A at c, denoted VAC, w α linear functional
on Γc((g? 0 jΓ*) Θ S?) defined by

If c = (A, 0) and ψ = (ω,η), a. short computation yields that

VAC(VO = (DAω,F)2 + ([ω,0],DΛ0>2 + (DAη,DAφ}2 + ^ (

Definition 2.4. A configuration c £ C is a critical point of A if VAC() = 0 on

*

Definition 2.5. Let c = (A, φ) 6 C'. Define the Banach space Hc to be the completion
^ <g> ^ ) m the following norm:

One can extend this norm to Γc((2P(g)/\ J^*)® ^ ) in the obvious way. We denote
p

by || | |c*, the standard norm induced by || | | c on the dual space.

Definition 2.6. Define the Banach space K(R3) to be the completion of CQ°(R3) in
the norm | |V() | | 2 .

Define the Banach space KA(^ 0 f\^*) for A e Γ ( ^ ® ^ * ) and p = 1, 2, 3
p

to be the completion of Γc(& 0 Λ^"*) i n t h e n o r m

Definition 2.7 (Uhlenbeck). Let {^ = (A^φ^}^ e C. The sequence {cx} is said
to converge strongly to L\ l o c to c = (A, φ) £ C if the following is true:

1. There exists a uniform open cover of R3 by balls {Va} of radius r > 0.
2. There exists, for each i, α, gauge transformations ga(ί) G L\(Va; SU(2)).
3. For eαc/z α, ί/zβ sequence {g^)^} converges strongly in L\(Va; ( ^ 0 ^ * ) Θ 5?)
to some (Aα, φa).

4. For ^βc/ί α,/3 the sequence {gaβ(i)} = { ^ ( O ^ 1 ^ ) } converges strongly in

L2

2(VanVβ;SU(2)).
5. In each Va Π Vg, (Aa, φa) = 9aβ(Aβ, φβ).

6. For each a, there exists haεL\(Va\ SU{2)) such that hac = (Aa, φa) in Va.
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3. The Existence of the Minimum Over Non-Zero Monopole Classes

In this section we establish that the inf of the energy functional over all configurations
with non-zero monopole number exists and is positive and, moreover, that there exists
a configuration that achieves this inf.

We denote by Ck, the set of configurations in C whose monopole number
is k.

Theorem 3.1. There exists c0 e C such that
1. A(c0) = inf A(c) = Ao > 0,

ceck

2. c 0 e CkQ for some k0 ^ 0.

Proof of Theorem 3.1. Since each Ck is non-empty, the inf Ao exists. Moreover, A
is bounded below by 4π|fc| on Ck (see [JT], p. 103), so in fact we have Ao > 4τr.

The argument that there exists a configuration that achieves this inf is more subtle.
The idea is to construct a bounded sequence of configurations converging to Ao and
then apply a weak compactness theorem due to Uhlenbeck. The hard part of this is
insuring that the limiting configuration has positive monopole number. We execute
this argument in the following sequence of lemmas:

Lemma 3.2. Given (A,φ) E C, there exists φ such that
1. φ-ψeKA,
2. A(A,$)<A(A,φ),

3. *DA*DAφ=^(l-\φ\2)φ.

Proof This result was originally proved by Groisser. (See [Gl], Appendix A.)

Modifying φ by an element of KA does not change the monopole number. Thus,
what we obtain from this lemma is that given A and fixed asymptotics for φ9 (YMHΛ2)
can always be solved without increasing the energy. Thus, one can restrict attention
to minimizing sequences of configurations that apriori solve (YMHΛ2).

Lemma 3.3. It is possible to choose a sequence of configurations {q} with positive

monopole number that satisfies *DA *DA φi = — — (1 — \Φi\2)Φi and such that

1. lim A(cf) = Ao,
£—•00

2. A(ct) > A(c i + 1),
3. lim IIVAJL* -» 0.

Proof. Chose a sequence of configurations {c2} each with positive monopole number
such that A(c^) —> Ao. By a straightforward generalization of a proof of Taubes
(see [Tl], Sect. 6, or [Gl], Sect. 2), one can show that HVAίq)^* -> 0 or one
could perturb a configuration cτ with A(q) = Ao + ε to a configuration ci with
A(cz) < Ao, contradicting that Ao is the inf of the action. By Lemma 3.2, there
exists a sequence { c j such that A(q) —> Ao, HVA^)^* —> 0 and c2 satisfies

—λ
* D A . xD^φi — -z-(l — \Φi\2)Φi- Now choose a monotone decreasing subsequence.
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This lemma establishes the existence of a minimizing sequence that apriori satisfies
the second Yang-Mills-Higgs equation. What is left to show is that the limit of this
sequences of configurations is in fact a configuration with non-zero monopole number
that solves both Yang-Mills-Higgs equations.

Definition 3.4. For a G R3, denote by Tαq(x) = c{{x — a) the configuration ci

translated by α.

Note that A(Tαc,) = A(q), ||VATαC||* = | |VAJ* and if c satisfies *DA%

^DAiφi — ——(1 — \Φi\2)Φi then so does Tacz. Thus the convergence properties

of ci will carry to a translated sequence.

Proposition 3.5. Let {c^} be a sequence of configurations and B a positive constant
such that

A(c,)<£,
Λ I2

and each ci has monopole number ki > 0. Assume ci —> c strongly in L2 l o c.
Then there exists a subsequence, also denoted {c^}, and a sequence of points
{ x j G R3 such that the translated sequence {Tx c j converges strongly in L2 l o c to
a configuration d with positive monopole number.

In order to prove this proposition, we first need a lemma concerning the zeroes of
the Higgs field φ.

Lemma 3.6. Let B > 0. Let c be a configuration such that

A(c) < B,

λ 2

2

Let z{φ) = {x £ R3\ \φ(x)\ = 0}. Then there exists a number N = N(B) independent
of φ such that the set z(φ) is contained in the union of N disjoint open balls of
radius 1.

Proof of Lemma 3.6. For a configuration c satisfying the hypothesis, there exists a
constant cλ such that the Holder condition

\φ(x) - φ(y)\ < φ - y\ϊ Vx,yeR3

is satisfied. (See [JT], p. 186-189.) Hence there exists a constant c2 > 0 such that

if φ(x) = 0 and \y - x\ < c2, then \φ(y)\ < \. Let μ — min (c2, | ) . Then for any
x G z(φ), we have

6 ^ π 3 1

\y-χ\<μ

However, for any c G C, the L6 norm of 1 — |0| has a bound depending only on the
action:

/ (1 - |0 |) 6 < c3A(c)3 < c3B
3

for some constant c3 independent of the configuration c (see Corollary 4.13 of [Tl]).
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Now suppose {x^ is a subset of z(φ) with the property that for i φ j , the open
ball of radius 1 centered at xi does not contain Xj. Then by the triangle inequality,

the balls of radius ^ centered at the xi must be mutually disjoint, and since μ < ^,
the same must be true of the balls of radius μ with these centers. Hence

B? i = l \y~xτ\<μ

from which an upper bound N on n follows.

Finally, suppose that z{φ) cannot be covered by disjoint union of N open balls

of radius 1. Then given any subset {xt}f as above, there exists xN+ι ^ Z(Φ) s u c n

that the distance from xN+{ to any other xi is at least 1. Hence the ball of radius |

centered at xN+x cannot intersect the ball of radius ^ centered at any other xi9 so we

have a collection of N 4-1 points such that the balls of radius | centered at the {x J
are mutually disjoint. From this contradiction the result follows.

Proof of Proposition 3.5. Use Lemma 3.6 to decompose R3 (for each ϊ) into a finite
union of balls of radius one and their complement so that the zeroes of φ% are contained
in the union of these balls. Denote these balls by B1-, where j = 1, . . . , nτ and their
bounding spheres by Sτ . Now ni is a bounded infinite sequence and hence has a
convergent subsequence. Since ni is integer valued, this convergent subsequence
must be a constant sequence. Denote this constant by n. Restrict our convergent
sequence cτ to a subsequence (also denoted by ĉ ) such that B? decomposes into n
balls containing the zeroes of φi and their complement.

Since there are no zeroes on the boundary of each ball, the winding number of fc*
n

of φ% on 5] is well defined. We claim kτ = Σ ty The argument is as follows:

Let ω = be the volume form on S2.
4π

By definition, k) = Jiφ^ω.

Let Sι be a sphere large enough to that all the S% lie in its interior.
Then

If Ω denotes the region inside Sι and the outside of the 5J, then by Stokes theorem

ί{φfω - Σ [(Ψifω = /f Σ [i / d{(φfω) = 0.
S i J L

Thus
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We now construct a translated sequence of configurations with positive monopole
number whose limit configuration has the desired properties. Denote the center of the
ball Bj by x* . To begin, consider B\ and construct the translated sequence T ^ ί q ) .

Examine now the behavior of the balls Bj, j φ 1 as we translated B\ back to the

origin. To do this, consider lim d(x\,xτ

ή) = ax , j φ 1 where d denotes distance. For
i—>oo J J

each j there are two choices, α^ = oo or α^ is finite.

Categorize the indices j according to whether aλj is finite or infinite. Denote the

set of indices j such that ax- is finite by an, . . . , aιh and denote the other indices by

β\\ J > /Ίfci Restrict Tχi (q) to a subsequence that converges in L2, l o c on a bounded

set containing B |Ui% jU . . . UB* h . Rename this sequence T % (q). We now turn to
1 1 1 Iγ

indices /?n, . . . , /?lfc , marking the balls that went off to infinity as B\ was translated

back to the origin. Consider Blβ which we rename B\ . Construct the translated

sequence Tx% (q) (restricting to the subset of indices such that Tχi (cj converges)

and examine the behavior of the remaining balls Bβ , . . . , Bβ as we translate B\

back to the origin by considering d(x] ,xlβ ) = al2 , j φ 1. Again categorize the

indices j according to whether al2- is finite or infinite. Denote the indices such that

aι • is finite by α 2 1 , . . . , a2h and the remaining indices by /32i, . , /32/2 Restrict

Tx (q) to a subsequence (also denoted TXι (cj) that converges on a bounded set

containing

Repeat this process now on the infinite indices βlx ... β2^ until all indices are
used up; i.e., until we have each ball Bj, j = 1, . . . , n either translated back to the
origin or remaining a finite distance from a ball translated back to the origin. We end
up with m sequences, Tχi (q), . . . , Ύx% (q) such that

Txi(Ci) converges on B(\) D B\{ U B^ U . . . U B ^ ,

Tx] (Ci) converges on B{2) D B\2 U B^ U . . . U B ^

Tχi (ct) converges on B(m) D B\m U & U . . . U

and

By Eq. (3.1), at least one of the translated sequences must have the property that the
winding number of each configuration on a sphere SR of sufficiently large radius is
positive for i sufficiently large. Thus, the monopole number of the limit configuration
of that translated sequence must be positive by the strong convergence of the integral
for monopole number on SR. (All zeroes of the Higgs fields not going off to infinity
as ί increases are contained in SR).
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Proposition 3.7. Let { c j be a sequence of configurations with positive monopole
number and B a positive constant that satisfy
1. A(Ci) < B.
2. lim ||VAJC* ->0.

3. *DA*DAφ=-^(\ψ\2-\)φ.
Then there exists a sequence of points { x j e R3 such that a subsequence of
the translated sequence {Tx (q)} converges strongly in L\ l o c to a configuration
c = (A, φ) e C with positive monopole number, where c is a solution of the Yang-
Mills-Higgs equations (YMHλl), (YMHΛ2) and A(c) = Ao.

Proof. That there exists a subsequence that converges to a configuration c that
satisfies (YMHλl) and (YMHΛ2) follows from an application of the Uhlenbeck weak
compactness theorem as in Proposition 5.6 of [Tl]. That there exists a translated
subsequence so that the limit configuration still satisfies the equations and has positive
monopole number follows from Proposition 3.5.

4. Construction of the Trial Loop

In Sect. 3, we proved the existence of a configuration that minimizes the action over
all classes of configurations with non-zero monopole number. Call this minimizing
configuration c0 and denote its action by Ao = A(c0). We wish to use this configuration
to construct a non-trivial loop of configurations that acts as a generator of a non-trivial
homotopy class of πx(C) on which we will apply min-max procedures. An important
consequence of the construction will be an upper bound on the action that will insure
convergence in the min-max process.

At first glance, the success of such an endeavor may seem hopeless as the existence
of c0 is known only abstractly. However, much of the asymptotic behavior of c0 at
infinity is known due to work by Jaffe and Taubes [JT] and Dostoglou [D]. Decay
estimates on the curvature, the Higgs field, and the covariant derivative of the Higgs
field are known. It is also known that any finite action SU(2) monopole tends to
a ί / ( l ) Yang-Mills connection on the sphere at infinity (see [D]). This turns out to
be enough to obtain the necessary upper bounds in the action. For convenience, we
gather together here the decay estimates used. For the remainder of this section, we
will let (r,χ,θ) denote spherical co-ordinates on R3 and i,j,k denote the following
basis for su(2):

0 \ Λ / 0 - 1 \ f / 0

For an su(2) valued function ψ, we can define a decomposition of ψ with respect
to an element φ in su(2) into what we will call longitudinal and transverse com-
ponents:

ψ = ψL + ψτ ,
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Lemma 4.1 (Taubes). Let (A, φ) be a smooth finite action solution to the Yang-Mills-
Higgs equations with λ > 0. Define mL — min(V% 2) and mτ = 1. Then given
ε > 0, there exists a constant K such that Wx £ R?,
1. 0 < 1 - \φ(x)\ < K e \ \
2 . \DAφ)L(x)\ < Ke-{

3. \DAφ)τ(x)\ < Ke-{-x~ε)πιτ\A}

4. |FT0r)| <Ke-{ι-ε)rnτ\χ\,

5. \FL{x)\ < A .

Proof See [JT], p. 109.

Let (A, φ) be as in Lemma 4.1. Choose a radial gauge (Ar = 0). Let i R : S2 -* R3

be the family of embeddings that sends the point (χ, θ) on the sphere to (R, χ, θ) on
R3. Define AR = i%(A).

Theorem 4.2 (Dostoglou). A finite energy monopole becomes a pure £7(1) Yang-Mills
connection at infinity. In analytic terms,

(i) (FAR,φ) = k0dS2+ω(R,-),

where k0 is the monopole number, dS2 is the surface element of the unit sphere, and
ω is a real valued two form on R? with \ω\ < const. r~3.

(ii) In the radial gauge defined above, the connections AR on the trivial bundle

over S2 converge pointwise to a connection Aoo, from which it follows that A has
ε(τ)

a limit A^ defined via i^A^ = A^, and A = A^ -f B, where \B\ < with

lim ε(r) = 0.
r—> oo

Proof See [D].

Now let c0 = (A0,φ0) be the minimal configuration of Theorem 3.1. Using the
above results, we obtain in a singular string gauge, where the string singularity is on
the negative z axis.

Corollary 4.3. The minimum configuration c0 satisfies

FAg = k0 sin χdχdθΐ + ωχθ d\ dθ + (F)τ

iFϊT, (4.3a)

χg\

ε(r)
where (BQ)r = 0 and in any half-space, z > c > 0, \BQ\ < , and \dBQ\ < 2 ,

ι)d3x < — — , (4.3c)

a, (4.3d)

where \ωχg\ < — and \(F)τ\b2e~b3T for some constants bι,b2 and b3 > 0,

A9

0 = fco(l - cos χ)dθϊ + B0, (4.3b)

I
j<z<R

where φ denotes the component of φ^ in the i direction, μ has terms involving j and

k only and \μ\ < b4e~b5r for some constants 64 and b5 > 0.
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Proof. (4.3a) follows immediately from Lemma 4.2(i).

To prove (4.3b and 4.3c), note that the connection defined by A^ restricted to S2 is
gauge equivalent on S2 - south pole to kQ(l — cos x) dθ i. Call this gauge information
g. Note that g is independent of r. Extend g radially to a gauge transformation on all
of R3. Then on any half space t > c > 0

- 1

- 1 i Λ D Λ - 1= gA^g + gdg + gBg'

and g is smooth. Let A9^ = gAoog~ι +gdg~ι = k0(l—cosχ)dθι. Let Bo = gBg~ι.

Since Bo = gBg~ι, we have |B 0 | = \B\ < ——.
R

To estimate dB0, recall that

Now comparing terms with the expression for Fg

A given by (4.3a), we see that

\an i < £(R)

Equation (4.3d) follows immediately from Lemma 4.1.

Lemma 4.4. (AQ, ΦQ) is gauge equivalent to a smooth configuration (AQ, ΦQ) on R3.

Proof. A9

0 has a string singularity on the half-line χ = π. Since k0 is an integer, the
string can be inverted by a smooth gauge transformation. Therefore, the only apparent
singularity is a point singularity at the origin. The Higgs action is finite and hence
the results of [SS] imply that there is a gauge in which the configuration is smooth
in a neighborhood of the origin.

We are now ready to define the loop of configurations. The definition is analogous
to the definition in [SSU] in which the conformal invariance of the reflection in
spheres in H3 was exploited. Here in R3, we choose a plane z = R far away from
the origin in which to reflect.

Choose a cutoff function

ί 1, for z < I
β(x) = { 3 o •

0, for z > —

AR = feo(l - cosχ)dθί + βB0

Now define

(Note μ and Bo are defined as in Corollary 4.3 and that in a neighborhood of the

plane z = R, the configuration (AR, φR) is entirely in the ί direction.)
Next, let σR : R? —> R? denote the reflection in the plane z = R. In Cartesian

coordinates, σR(x, y, z) = (x, y, 2R - z).
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The loop of configurations is now defined via the following gluing procedure:

bR, for z < R;

RΦRI for Z> R

AR for z < R;

{ -^σ^ARe^ foτz>R

where 0 < 7 < 2π.

Proposition 4.5. The loop of configurations cΊ — (As

Ί,φ
s

Ί), 0 < 7 < 2π, defines a

continuous map of S1 —> Co which is homotopically nontrivial.

Proof. The continuity of cΊ is obvious. (Note that the gauge transformations do not
change any norms.)

To see that the monopole number of c 7 is zero, note that by Stokes theorem and
the Bianchi identity

B?

where Sρ is the sphere of radius ρ centered at (0,0, R).

Reflections in the plane z = R sends the surface area element dS2 to -dS2. Thus
on the lower hemisphere of Sρ we have

where |α;| < —j. On the upper hemisphere,

(F^Φ-γ) = (UTRAR + σ*RAR A σ* AR, σ*RφR)

* + σ* (AR Λ AΛ), σ* φ)

= σ*R(k0dS2) + σ* (ω)

= -k0dS2+ωf,

where |u/| < - j . Thus lim / '(FA^,φΊ) = 0.
" SQ

To see that c 7 is homotopically non-trivial, we take the loop out of the string
gauge. Note that Aη has a string singularity on the half-line χ = π, z < 0, and on its
reflected image, χ = 0, z > 2R. For z < R,

AΊ = fco(l - cosχ)dθί + βB0

while for z > R,

AΊ = ko(l - cos(σ* (x))) dβ z + σ* (/3S0).

The gauge transformation that removes the string for z < R is

c o s - i s i n - e -

χ2

hft

 2 v
i e ^ cos-
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The gauge transformation removing the string for z > R and twisted by an angle 7,

0 < 7 < 2π, may be obtained from u by replacing χ by σ%iχ) and θ by 0 + —. In

matrix form

4ω\1 sin I "••" I ei(fcoθ+τ) c o

To get from one gauge to the other, we note there exists a unique v with \v\ < πg
such that uΊ o u~ι = ev. Let

λ(z) =

Then the global gauge transformation ωΊ = eXv removes both string singularities. We

now look at the Higgs field φ in this smooth gauge. For z < — and x, y —> 00,

! / icosχ —smχe~ιk°θ

7 \sinχe^0<9

^ 3 R A

For 2: > — and z, y —• 00,

2 = / i cos σ* (x) - sin σ*
ΦΊ ~ V sin σ* (χ)e*(^+7) ^ c o s σ* (χ>

In between, φ\ = u-χe-XvφΊe
λvu, 0 < λ < 1.

We now show that 07(χ, θ) represents a loop on the space Maps (52, S2) to which
an extension of the classical theorem of Hopf can be applied. We take a model for

(x,y,z) I x2 + y2 = 1, < z < — > union the

two hemispheres H+ = < (x,y,z) \ x2 -\- y2 -\- Iz — j = 1, z > — > and

Γ / R\ ^ — /? Ί

ίf~ = I (x,y, z) I ̂ c2 = y2 H- ( ̂  + — ) = 1, z < —— >. We denote this non-

standard sphere by [S2]. The boundary of R3 can be defined as a limit of directed

rays based at (0,0, R). The loop φ maps Sι into Maps ([S^], S2). Let

/ : Sι x [52] -^ S2

be defined by /(7, x, 0,2?) - ζ67(χ, 0, ^).
Now let p and g be two points on the unit circle in S2 having only (j,k)

components. Then the inverse images, f~ι(p) and f~ι(q) are contained in the
cylindrical part of the preimage, Sι x Sι x {z = R}. This is easy to see from

7Γ

the definition of the Higgs field and the fact that at z = R, x = — so the diagonal

components of φ vanish there. The map / is transverse at these two points whose
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preimages lie on a torus in Sι x [S2] and can be represented, for 0 < 7 < 2τr,
0 < I < fe0, as

and

for some ε, 0 < ε < —-. The geometric picture of each of the two preimages is that

of k0 distinct circles that wrap around the torus once and each circle in f~ι(p) links
with each circle in f~ι(q) all the same linking number ± 1 . From this picture, one
sees that the linking number of this map, is άik^ φ 0. By an extension of Hopf's
classical theorem (see [HI], chapter 14), since the linking number is non-zero, the
map represents a non-trivial element of πι (Maps (S 2, S2)).

We now show that the energy of c 7 is less than twice the minimum energy over
non-zero monopole classes.

Define

AΛ(c) = \ J d3x{\FA\
2 + \DAφ\2 + ̂ (1 - |</>|2)2} .

z<R

Proposition 4.6. A(c ) < 2A0.

Proof. This will follow once we prove
(i) A(c7) = 2A i ?(αy),

(ii) A

(iii) A

with R sufficiently large. Here K is a positive constant and ε(R) —• 0 as R —> oc.

Property (i) follows from the construction. To prove (ii) note that

IFMx.
AJ

z>R

We compute the integral of I-F^l2. In spherical coordinates,

In cylindrical coordinates, x = ρcost, y = ρ sin t, z = z, ρ = x2 + y2,

Therefore,
00 2π 00

' R '
z>R r 0 0
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Since FΔg = F + ω -f F τ , we have

R2

and

proving (ii).
To prove (iii), we estimate the three quantities appearing in the Higgs functional,

noting that cη agrees with c$ for z < —. First,

R = Φl

for —- < z < R with \μ\ < e ~ m β and m a positive constant. Therefore

/ (1 - fel2)2^ < I (1 -

Secondly, using orthogonality and the fact that β < 1,

\DAJR\2d3x<
z<R z<R

z<R

z<R

Finally, comparing curvature terms,

FA - FA = (β - l)(dJ3n - fcn(l - cos x) dθ % Λ J5n) + (dβ)Bn + (/32 - l)B n Λ

for — < z < R. Using the decay estimates of Corollary 4.3,

3 const ε(R)

Computations made previously show that

/
<z<
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Using this estimate and the fact that FAg and FA agree for z < —, we obtain

r ^ί Έ>\

2Λn\FAR\^X< J 1 ^ 1 ^ * + ^ ,
z<R z<R

which proves (iii) and hence completes the proof of Proposition 4.6.

5. Min-Max Theory on C

In this section, we execute, the min-max argument on the non-trivial homotopy class
generated by the mapping c 7 : S1 —> C as defined in Sect. 4. The argument follows
the framework established by Taubes in the λ = 0 case. Groisser, [Gl], observed that
the main body of the Taubes min-max procedure generalizes to the case λ > 0 if one
can find an appropriate loop with which to begin the process. Taubes' original proof
[Tl, 2] and Groisser's generalization of them [Gl] kept close track of the base point
of the loop, in order to insure that the maximum action achieved on a loop in a given
homotopy class was bounded away from zero. However, Taubes later discovered
[T3] that this conclusion was true even on the level of free homotopy, which greatly
simplifies our work here. The details of the final proof of this section, insuring that
the limit configuration in the min-max process does not jump monopole classes are
included as this approach is different from [Tl] and overcomes an obstacle to the full
λ > 0 extension of the min-max process in [Gl].

Let Ω be the homotopy class of πx(C) generated by the loop constructed in Sect.
4. Denote the elements of this homotopy class by c( ). To each mapping c( ) in this
homotopy class, we can associate a configuration c = c(y0), where

A(c(y0)) - sup A(c(y)).

We call c the configuration associated to c( ). As A(c(y)) is continuous, we are assured
that an associated configuration exists. In the case that the sup is achieved at more
than one configuration, there is no complication in what follows in picking any one to
be the associated configuration. Note that each associated configuration has monopole
number zero.

We begin with Taubes' observation that the infimum of the action of the associated
configuration in a nontrivial homotopy class is bounded away from zero.

Definition 5.1. a := inf A(c)

Proposition 5.2. // Ω is a nontrivial homotopy class, then a^ > 0.

Proof. Suppose α ^ = 0. We will obtain a contradiction using a lemma of Taubes.

Let c( ) G Ω, and suppose A(c) = ε. Let C = {c = (A,φ) | A(c) < oo and

lim \φ\ = 1} (cf. Definition 2.2), and define the topology on C just as the topology
cc—> oo

on C, save no restriction on ||1 — |</>|2||2. Since c( ) is continuous as a map from Sι

to C, it is clearly continuous as a map from Sι to C, and sup A(c(y)) < ε. Let
yes1

Ω e πx(0) be the homotopy class of c( ) in the larger space C, and let α ^ be defined
as in Definition 5.1, but using Ω and A. The above shows that ά^ < a^. Hence
a^ =0 implies α ^ = 0. But Corollary E.1.2 of [T3] implies that if α ^ = 0, then
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any c( ) G Ώ is homotopic in C to a map from S1 to the space Λ£o of configurations
which A = 0. However from [Tl, Sect. 3], π{(C) ^ π^Maps (S2,S2)) 9* π 3(S 2),
and the isomoφhism is given by the map from Sι to Maps (S 2, S2) obtained by
restricting φ/\φ\ to a large 2-sphere. Thus any map from Sι to ^So represents to zero
element of π^Maps (5 2 , S2)).

Therefore if α ^ = 0, it follows that the map Sι —> Maps (S2,S2) obtained
from c( ) by restricting φ/\φ\ to a large 2-sphere is homotopically trivial. But the
construction in Sect. 4 guarantees that this is not the case.

Definition 5.3. We will call a sequence {q = (A^ φτ)} a good sequence if it satisfies
the following four conditions:
1. lim A(ci) = aoo,

τ—> oo

2. A(c.) > A(c i + 1),
3. lim ||VA | | c * - + 0 ,

I—>OO * I

4. Halloo β«d | |£>Λ *-C^4 0-| | 2 are bounded independent of i.

Proposition 5.4. There exists a sequence of loops {c^ )} G i?/<9r which the sequence
{Cj} is a good sequence.

Proof See Lemma 6.9 of [Gl].

Proposition 5.5. Let {< (̂ )} Z?̂  a sequence of loops for which {q} is a good sequence.
Then there exists a sequence of points {x^ with the following properties:
1. The sequence {Tx c j has a subsequence that converges strongly in L\ l o c to
c = (A,φ)eC.
2. (A,φ) satisfies the Yang-Mills-Higgs equations (YMHλl) and (YMHΛ2).
3. A(A,φ)>0.

Proof See Proposition 6.2 and Theorem 6.1 of [Gl].

Finally, we show that the limit configuration has monopole number zero. Note that
since the limiting configuration in Proposition 5.5 has action bounded strictly away
from zero, the fact that it lies in Co will imply that it is not a global minimum.

Proposition 5.6. Let {q} G Co be a good sequence of configurations that converges
strongly in L\ l o c to a solution ceC of (YMHλl) and (YMHΛ2). // A(c ) < 2A0,
then ce Co.

Proof. Recall that the monopole number is given by

k = (DAφ,*FA)2.

We first remark that if there exists a ball B such that for all i, all of the zeroes of
the Higgs field φi9 remain inside the ball, then the theorem follows immediately from
the strong convergence of the above integral on B. Thus in what follows, we may
assume that for any R, there exists i0 such that for all i > i0, a zero of φi lies outside
of BR, the ball of radius R centered at the origin.

Now assume that the limiting configuration c is not in Co, but in Ck, k φ 0 with
A(c) = E > Ao. By the strong convergence of {q} to c on BR, the integral giving
the monopole number must be close to k inside the ball and —k outside the ball for
i sufficiently large. If one chooses R large enough, most of the energy, say E — ε,
will be inside the ball. By our initial remarks, for % large enough, φi has a zero at xi

lying outside BR := Bo.
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Consider now the translated sequence {T^,.^}. Without loss of generality we
may assume that {T^.c^} converges to a configuration c with non-zero monopole
number. We argue this as follows. Recall from Lemma 3.6 that there exists a number
N, independent of i9 such that the zero set of φi lies in Bo union a collection of
disjoint open unit balls B^ , . . . , B^. Let k%

3 denote the winding number of φ/\φ\
N

on the boundary of Bj. Then for dl\ i,J2 klj = —k φ 0. Suppose there were no

subsequences {i;, f} having both the following properties: (i) the center of B^, ^ goes

off to infinity as i —> oo and (ii) kι, φ 0. Then there would exist R! such that all balls

Bj for which fc* φ 0 lie inside a fixed ball of radius R!. Since the monopole number
of φi is the sum of the winding numbers on these non-wandering balls, our remark
above implies that c G Co, contradicting the hypothesis. Hence we can assume, after
some relabeling of subsequences, that there is a subsequence { c j of our original
sequence with the property that the center of B^ goes to infinity as i —• oo and for
which k\ φO,Vi.

Now let xi be the center of B^\ and consider the sequence {Tx.cτ}. By taking a
further subsequence and increasing the radius of B[ι\ if necessary, \o a number Rv

we may assume that for any R'9 there exists i' such that for i > i', the only zeroes
of {T X .0J lying inside a ball of radius R' centered at the origin lie inside the ball
Bλ of radius Rλ centered at the origin (otherwise we would obtain a contradiction
as above). Since the condition defining a good sequence are translation invariant,
{Tx.ci\ is again a good sequence. Hence by Proposition 5.5 there exists a subsequence
(relabeled {T^.q}) that converges strongly in L\ l o c to some configuration c. By the
strong L\ ioc convergence, the winding number of φi on the boundary of Bλ stabilizes
as i —> 00, and it cannot stabilize to zero since k\ φ 0, Vi. Furthermore, given εx

there exists R! such that the monopole number of c is given to within ε by an integral
over BR,(0). For sufficiently large z, this ball will contain no zeroes of any Tx.φi

outside Bx and hence the winding number of φ on the boundary of Bx will equal the
winding number of φi on the boundary of BR,(0). By taking R' larger still, we can
also insure that the monopole number integrand, integrated over BR,(0), gives the
winding number of φ on the boundary of BRf(0) to within εγ. Thus to within 2εl9 the
limit of the monopole number of c equals the winding number of φ on the boundary
of Bγ, which is non-zero. Since ελ was arbitrary, we conclude that the monopole
number of c is non-zero.

Thus, we can construct balls Bλ (x^ of radius Rf, where Rf is such that for i

large enough the sequence {Tx (q)} has energy E — ε' > Ao — ε' on Tx.(Bχ{x£j).

For i large enough, B\ (xt) and Bo are disjoint. Restrict {cτ} to a subsequence so
that this is so. Then for i large enough, A(q) > 2A0 — ε — ε'. Since ε and ε' are
arbitrary, this contradicts the fact that A(q) is strictly less than 2A0.
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