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Abstract: The chiral operator-algebra of the quantum-group-covariant operators (of
vertex type) is completely worked out by making use of the operator-approach
suggested by the Liouville theory, where the quantum-group symmetry is explicit.
This completes earlier articles along the same line. The relationship between the
quantum-group-invariant (of IRF type) and quantum-group-covariant (of vertex type)
chiral operator-algebras is fully clarified, and connected with the transition to the
shadow world for quantum-group symbols. The corresponding 3-j symbol dressing is
shown to reduce to the simpler transformation of Babelon and one of the authors (J.-L.
G.) in a suitable infinite limit defined by analytic continuation. The above two types of
operators are found to coincide when applied to states with Liouville momenta going
to oc in a suitable way. The introduction of quantum-group-covariant operators in
the three dimensional picture gives a generalization of the quantum-group version of
discrete three-dimensional gravity that includes tetrahedra associated with 3-j symbols
and universal ^-matrix elements. Altogether the present work and a previous parallel
article gives the concrete realization of Moore and Seiberg's scheme that describes
the chiral operator-algebra of two-dimensional gravity and minimal models.

1. Introduction

The holomorphic operator algebra that came out [1-4] by quantizing Liouville theory
has been formulated in two equivalent bases. The original description of the references

just given makes use of operators now denoted2 V^^. They are closely related
with operators called IRF-chiral vertex operator in [9], which are associated with
integrable models with solid-on-solid interactions around-the-face [10]. In the context

1 Unite Propre du Centre National de la Recherche Scientifique, associee a ΓEcole Normale
Superieure et a ΓUniversite de Paris-Sud
2 Our notations are the same as in previous articles [6-8]. We shall not spell them out again here.
This work was supported in part by the European twinning Program, contract #540022
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of Liouville theory, they were called [11] Bloch-wave operators since they diagonalise

the monodromy matrix. The operators V^(z) are of the type (2J + 1,2J + 1) in
the BPZ classification, they shift the zero-mode w of the underlying Backlund free
field by the fixed amount3 2m + 2mπ/h. In a parallel article [5], we systematically
studied the operator algebra of these Bloch-wave operators. The basic progress with
respect to earlier discussions is that fusion was treated exactly to all orders using
the general scheme [12] of Moore and Seiberg, and not to leading order as was
done before. The fusion and braiding matrices of the V fields were shown to be
given, up to coupling constants, by quantum 6-j symbols, where the above J's and
m's appear as quantum group invariants. Thus the V fields should be regarded as
quantum-group invariants. The aim of the present article is to extend this discussion
to the other equivalent description of the operator algebra based on operators that
are co variant under quantum group transformations. Previously, these operators were
introduced in two seemingly different ways. First the invariant operators were "dressed
with 3-j symbols" [9, 10]. In this approach, the quantum group covariance seems
somewhat artificial and redundant, even though this construction allows [10] to
relate integrable models of the IRF (interaction around-the-face) and vertex types.
Another method [6, 7, 11, 13] was directly inspired by the operator approach [1-
4] to Liouville theory which is explicitly quantum-group symmetric. A set of chiral

primary fields noted C '̂2(^) was constructed4, such that the indices M and M
transform covariantly under quantum group action. We shall concentrate mostly on
the operators ξM — ζMQ. They are deduced from the Bloch-wave operators by
equations of the form [6, 11]

$>(*):= Σ \J,^^E^\w)V^J\z), -J < M < J , (1.1)
-J<m<J

where |J, τu)^ are g-hypergeometric functions of e

lh(™+rn\ E$(w) are normaliza-
tion factors, and w is the zero-mode. The braiding matrices of the ξ's coincide [6, 11]
with the universal .R-matrix of Uq(sl(2)). This construction is more economical than
the dressing by 3-j symbols, since it does not involve any redundant quantum number.
Thus we call it the intrinsic transformation. The leading-order fusion coefficients of
the ξ fields were shown [6] to coincide with the quantum 3-j symbols, and it was
stated [7] without proof that this is also true, up to a coupling constant, for every
order. It is the purpose of the present work to complete that picture. At first, using
the above relationship between ξ fields and V fields, we deduce, in Sect. 3, that the
fusion of the former are given by

Jι+J2

$ W£M?(*2> = Σ 9j 2j20/ι, MI; J2, M2 I J12)

*ι> fcj12, Ml Vj2

l-Jl2(*ι - z2) \wj2) , (1.2)
M

where (Jl,Ml\ J2, M2 | J12) are the g-Clebsch-Gordan coefficients. Apart from the fact
that the right-hand side involves one ξ field and one V field, this has the standard MS

3 We consider, for simplicity the case where the quantum group parameter h/π is not rational
4 There exists a related derivation of the universal R matrix in the Coulomb gas picture [14].
However it seems not to be so well suited for obtaining the complete fusion algebra



Quantum Group Structure of 2D Gravity and Minimal Models 599

form5 (the states w3, {v}} span the Verma module with highest weight state \Wj}).
It realizes our expectation that there must be fields such that the fusion corresponds
to making (/-tensor-products of representations. However there is the additional factor

gjjl j . Since this form may be considered as governed by the g-deformed Wigner

Eckart theorem, this justifies that #'s be called coupling constants. It is thus clear
that the ξ fields are quantum-group covariant. In the next section (3) we deepen our
understanding of the transformation between V and ξ fields. We first use the fact
that the right-hand side of Eq. (1.2) involves one ξ field and one V field to relate
them operatorially. This is found equivalent to the dressing by 3-j symbols of [9,10].
Since the ξ fields were defined by the intrinsic transformation [6, 11] [see Eq. (1.1)],
we are able to establish the relationship between the two viewpoints: the dressing by
3-j symbols has an additional magnetic quantum number, and is shown to reduce to
the intrinsic transformation, when this number tends to oo after a suitable analytic
continuation. Using standard properties of the Clebsch-Gordan coefficients we thereby
derive several very useful formulae for the coefficients of the intrinsic transformation
Eq. (1.1). In particular this allows to give a general formula connecting the coupling
constants gjκ with the coefficients |J, tu)^} and Eff of Eq. (1.1). These formulae
are finally shown to prove consistency of the above discussion when it is applied
to the 5L(2, C)-invariant vacuum. This gives a quick way to rederive the coupling
constants for the full operators with non-zero J and J, already established in [8].

In Sect. 4, we discuss the connection between quantum group diagrams and the
operator algebra of the V and ξ fields. They are shown to correspond to the shadow
and real worlds of [16] respectively. We also display the three-dimensional aspect of
the present scheme, extending the relationship [19] between 6-j symbols and discrete
gravity in three dimensions. The new point is that the ξ operator-algebra introduces
3-j symbols and _R-matrix elements which are represented by tetrahedra, at the same
time as 6-j symbols. This gives a geometry of polyhedra with colored edges and
faces.

Finally, in Sect. 5, we further develop the idea of understanding the connection
between V and ξ fields from infinite limits. Inspired by a recent article of Witten
[15] we show that the V and £ fields coincide in the limit where the zero-mode w
goes to oo, after suitable analytic continuation. This is explicitly proven from the
intrinsic transformation summarized above [Eq. (1.1)]. The expressions of the fusing
and braiding matrices of V and ξ fields in terms of q symbols then show that these
symbols should be related by the same limit, and this is explicitly verified. This sheds
light on the method followed in [15] to construct covariant vertex operators, although
the conformal theory considered there is different. We also show that this limit has a
particularly simple interpretation in the pictorial viewpoint of Sect. 4.

2. The Operator Algebra

In the parallel paper already mentioned [5] the final form of the operator-algebra for

the V fields was given. For the operators V^J) = V^\ we gave two formulations.
They are our starting point, and we summarize them, next. The notations are the same
as before [8] and will not be spelled out again. In the Moore Seiberg form [12], the

It already appears, without the g factor in [9]
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fusing algebra reads

Σ
Jl2 = \Jl-

X Σ

j\2 ( τ τ j N
ί Jj J2 J12 1

I J. J1/v- J-- f

^ 3 U3 2 3 }

(2.1)

The coupling constants contain the contributions that are not trigonometric functions
of h. They are given by

- k + + (2 J2 - fc + (-l - (2 J1

+ kh/π)

(2.2)

where we define F(z) = Γ(z)/Γ(\ — z), and gQ is a constant. In the operator formalism
of the Liouville theory, this may be rewritten as

- Π70)/2

- 2m2)/2 (w - (w — WQ + 2m1)/2

Σ

Concerning this last formula, one should recall that w is an operator such that

(2.4)

so that the first two terms on the right-hand side do not commute with the third
one. It is easy to check that this operator-expression is equivalent to Eq. (2.1), by
computing the matrix element between the states {^j12 ?{^i23}|» an(^ w j^i {v?}} •
Then, the additional spins of Eq. (2.1), as compared with Eq. (2.3), are given by

123

(2.5)

J3 = (w — τuQ + 2m j H- 2m2)/2 .
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The explicit formula for the Racah-Wigner 6-j coefficients, which have the
tetrahedral symmetry, are given in [16] by

with

Δ(a, b, e) Δ(a, c, /) Δ(c, e, d) Δ(d, 6, /)

x ]Γ ( - l ) z U + l j ! [ | _ 2 - α - & - e j !
z integer

x |_z - a - c - f\ I [z - b - d ~ f\!

(2.6)

and

r=l

sin(/ιr)

sin h
(2.7)

Next we summarize the formulae for the braiding6. In the MS form, it is given
by

o±iπ(Δjl23+Δj3-Δj23-ΔJl3

X^i23'^l:

The equivalent operator-form is given by

2 ( J{

"23 1

,,{"3»

i — n2))
Z—/

nl+n2— rnl+m2

J Jγ (W — W

\J 2 (
("cσ — ΌJQ +2n2) /ί

^ J\(Ό3 — O7Q+2rii

0 + 2m! + 2m2)/2 (ΐu — tu0 H- 2n2)/2

(tx7 — ίx70 + 2m^)/2
(τσ- Π70)/2

(τσ- c

The correspondence table is again given by Eq. 2.5, with, in addition,

J13 = (w - tΛ70 + 2n2)/2 .

(2.8)

(2.9)

(2.10)

An equivalent form is given in [13], without connection to the 6-j
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Let us recall that, as discussed in [5], the g factors may be absorbed by changing the
normalization of the V fields. This eliminates them from the braiding, but not from
the fusion since the latter depends upon the explicit values of the V matrix elements
[last term of Eq. (2.1) or Eq. (2.3)]. In the operator-forms Eqs. (2.3), (2.9), one sees
that the fusion and braiding matrices involve the operator w, and thus do not commute
with the V-operators. Such is the general situation of the operator-algebras in the MS
formalism. This is in contrast with, for instance, the braiding relations for quantum
group representations. In the following, and completing the results of [6, 11], we will
change basis to the holomoφhic operators ξ which are such that these w dependences
of the fusing and braiding matrices disappear. After the transformation, one is in the
same situation as for quantum group, and its structure becomes more transparent. As
already emphasized, the quantum numbers J and ra of the Vff operators should be
regarded as quantum-group invariant. Indeed, the J's appear as total spins in q - 6j
symbols, and the ra's are given by differences of J's, as is clear from [5]. Thus the

quantum group does not act on the Vs. In [6, 11], other fields ξ$ were defined
which are quantum-group co variant. Following [6], this is done in two steps. A first
change of field is performed by introducing ψ fields of the form

ψ£ = E£>(w)V£\ (2.11)

such that the braiding matrix and the fusing coefficients for ψa V^P ~* ^m+α
become trigonometric. Then the ξ fields are defined by expressions of the form

ξ(M= Σ IJ^)M^ -J<M<J. (2.12)
-J<ra<J

The explicit form of the coefficients |J, w)^ is given in Eq. (3.19), below. The
formulae just written allow us to deduce the F and B matrices of the ξ fields from
those of the V fields derived in the previous section. Indeed, it was already shown
in [6] that the braiding matrix of the ξ field coincides with the universal ^-matrix of
Uq(sl(2)). Concerning the fusing matrices, we shall establish an explicit connection

later on, by first relating the coefficients |J, τu)^J to a limit of g-Clebsch-Gordan
coefficients. At the present stage of the discussion, it is more enlightening to proceed

in another way. We shall first transform the fusing matrix for the OPE of Vm/ and
V^2\ which was the starting point of [8], and after, generalize the result using the
associativity of the OPA.

Consider thus Eq. (2.3), with Jλ = 1/2, and make use of Eq. (2.2). Taking
Eq. (2.4) into account, one sees that it is appropriate to multiply both sides by

E±'lλ(w)E(

Ί^l\w ± 1). Using the recurrence relations satisfied by the functions C

and D [see Eqs. (A. 15), and (A. 17) of [6]] one thereby derives the fusing relations

(J) _ \-w ̂  J + m\
/ . ΓIΊ - m±l/2 \ J ' l -1/2

m^ Γ(l + 2Jh/π)Γ(-l - (2J

) (tπ, - 1, HI V^2) \*>j) (2-13)

From now on we do not write the world-sheet variables explicitly any longer, since
the dependence is always the standard one identical to Eqs. (2.1), (2.3), for fusions,
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and to Eqs. (2.8), (2.9) for braidings. The original motivation for introducing the ψ
fields [6,7] was that the braiding matrix, and the leading-order fusing coefficients
for them are trigonometrical. The last equation written shows that this is not true

for the other fusing coefficients ψ(a/2}ψ$ -> ψ(^/2\ As a result, the OPE is not
associative if one forgets the contribution of the secondaries (more about this below).
Next, comparing with the expression Eq. (2.2) of the g's, one sees that the last equation
is naturally rewritten as

1/2 J; J+ε/2 .

±1/2 m; m±l/2' *m±l/2

where,

N

N

1/2 J; J+l/2

±1/2 m; m±l/2' ΐ U

1/2, J; J-l/2 .
±1/2, m; m±l/2 ; t17

J -j-

sin((2 J

L=F J + mj

(2.14)

(2.15)

One sees that the non-trigonometric part is entirely contained in the g's. It will be
shown at the end of the section that Eq. (2.14) is a particular case of the general
fusing algebra

Σ jq j j iyj\,Ji
J\

.< . J2} (2-16>

In addition, N fy m^; ™ +m \
w\ W1^ be related to aq — 6j symbol. For the time being

we transform Eq. (2.14) further, in order to derive the fusion of the ξ fields. Their
definition Eq. (2.12), together with the shift properties of the V fields [see Eq. (2.4)]
are such that

ξ(a/2)l
_ V^
— / ^

η=±l/2,m

(2.17)

By a calculation which is similar to the one carried out in Appendix B of [6], one
verifies that, if we choose g0 = 2π, we have

Σ
?7=±l/2,ra,(?7+m=n)

1/2, J; J+ε/2. /

η m; r?±ra '

- (1/2, α; J, M | J + ε/2) | J + ε/2, τu)n

M+a . (2.18)

(Recall that (1/2, α; J,M J 4- ε/2) denotes the 3-j symbols.) Equation (2.14)
becomes

/ ./ '
ε=±l
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Our next task is to generalize this last fusing identity. Note an important feature
of this equation. As expected, it expresses the OPE of two ξ fields in terms of one

ξ fields, (and its descendants), that is ζm±ι/2 However, the coefficients of this
OPE are proportional to the matrix element of a V field. The basic reason is that the
V matrix element, of the fusing equation for the V fields [Eq. (2.3)] contains no ml

or m2 dependence, and is thus unchanged when going from the ψ to the ξ fields.
Thus we shall start from the general ansatz

where .̂  is the projector on the Virasoro module with zero-mode Wj — WQ + 2 J
(see [5]). Our next task it to prove that the fusion coefficients are proportional to the
CG coefficients and independent of wf.

^(Jl,Ml,J2,M2,Jn,Mn,wJ) = gJ

J^j2(Jl,M^J2,M2 J12) . (2.21)

To do this, we use the associativity equations for the ξ fields, that is, the pentagonal
relation of the MS scheme. The proof is the same as the one for the V operators (see
[5]), and we shall skip details (more about it soon, however). There is a difference
yet, that we have to emphasize. In the demonstration given in [5], we pointed out that
only four of the five fusing coefficients of the pentagonal relation really came from
the fusion of the operators considered, as the other one - the third one on the left-hand
side of the pentagonal relation - came from the fusion of the operators in the matrix
elements, which had been restored as operators thanks to the closure relation. So, in
the case of the ξ operators, the four fusion coefficients will become coefficients of
the ξ, but the other one will remain a fusing coefficient of V -fields. Accordingly,
we get a pentagonal relation of the form

(2.22)

where F is the fusing matrix of the V fields as recalled on Eq. (2.1) or (2.3). Next,
using the explicit expression Eq. (2.20), let us show that Eq. (2.21) is a solution of
the associativity condition. Indeed, with this ansatz, the pentagonal relation becomes

Σ(J2,M2;J3,M3

J, J2 12

J23 v - J -ι*» J23

= (J1,M1;J2,M2 J12) (J12,M12; J3,M31 J123). (2.23)

This is the basic identity that defines the q — 6j coefficients [16]. Once we know that
Eq. (2.21) gives an associative algebra, it is easy to derive it by recursion from the
particular case Jv = 1/2, J2 arbitrary [Eq. (2.19)] using a recurrence proof which is
completely parallel to the one we gave for the V fields, in [5]. We do not go through
it again, and consider Eq. (2.21) as established. D

An important feature of the result is that the fusing matrix does not depend upon
wj. Thus the projector of Eq. (2.20) does not serve any purpose and may be removed.
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The fusion algebra finally reads

X«/ι)
/ .

(2.24)

For the coming discussion, we shall actually need the following generalization of this
last relation to arbitrary descendants:

n

ju ( j M 7
9jlJ2(Jnlvl\>J2i

Ji2=\Jι-J2\

X Σ&l? (WJ& Ml V(- K, {μ}) , (2.25)

which holds according to the general principles of [12].

3. More on the V — ξ Transformation

We have just shown that the complete fusion rule of two ξ fields is most naturally
expressed in terms of one ξ field and one V field. Now, we use this fact to operatorially
relate the fusing and braiding properties of V fields with those of the ξ fields. This
will provide the general identities which relate their fusing and braiding matrices. The
method is to apply the fusion algebra Eq. (2.25) repeatedly to the OPE of several ξ
fields. In fact, the forthcoming calculation will explicitly verify some of the polynomial
equations of the OPE of the ξ fields, and may also be regarded as a pedagogical
explanation of the arguments given above to derive Eq. (2.25). For that purpose, one
should of course deal with the descendant matrix-elements, and this is why Eq. (2.25)

is needed. Consider the matrix element (wj, {a}\ £$£M}^M^ wκΛβ}} We

apply Eq. (2.25) twice: ξ^'{ρ}) and ξ(^ are fused first, and the result is then fused

with ξ . O n e gets

Σ
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Performing the sum over {v} gives

= Σ

,

At this point it is convenient to consider the last equation as follows. The two fields

ξ^ and ξffl on the left-hand side have been converted into two V fields, that is

Vj£!Jl23, and VJ3

Ji}

j23, on the right-hand side. The third field ξ^'M) plays the role

of a background field which allows us to operatorially relate ξ fields to V fields by
successive fusions. Its quantum numbers J3 and {ρ} specify which matrix element of
V operators will come out at the end. Its quantum number M3 is arbitrary and does
not appear in the final matrix element of the two V fields. We shall come back to it
later on. It is easily seen that this procedure may be repeated for more than three ξ
fields, and that the structure is similar. The right-most ξ field which is the only one not
converted into a V field is to be considered as a background field. In fact, each V field
is multiplied by a 3-j symbols, and this method naturally leads to the transformation
through dressing by 3-j symbols of [10, 9], as we see next. Clearly, fusing or braiding
the ξ fields and the corresponding V fields on each side of Eq. (3.1) will directly relate
their F and B matrices. Since this relation is, to begin with, different from the one
which comes out from the connection through the |J, w)1]^ coefficients, we next go
through the derivations.

First consider the fusion. It follows from Eq. (2.1) that the right member of Eq. (3.1)
may be rewritten as

J23)

Jl J2

J

J12 j123

' Ml 2, {7}! V^Jn K2) . (3.2)

{7}

On the left-hand side, we fuse £M\ and ξ^' making use of Eq. (2.25). This gives

{7}

(3.3)
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Next the remaining two ξ fields are fused in their turn, and one gets

ίtf yj,, M,; J2, M2 I J12)<423

J3(
J12> M! + M2; J3, M3 1 J123)

Comparing this last expression with Eq. (3.2), one sees that they coincide if the
defining relation of the 6-j symbols [Eq. (2.23)] holds. Thus Eq. (3.1) does establish
the correct correspondence between the fusion properties of the V and ξ fields.

Consider, next, the braiding. For the V fields, it is given by Eq. (2.8), or (2.9).
Concerning the £ fields, the braiding properties were derived in [6]. One has

tO/i) Λ /2) _ V ( 1 1 ϊN2Nl £<J2MJi> π Vi
SMi SM2 "" / ^ v j l > J2)M1M2^>N2 ζJVi ' ^.3)

-Ji<Nι<Jι;-J2<N2<J2

The symbol ( Jl , J2)M M ^enotes me following matrix element of the universal R-
matrix:

(Jι^2)MίMί = (<<Λ^ιl®<(^Λί2 |)^^^ (3.6)

where |J, M)) are group theoretic states which span the representation of spin J of
Uq(sl(2)). The universal ^-matrix R is given by

00 <- _ Λihγi Λhrύ.n-D/'l

n=0

(1
Lnj !

~ihn
x e~J^(J+)n (g) e^nj3(J_)n , (3.7)

J±, and J3 are the quantum-group generators. For later use we recall that the R-
matrix-elements may be simply written in terms of CG coefficients, since the latter
are "twisted" eigenvectors, namely,

= eiπ(Δ^-Δ^-Λj2\J^Mλ J2, M2 I J12) . (3.8)

It follows from the orthogonality of the CG coefficients that

(J J\N2Nl _ \ ^ / 7 AT . 7 AT I 7 } iτr(Δj -Δj-Δj)
V J 1 ? J2>)M1M2 ~~ Z^^ 2' 2' 1' 1 I 12^ 12 1 L

Jn

x(J 1 ,M 1 ;J 2 ,M 2 J1 2). (3.9)

Returning to our main line, we follow the same procedure as for fusion. We shall
skip details since the present discussion goes in close parallel. One exchanges the first
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two ξ fields on the left-hand side of Eq. (3.1), and the two V fields on its right-hand
side. Comparing the results, one derives the consistency condition

£ (J,, ΛΓ,; J3, M3 1 J13)(J2, N2 J13, N, + M3 1 J123, M123) (J,,

= ]Γ( J2 , M2; J3 , M3 1 J23) ( J, , M! J23 , M2 + M3 J123)

x e
J 23

(3.10)

This last relation may be easily proven using an equation satisfied [16] by the
6-j symbols which shows that the braiding matrix Eq. (2.8) satisfies the Yang-Baxter
equations. This defines the 6-j coefficient of the second type as was introduced in
[18].

The outcome of the present discussion is that the defining relations for the two types
of 6-j symbols [Eqs. (2.23) and (3.10)] may be considered as relating the braiding
and fusing matrices of the V and ξ fields. Thus the connection is established in a
way where the quantum-group meaning is transparent. Clearly, Eqs. (2.23), and (3.10)
show that the connection is established via 3-j symbols. As a matter of fact, we have
effectively re-derived the transformation through dressing by 3-j symbols of [9, 10].
This is in contrast with the intrinsic transformation of [6, 11], recalled in Eq. (2.12),
which uses the |J, tu)^ coefficients. Our next point is to establish the connection
between these two transformations, the q-CG symbols involve 5 independent quantum
numbers, and the |J, ccO JJ coefficients only 4. In this connection, we have remarked
that, in Eq. (3.1), M3 does not appear in the F-matrix element. It only appears in
the two CG coefficients. The first one, that is (J l, Ml J23, M2 -f M31 J123), (resp.
the second one, that is (J2, M2; J3, M31 J23)) only involve J-quantum-numbers of the

field VJJll j , (resp. VjJ^j ). These two sets of quantum numbers are treated on the

same footing, but this is not the case for the M-quantum numbers, however, since
the first CG coefficient contains Ml5 M2 + M3, and the second M2, M3. To motivate
the coming mathematical derivation, we may remark that the symmetry is restored if
M2 + M3 ~ M3, that is if M3 is very large compared with M2. One way to achieve
this is to keep J3 finite and to continue the quantum group for M3 > J3. This may
be done rigorously, as we shall next show, since the q — 3j symbols are given by
g-deformed hypergeometric functions [7,16]. In this limit one quantum number of
the q-CG symbol drops out, and we will be left with the right number to identify the
result with a |J, tu)^ coefficient.

We start from the explicit expression of the CG coefficients [7, 16], that is,

(J,, M j J2, M2 I J) - B (Jγ, J2, J, M1)

x V LJ2 - M2J ! LJ2 + M2\[ [J - M! - M2J! LJ + M! + M2j!

2Jι J'+ΣAhM-)

, (3-11)
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where

J2 - JJ! L-J, + J2 + JJ! [Jt - J2 + JJ!

x λ/^ι-Mj!LJ 1+Mj! λ/[2jTlj

- J, 4- JH
(3.12)

I ϊ- 1J!

The terms in M2 are conveniently rewritten as

LJ 2-M 2J!

- Jt + μ - M2J! V [J - J, + μ - M2J!

We shall take the limit by giving an imaginary part to M2, thus we have to continue
the above formulae in this variable. The last formula contains all the M2 dependence.
It has been written as a product of square roots of ratios of g-deformed factorials.
Consider each term one-by-one. The differences between the arguments of numerators
and denominators are

J2 - M2 - (J - J{ + μ - M2) = J{ + J2 - J - μ

J-Ml-M2-(J-Jl+μ-M2) = J-Ml-μ

J2 + M2-(J2- μ + M2) = μ

J + M1 + M2 - (J2 - μ + M2) = J + M! - J2 + μ .

The right members are independent from M2. In the expression Eq. (3.11), the actual
range of summation is dictated by the fact that a factorial with negative argument
is infinite, so that each factorial may only have a non-negative argument. This
immediately shows that the right-hand sides of the last set of equations are non-
negative integers. As in [7], let us introduce (y is a positive integer, and α arbitrary)

L α J ^ l α J l β + l J . . > + *-!]= [a^_~^' (3.14)

Equation (3.13) may be rewritten as

J - J, +μ - M2 + 1J J l + J 2_j_μ μ - J, + μ - M2 + IJ ,̂..,,

x τJ[J2 -μ + M2 + l\μ [J2 - μ + M2 + l j J+Ml-j2+μ (3.15)

According to the definition Eq. (3.14), each term involves a number of factors which
is independent from M2, so that the last expression makes sense for arbitrary complex
M2. The limit is taken with an imaginary part, since, otherwise, the functions
sin[/ι(M2-fα)], a constant, which appear in Eq. (3.15), would not have a well defined



610 E. Cremmer, J.-L. Gervais, J.-F. Roussel

limit. Of course, with the imaginary part, one exponential of trigonometric functions
blows up while the other vanishes. The choice of sign is such that

lim l α ± M2J = T — - — e"
ϊ/l(M2±α) , (3.16)

M2-κx> 2J 2isinh

M2\ ! \(a-β) ( l±l)/2/ - \β-a ih(β-a)M2 ^ιh(a-β)) e e
[β±M2\l

Substitute into Eq. (3.11), one gets

e^[-M1(J+l/2)+(J2

2-J1

2-J2+2J1J2)/2+(J1+J2-J)/2]

eiτr(J-J2+M1)/2

x B(J1? J2, J, Mj)

^=0

X T-T Ϊ7 F7TΪ T . ., . Γ T ^ (3.18)

Note that the limit is perfectly finite, since all exponentials in M2 cancel out. On the
other hand, the explicit expression of \j, τa)1^ is [6]7

Σ
(J—M+rn—ί)/2 integer

2

(3-19)

and, letting μ = (j + M - m - ί)/2,

\j w\πι — J

J + M

^ [ μ j ! L j - m - μ j ! L m - M + μ j ! L j + M-μj ! ' l ' ;

Comparing Eqs. (3.18), and (3.20), one sees that the variables should be related by

tz7 = tx70 + 2 J2 , Jj = j , M = - M! , m = J - J2 . (3.21)

7 (n) denotes the g-deformed binomial coefficients (n) = [n\\/\p\\ \n-p\\
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One gets altogether,

611

L2J+1J

2

Recall that one has [7]

where

Equation (3.22) may be re-written as

(J},M};J2,M:

2j

This is consistent with the orthogonality of the CG coefficients:

Σ

x J,,M,;

' 2

-,M2 'p '

In the limit M2 —» oo this gives

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

This is equivalent to Eq. (3.23) since \Jv,w+ 2p)_p

Mι = e~lhp \J^w)p

Ml. Finally
we use the defining relation for the 6-j symbols [Eq. (2.23)], that is in the present
notations,

323

h h

h 3m

Ju

= OΊ , Ml J2ί M2 I Jl2> O'l2> Ml2' J3'

For the present puφose, it is convenient to let

9 _ j u - M 9 - w~wv
J2 — Jn M2 — ~~ m\ •> J3 — o

-?! ~~ ^2 ? Ml — -M-2 ' .7123 ~~

W — ' 2m + 2m

(3.28)

(3.29)
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In the limit one gets

= (J,,Mι;J2,M

where we used that fact that

( J2, -M2; Jj , -M! I J12) = I; J2, M2 1 J12) .

(3.30)

(3.31)

This relation may be verified on the explicit expression Eq. (3.11). Equation (3.30)
is the generalization of Eq. (2.18). Indeed, starting from the fusing algebra of the
ξ fields [Eq. (2.25)], and taking account of the relationship between ξ and ψ fields
[Eq. (2.12)], one concludes that the fusing of the ψ fields is of the form8

w

(3.32)

where

_^ ^ j ^ ( (3.33)

2 2

Our next point is a cross check of the whole section. We re-derive the fusing
matrix of the ψ fields by starting from that of the V fields [Eq. (2.1)], and applying
the transformation Eq. (2.11). The result reads

3 ^123

12

23

. (3.34)

Already announced on Eq. (3.1)
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Comparing with Eq. (3.33), we conclude that

J23

,Jl 23
1/10 J-ί

= e
fi(J\U (

= -ιh(Jl+J2-Jn)/2 W.-J^V^J

\
\

X -7JD ^123 J123- (3>35)

Thus, we should have

(3.36)

where β is a solution of the equation

that ensures that it disappears from Eq. (3.35). In this last relation, no summation over
J23 is understood. Since the left-hand side is independent of Jλ, this must be true for
the right-hand side, and it follows that, in general, βζj is independent from the first
lower index L. This shows that the general solution of Eq. (3.37) is of the form

β$ = f ( K ) / f ( J ) . (3.38)

The remaining unknown function /(/) is determined from the condition #j2j 3 = 1,

and one finally gets

_ Jh(J23-J2-J3)/2
~

— -̂ . (3.39)

It is straightforward, but a bit lengthy, to verify that this is equivalent to our previous
expression Eq. (2.2). Next we illustrate the meaning of this new expression for the
coupling constants. It simply ensures that the fusion properties of the ξ fields, which
do not depend upon w, may be indeed rederived by applying the product of ξ fields
simply to the right SX(2, C)-invariant vacuum |tu0), with w§ = I -f- π/h. Let us

compute (wj3\ ξM\\z)ξ(M2(^ \™Q} in two different ways

(1) directly using the relation between ξff and V^ as well as Eq. (2.10),

= 4JV^X-^^
(2) using first the short-distance expansion
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where G is to be determined. Then

One gets immediately

^J3

(3.43)

Applying Eq. (3.30) with m12 = - J3, w = wj3 and noting that due to triangular

Γ J J J N

inequalities the non-symmetric 6-j coefficient < 2 * 3

0 only for mλ = J2 - J3 we get L J?> °
is different from

\
(J1M1J2M2|J3). (3.44)

As expected, this gives

where j

ιJ2M3 |J1 2), (3.45)

is given by Eq. (3.39). It is worth to note that, instead of using the short
distance expansion Eq. (3.41), it is consistent to use the exact Eq. (2.24) and we get

the same result due to the fact that (wj \ V^+^CO) \WQ) is different from 0 only for

the highest weight operator V^+^ίz/ = 0).
So far, we only dealt with the operators connected with the quantum group

parameter h. Until the end of this section, we consider the most general operators

ζMλ that involve the two quantum group parameters h and h. It is straightforward
to extend the full discussion just given to this case, since the fusing and braiding

matrices of the V^ (or equivalently of the ξ^) with the V^ (or equivalently with

the ξ^) operators are simple phases. We shall not do it explicitly to keep the length
of this paper within reasonable limits. We shall simply show that the calculation just

mentioned also applies to the fusion of the ξ^jti ^e^s usmβ now [6]

—iπ(MJ+MJ) (3.46)

and

J, 2ί -
h M

V,*7)£ (3.47)
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The short distance expansion of the product of two ξ^J^ fields is written as

'(0)

I 1 Π

' ' 'M! MlM2M2Ml +M2M1+M2M1+M2

_ v "v (Δ. Ί ί —Δ τ * —Δ T ί )
= / Z 3 3 1 ! J2J2

J3,J3

X [<

The final result reads

S~Ί J ] J i t/2 "2 3 3

M, M, M2M2M, +M2Mj +M2

= p^ Js (jιM] j^ J3)(J1M1 J2M2\ J3)

χ iπ\M[ J2 — M2 Jj +MI J2 — M2 Ji +(Mι — M2) (J3 — Jj — «72)+(M i — M2) (J3 — J\— J2)]

with

where a careful calculation gives

J3 ,J3

1J\J23J1J2

here the X fc's are the direct product of intervals [αfc, 6fc] 0 [άfc, 6fc] and given

(3.50)

(3.51)

by

[1,2J2]®[1,2J2]

[l,2J 2-p]®[l !2J 2-p]

[2,2J3 + 1]®[2,2J3 + 1]

[2, 2J3 + p + 1] ® [2, 2 J3 + p + 1]

with εfc =

+ 1

-1

I -1

and

P = Jγ + J2 ~~ 3̂ 5 p = Jl + J2 — J^ (3.52)

We note that G is symmetric under the exchange of 1 and 2. This is in agreement
with the consistency of the fusion rules and the braiding.

Using the properties of the Γ function, the factor h can be absorbed partially or
completely. A particular form which exhibits the symmetry between (J1? J{), (J2, J2)

and (—J3 — 1, — J3 — 1) is

(3.53)
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with

, J)

Π F(2J + 1 + (2J - r + l)h/π) f\ F(2J -f 1 + (2 J - r + l)ττ/ft)
r=l r=l

(3.54)

r=l r=l

and p = 1 -h Jj + J2 + (—J3 — 1) is symmetric. These expressions are equivalent to
the one derived in [8].

4. The General (3D) Structure

In this section we discuss the general structure of the bootstrap equations. We shall
not give all details, but rather establish the connection with earlier works [9, 10, 16,
21] where the Uq(sl(2)) quantum group structure was discussed in other contexts,
and show the generalization brought about by the introduction of ξ fields. In [16],
quantum-group diagrams were introduced which involve two different "worlds": the
"normal" one and the "shadow" one. Adopting this terminology from now on, we are
going to verify that the OPA of the V and ξ fields is in exact correspondence with these
diagrams, if the ξ and V OPE's are associated with the normal and shadow worlds
respectively. At the same time we shall discuss the associated three dimensional
aspect. For the V fields it is already known, since it corresponds to the quantum-group
version of the Regge-calculus approach to the discrete three-dimensional gravity [19]
or to the discussion of [15], for instance. This case will serve as an introduction to
the novel structure that comes out when V and £ fields are considered together.

In the pictorial representations, we omit the g coefficients. Thus, we actually make
use of the operator-algebra expressed in terms of the V fields defined by

J2 J\2
(4.1)

instead of the V s.
Though of great importance for operator-product expansion, the coupling constants

g define a pure gauge for the polynomial equations or knot-theory viewpoints. We
could draw other figures including g coefficients, to show how they cancel out of those
equations, but this would be cumbersome. The basic fusing and braiding operations
on the V operators have three equivalent representations

T •• :J19 /J123\ i /
123

_ J J\ J2
J\2

JΏ

(fusion of V operators), (4.2)
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\
'123

/ J-

= e

\i> .

/\/ j « . .

/;
71

123 23

(braiding of V operators). (4.3)

First consider the left diagrams, and the associated Eqs. (2.1), and (2.8). Apart from
the V-matrix element on the right-hand side of the fusing relation, which has no
specific representative, each operator V^ is represented by a dashed line carrying
the label J. The spins on the faces display the zero-modes of the Verma modules on
which the V^ operators act. Thus the ra's are differences between the spin-labels
of the two neighbouring faces. For the braiding diagram, the spins on the edges are
unchanged at crossings, and, for given Jl5 J2, the braiding diagram has the form
of a vertex of an interaction-around-the-face (IRF) model. These diagrams are two-
dimensional (2D). The appearance of spins on the faces reflect the fact that the fusion
and braiding properties depend upon the Verma module on which the operators act.
It is easily seen that, when they are used as building blocks, the above drawings
generate diagrams which have the same structure as the quantum-group ones of [16]
in the shadow world9. The polynomial equations can be viewed as link-invariance
conditions. For instance,

J> ,/

J23

b / J 2

(4.4)

J23

gives the pentagonal relation of the V fields discussed in [8], after cancellation of the
phases (with a change of indices).

The middle diagrams of Figs. 4.2 and 4.3 are obtained from the left ones (first
arrow) by enclosing the 2D figures with extra dashed lines carrying the spin labels
which were previously on the faces. In this way, one gets three-dimensional (3D)
tetrahedra, with spin labels only on the edges. The right figures are obtained from the
middle ones by dualisation: the face, surrounded by the edges Jα, J6, Jc, becomes the
vertex where the edges Jα, Jb, Jc join, and conversely, a vertex becomes a face. An
edge joining two vertices becomes the edge between the two dual faces. There is one
triangular face for each V field, including the V matrix-element of the fusing relation
Eq. (2.1). On the dualised polyhedra, the triangular inequalities give the addition rules
for spins. The main point of the middle and right diagrams is that, as a consequence
of the basic MS properties of the OPA, they are really 2D projections of three-
dimensional diagrams which may be rotated at essentially no cost10. For instance, the
MS relation between fusing and braiding matrices simply corresponds to the fact that
they are represented by tetrahedra which may be identified after a rigid 3D rotation.

We used dashed lines to agree with the conventions of [16]
10 We use 6-j symbols which do not have the full tetrahedral symmetry, so that two edges should
be distinguished. This will be discussed at the end of this section
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We shall illustrate the general properties of the 3D diagrams on the example of the
pentagonal relation. In the same way as we closed the basic figures in Eqs. (4.2), (4.3),
the rule to go to 3D is to close the composite Fig. 4.4. It gives a polyhedron which
has vertices with three edges only, which we call type V3E. The two-dimensional
Eq. (4.4) now simply corresponds to viewing the V3E polyhedron from two different
angles:

b -

1J2

Λ" h I

If
J23 (4.5)

Dualisation gives a polyhedron, with only triangular faces, which we call F3E.
The polynomial equations are recovered by decomposing a F3E polyhedron into
tetrahedra (this correspondence only works with F3E polyhedra, this is the reason
for dualisation). In parallel with the two different fusing-braiding decompositions of
each side of Eq. (4.4), there are two 3D decompositions of the F3E polyhedron. This
is represented in split view on the next figure, where the internal faces are hatched
for clarity:

(4.6)

In general, the rule is to take a polyhedron with triangular faces and to decompose
it in tetrahedra in different ways. Substituting the associated 6-j symbols yields the
polynomial identities π.

In quantum-group diagrams [16], a second world was introduced - the normal one
- which is represented by solid lines. In this world, the quantum numbers are spins J
and magnetic numbers M both on the lines. The label M changes at the crossings. We
now show how our ξ operator algebra is a realisation of this normal world. Indeed,

the fusing and braiding matrices of the fields ξ$ d° not depend upon the Verma
module on which they act, so that it is consistent that the quantum numbers J and
M be attached to the corresponding line. Comparing Eqs. (2.24), and (3.5) with the
formulae given in [16], one sees that one has the following 2D representation 12

γ\ J2, M2 I J12) — fusion of ξ operators, (4.7)

11 We restrict ourselves to polyhedra which are orientable surfaces
12 For Eq. (2.24), the factor gjUj is absorbed by going from V to V matrix element on the right-
hand side
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= (.J^J^M^M-i — braiding of ξ operators, (4.8)

which coincides with the corresponding quantum-group vertices of [16]. Clearly, the
braiding diagram Eq. (4.8) should be regarded as an interaction of the vertex type.
In the same way as for the V fields, the fusing vertex has only three legs so that
the V matrix element is not represented per se. On the other hand, we have shown,
using repeated fusions [Eqs. (3.1)-(3.10)] that the fusing equation also provides the
transitions between V and ξ operator-product algebras. From this viewpoint, the result
of the discussion just recalled may be pictorially represented by introducing transitions
between the two worlds based on the graph

= (Jl5 Mγ\ J2, M2 I J12) (from normal to shadow world), (4.9)

which coincides with the one introduced in [16].
The polynomial equations involving V, and/or ξ fields are summarized by the

link-invariance of the diagrams constructed out of the building bocks just given. For
instance, the example previously given for the V operators becomes, in the normal
world,

(4.10)

M'2 + M

Let us establish a three-dimensional representation involving ξ operators. We propose
the following

S^^W"'̂

(4.11)
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M M

M',

(4.12)

When the left diagrams are enclosed, we put the M's at the vertices. The surrounding
lines are drawn as solid, while the lines which already existed become dashed. This
ensures consistency with the tetrahedral representation of the V operator-product
algebra given above, since dashed lines have a J label in agreement with the previous
convention - contrary to the solid ones. In the dualisation, the dashed lines are
transformed as before, while the M's naturally go on the faces. These come out
of two types. In the fusion, there is one face which has no M and is surrounded by
three dashed lines. It represents the V field which appears in Eq. (2.24). All other
faces in the two above diagrams are similar: surrounded by two solid lines with no
label, and a dashed line with a J label; they carry the corresponding magnetic number
M. Each of them represents a ξ field. In the dualised diagrams, the face associated
with V fields is drawn as transparent, while the ξ faces are hatched. For them we also
give a top-view drawn on the lower-left quarter plane, and a left-view drawn on the
upper-right quarter plane. The tetrahedral representation of the diagram Eq. (4.9) is
chosen so that its 3D representations agrees with the one of the fusion up to a rotation
since they are given by the same 3-j symbols. Thus we let

J12 M 1

(4.13)

The 3D aspect now summarizes the general polynomial equations. The relation
displayed by Fig. 4.10 is transformed into

(4.14)

M'2 + M'-
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The dualised polyhedron is

621

(4.15)

where all the faces are hatched except the face J2> <^3> J23' °f tne ^ type, which is
transparent, according with the general convention. We next draw its decomposition,
altering the general convention for visibility: the external quantum number are not
written, and some external faces are made transparent

M'2 + M 3

Consider in general a higher 2D diagram with one separation between a shadow and
a real part. The enclosure proceeds as follows. In each world the rule is as indicated
above. Concerning the separation line, one follows the prescription suggested by
Fig. 4.13, namely, the separation line becomes solid, and thus carries no label. As a
result, the higher 3D diagram before dualisation is again of the V3E type, with any
number of dashed lines, and one closed loop of solid lines. Thus there are only two
types of vertices: with three dashed lines, or with one dashed and two solid lines.
After dualisation, one may obtain any polyhedron of the F3E type with the two kinds
of faces introduced above: faces of the V type (three dashed lines, each with a J,
around a - transparent - face), and faces of the ξ type (two solid lines with no number,
a dashed line with a J, and an M on the face - which is hatched). A J has to be
interpreted as the length of the corresponding edge, and an M as the difference of
length of the two surrounding solid edges. This gives all the spin addition rules and
relations between M's as triangular inequalities. Of course, the J value of a dashed
line is common to the two adjacent faces. The polynomial equations are derived by
splitting a general F3E polyhedron in tetrahedra. Since there are two types of faces,
one can only obtain three types of tetrahedra. There is a first type of tetrahedron,
with three V and one ξ faces, (see Fig. 4.11 or 4.13), its value is the corresponding
Clebsch-Gordan coefficient. The tetrahedra of the second type have four ξ faces,
(see Fig. 4.12), the values are the corresponding ^-matrix elements. The third type
tetrahedron has four V faces (see Fig. 4.2 or 4.3), its value is the corresponding 6-j
coefficient. In the case of the third type tetrahedron, changing the orientation yields
an extra phase as we already mentioned.
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For completeness, we have to add that the 6-j, .R-matrix or Clebsch-Gordan have
less symmetries than the tetrahedra by which they are represented, and therefore that
these symmetries must be broken by adding extra characteristics to the tetrahedra,
so that the correspondence be one-to-one. We give them briefly. First, the faces of
the tetrahedra must be either "incoming" or "outgoing." Each tetrahedron has two
incoming faces (the faces J1? J23, J123 and J2, J3, J23 in Figs. 4.2 and 4.3, the faces
Ml and M2 in Figs. 4.11, 4.12 and 4.13) and two outgoing ones (the two other ones).
When splitting a composite polyhedron in tetrahedra, the internal faces, common to
two tetrahedra, are outgoing for one tetrahedron and incoming for the other one. This
rule allows to single out the two particular J of the non-symmetric non-RW 6-j (the
J between the two incoming faces, and the J between the two outgoing ones), to
distinguish M{ and M2 from M12 for the CG, and to distinguish between the M^'s
and M/'s of the .R-matrix. It is clear that the incoming faces represent the operators
on which the fusing or braiding are performed, and the outgoing faces the resulting
operators. Secondly, the M^'s on the faces are oriented quantities. Like the m/s, they
should be considered as differences of lengths of the two solid lines surrounding the
face Mi9 which thus must be supplemented by an ordering. This ordering must always
be from left to right (for instance) on the 2D projection. If we rotate the tetrahedron

A/Tf A/Γf

of Fig. 4.12 representing (^, ̂ Λ/M1' bγ π around a vertical axis in the plane of
the page, this exchanges 1 and 2, but the orderings as well. The signs of the M/s
must therefore be changed to restore the left-right ordering of the 2D projection. The

resulting value is then (J2, Jι)1M

l1.M

2

9 which is indeed equal to (Jυ J^MλM2- S°»
these tetrahedra with two outgoing and two incoming faces, and oriented M/s, are
in one-to-one correspondence with the 6-j, ^-matrix or Clebsch-Gordan coefficients.

5. ξ's as Limits of V9s

In Sect. 4, we showed that the V braiding diagrams could be interpreted as IRF model
vertices and the ξ braiding diagrams as vertex model interactions. Witten showed that
one could get vertex models as limit of IRF models [15], when letting the spins on
the faces go to infinity with fixed differences. In this part we shall apply this method
directly to our operators. The spins on the faces are the ones corresponding to zero-
modes. We shall denote by 7^ the left-most one (it is defined by w = w§ + 27^),
and let w go to infinity. Hence, getting a vertex model as limit of an IRF model is
equivalent to obtaining ξ operators as limits of V operators. More precisely, let us
prove that

lim V^/β+m = (2ί)me-ihmξ^ . (5.1)

The role of the β coefficients is to remove the Γ functions which would have no
well defined limit. They will cancel out of the braiding or fusing identities thanks
to their property Eq. (3.37). ̂ ^ is the projector on the Verma module of spin 7OT

whose definition was recalled in [5]. Moreover, we have to give an imaginary part to
7^ (or w) so that the limit e±lhvσ be well defined: we choose a negative imaginary
part, which makes e~lhτσ go to zero and elhw to infinity.

Using the expression Eq. (3.36) of g and

M
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where (J,τu\^ is the inverse matrix of |J, wj^, Eq. (5.1) is equivalent to

Let us prove now that the matrix |J, τσ)^} has a leading term proportional to
the identity matrix when w — -» oo, and consequently, such is the leading term of its
inverse matrix. Recall Eq. (3.19). The coefficient | J, τu)^ is a polynomial in eτhτu. As
elh™ goes to infinity, the maximum value of t dominates in the sum. The boundaries
on t are given by the condition that the g-factorials arguments be positive. Thus, we
get

-τhJvo I ihM(J+l/2}c
e

This gives the limit of the inverse matrix directly. In view of Eq. (5.2) we also need the
limit of C^\w\ Since the complex exponential with positive argument is dominant
in sin(te7), we get

lim e-i™Cu7) = (-ir~mel

 T e - m (5>4)w-+oo \J - mj

which leads to Eq. (5.1).
Now, we take this limit w — > oo in the braiding or fusing equations. Begin with

the fusing Eq. (2.1). Let us write it down in terms of three V and one V

Jl+l/2

Σ

The /3 coefficients introduced by Eq. (5.1) cancel out thanks to the property Eq. (3.37),
and, in the limit, we do get the fusing Eq. (2.24) of the ξ operators, provided that

lim =(J 1,m 1;J 2,m 2 | J12). (5.6)l 5 l s 2' 2 l 12'

Here again, we have to give an imaginary part to w so that the limits of the
complex exponentials be well defined. But the 6-j coefficients are only defined for
positive half-integer spins. So, we have to extend this definition to non-integer 1^
before going to the limit. Such was not the case for the limit of ̂ ^ V^ considered
above, since everything was defined for any w. This gives us the condition that our
extended definition of the 6-j must be coherent with the limit of the V, i.e. it must
obey Eq. (5.6).

The expression of the 6-j coefficients is given in Eq. (2.6). The ambiguity of the
extension lies in the range of summation. For half-integer spins the boundaries are
given by the condition that the arguments of the (/-factorial in the denominator must
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not be negative integers. For half integer /^ the initial definition is strictly equivalent
to the following one, obtained by the change of index μ — z — 21^ — J12 — m1 — m2:

m

+ lj [2Im + 2m, + 1J

Iτa,Im+mί)
m, + ra2, 7ro, Jl2)Δ(Im + m, + m2, J2,

μ integer

x [\2IW - Jλ - J2 + ml + m2 -f μj ! |_^i2 ~ î + m2 + μj

x L J12 - J2 - rrij + μj ! LμJ ! [ Jj + J2 - J12 - μj !

x [Jj + ml - μ\ \ [J2 - m2 - μj I]"1 . (5.7)

But, when we give an imaginary part to Iw, the g-factorials with a /^ have
complex arguments and yield no restriction. Such is the case of the last six factorials
of the sum with the definition of Eq. (2.6), and, of the first two with the definition of
Eq. (5.7). The first definition rapidly appears inadequate as it yields no upper boundary
for z. The second definition [Eq. (5.7)] leads to well defined boundaries for the index
μ and to a finite limit thanks to

(5.8)

for w — » oo with negative imaginary part, similar to Eq. (3.17) which was for positive
imaginary part.

We use this limit in the sum and in the Δ prefactors of Eq. (5.7), and recognize
the expression of the Clebsch-Gordan coefficient given in Eq. (3.11). This justifies
our extended definition of the 6-j.

Pictorially 13, this reads

(5.9)
I-*'

We come now to the case of braiding. It works like fusing. From Eq. (5.1) and
the properties of the β coefficients Eq. (3.37), we see that we only have to prove that
when J goes to infinity with negative imaginary part

lim
J2

x e

For a better readability, we omit the index vσ of 1^ in the drawings
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and

lim

X e

where m = ml 4-ra2 = mi +777-2 an<^ (* ι̂ ' ^2) (resP (J\ > Λ)) is me universal /^-matrix
β (resp. β), following the conventions of [6] [see Eq. (3.6)]. We only deal in details
with the case of the j?-matrix R. We compute its matrix element from its universal
form given in Eq. (3.7),

< .
\m(πι( _ -2ihmlm2 l~U \^l^m\Π)) β _ -ihnm{ f>ιhnm2

— \_n\l

for n = m'2 - πι2 > 0, and 0 otherwise. It is an upper triangular matrix.
To begin with, we examine the behavior of the 6-j coefficient when w goes to

infinity with a negative imaginary part. This time, the suitable change of summation
index to define the 6-j for non-integer spins is x = 21^ + Jj + J2 + πιl H- ra2 — z
(basically, this is the same definition of the extension as before, which amounts to
taking z — 21^ integer, the extra integer shifts by Ji + ml being trivial). Here, only the
first and eighth factorials of the sum have infinite arguments. After using Eq. (5.8),
we get

J2

+ m , J ! | J 1 - m 1 j ! | J , + m ' 1 j ! l J ι -

V
Vs

X _ / ^

x integer

(5.13)

As e"ϊ/l/ro -̂  0, due to the factor e-^hl^x the term of the sum with x minimal will
be dominant. The lower boundary for x is given by \x\! and \n + x\\: for n > 0,
the minimal allowed x is 0, and for n < 0, it is n. Hence, summarizing both cases,
the dominant behavior of the 6-j is e-'ίh2I^\n\t

Then, the extra factor due to e

±*π(^+™+^~^+-Γ^+^), which is

e±ιh2i^n χ (finjte term), must be taken into account. Altogether, it gives

eih2iπ(±n-\n\)^ [Q e-iMiπ\n\ when n < Q, and 1 when n > 0, in the upper case (+).

So, when e~
lh21^ _» Q, the limit is an upper triangular matrix, as it should. (In the

lower case (-) it gives 1 when n < 0, and e~lMI™\n\ when n > 0 and so, a lower
triangular matrix in the limit.)
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It is then straightforward to check that the limit agrees with Eq. (5.12), and this
terminates the proof of Eq. (5.10).

The pictorial representation of this is

/J2

x -ι ~ ι+ m2

-''' I+m'2 *x

(5.14)

We can use these limits on more complex braiding-fusing identities of V fields,
thereby proving the same identities for ξ fields. For instance, we have the following
limit:

I + m + m

\I+ m

\

+ m 21.
. .••'

.
I + m j+ m,

h m Λ + m A

00

(5.15)

y \

'*' ί+ΠV

where we did not write the spins Ji on the lines as they are not affected by the limit,
and where the missing mi on the r.h.s. can be deduced from conservation of Σ πιi at

each vertex. Making this limit on both sides of identities in the shadow world yields
identities in the normal world.

We can as well take this limit only on a part of the figure. Equation (5.6) gives as
well

ι^Δ

X T /' \ I + m ! + m o
J 1 t, * *». A ^ 1

•••"'" >12 X

which gives on a composite figure

cxo
(5.16)

!+mι \ \ I-f m 1 -»-m 2

*-.., \ I + m i \ + m 3
Γ**'\; + m 2 \ ...'

\ "*"--... y''Ί+ m ^ m ,

X Ja \ ^ 7 ' -.,
*••...
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The extra phases in Eq. (5.16) cancel out between two neighbouring basic figures all
along the wavy line, and only the exterior ones remain as in Eq. (5.17). Hence, they
do not spoil equalities between transformed figures since the exterior spins of both
sides are the same.

To conclude with this part, we show how this limit can be understood in the case of
the 3D representation by V3E polyhedra. As an example, we close the 2D Figs. 5.15
and 5.17 and get the 3D representation

I + m ι .
1+ m

«••••*
\
\•

Ί

\

ί » ..

2 \ "
\

\

χX

1+ m,-i
"*""" ί..

...
,x*

\

»• m *•

ί.3
X \I +

.
\ + ι

X'
•'•>•'

m l + m 2
m 3 + m 4

,/I-nn6

+ mΊ

and

I+m

where again the spins on the internal lines, which are unchanged by the limit have
not been written down.

We see on these examples that the partial or global limits are not fundamentally
different. On the V3E polyhedra, the normal world is obtained from the shadow world
by adding / to all the edges of an arbitrarily chosen closed loop, and then letting / go
to infinity. In this limit, only the differences between the values on the edges remain
finite and relevant; they go on the vertices. When projecting in two dimensions, the
part of the drawing inside the projection of the closed loop naturally becomes the
normal world, as the part outside becomes the shadow world. Hence, depending on
whether the closed loop is at the exterior of the drawing or not, there is only a
normal world (3D in Fig. 5.18, 2D in Fig. 5.15) or both worlds (3D in Fig. 5.19, 2D
in Fig. 5.17), but fundamentally, this is not different.

Following the remark of the end of Part 4.1, we note that we need to orient the
M/s at the vertices of the V3E polyhedra (and then on the faces of the F3E polyhedra)
in order to know how to order the difference of the two neighbouring spins in the
infinite limit.
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6. Conclusion

One outcome of the present paper is the general fusion formula 14 the ξ fields,

Σ
Ju=\Jι-J2\ Jί2=\Jι-J2\

Σ

x K2,Λ2>
with [see Eq. (3.49)]

(J15 J15 M15 M1? J2, J2, M2, M2, J12, J12)

= Ml J2 - M2 Jj + MλJ2 - M2Jl

- 4- J2)

- J t- J2). (6.2)

The general braiding relation was already known [7, 17], but we recall it for
completeness,

e

*2

±ιπ6ς(J1,J1,M1,M1,M[,M{,J2)J2,M2,M2,M2,M2)

with

, ML M1; M(, Mi, J2, J2, M2, M2, M^ M^)

2(M! + Mi) - J,(M2 + MJ)

J2(Mt + Mi) - Jt(M2 + M^) - 2(^/2 + J2 ̂ ) . (6.4)

14 Formulae for fusion were already given at the level of primaries in [7, 17]. The present expression
does not quite agree with them. Reference [7] was based on a co-product which was not co-
associative. This point was corrected in [17]. In the formula given there [Eq. (5.12)], the complete g
was wrongly supposed to factorize [ignoring the h factor of Eq. (3.50)], and a different overall sign
convention was used (in addition, the first term in the second line has a misprint)
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One may verify that all the polynomial equations are satisfied. In particular the
pentagonal relations follow from Eq. (2.23) - together with its hatted counterpart
- and from the equation

/ξ(Jl5 J17 M15 M15 J2, J2, M2, M2, J12, J12)

+ fξ(Jm Jn> M12> ^12> J3> Λ> M3>^3> J123> ^123>

- fξ(J2, J2, M2, M2, J3, J3, M3, M3, J23, J23)

+ /ξ(J l7 J15 M15 Mj, J23, J23, M23, M23, J123, J123)

~~t~ Jv^l' 1' 2' ^2' *^123' ^123' ^23' ^23> ^3' *^3? ^12' ^12^ mOQ 2 , (6.5)

where the last term is the additional phase of the V fusion (see [5]). Checking this
equation is straightforward but a bit cumbersome.

As was pointed out several times [6, 7, 20], the Uq(sl(2)) quantum-group structure
remarkably comes out of the holomorphic OPA of Liouville theory. With the present
work we have fully established its interplay with the MS bootstrap formalism,
where the basic principle is that the operator algebra is associative, contrary to
(q) tensor products of representations (where the 6-j's precisely encode the non-
associativity). It is interesting to think about a sort of reciprocal. Given the quantum
group quantities - CG coefficients, 6-j symbols, universal R matrix -, the tensor
product of representations defines a "multiplication" of representations which is not
associative. Then, one may consider introducing additional quantum numbers such that
the "product" becomes associative. A solution for this is given by the indices {v} that
characterize the descendants, and then the "product" becomes the OPE of holomorphic
fields we have displayed. Indeed, the only way to have Eq. (2.22) satisfied is that F
be equal to a 6-j symbol. This forces the existence of the F's and fixes their OPE.
Then some of the J's of the 6-j symbols have a natural interpretation as zero-modes
which are shifted by the V fields as shown on Eq. (2.4). It is likely that this is the
unique possibility, although a proof of this fact is beyond the scope of this article. In
any case, our present study indicates that the relationship between Uq(sl(2)) and the
holomorphic OPA of 2D gravity goes even more deeply than previously thought.

One may forsee future developments of the present work in several directions. The
most interesting one at this point concerns the strong-coupling regime 1 < C < 25,
with complex h, where the present method is the only available so far. In [7] a
unitary-truncation theorem was derived for (7 = 7, 13, and 19, by only considering
leading-order OPE's where it is sufficient to deal with primaries. This discussion
may now be completed using the result of the present paper. Moreover, the solutions
of the MS relations just displayed should allow us to check that the associated non-
critical string theories are consistent as such, namely, that they satisfy duality relations
between crossed channels similar to the ones of the Veneziano model. Another point
is that, now that the full bootstrap is at hand, one may re-consider, with a much
greater insight, the extension to negative J, handled in [7] by means of a symmetry
principle between spins J and — J — 1. Dealing with negative spins is unavoidable
since they are the holomorphic components of exponentials of Liouville field with
positive weights. These must be introduced for proper dressing by 2D gravity [20].

At a more ambitious level, understanding the connection between quantum
group and 2D gravity more deeply is certainly a step toward unravelling the non-
commutative geometry of the latter theory.
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