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Abstract: Low energy behavior of Schrodinger operators with potentials which
decay slowly at infinity is studied. It is shown that if the potential is positive then
the zero energy is very regular and the resolvent is smooth near 0. This implies
rapid local decay for the solutions of the Schrodinger equation. On the other hand,
if the potential is negative then the resolvent has discontinuity at zero energy. Thus
one cannot expect local decay faster than order t ™! as t — oo.

1. Introduction

In this paper we consider the Schrédinger operator
H=Hy+V(x)=—h*4+V(x) on L*RY, d=1.

We will assume V(x) ~ ¢|x| ? as |x| = oo, and study the behavior of (H — z)~!
near z = 0. If p > 2 then Vis called very short range and the behavior of (H — z)~*
near z = 0 was studied by Jensen, Kato and others (see, e.g., [JK, J, Mu]). If d = 3
and p is sufficiently large, then it is known that (H — z)~' has an asymptotic

expansion in z/%:

(H—2) '~B_,z7'4+B_ 1z Y2+ Byz°+---, z-0.

The top term B_, comes from the O-energy eigenvalue, and B_; comes from the
0-energy resonance. Since they are unstable under small perturbations, (H — z) ™! is
generically regular near z = 0.

On the other hand, if 0 < p < 2, then V is called slowly decreasing, and it is
known that (H — z)~! behaves quite differently near z = 0. For the one-dimen-
sional case, this problem was studied by Yafaev [Y1] in detail using integral
equation techniques. For the higher dimensional case, Yafaev also studied
Schrédinger operators with positive slowly decreasing potentials ([Y2]). In par-
ticular, he proved that (1 + |x|)"*H ™1 + [x|)"# is bounded in L*(RY) if
o + B > mp. Using this estimate, the low energy asymptotics of (H — z)~! was
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studied. The aim of this paper is to prove some a priori estimates that were
assumptions in Yafaev’s paper, and to generalize his results.

At first we consider the positive case. Here we fix the Planck constant i = 1,
and suppose 0 < p < 2.

Assumption (A:p). (i) V is a smooth real-valued function on R? such that

6 o
‘(5}) v

for any multi-index a.
(ii) There is & > 0 such that ¥(x) = 6{x)> * for xeR".
(iii) There are ¢ > 0 and R > 0 such that

< Gy, xeR?,

v
c—((x) =< —¢|x|7? for |x|>R.
0x

Here we have used the notation {x)» = (1 + |x|?)*/? for x e R%. F(x) denotes the
characteristic function (or the characteristic function of an operator) designated by

(%)
Theorem 1.1. Suppose (A: p) with 0 < p < 2. Then there exist i,y >0 and C >0
such that

IF(1x] < A~ YP)F(H < A)| < Cexp(—pA~ WP 12) - for 1e(0,1]. (L.1)

Remark. Part (i) and (ii) of Assumption (A : p) is not necessary for Theorem 1.1. It
holds if V' is bounded and satisfies (A : p)-(iii).

This result can be considered as an asymptotic estimate on the local density of
states, analogous to the Lifshitz tail for random Schrddinger operators. As a direct
consequence of Theorem 1.1, we obtain rapid local decay for the semigroup
e H 1 >0:

Corollary 1.2. There exist §,y > 0 and C > 0 such that
[F(1x] < pr¥/®*D)e” || < Cexp(—pt@~#CT) 1 >0. (1.2)

Proof. It suffices to show (1.2) for ¢t > 1. Setting 4 = ™2/ *2) we decompose the
left-hand side of (1.2) as follows:

IF(|x| < g2/t 2)e |
S| F(Ix| £ pe*2)FH £ )| + | F(H > e |
=|[|F(lx| £ pA~"?)F(H £ )| + | F(H > A)e™ ™|
< Cexp(—yA~We=1/2) 4 o=t
= Cexp(—yt@=P/2+P) 4 exp(— (2-PI2+0) 51

X

Replacing y by min(y, 1) if necessary, we obtain (1.2). [

Next we consider the boundary values of the resolvent. It is well-known that
under our assumption,

O TNH — A4 00)" x> = lim (x> (H — 4 + ie)"{x> "€ B(LX(RY))
elO0

exist for y > 1/2 and A > 0.
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Theorem 1.3. Suppose V satisfies (A:p) withO < p < 2 and lety > 1/2 + p/4. Then
sup [{x)>7TMH =2 £i0)7 x| £C< 0. (1.3)

0<As1
Moreover, {x> "(H — 4 £+ i0)" (x> "7 is Holder continuous in A near 1 = 0.
We can prove similar estimates for powers of the resolvent:

Theorem 1.4. Suppose V satisfies (A:p) with 0 <p<2. Let k=1 and let
y >max(k — 1/2, k(1/2 + p/4)). Then

sup [T H = 2110) )T S CGe< 0. (1.4)

0<Aiz1

Moreover, {x> "(H — 1 + i0) (x> " is Holder continuous in A near 1 = 0.

Since (at least formally),

k
(%) (H—2+i0) 1 =kI(H—24i0)* 1,

Theorem 1.4 implies differentiability of (H — 4 £ i0)™* in

Corollary 1.5. Let ¢ be a rapidly decreasing function on R Then
o(H — 1+ i0)" 1 is C*-smooth with respect to A (in B(L*(R%))-topology).

We denote the spectral projection of H by E(4) = F(H < A). Since
E'(Q)=Qnmi) " ((H—-A—i0)"*—(H—41+i0)"1),

we can obtain corresponding estimates for E’(4) from Theorems 1.4 and 1.5. In fact,
we can prove slightly stronger estimates for E’'(1) and Theorem 1.4 follow from
them:

Theorem 1.6. Suppose V satisfies (A:p) withO < p < 2. Letk = landlety >k — 1/
2. Then

é ij'ﬁa /16(0> 1] > (15)

d k-1
<x>”<a) E'(A)<x>77

where 6 = 2y/p — k(1/p + 1/2).

Combining these results with the method of Jensen, Mourre and Perry [JMP],
we obtain the following uniform decay estimates for the Schrodinger time-
evolution:

Theorem 1.7. Suppose (A:p) with 0 < p < 2. Then for any y > f§ >0,
I<x> " 7e ™ x) 77| < C<ty P, teR. (1.6)

Remark. For the free case, ie., if V(x) =0, then (1.6) holds only if f < d/2. Thus
a particle in a potential satisfying (A : p) escapes from a finite region faster than
a free particle.

We can also estimate (x> "(H — z)”'<{x)> "7 in a neighborhood of z = 0:

Theorem 1.8. Suppose (A:p) with 0<p<2 and let y>1/2+ p/4. Then
(x> TVH — z)”1{x) "7 is uniformly bounded in z e C\[0, o).
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The idea of the proof of Theorems 1.1-1.8 is as follows: If we change the
coordinate: x = A~ /?y, then H has the form

H=1(—g4,+ Vi(y)) = iH; , (1.7)

where g = AM*~ 12 and V,(y) = A~ V(A 1/*y). Since p< 2,9 0as 4|0, and
(A: p) implies

Sy P L V() SClyl™”, yeR4.

Thus H; has the form of a semiclassical Hamiltonian, and we can apply the
methods of semiclassical analysis. Then, for example, Theorem 1.1 follows from the
Agmon estimate for a classically forbidden region, and Theorem 1.3 follows from
the semiclassical resolvent estimates (see, e.g., [S, HS, RT, GM, HN], etc.). The
proof is discussed in Sect. 2.

Next we consider the negative case, i.e., V(x) < 0. Then the situation is quite
different from the positive case. Zero is always the accumulation point of negative
eigenvalues, and hence zero seems to be very singular. In order to make the
problem manageable, we suppose the Planck constant & is sufficiently small. Note
that this is equivalent to replace V' by u¥V with a large coupling constant p.

Assumption (B: p). (i) V is smooth real-valued function on R? such that

(&)

for any multi-index «.
(ii) There is 6 > 0 such that V(x) £ — 6<{x)> * for xeR".

S Cdxy P71 xeR?

(i) sup [P x- 2 ()
ox

xeR4
Theorem 1.9. Suppose V satisfies (B:p) with 0 < p < 2. Then there exists ho >0
such that if 0 < h< hy and y > 1/2 + p/4 then

=p'<2.

sup [[<x>7'H —-1+i0)" x| £C< . (1.8)
Moreover, .
OTVH - 04007 1x>7 = lim (x> "(H — A +i0)" (x> "e B(L*(R%)) (1.9)
A0
exist.

Remark. (i) The above result implies the existence of

HTTE(+0)<x) 7 = 1im xDTVE (A)<x) T
Al0
for y > 1/2 + p/4. In general E'(4+0) + 0 (see Yafaev [Y1] for one-dimensional
case). Thus we may expect at most the decay of order ot~ ') for
[{x> 7e ™ {x>~7| even if y is very large.

(ii) Since zero is the accumulation point of ¢ ,(H), (1.8) might look like a contradic-
tion. But it is not, since we have additional weight <{x>~". Instead, if
Hy, = A, | Ynll = 1, 4, 1 0, then Theorem 1.9 implies || <{x}", [ Z C|4,|" "
— 00,
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The idea of the proof of Theorem 1.9 is completely different from the positive
case though we also use the semiclassical method. We consider a second-order
elliptic operator L, = (— V)~ Y2Hy(— V)~ /2. As we shall see later, we can con-
struct scattering theory for L,, and formally we have

(H—=0£i0)"" = (Ho— (= V) £i0) ™" = (= V) (Lo = 1 £ 10) (= F) "2

Thus (H — 0 + i0) ! can be represented by the boundary values of resolvent of
L, at energy 1. This argument is justified in Sect. 3 and Theorem 1.9 follows.

2. Positive Potentials

Throughout this section we suppose V satisfies Assumption (A:p) with 0 < p < 2,
and we let h = 1.
Let A > 0 be an energy and we change the coordinates:

xeRY— yeRY, x=1"1ry.
Then the Hamiltonian is transformed to
H=—A4,+ V(x)
= l{_lz(llp— 1/2)Ay + 271 V(A_””y)}
= M —g*4, + Vi(y)} = AH; , (2.1)

where g = AY?~12 and V,(y) = A~ V(A" 1/?y). Since 0 < p < 2,9 | Oas A | 0, and
we can consider g as a semiclassical parameter. By (A: p), V, satisfies

6 o
(@) Vi(y)
< Cumin(A™ 7l y|elel) - yeRY, (22)
Vai(y) 2 047 1A Pyy =2 2 6(AM + |y[) 7, yeR?. (23)

Theorem 1.1 follows from the above scaling and an Agmon-type semiclassical
estimate for the classically forbidden region.

< Cal—l—Ial/p<l—1/py>—p—lal

Proof of Theorem 1.1. By the scaling, it suffices to show
IF(lyl £ HF(H = 1)|| £ Cexp(=yg™"), 21>0, (24)

for some B,y > 0. We take Ay, B > 0 so small that 6(A4/” + 2B)~* > 2. Thus if
0< A=< and |y| <26, then V, > 2. In other words, {y||y| < 2B} is in the
forbidden region for a classical particle with energy less than 2. Hence by Theorem
II1-1 of [BCD] we obtain

IF(Iyl = HFH = 1)|

< C(sup | VAy)I”)?«Xp( -g! Zjﬂ [6(AY 4 @)= — 3/2]V/2 dy)
v ]

< CA™Vexp(—2yg~ ') < Cexp(—yg™1)

with some y, C > 0 if g is sufficiently small. [
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In order to obtain estimates for the boundary values of resolvent, we first note
that we can prove an analogue of the semiclassical resolvent estimates for H, (cf.
[RT, GM, HN, W, N2], etc.).

Lemma 2.1. Let k = 1 and let y > k — 1/2. Then
I<y> 7" H; =120 p> 77| £ g™ 1e(0, 1], 25
where g = AP~ 12,

Proof. Let 1, and § be as in the proof of Theorem 1.1, and let 0 < A £ A,
R > A7Y*B ie., A < (B/R), where R is the constant in (A : p)-(iii). By the assump-
tion, there exists ¢ > 0 such that

)= D+ 30T S =2 TS T+, 26

uniformly for small 4. Equation (2.6) implies that the classical particle in the
potential V, is nontrapping at energy 1. Then we follow the argument in [HN]. By
virtue of (2.2) and (2.3), all the estimates are uniform for small A, and we obtain (2.5)
with k = 1. Combining the Mourre estimate in the above proof with the method of
Jensen, Mourre and Perry [PSS] (see [W] and [IN2] for the semiclassical form), we
obtain (2.5) for k= 2. O

Lemma 2.2. Let f§ be sufficiently small and let fe C§(1/2, 3/2). Then for any N and
M, there is C > 0 such that

IK»MfHDF(Iyl = Pl = €AY, 1e(0,1]. 2.7)

Proof. Instead of {y) we use the following weight function 4 € C*(R?) such that
A(y) = A(]y|) is nondecreasing in |y| and

I ifjyl=t1,
A(y)={ .
[yl if|yl=2.

We start by considering Af(H;)F(|y| < f), where [ is chosen as in the Proof of
Theorem 1.1,

AfH)E(lyl = B) = f(H)AF(ly| £ B) + [A, f(H)IF(lyl = B) -

The first term in the right-hand side is of order g" for any N as in the proof of (2.4).
Thus it suffices to estimate the other term. We set

add(4) = A, ad%(d4) = [B,ad% (4)] for k=>1.

Then it is known that for any m = 1,

k adj(4) f“(B)

m—l(_
A, f(B)] = —
[4.7B1=~ ¥

-1y
27u (j:

f(2)(B — z)" L ad?(A)(B — z) ™dzdz,
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where f is an almost analytic continuation of f (see, e.g., [G], Appendix). Under
our assumption,

k a Jj
ad’;.“(/l) = Z akj(}'a y) <g a_y> s k g 1 5

j=0

where g, are smooth in y, supported away from {y| |y| < 1} and satisfy

a a
<@> akj(/l’ y)‘ é ijagk<y>"(k_1)—|a|’ yERd’ "{E(Oa 1] .
From these, we learn
lady,(A)(H, + 1)7*| £ Gig¥, 4€(0,1].

On the other hand, f is compactly supported and satisfying |9; f(z)| < C,|Im z|™
for any m. Hence

= Cug™.

[ 0:f(2)0(H — 2)" ' ad}s,(A) (H, — 2) ™ dzdZ

Then we use the commutator formula to obtain

ILA,f(HD)IF(lyl = B

m

< 5 L adh (A)H, + 1) - [ (H, + D OH)E(y] < B

T k!

+

[0:f(@)(H — 2"  ad (A)(H; — z) " dzdz
C

= Cng™

for any m = 1. Here we have used an analogue of (2.4) to estimate the term:
I(H + 1 ®(H,)F(|y| £ B)|. Since m is arbitrary, this proves (2.7) with M = 1.
Repeating this procedure for multiple commutators: [4, [4, f(H,)]], etc., we
obtain (2.7) for any M. We omit the detail. [J

Lemma 23. If feC§(1/2,3/2), k= 1 and y > k — 1/2, then

I<x>™"(H — 2 £ i0) " (H/)<x> 7| < CA*&0, 4e(0,1], (2.8)
where a(k,y) = 2y/p — k(1/p + 1/2).
Proof. 1t suffices to show (2.8) for small .. We show

I+ 1y (Hy = 1 £ 07 f(H)A" + |y)77 = Cg™*. 2.9)
By Lemma 2.1 we have

IAY? + 1Y) F(lyl Z B)(H, — 1 £ i0)™"f (H))
xF(lylz @ +|y)~"l < Cg™*,
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where 8 is chosen so small as in Lemma 2.2. On the other hand we also have
IAY? + 1Y) F(lyl < B)(H; — 1 £ 10)"*f(H})
xF(lyl =z B2 + 1y 7|l

S CATP|F(lyl < B)SHD< I IKy> T (Hy = 1 £10) 74> 77|

= Cug™
for any m = 0. Similarly we can show

I + 1) F(ly| < B)(H, — 1 £ i0)""f (H,)
xF(lyl < @A + y) 77|l = Cug™,

for any m = 0. Combining them we obtain (2.9).
Now we change the coordinates to obtain estimates for operators in x-space.
Then we have

I+ Ix))7(H — A £ i0)"*f(H/A)(L + [x]) 77|
= {271 + |y} TIATMH, — 1 £ 10) 7 (H )
x {71 1y}
< CATRPIg TR = Cen, O

As a direct consequence of Lemma 2.3 we obtain Theorem 1.6 since f(H/
ANE'(A)=E'(A) if f(1)=1. Thus if y >k —1/2 and y = k(1/2 + p/4) then we
observe that (x> ~?(d/dA)* 1 E’(A){x) 7 is bounded for 1€(0, 1]. Moreover, using
complex interpolation with respect to y, we learn that if y > k(1/2 + p/4) then
{x)>77(d/dA)~ T E'(A){x) " is Holder continuous. Now we note that
1
| o)

. g Caz”(p“C"a Q)GCG(R), o >0 5
Sy xxie

sup
0<eg=1

where C*(R) denotes the Holder space of order «. Then, since
1

(H—z) 'FHZ1)=[EWMNA—2""da,
0

Theorem 1.3 and Theorem 1.8 follow from the Holder continuity of
{x>TYE'(A){x>~". Theorem 1.4 also follows from the Holder continuity of
{x)>77(d/dA)E'(A){x)> " and by using integration by parts.

At last we prove Theorem 1.7. By mimicking the proof of Theorem 5.1 of
[JMP], we conclude from Theorem 1.6 that for any y > > 0,

I<x> " e ™y (H)<x) 77| < C) 7P, teR,

where yeC§(—1,1) is 1 in a neighborhood of 0. On the other hand, it is
well-known that for any y > 0,

I<x> ™" e MHHE) )TV < €77, teR,

if ¥ is smooth, bounded and supported away from O (see, e.g., [1]). Theorem 1.7
follows from these.
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3. Negative Potentials

In this section we consider Schrédinger operators with Planck constant 72 > 0 and
we always suppose V satisfies Assumption (B:p) with 0 < p < 2. Let A€[0, 1] be
an energy. We set W,(x) = (— V(x) + )~ /%, xeR%. Then W,(x) satisfies

a o
() oo

for any a. We consider a second order elliptic operator

< C,min({x)yP2 el j=12-l2l) - xeRY, Ae[0, 1)

Ly=W,H W, =(—V(x)+ A~ 2(—= B?A)(— V(x)+ 1)~ *.

It is easy to see that L, is essentially self-adjoint on C(R?). The dilation generator
A is defined by
A= ! 0 + 4 X
T2\ Max Tax )

We use the h-pseudodifferential operator calculus (see, e.g., [R, N1]). We denote
aeS(m, g), g = dx*/<x>* + d&2/KE)2, if

0N/ d\ —lal ¢ gy~ 181
ax) 3 a(h; x, §)| £ Cogm(l; x, &) {xy~1*IE T,

x,yeRY, O0<h<1,
for any a and f. The Weyl operator a(h; x, iD) is defined by
a(l x, iD)p(x) = (2mh) ™ [ &/~ a(l; (x + y)/2, &) @(y) dyde

for p e #(RY).
We first prove the limiting absorption principle for L;.

Lemma 3.1. There exists hy > 0 such that if 0 < h < hy then for any y > 1/2,

sup [KA> ML, —1+i) AT £C< 0, A€[0,1], (3.1)

0<e=s1

where C depends only on h,y and V. Moreover,

lim CA> 7" (Ly— 1 £ ie) 'CAY " =AY (L — 1 £i0)7 <A™ (32)
el 0

exist.

Proof. We use the Mourre theory of limiting absorption principle (see, €.g., [Mo,
PSS, CFKS]). By direct computations we can show

(L iAJ(L, + 1)7 1 [[Ly, iA], iAT(L; + 1)" ' e B(L*(RY) .
Hence it suffices to show the Mourre estimate:

E[[L,,iA1E; = 0E, 6>0, I1=[1/22]. (3.3)
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Since the principal symbols of L; are A and given by (— V + A)"1¢%and A~ 1x- ¢,
respectively, the principal symbol of [L;, iA] is given by

x0V

‘thz)(‘V”)”ﬁz

(- V+/1)"‘éz,x-é}=<2

ZQ-p)(=V+H71E,

where { -, -} denotes the Poisson bracket. Moreover, the lower order symbol is in
S(h*<{x»"?~2, g). Hence by the Fefferman-Phong inequality we obtain

[L,iA] =2 — p)L,— Ck?, he(0,1], (3.4)

uniformly in A€[0, 1]. If we take h, sufficiently small, (3.4) implies (3.3) with
0<d<2—-p. O

In what follows we fix i > 0 such that 0 < & £ A,.
Lemma 3.2. For each0< A =1,y > 1/2,

sup [[<AY M (Ly—1+4ieW3) A7 SC< . (3.5)

0<es1
Moreover,

im (AY "(Ly — 1 4 ieW2) 1(AY " = (A (L, — 1 +i0)"1<A>"" . (3.6)
el 0

Remark. The constant C in (3.5) depends on A. The right-hand side of (3.6) is
defined by (3.2).

Proof. Given the Mourre estimate (3.3), the proof of (3.5) is almost identical with
the proof of Lemma 3.1. We only note that we use sup|W,| =411 < oo and
sup|[W3,iA]| £ CA~% < oo, and hence the estimates depends on A. It remains
only to show (3.6). We mimic the proof of the Holder continuity of
F(z2)=<A)""(L; —2)"'<{A>7" in z (cf. [PSS]). Instead of |F(z) — F(z')| we
estimate | F(1 + i0) — F(1 + i0- W?%)|. We omit the detail because the modifica-
tion is obvious and the notations are rather involved. [J

Lemma 3.3. For any B,yeR, 1[0, 1],
(PYPF2ON(Ly + 1) 1) TPy P e B(L*(RY)) , (3.7)

where P = — ihd/0x. Moreover the operator norm is uniformly bounded for A€
[0, 1].
Proof. 1t suffices to show
ULy +1)71<x) e B(L*(RY)) (3.8)
and
(PY 2Ly +1)7 <Py P eB(L*R7)) . (39
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Let fo=1—p/2 and let M, = PW,. Then L, = M§fM, and hence M, is
L}>-bounded. By easy computations, M% is also L}/>-bounded. We compute

[P, (Ly+ 1) ] = (Ly + )7Ly, OPTL + D7
= (Ly+ D)7 ME{M;, o]
+ [MF, COPIMH (L, + D7

It is easy to see [M,, {x>#°]e B(L?), etc., and hence [{x)?°, (L, + 1)~ ']e B(L?).
This implies (3.8) with y = B,. Iterating this procedure we can obtain (3.8) for
y = mpPo, m = 1. Then the claim follows by complex interpolation.

On the other hand, using L}/*>-boundedness of M, again, we have

WiP* (L, + 1)~ !
= W,P?W,y(L, + 1) + (W, P[W,, P1+ W,[W,, P1P)(L, + 1)~}
=Ly(L,+ 1) 4+ 2[W,, PIM¥(L, + 1)™* + W,[P,[W,,P]](L, + )7}
eB(L*(RY)),

since M% is L;,-bounded and | W,[ P, [W,, P]]| < C{x)*~2. This implies (3.9) with
B = 0. Noting that [ P, M,;]e B(L?), (3.9) for general B is proved by commutator
calculations as in the proof of (3.8). [

Lemma 34. Forany 0 <y <1,
[<AY (L + )7 T'WE = C< oo, A€[0,1]. (3.10)

Proof. We show ||A(L; + 1)"1{x> ' W, || £ C < . Then (3.10) holds for y = 1
and (3.10) with y = 0 is obvious. Hence (3.10) for 0 < y < 1 follows by complex
interpolation. The above estimate follows from commutator calculations as in the
proof of Lemma 3.3, and the fact M, = PW, is L,-bounded. [

Lemma 3.5. For 1/2 <y <1,
sup [ TTWIL, —1+i0) WIS C< 0. (3.11)

0=is1

Proof. We use Lemmas 3.1 and 3.4. Then

|y MWL, — 1 £ i0) " W)

= 1COTWHEL+ D7+ 2L+ )72

+ 4L+ D)L, — 1 £i0) "L+ D)W

SCH+ I TTWHLL + )7 A2 1<AY T (Ly — 1 £10)7 <A77

<2C<o0. O
Now we can prove the first part of Theorem 1.9.
Lemma 3.6. If y > 1/2 + p/4, then

sup [Kx>T'H —A+i0)"{x)T'|£C< . (3.12)

0<is1
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Proof. We first note that by Lemmas 3.2 and 3.4,

lim (x> "' W(L, — 1 + ieW?2) L Wi(x)>~?
el 0

= (OTWL, — 1 £0) Ik
On the other hand, it is easy to see
(H—A+igg t=W,(L,—1+ieW2)"'w,.
Hence we obtain

lim (x> "Wy I (H — 4+ ig) LWy (x>

el 0
=) TTWHL, — A+ 0TI x) T
Thus by Lemma 3.5,
sup ([ TTWEOTIH - A+ i0) WO TS C< 0.

0<is1
Since | W, (x)| £ C<{x)?'? for xeRY, Ae[0, 1], it implies
sup [[<x)7"(H—A£i0)"<x) 7| £C< 0,

0<ais1

withy =9 + (1 — y)p/2. Since y > 1/2 if and only if y* > 1/2 + p/4, this implies the
assertion. [

In order to prove the existence of (H — 0 + i_O)‘l, we show

Hm (x> "(H — A 4 i0) " 1{x> ™7 = (x> " Wo(Lo — 1 + i0) ' Wodlx>™7.  (3.13)
Al0

Lemma 3.7. As 1| 0,L,— Ly in the strong resolvent sense. ie., for any z€
C\[O0, o0), B

ssim(L, —z2) '=(Ly—2)""'. (3.14)

210
Proof. It suffices to show

lim (Ll + 1)_1(,0 = (Lo + 1)—1(,0
Al0

for p € #(R?) (see [RS, Sect. VIIL.7]). We have
Li+ D) 'o—Lo+ D) lo=(Li+ 1) (Lo — L) Lo+ 1) o
= (L + 1) Y(WoP*Wy — W, P2 W,){P) 2(x)"2
X (xp2(PY* (Lo + 1)71CPY 72<x) " 2)({x)2<PY29)
and hence by Lemma 3.3,
1Ly + D)7 e — (Lo + D)Mol < CAI<x)*<PY? 9| —» 0
asA ] 0. O
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Lemma 3.8. Fory > 1/2,
s-lim (x> Y(L; — 1 +£i0)" x> 7" =<x> (Lo — 1 £i0)"1{x)>"". (3.15)
Al0

Proof. We note that the convergence:

DTN, — 140 X)) N(L,—14£i0)71x)77 asel0

is uniform in A€ [0, 1] since all the estimates in the Mourre theory is uniform in A.
Hence Lemma 3.7 implies (3.15). [

Proof of Theorem 1.9. Let ¢,y € #(R?). Then it follows from Lemma 3.8 that if
y>1/2+ p/4and f > 1/2,

(0, (x>7M(H — A £10)" 1 (x> 7"Y)
= (@, x> TWiLy — 1 £10)" T W<x) 7 MY)
= ((Wkx)P 77 ), [{x) AL — 1 £ 10) ™1 &) TPI(Wkxd> ™7 7)
= (WolxpP70), [{x) P(Lo — 1 £ 10)™ 1 <x) P (Wo<xDP 7))
= (0, {x) T Wo(Lo — 1 £i0) ™' Wo (x> 7Y).
This proves (3.13) in the weak sense. Let y >y > 1/2 + p/4. Then
x)TNH — 2 £10)7 1 <x)y 7!
=) TH A DT T H L+ DO T H + )7
+ (1 + D) TMH + 1))
X (<x) TV (H = A £ 10) 71y T YT (H 4+ 1) 7))

Noting <{x)*'(H + 1)"'<{x) " is compact, we learn that the weak convergence
of (x)>7Y(H—A+i0)"'¢{x>"" implies the norm convergence of
{xY7YH — A +i0)”"1{x)> 7. This completes the proof of Theorem 1.9. [
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