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Abstract: Quasi-exactly solvable Schrόdinger operators have the remarkable
property that a part of their spectrum can be computed by algebraic methods. Such
operators lie in the enveloping algebra of a finite-dimensional Lie algebra of first
order differential operators - the "hidden symmetry algebra." In this paper we
develop some general techniques for constructing quasi-exactly solvable operators.
Our methods are applied to provide a wide variety of new explicit two-dimensional
examples (on both flat and curved spaces) of quasi-exactly solvable Hamiltonians,
corresponding to both semisimple and more general classes of Lie algebras.

1. Introduction

The spectral problems of non-relativistic quantum mechanics fall within two
general categories. In the first category, we have the small number of so-called
exactly solvable problems, that is Schrόdinger operators whose entire spectrum
can be determined by algebraic methods. The simplest example of such a problem
is given by the harmonic oscillator. In the second category, we have the
Schrόdinger operators whose complete spectrum cannot be computed exactly, but
only approximated numerically at the very best.

Over the past decade, there has been a fair amount of interest in trying to
construct physically significant systems which may not be exactly solvable, but for
which part of the spectrum can be computed exactly by algebraic methods. In the
early 1980's, Alhassid, Gϋrsey, lachello, Levine and collaborators, [1, 3,12] intro-
duced the concept of a "spectrum generating algebra" to construct models for
complicated molecules whose point spectrum could be analyzed algebraically.
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Independently, Turbiner, Ushveridze, Shifman and their collaborators were led to
define a class of spectral problems which they called "quasi-exactly solvable",
[18,21,15]. This class is characterized by the property that the Schrόdinger
operator is Lie algebraic, i.e. expressible as a bilinear combination of first-order
differential operators spanning a finite-dimensional Lie algebra g, and such that
g admits a finite-dimensional module Jf of smooth functions. Thus if Jf is
fe-dimensional, then one can obtain k eigenvalues (counting multiplicities) of the
Schrόdinger operator H by computing the spectrum of the Hermitian operator
(with respect to an appropriate inner product) obtained by restriction of H to the
k-dimensional vector space ΛΛ The Lie algebra g is to be thought of as a "hidden"
symmetry algebra for the quasi-exactly solvable problem, whose presence underlies
the partial solvability of the spectral problem. In the context of applications to
molecular dynamics, Levine [12] posed the problem of classifying the Lie-algebraic
operators under the equivalence relation defined by smooth changes of the inde-
pendent variables and rescalings of the wave function.

The general procedure to be followed in order to solve Levine's classification
problem is quite clear in principle, although the difficulties involved in implement-
ing this procedure in practice are enormous. Indeed, one first needs a classification
up to local diffeomorphisms of the finite-dimensional Lie algebras of first-order
differential operators. As we discuss in detail in Sect. 3 (cf. Theorem 3.3), this can be
shown to amount to the classification of triples (I), m,[F]), where I) is a finite-
dimensional Lie algebra of vector fields, m is a finite-dimensional fj-module of
smooth functions, and [F] is a cohomology class in H1^; C°°(IRn; IR)/m), [6].
Next, one has to determine amongst these Lie algebras of first-order differential
operators those admitting a finite-dimensional module of smooth functions. Fi-
nally, one has to solve the equivalence problem for second-order differential
operators under smooth changes of the independent variables and rescalings of the
dependent variable, thereby determining when a given Schrodinger operator can
be written in the required bilinear form using one of the Lie algebras obtained
above. To our knowledge, it is only on the line and, very recently, in the plane that
a complete classification for the finite-dimensional Lie algebras of first-order
differential operators is known. In [13,10] the Lie algebras of differential operators
are classified on the line. In [6], they are classified in the plane, and in [7] the Lie
algebras on the line or in the plane which admit a finite-dimensional module of
smooth functions are obtained. Remarkably, the cohomology spaces
#*(!); C°°(R"; IR)/m) for all the Lie algebras obtained in [7] depend on a finite
number of cohomology parameters, and these cohomology parameters are all
restricted to take on discrete values in order for the g-module Jf to be finite-
dimensional. On the other hand, the solution of the equivalence problem for
second-order differential operators is relatively straightforward (see [9] for ordi-
nary differential operators and [5] for partial differential operators).

At the present time, a complete classification and a list of normal forms is
available for the one-dimensional quasi-exactly solvable spectral problems
[18, 21], and there are a few known classes of quasi-exactly solvable problems in
two dimensions, [17]. The "hidden" symmetry algebra in these two-dimensional
examples is always given by a representation of either of the compact Lie algebras
su(3), su(2) 0 sιι(2) or so(3) in terms of differential operators. Yet we know from
the classification performed in [6] that there is a wide array of equivalence classes
of Lie algebras of differential operators in the plane (admitting a finite-dimensional
module of smooth functions) which extends considerably beyond the few equiva-
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lence classes considered by Shifman and Turbiner in [17]. It is therefore natural to
use the classification of the Lie algebras of first-order differential operators given in
[7] to construct a new example of quasi-exactly solvable spectral problems for
Schrόdinger operators in two dimensions. This is precisely what we do in this
paper, where particular emphasis is put on using non-compact "hidden" symmetry
algebras to obtain Schrόdinger operators defined globally on IR2 with a square
integrable invariant module Jf. Recently uncovered connections with conformal
field theory, [14, 8,16], quantum chaos, [4], and the theory of orthogonal poly-
nomials, [19], lend an added impetus to this study.

Our paper is organized as follows. In Sect. 2, we recall the solution of the
equivalence problem for differential operators in the form needed for the purposes
of our discussion. Section 3 is devoted to a description of the method we shall use to
construct new quasi-exactly solvable Schrόdinger operators, based on the classi-
fication of Lie algebras of differential operators in the plane. In Sect. 4, we present
our new quasi-exactly solvable potentials and discuss some of their properties.

2. Equivalence of Differential Operators

Let M and M be open subsets of R" with local coordinates given respectively by
(x1, . . . , x") and (x1, . . . , x"). Consider a second-order linear differential operator
T: C °° (M; IR) -> C °° (M; R) given by

r - + Σ + c , (2'1}

where gij

9 V, 1 rg f, j ^ «, and c_ are real-valued functions of class C °° on M.
Likewise, consider an operator T: C°°(M; R) -> C°°(M; R) of the form

with coefficients gίj, b\ 1 ̂  ij ^ n, and c in C°°(M; R).
We say thatjhe operators T and T are equivalent if there exists a diffeomor-

phism φ: M-> M and a nowhere vanishing function μeC°°(M; R) such that

(fψ)°φ = μ Tχ, (2.3)

for every χ e C °° (M; R), where

ψ = (μ χ)°φ-1. (2.4)

Defining the linear operator (depending on μ and φ) ̂ : C°°(M; R)-> C°°(M; R)
by

(μ χ)°φ~1, (2.5)
the equivalence between T and f is simply expressed by the operator equality

f=.F Γ ^""1. (2.6)

This notion of equivalence is well adapted to the study of spectral problems.
Indeed, if T and T are equivalent in the sense of Eqs. (2.3) and (2.4), then they will
have the same eigenvalues and their eigenfunctions will be related to Eq. (2.4).
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Another important property of the equivalence relation (2.5) that is crucial for
our purposes is the following. Consider the Lie algebra 0 (M) of linear first-order
differential operators D on M,

»=Σξ'ί + n> (2-7)
i=l OX

where ξl

9 η, 1 ̂  i g n, are in C°°(M; IR), and where the Lie bracket between
differential operators is given by the usual commutator

[D, E~] = DE-ED. (2.8)

If we define the equivalence of two first-order differential operators De@(M) and
De@)(M) as before, cf. Eqs. (2.3) and (2.4), then this equivalence relation preserves
the Lie bracket, or, more precisely, defines a Lie algebra isomorphism
0 (M) -> 2(M). In other words, if Dt e 3)(M) is equivalent to Dt e 2f(M) for ΐ = 1,2,
then [/>!, D2] will be equivalent to [Di9 D2]

It is a straightforward matter to obtain a workable set of necessary and
sufficient conditions for two second-order differential operators T and T to be
equivalent. We now briefly recall these conditions, which are first given in a paper
of E. Cotton [5]. We first observe that if there exist functions φ and μ satisfying the
equivalence conditions (2.3) and (2.4), then for every peM the quadratic forms
associated to the symmetric matrices ( g ί j ( p ) ) ι ^ ί j ^ n and ( g ί j ( φ ( p ) ) ) ι ^ ί j ^ n should
have the same rank and same index. We shall assume throughout this paper that
these quadratic forms have rank equal to ^and index equal to zero, i.e. that they
are positive definite. We may thus interpret the functions gij, 1 ̂  ij ^ n, as defining
the contravariant components of a Riemannian metric

(gij) = (gijΓ1 (2.9)

on M, and likewise for gij on M. In what follows, we shall use these metrics to raise
and lower the indices of tensor fields on M and M in the usual way.

It is convenient to rewrite T in the coordinate-independent form

T= Σ gVφt-AtWj-AJ+V, (2.10)
i,j=l

where V f denotes the covariant differentiation operators with respect to the Levi-
Civita connection of (0y),

Al= Σ gijAj

and

g = det(^ ) . (2.13)
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Similarly, we may express f as

f= Σ g*J<?t-AtWj-Aj)+U. (2.14)
i j=l

Let us also rewrite the non-vanishing scaling function μ in the form

μ = e°ι (2.15)

defining the metric forms

ds2= £ gtjdx'dx*, ds2 = £ gtjdx'dx', (2.16)
i , J = l i,j=l

and the magnetic l-forms

ω = £ 4«&', ώ = £ Aid? , (2.17)
i = l i = l

we have the following result:

Theorem 2.1. The necessary and sufficient conditions for the differential operators
T and T given by Eqs. (2.10) and (2.14) to be equivalent under a diffeomorphism
φ: M -> M 0m/ rescalίng by μ = eσ are that

φ*(ds2) = ds2 , (2.18)

φ*(ώ) = ω + dσ, (2.19)

U°φ=U. (2.20)

In particular, from (2.18) we see that if T and Γare equivalent then the metrics
ds2 and ds2 are necessarily isometric, as already observed.

Definition 2.2. A Schrδdinger operator on M is a second-order differential operator
H: C°°(M; R)-> C°°(M; R) of the form

H=-\ Σ 0iJViVj+V (2.21)
Z i , j = l

In the previous formula, Fe C°°(M; IR) is the potential function for the physical
system under consideration, and a system of physical units has been chosen so that
h = m=l. The Riemannian metric (gij) = ( g i j ) ~ 1 associated to H may have
non-zero curvature if the system is constrained, e.g. a particle moving on a sphere,
but for most of the applications we have in mind the metric will be flat, so that the
Schrόdinger operator (2.21) will be locally expressible in the form

in appropriate coordinates (x1, . . . , xn). Finally, notice that the differential
operator

is the well-known Laplace-Beltrami operator associated to the metric (g^) on M.
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As special cases of Theorem 2.1, we obtain the following necessary and suffi-
cient conditions for a linear differential operator — \T to be equivalent to a flat
Schrόdinger operator Hnat or, more generally, to a Schrόdinger operator H on
a curved Riemannian manifold:

Corollary 2.3. The differential operator —?T, where T is given by Eq. (2.10), will be
equivalent to a Schrόdinger operator Hflat of the form given by Eq. (2.22) for some
potential function V if and only if:

i) The metric ds2 is Riemannian, i.e. positive-definite.
ii) The Riemann-Christoffel curvature tensor of ds2 is identically zero, that is

Rl

jki = 0.
iii) The magnetic l-form ω is closed: dω = 0.

// only conditions i) and iii) are satisfied, then — ?T will be equivalent to
a Schrδdinger operator H of the form (2.21), and conversely.

It should be noted that in the case n = 2, the condition ii) is equivalent to the
vanishing of the Gaussian curvature of ds2. In the case n = 1, the above results
simplify considerably. Indeed, in this case condition i) is always locally satisfied up
to an overall sign, whereas conditions ii) and iii) are automatically fulfilled. Hence
any second-order linear differential operator on the line is locally equivalent to
a Schrόdinger operator, up to an overall sign.

3. Quasi-Exactly Solvable Schrόdinger Operators in R"

From now on, we shall restrict our attention to the case M = R". Let, as before,
^(R") denote the set of all first-order differential operators of the form (2.7)
globally defined on R". Note that the elements of £^(R") have a natural action on
smooth functions, so that C°° (Rπ; R) has a natural ^(Rn)-module structure.

A linear differential operator T in Rw is said to be Lie-algebraic if it is an
element of the universal enveloping algebra ^(g) of a finite-dimensional Lie
subalgebra g of ^(R"). In particular, a second-order linear differential operator
T of the form (2.1) is Lie algebraic if there exist r linearly independent first-order
differential operators

n fi

where ξai, ηa, 1 ̂  a ̂  r, 1 ̂  i ̂  n, are in C°°(R"; R), which span a finite-dimen-
sional Lie algebra under the commutator, and which are such that

r r
V /^ T'aηrb _ι_ V"1 s~< ηna \ r* C\ ^\

— 2*ι ^ab1 -L i 2-f ^α •" ° ' \^ ^)
a,b=l a=l

for some real constants Cab, Ca, 1 g a, b ̂  r, and C0. Since the addition of the
constant C0 merely shifts the spectrum of T as a whole, we shall often find it
convenient to fix the origin of the latter spectrum by setting C0 = 0.

We now define the class of Schrόdinger operators which will be the main focus
of our study.
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Definition 3.1. A Schrδdinger operator

H=-\ Σ TOV V; + F(x) (3.3)

(or, more generally, an arbitrary second-order differential operator) in Rn is said to be
quasi-exactly solvable if.

i) H is Lie-algebraic, i.e. there exists a finite-dimensional Lie subalgebra g o/^(R")
such that He <%($).

ii) The Lie algebra g leaves_a finite-dimensional subspace Jf of C °° (Rw; R) invari-
ant, that is g admits N as a finite-dimensional module of smooth functions.
In other words, we have a finite-dimensional representation of § on a subspace Jf

Let L2(M; p) denote the space of square integrable functions on a manifold M with
respect to the measure p. If, in addition to i) and ii),

iii) The finite-dimensional module N is a subspace of L2(IR"; ^/g(x)dxl . . . dxn),
then H is said to be a normalizable quasi-exactly solvable Schrδdinger operator.
A potential F6C°°(IR"; 1R) is called a (normalizable) quasi-exactly solvable
potential if it arises from a (normalizable) quasi-exactly solvable Schrδdinger
operator.

Remark. If g contains functions, there might be quasi-exactly soluable second-
order differential operators Γe^(g) expressible as polynomials of degree higher
than two in the generators Ta of g. However, this generalization of (3.2) is only
apparent, since it is easy to show that, given a second-order differential operator
Γe^(g), it is always possible to extend g to another finite-dimensional Lie algebra
g by including suitable functions, in such a way that Γis a polynomial of degree no
higher than two in the generators of g.

From this definition, we see that the eigenvalue problem for a normalizable
quasi-exactly solvable Schrόdinger operator H is partly solvable by strictly alge-
braic constructions. Indeed, from the self-adjointness oiH with respect to the inner
product associated to the standard measure

V^rfx1 . . . dx" , (3.4)

it follows that the restriction of H to the finite-dimensional subspace Jf is
a Hermitian finite-dimensional linear operator (with respect to an_ appropriate
inner product). Hence we can in principle exactly compute s = dirnΛ" eigenvalues
of H (counting multiplicities) by diagonalizing the sxs matrix representing H
in any basis of ΛΛ For this reason, we shall be almost exclusively concerned in
this paper with normalizable quasi-exactly solvable Schrόdinger operators and
potentials.

Another important remark, which we shall systematically exploit in what
follows, is that the property of being quasi-exactly solvable is invariant under the
equivalence relation defined in the previous section, cf. Eqs. (2.3) and (2.4). Indeed,
suppose that a Schrδdinger operator H is equivalent to a quasi-exactly solvable
second-order differential operator — iΓe^(g) under a diffeomorphism φ and
a rescaling μ, i.e.

-2H = 3f T ^-ί (3.5)
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with 3F defined by (2.5). Then it is immediate to show that H is quasi-exactly
solvable with respect to the finite-dimensional Lie algebra

8 = ̂ r 8 #"-1 = {̂  Ar #-1 |A'eβ}, (3.6)

which is isomorphic to g and possesses the finite-dimensional g-module

(3.7)

Jf being the finite-dimensional g-module whose existence is guaranteed by the
quasi-exact solvability of T. Notice, by contrast, that the class of normalizable
quasi-exactly solvable second-order differential operators is not invariant under the
equivalence relation defined by (3.5), i.e. H may fail to be normalizable (with respect
to the measure (3.4)) even if T is.

In practice, to find examples of normalizable quasi-exactly solvable
Schrόdinger operators one usually starts with a Lie algebra of first-order differen-
tial operators g admitting a finite-dimensional g-module of smooth functions Jf,
expressed in suitable "canonical" coordinates (cf. [7]). Next, one tries to construct
a Lie-algebraic second-order differential operator Γe^(g) satisfying conditions ii)
and iii) of Corollary 2.3. This guarantees that -^Γis equivalent to a Schrodinger
operator H = —\^ ~ 1 T &, which by the previous remark will be quasi-exactly
solvable. Lastly, one has to check whether or not H is normalizable, i.e. whether or

not JΫ c L2(1RΠ; ^/tjdx1 . . . die"). Since

&\ L2(M; μ2^gdxί . . . dxn)-^ L2(M; ^jdx1 . . . dx") (3.8)

is clearly a linear isometry, this is equivalent to checking whether or not

JΓ d L2(JR"; μ2^/gdxί . . . dx") . (3.9)

If that is the case then, as remarked before, 5 = dim Λ^ = dim Jf eigenvalues
(counting multiplicities) and linearly-independent square-integral eigenfunctions of
H can be computed algebraically. One often computes these "algebraic" eigen-
values of H by diagonalizing the restriction of — ̂ Γto Jf, using (2.4) to obtain the
eigenfunctions of H from those of — %T. Notice, finally, that although Γneed not
be (formally) self-adjoint with respect to the inner product associated to the

standard measure ^/gdx1 . . . dxn, it is automatically self-adjoint with respect to

the inner product defined by the measure μ2^fgdxl . . . dxn. (This is easily proved
from the self-adjointness of H with respect to the standard inner product, using
(2.6) and the fact that (3.8) is a linear isometry.) In particular, this guarantees that
the restriction of Γto Jf is Hermitian with respect to an appropriate inner product,
and therefore has exactly s = dim Jf real eigenvalues counting multiplicities, as
expected.

Example 3.2. Consider the Lie algebra g ̂  sl(3) c ^(IR2) spanned by the first-
order differential operators

Γ^p, T2 = q, Γ3 = xp, Γ4 = yp, Γ5 = xq ,

Γ6 = yq, T7 = x2p + xyq - 2x, T8 = xyp + y2q - 2y , (3.10)
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where we have used the classical notation

d d

511

(3.11)

Let H be the Schrόdinger operator (2.21) defined by the contravariant metric
components

g12 = xy(β + s),

g22 = Aα + y2(β + s),

and by the potential

-3s3-71j8s2

K=
- 48Aαy)s - β(Uίβ2 - 72λaγ)

where

8(s2 + λaγ - β2)

y(λx2 + y2),

(3.12)

(3.13)

(3.14)

(3.15)

the parameters α, γ and λ are positive, and β is nonnegative.
We shall show in Sect. 4.2.1 that — 2H is equivalent under rescaling by

μ = α1/4v5/8(s2 + /Lav — β2)"5/8

to the Lie-algebraic differential operator Γe^(g) given by

T= αUΓ1)2 + λ(T2)2) + y(λ(Tη)2 + (Γ8)2)

I β(T^T8 I T'8'T Ί I rr2HΓ& I rτι8'j-'2 ι 7T'3 ι ΊT^\ (^ ]£\

The Lie algebra g leaves invariant the subspace «yΓ c= C°°_(1R2;IR) of all poly-
nomials of degree less than or equal to two, whose image Jf under the rescaling
(3.15) is spanned by the functions

(s2 + Λαy - β2Γ5/8, 0 ̂  i + j ^ 2 . (3.17)

Since these functions are obviously square integrable with respect to the volume
element

(y/α)1/2(s2 + /lay - β2Γί/2dxdy (3.18)

associated to the contravariant metric (3.12), H is a normalizable quasi-exactly
solvable Schrόdinger operator. Hence we can exactly compute six eigenvalues of
H (counting multiplicities) and its corresponding eigenfunctions by diagonalizing
the matrix of the restriction of Γto jV. In the standard basis (1, x, y, x2, xy, y2} of
Jf, the latter matrix is easily computed from Eq. (3.16), obtaining

(3.19)

/

\

~4β

0

0

2λγ

0

2γ

0

2β

0

0

0

0

0

0

2β

0

0

0

2α

0

0

12/5

0

0

0

0

0

0

12j8

0

2λΛ\

0

0

0

0

I2β /
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The eigenvalues of this matrix arranged in order of increasing magnitude are:

= 4β- 2Λ/16jβ2 + 2/lαy ,

= 2β ,

= 120,

+ 2/lαy , (3.20)

with multiplicities 1, 2, 2, and 1, respectively. Its associated eigenvectors are easily
found to be

χ21 = (0 1 0 0 0 0)', χ22 = (0 0 1 0 0 0)'

χ 3 ι = ( 0 0 0 0 1 0)', χ32 = ( 0 0 0 λO -I)';

0 Q χ 0

V y )
Hence H has the eigenvalues (arranged in order of increasing magnitude)

E, = -2β-

E2 =-6β,

E3=-β,

E4= -2β + yiόjβ2 + 2λay . (3.22)

Taking into account the rescaling (3.15), the eigenfunctions of H associated to its
eigenvalues (3.22) are given respectively by

2 2
- y2)(s

λx2 + );2 1 . (3.23)

Notice, however, that we don't have any information as to where in the point
spectrum of H lie the eigenvalues (3.22) just found.

In the remainder of this section, we shall present a general procedure for
classifying the normalizable quasi-exactly solvable potentials in n ̂  2 dimensions.
Section 4 will be devoted to the implementation of this procedure in the case n = 2,
allowing us to obtain a wide array of new normalizable quasi-exactly solvable
planar potentials.

The first step in the classification of quasi-exactly solvable Schrodinger oper-
ators in Rπ is to classify the finite-dimensional Lie subalgebras of ^(IRM) under
diίfeomorphisms φ: IR" -> IRW and rescalings μ: IR" -> IR*, acting on ^(IRW) accord-



New Quasi-Exactly Solvable Hamiltonians in Two Dimensions 513

ing to Eqs. (2.3) and (2.4). This first step has a natural formulation in terms of Lie
algebra cohomology, [6]. Indeed, any finite-dimensional Lie subalgebra g of ̂ (RM)
has a basis of the form

*!+/!,..., * / + / / , / z 1 , . . . , / z m , (3.24)

where Xl9 . . . , Xt are linearly independent vector fields spanning an /-dimen-
sional Lie subalgebra f) of the Lie algebra of vector fields on R", and where the
functions hl9 . . . , hm act as multiplication operators on C°°(Rn; R).

Since g is a Lie algebra, the functions hί9 . . . , hm must necessarily span an
^-module m c C°°(R"; R). In other words, m must be invariant under the action of
ί) (by derivation). Moreover, the functions /i, . . . , / / define a 1-cochain
F: ί)-» C°°(RΠ; R), according to <F; Xty =fh 1 ̂  i ̂  /. Actually, F ought to be
regarded as a C°°(RW; R)/m-valued 1-cochain, since the /f, 1 ̂  i ̂  /, are only
defined up to linear combinations of the hJ9 1 ̂ j ^m. Recall now that the
coboundary of a C°°(Rn; R)/m- valued 1-cochain is the alternating bilinear map-
ping δίF: I) x ϊ) -> C°°(R"; R)/m defined by the formula

- <F; [X, 7]> . (3.25)

In order that the differential operators (3.24) span a Lie algebra, it is necessary and
sufficient that the right-hand side of Eq. (3.25) lie in the fy-module m for all choices
of X and 7 in f), or in other words that F be a C °° (Rw; R)/m- valued cocycle. On the
other hand, two Lie subalgebras of ^(RM) will be equivalent under a rescaling
given by Eqs. (2.3) and (2.4) with φ = idR« if and only if their corresponding
1-cocycles differ by a 1 -cocycle G of the form <G;^> = Xi( — logμ) = Xt( — σ\
1 rg i ̂  /, that is by a 1 -coboundary G = δ0( — σ). Thus we have:

Theorem 3.3. There is α one-to-one correspondence between equivalence classes of
finite-dimensional subalgebras o/^(R") and equivalence classes of triples (t), m, [F]),
where:

i) I) is a finite-dimensional Lie algebra of vector fields.
ii) m c= C^R"; R) is a finite-dimensional fy-module.

iii) [F] is a cohomology class in H1^ C°°(RM; R)/m) ~ ker^/imV

If one assumes that the triples (I), m, [F]) have been classified, then one has
a complete list of the Lie-algebraic second-order differential operators by taking
quadratic combinations of the form (3.2). The classification of triples (I), m, [F]) is
however a highly non-trivial problem. The complete answer is only known in the
case of Lie algebras of differential operators in two complex variables, that is
finite-dimensional subalgebras g c= ^((C2), [6].

The next step towards the classification of the quasi-exactly solvable potentials
is to determine which of the (equivalence classes of) Lie subalgebras g c= ^(Rw)
obtained in Theorem 3.3 admit a finite-dimensional module Jf of functions in
C°°(Rn;R). Again, this is a fairly complicated problem which has been solved
completely in the case of finite-dimensional subalgebras g of ̂ (C2), [7]. Remark-
ably, for all the Lie algebras obtained in reference [7], the condition that there exist
a finite-dimensional module of functions forces the cohomology parameters arising
in Theorem 3.3 to take only a discrete set of values. This phenomenon of the
"quantization of cohomology" is a fascinating problem that deserves further
investigation.
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The next step in the classification of quasi-exactly solvable Schrόdinger oper-
ators is to determine which of the Lie-algebraic second-order operators obtained as
a result of the first two steps are equivalent to a Schrόdinger operator. To this effect
we must apply Corollary 2.3, the content of which we now formulate a bit more
explicitly.

Let us first rewrite Eq. (3.2) a bit differently as

r=-2#gauge = Σ cabτ
aτb+ Σ c«τa, (3 26)

α , f c = l α = l

where the Lie-algebraic operator #gauge will be referred to as the "gauge Hamil-
tonian," since it is to be equivalent to a Schrόdinger operator under the combined
effect of a rescaling or "gauge transformation" on the dependent variable
and a change of independent variables, as per Eqs. (2.3) and (2.4). (Notice
that the rescaling (2.4) with φ = idjR", though it is not a unitary transformation
of L2(R"; ^/gdx1 . . . dxn\ is nevertheless a genuine unitary operator from

L2(JRΠ; μ2^fgdxi . . . dxn) onto L2(JR"; ^/gdx1 . . . dxn).) By expressing Γin the
forms (2.1) and (3.26), and using (3.1), we obtain

9ίj= Σ Cabξ
aίξbj, (3.27)

a,b=l

r Γ / d£bί \ -]
i = Σ KM ξaj 7π + W + c«tai '

a,b=l\_ \ OX J J

'= Σ C»p + trt + Crf. (3.29)
α , b = l L \ OX J J

The functions Ai9 1 ̂  ί ̂  n, and C/ are computed from the above equations using
(2.1 1) and (2.12). According to Corollary 2.3, the necessary and sufficient conditions
for the existence of a "gauge transformation"

ιA = μχ = eσχ , (3.30)

transforming the eigenvalue problem

tfgauge* = Eχ (3.31)

into the "physical" eigenvalue problem

Hψ = E\l/ , (3.32)

where H is the Schrόdinger operator (2.21), is that

α,6=l L \ J = 1 \ 3χJ 3XJ / J J

for 1 ̂  i ̂  n, where

-log^ . (3.34)



New Quasi-Exactly Solvable Hamiltonians in Two Dimensions 515

The conditions (3.33) will be called the closure conditions, since they simply express
that the magnetic 1-form ω = Σ"=ι Aidx* should be closed. If the closure condi-
tions are satisfied, then the potential V in the Schrόdinger operator is given by

— f
= -\ + \ Σ Γ-^' + ̂ ^( '̂)]. (3.35)

2 2 i = ι L v#^ -I
The fourth and final step required to classify the normalizable quasi-exactly

solvable Schrόdinger operators is to ensure that the image Jf of the g-module
Jf under the transformations (2.3) and (2.4) which map the eigenvalue problem
(3.31) for the gauge Hamiltonian to the eigenvalue problem (3.32) for the physical

Hamiltonian (3.3) is such that Jf a L2(1RW; ̂ dx1 . . . dxn). Explicitly, this means
that if {MI(X), . . . , ΰs(x)} is any basis of «yΓ, then

f \ΰa\
2^jdxl...dxn«x)9 l ^ α ^ s , (3.36)

R"

or equivalently

f \ua(x)\2e«(x)dx* ...dxn<oo, 1 ̂  α ̂  s , (3.37)
R"

for a basis (MI(X), . . . , us(x)} of ΛΛ Note that the square-integrability conditions
(3.36) or (3.37) are invariant under global diffeomorphisms φ: R" -» R".

We conclude this section with an important remark. Since the closure condi-
tions are extremely complicated to solve in full generality, it is highly desirable to
simplify them whenever possible. A natural way of obtaining a subset of the set of
solutions to the closure conditions (3.33) is to consider the simplified closure
conditions

ί=l

where (fe1, . . . , kr) is a constant vector and

Ca = Σ C<*kb . (3.39)
b = l

It is important to observe that the simplified closure conditions are independent
of the CabS: therefore, a particular solution αίx1, . . . , xn) of Eqs. (3.38) will
generate an infinity of solutions to the full closure conditions (3.33), with
Cab completely arbitrary and Ca given by (3.39). Introducing the volume form

Ω = e'dx1 . . . dx" , (3.40)

Eqs. (3.38) can be rewritten as

&χaΩ = (ka + 2ηa)Ω, 1 ̂  a ̂  r , (3.41)

where

* e =l£"a (3 42)
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denotes the projection of the generator Ta of Q into the set 3£(lRn) of vector fields on
IRΛ In particular, if the cohomology is trivial (i.e. ηa = 0 for all α = 1, . . . , r, or
equivalently g = I)) a solution of the simplified closure conditions with ka = 0 for all
a will yield a cj-invariant volume form on R". The advantage of formulating the
simplified closure conditions in this way lies in the fact that very general conditions
ensuring the existence of such an invariant volume form are known. For instance, if
the action of g = I) on (an open subset of) Rπ is transitive, it suffices that the
isotropy subgroup of a generic point of RM - and hence of any point - be compact.
In particular, since the isotropy subgroup of a point is always closed, it is
automatically compact if g itself is compact. Therefore, if g is compact and acts
transitively then the simplified closure conditions are automatically compatible. In
the two-dimensional case, these two requirements are clearly met by the $o(3)
algebra spanned by the vector fields

T^yq-xp, T2 = xyp + (1 + y2)q, Γ3 = (1 + x2)p + xyq , (3.43)

cf. [14]. Thus, without any explicit computations, we are assured of the existence of
an infinite number of solutions to the full closure conditions for this algebra, with
Cab arbitrary and Ca = 0 for all a = 1, . . . , r (since ka = 0 for all α), [17].

In the previous example, one can explicitly solve the simplified closure condi-
tions and compute the gauge factor μ = eσ from Eq. (3.34). When this is done, it is
found that the finite-dimensional so(3)-module of smooth functions Jf is a sub-

space of L2(R"; μ2^fgdxv . . . dxn\ and therefore all the solutions of the closure
conditions obtained in this way give rise to normalizable quasi-exactly solvable
Schrόdinger operators. In fact, the simplified closure conditions can be explicitly
solved for all the two-dimensional (complex) Lie algebras of first-order differential
operators listed in reference [7]. However - with the only exception of so (3) noted
above - their solutions are found to generate quasi-exactly solvable Schrόdinger
operators that are not normalizable. Hence in the two-dimensional case the
simplified closure conditions are of very limited use. It is however important to
keep in mind that, even when the simplified closure conditions don't have any
acceptable solutions, the/w// closure conditions (3.33) may be compatible and may
give rise to normalizable quasi-exactly solvable Schrόdinger operators, as we shall
see in the next example.

Example 3.4. For each neN, let gM ^ $1(3) be the Lie subalgebra of ^(R2)
generated by the first-order differential operators

T1=p9 T2 = q, Γ3 = xp, T4 = yp, T5 = xq ,

T6 = yq, T1 = x2p + xyq - nx, T8 = xyp + y2q - ny . (3.44)

We shall show in Sect. 4 that the closure conditions (3.33) for the Lie algebra gπ

have a solution for every n e N. (For n = 2, this fact has been implicitly used in the
previous example.) On the other hand, it is easy to show that the simplified closure
conditions (3.38) don't have any solutions in this case.

Indeed, from the first two equations in (3.38) we obtain (dropping an irrelevant
additive constant)

α(x, y) = fc1* + k2y . (3.45)
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Substituting this into the following four equations in (3.38) we get the identities

fc1* + 1 = k3 ,

kly = k4 ,

k2x = k5 ,

k2y + 1 = k6 , (3.46)

from which it follows that

k1 = k2 = k4 = k5 = 0; fc3 = k6 = 1 , (3.47)

WhenCC « = 0 . (3.48)

But substituting the latter equation into the last two equations (3.38) we obtain

(3 - 2n)x = k1 ,

(3 - 2n)y = k8 , (3.49)

which can only be satisfied if n = 3/2φ N.

4. New Quasi-Exactly Solvable Potentials in R2

In the preceding section, we presented the general procedure to be followed in
order to determine and classify the normalizable quasi-exactly solvable potentials
in n ̂  2 dimensions. We shall now implement this procedure in the case n = 2. This
will enable us to obtain a wide array of new normalizable quasi-exactly solvable
planar potentials besides the examples already known through the work of
Shifman and Turbiner, [17]. Our choice to work in two dimensions is motivated by
the fact that it is only for n = 2 that a complete classification is available of the Lie
algebras of first-order differential operators admitting a finite-dimensional module
of smooth functions [7].

Before we proceed to describe our new potentials, it is important to summarize
the basic requirements on a Lie-algebraic operator T given by Eq. (3.26) in order
for it to give rise to a normalizable quasi-exactly solvable potential in R2. The
significance of these requirements will be illustrated with concrete examples.

The first requirement, which stems from Corollary 2.3, is that the metric (g^)
defined in terms of the generators of the Lie algebra 9 and the constants Cab by
(3.27) be globally Riemannian, that is we should have

g11>0, ^V2-(31 2)2>0, (4.1)

everywhere in R2. Indeed, if these conditions were violated, then the Schrόdinger
operator (2.21) would fail to have a principal symbol of the required negative
signature, which is necessary for the physical interpretation of the eigenvalue
problem of H as the non-relativistic Schrόdinger equation of a particle on a two-
dimensional Riemannian manifold. A case in point is the following example
considered by Shifman and Turbiner [17, Eq. (25)]:

Γ-*>(l + *>)^-2(l+ *>)(!+ v*)^+v'(l+y>)^ + ... (42)— \ " ^ / Λ 9 \ *^ / \ *^ y ) Λ Λ " ^ y \ '^ y / ^ 'j *^ * \ /ox oxdy oy

This differential operator is hyperbolic everywhere, instead of being elliptic.
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The second requirement, which we now discuss at length, has to do with the
issues of square integrability and boundary conditions. The fundamental require-
ment is of course that the eigenfunctions arising from the application of the
algebraic method be normalizable, so that they can be physically interpreted in
standard quantum-mechanical fashion as the particle's probability amplitude.
Suppose that we have a Schrόdinger operator (2.21) such that (#0 ) is positive-
definite and has zero Gaussian curvature everywhere in R2. Thus there exist local
coordinates (x, y) in which H takes the form Hnai given by Eq. (2.22) with n = 2:

0 (4.3)

It may happen that the change of variables which puts the operator (2.21) in its
normal "physical" form (4.3) will map the whole plane R2 onto an open proper
subset (say a bounded open rectangle), as would be the case with a covering map.
We will thus have to deal with the issue of boundary conditions for the wave
functions in the (x, y) coordinates at the boundary of this set. These boundary
conditions will play a crucial role for the existence of admissible wave functions,
since in general they will not be automatically satisfied by the eigenfunctions found
by applying the "algebraic" method. Let us illustrate these ideas with two informa-
tive examples.

Example 4.1. Consider the Schrόdinger operator

+ 2(1 + y2)l-nx + B(l - m)y] --
dy

+ A(n - l)nx2 + 2mnxy + B(m - l)wy2 , (4.4)

where A > 0 and B > 0 are real parameters, m and n are nonnegative integers, and

AB > 1 . (4.5)

This operator will be shown below (see Sect. 4.1.4) to be quasi-exactly solvable,
with constant potential and hidden symmetry algebra g = sl(2) 0 sl(2). The con-
travariant metric components are given by

0n = Λ(l + x2)2, g12 = (1 + *2)(1 + y2), g22 = B(l + y2)2 , (4.6)

so that the metric is globally Riemannian and has zero Gaussian curvature
everywhere in 1R2. The coordinate transformation and rescaling of the wave
function mapping the operator (4.4) to the normal form (4.3) are given by

B arctan x — arctan y _ 1
x = - ===== - , y = —= arctan y (4.7)

- 1)

μ = (1 + x 2 )-(l + y2)-* (4-8)
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The coordinate transformation (4.7) maps the whole plane onto a bounded open
rectangle; therefore this example describes the physical situation of the free particle
confined to a bounded rectangle. The natural boundary conditions in the (x,y)
coordinates are that the eigenfunctions should vanish at the boundary of the
rectangle, so that the particle has zero probability of getting to the boundary and
escaping. From the form of the gauge factor μ as given by (4.8), and the fact that any
finite-dimensional module of smooth functions for the Lie algebra g is spanned by
polynomials, we see that the eigenfunctions arising from the application of the
algebraic method for quasi-exactly solvable problems are of the form

(1 + x2)2(l + y2)2

where P is a polynomial of degree less than or equal to n in x and less than or equal
to m in y, and (x, y) 6 R2 is mapped to (x, y) in the rectangle according to the local
inverse of the diffeomorphism (4.7). The condition that ψ(x,y) vanish at the
boundary of the rectangle, that is when x and 3; tend to infinity, should now be
imposed as an additional requirement on the eigenfunctions of H, since it won't
automatically hold in general.

Example 4.2. Consider the Schrόdinger operator given by

+ 2 ( 1_n w l +^_+ 2 (_n + ( 1_π ) x^_
+ (n - l)nx2 + n(n + 1) + 1 . (4.10)

We shall see in Sect. 4.3.2 that this differential operator is quasi-exactly solvable,
with hidden symmetry algebra isomorphic to gI(2)xR2. The metric, whose
contravariant components are given by

0 n =(l + x2)2, g12 = xy(l + x2), g22 = (1 + x2)(l + y2), (4.11)

is again globally Riemannian with zero Gaussian curvature everywhere. The
change of coordinates and rescaling which map the operator (4.10) to the normal
form (4.3) are given by

y
x = arctan x, 3; = arcsinh Λ (4.12)

(4.13)
(1 + x2 + /)—

The coordinate transformation (4.12) maps the plane to an open infinite strip
(—π/2, π/2) x JR. in a locally diffeomorphic way. The eigenfunctions obtained by the
algebraic method are of the form

cos"x
— P(tan x, sec x sinh 3;), (4.14)

coshn + 13;
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where P(x, y) is a polynomial of total degree n in (x, y). Again, the natural
boundary conditions are that the eigenfunctions vanish at the boundary of the
strip, that is

= 0, V y e R . (4.15)

As in the previous example, only some of the eigenfunctions (4.14) will fulfill the
boundary conditions (4.14). The potential F(x, y) is remarkably simple:

V(x9 y) = - 1 (1 + n)(2 + n)sech2 y . (4.16)

It is independent of x, and is a restricted Pόschl-Teller potential in y.
It should be pointed out at this stage that the natural boundary conditions

chosen above are by no means the only ones one could consider from a geometrical
point of view. For instance, one could identify the sides of the strip in Example 4.2
and consider the motion of a particle on an infinite cylinder. The boundary
conditions would then be periodic in x, i.e.

V y e R . (4.17)

The above examples show that in many cases the range of the "physical"
coordinates is not all of R2, but an open subset M e 1R2 with nonempty boundary
dM. This happens typically in the case of metrics of zero Gaussian curvature -
where there is a natural set of Cartesian coordinates - if the coordinate transforma-
tion mapping (x, y) to (x, y) is a covering map. In general, if there is a natural
system of "physical" coordinates suggested by the geometry associated to the
underlying Riemannian metric (say a metric of constant curvature on a hyper-
boloid), then one has to go through the additional steps of determining the range of
these coordinates, choosing natural boundary conditions for the eigenfunctions,
and determining which of the eigenfunctions obtained by the algebraic method
fulfill these conditions along with square integrability. As shown by Examples 4.1
and 4.2, such a procedure is by no means unique (e.g. a cylinder vs. an infinite strip).
In any case, we shall always require the gauge Hamiltonian (3.26) to be defined over
all of R2 in the (x, y) coordinates, and to have a principal symbol of positive-
definite signature everywhere.

The third requirement is that of irreducibility, namely that the gauge Hamil-
tonian (3.26) should always explicitly involve elements Ta of the hidden symmetry
algebra 9 which, together with their commutators [Γα, Γb], span the entire Lie
algebra g. Indeed, if the Γα's generated a proper subalgebra g0, then we could have
a situation where non-trivial cohomology classes for g become trivial for g0, and
thus give rise to terms in the gauge Hamiltonian (3.26) which could be eliminated
by a gauge transformation. Let us illustrate this by an example.

Example 4.3. Consider the Lie algebra spanned by the differential operators

Tί=p + q, T2 = xp + yq, T3 = x2p + y2q + (x - y), (4.18)
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where as before

'-s -£• <4 19)

This Lie algebra, which is isomorphic to sl(2, R), corresponds to Case 12 in the
classification [7] of Lie algebras of planar first-order differential operators admitt-
ing a finite-dimensional module of smooth functions. It admits a finite-dimensional
module of smooth functions if and only if the cohomology parameter n is an integer
constant. But the two-dimensional subalgebra g0 spanned by T2 and Γ3 is
isomorphic to the Lie algebra ί)2 - the unique non-abelian (solvable) two-dimen-
sional Lie algebra - which has trivial cohomology under the assumption of the
existence of a finite-dimensional module of smooth functions (see [7, Case 2]).

Before proceeding to present our list of new normalizable quasi-exactly solvable
planar potentials, we should make some general comments on these potentials.

First of all, our list is by no means complete. We restricted ourselves to three Lie
algebras out of the list of 24 obtained in [7], namely realizations of the Lie algebras
sl(2, R) © $1(2, R) and 01(3, R), already considered by Shifman and Turbiner [17],
and gl(2, R)xR r+1, corresponding to Case 24 in the classification of reference
[7]. For each Lie algebra g, we shall give below its realization in terms of first-order
differential operators Γα, 1 ̂  α ̂  dim g, and then present the various parametrized
families of normalizable quasi-exactly solvable potentials with a brief discussion of
their salient features. As before, we shall use the notation

T= £ CabT
aTb+ CβΓ

β + C0, r = dimg. (4.20)
a,b=l a=l

Our choice was made after much trial and error with the other Lie algebras in our
list, leading almost invariably to metrics which were not globally Riemannian, or to
eigenfunctions which were not square integrable.

Secondly, the normalizable quasi-exactly solvable potentials we obtained
initially were much more complicated than the ones we present below. We chose to
specialize the values of some parameters in order to make the expressions more
compact and tractable while retaining the essential properties of the general
potentials. We should also point out that the new potentials we have obtained for
the Lie algebras sl(2)φsl(2) and sl(3) all arise from solving the full closure
conditions (3.33).

Thirdly, the proportionality between the potential and the Gaussian curvature
according to

V = γ6K, (4.21)

proved by Losev and Turbiner [11] for quasi-exactly solvable Hamiltonians
associated to the hidden symmetry algebra su(2) with zero cohomology, is in
general not satisfied (even asymptotically). Specific counterexamples are given by
many of the potentials in the list below.

However, we have found further evidence in favor of a conjecture of Turbiner
[20] to the effect that the quasi-exactly solvable potentials on a flat background
metric are separable in the "physical" coordinates, i.e. are of the form

V ( x , y ) = f ( x ) + g(y) (4.22)

in suitable Cartesian coordinates (x, y).
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4.L δl(2, R) φ $1(2, R). There is, up to local diffeomorphisms and rescalings (2.3)
and (2.4), a unique representation of this Lie algebra in terms of first-order planar
differential operators admitting a finite module of smooth functions ΛΛ This
representation corresponds to Case 11 in the classification of reference [7], and is
given explicitly by

T5 = x2p - nx, T6 = y2q - my , (4.23)

where the quantized cohomology parameters n and m are nonnegative integers.
Any finite-dimensional g-module of smooth functions admits a basis of poly-
nomials P(x, y) whose degree in x is less than or equal to n and whose degree in y is
less than or equal to m. The eigenfunctions arising from the application of the
algebraic method to Hamiltonians admitting $1(2) 0 si (2) as a hidden symmetry
algebra are therefore of the form

, y) = > y) » (4.24)

where μ is the gauge factor and P is as above.
We have found the following parametrized families of solutions to the closure

conditions (3.33):

4.1.1. The first example is the differential operator (4.20) defined by the following
values of the coefficients Cαb, CΛ, 1 ̂  α, b ̂  6:

(Cαb) =

IΛ
1

0

0

0

\ ι

1

B

0

0

1

0

0

0

\ + A

0

0

0

0

0

0

ί + B

0

0

0

1

0

0

1

1

1\

0

0

0

1

I/

(4.25)

(Cβ) = (0,0, 1 - (1 + 2n)A, 1 - (1 + 2m)B, 0, 0),

with C0, A and B arbitrary parameters.
The contravariant metric coefficients are given by

g12 = (l + χ2)(l + y2),
g22 = (1 + y2)(B + y2).

The metric will be positive definite provided that

A^l B ̂  1, AB > 1 .

The gauge factor is

KB - l)x2 + (A - \)y2 + AB-
l + 2 π

—(1 + x2)—(l +
l+2m--

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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The Gaussian curvature is given by

(B - l)K = A - B + (1 + A - 2B)y2

+ 3(A - l)2D'2(y2

+ 2(B - ί)χy + (

+ (A- I)/)"1 [2 + B- 4AB + B2 + (5B - 4A - i)y4

+ 2(1 + 2B - 2A(ί + B) + B2)y2

+ (1 - B)xy(6y2 + B + 5)], B Φ 1 , (4.32)

and

where

K = -(1 + 2x2), B = 1 ,

D = (B- l)x2 - l)y2 + AB -

(4.33)

(4.34)

The expression for the potential is even more cumbersome, so we shall not display
it here. Instead, we present two particular instances of the above multiparameter
family of quasi-exactly solvable Hamiltonians:

4.1.2. Substituting

A = B = 2

in the previous example we obtain

/2 1 0 0 0 1\

1 2 0 0 1 0

(4.35)

(C
Λ
) =

We shall also take

0 0 3 0 0 0

0 0 0 3 0 0

0 1 0 0 1 1

\1 0 0 0 1 I/

(C.) = (0,0, -(1 + 4n), - (1 + 4m), 0,0).

C0 = - + m2 + n2 .

(4.36)

The contravariant metric coefficients reduce to

022 = (1 + y2)(2 + y2).

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)
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The gauge factor and Gaussian curvature from the previous example simplify to
the following expressions:

(3 + x2 + /

(1 + x2pί-(l + y2)-
l+2m

(4.42)

K=-y2-
8 + 6y2 - y* + xy(7 + 6y2)

3 + x2 + y2

3(3 + 2xy)(l + y2)(2 + y2)
+ ( 3 + x2 + y 2 ) 2 '

Finally, the potential is given by

2 (1 + 2n)(3 + 2n) (1 + 2m)(3 + 2m)
8 K- ^ 1 + x2 ί + y2

17 + 12>>2 - / + 2x>>(6 + 5y2)

(4.43)

5(3

3 + x2 + y2

y2)(2

(3 + x2 + y2)2 2 (4.44)

(Cab) = (4.46)

4.1.3. A quasi-exactly solvable potential similar to the previous one is obtained
when we set

A = \, B = 2 (4.45)

in the general potential 4.1.1. We quote without further comment the expressions
for the coefficients Cab, Ca (1 ̂  α, b ̂  6) and C0, the contravariant metric co-
efficients, the gauge factor and the Gaussian curvature:

/f 1 0 0 0 1\

1 2 0 0 1 0

0 0 f 0 0 0

0 0 0 3 0 0

0 1 0 0 1 1

\1 0 0 0 1 I/

(4.47)

(4.48)

(4.49)

(4.50)

(Cβ) = ( 0, 0, -( + 3n ), -(1 + 4m), 0, 0 ) ,
v -̂

C0 =
1 + 2(2m2 - n + n2)

4 ;

3
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922 = (1 + /)(2 + y2)

(4 + 2x2 + y2)*
^ ~ l + 2n l + 2m *

(1 + x2pτ-(l + y2)~~^~

25 + 30x2 + 6x4 + 13xjH
K = 1 —~ ^—

4 + 2x2 + y2

6(1 + x2)(3 + 2x2)(4 + x2 -
+ (4 + 2x2 + y2)2 '

The potential for this example is given by

- 2n)(3 + 2n) 2(1 + 2m)(3 + 2m)

525

(4.51)

(4.52)

(4.53)

16F= -4y2-

18-

1 + x2

- 9y4

4 + 2x2 + j;2

5(4

(4 + 2x2 + j;2)
2 2 (4.54)

4.1.4. The following solution corresponds to the Schrόdinger operator discussed
in Example 4.1. We take

' , 4 1 0 0 0 1 \

1 B 0 0 1 0

0 0 2A 0 0 0

0 0 0 2B 0 0

0 1 0 0 A 1

\1 0 0 0 1 B,

(Cab) = (4.55)

(C.) = (0,0, -2An, -2Bm,0,0),

and

C0 = - (An + Bm) .

The contravariant metric coefficients are given by

c/11 = A(ί + x2)2 ,

22 = B(ί + y2)2 .

The gauge factor is given by

The Gaussian curvature and the potential both vanish:

K= F = 0 .

The Cartesian coordinates (x, y) are given by (4.7).

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)
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4.1.5. For the following solution, we take

I A 1 0 0 0 λ \

1 5 0 0 1 0

0 0 2 A 0 0 0
(Cab}= 0 0 0 λB + C 0 0

0 1 0 0 A λ

\λ 0 0 0 λ λC/

(Cα) = (0, 0, -2An, -λB(l + 2m) + C, 0, 0)

and

m)B - 2λm(2 + m)C + 2nA2C

A(-2λn - λ(ί + 2m + 2m2)BC

where A, B, C and λ are nonnegative real parameters, and λ φ
The contravariant metric coefficients are given by

11 == A(l + x2)2 ,

The metric will be positive definite everywhere provided that

A > 0, AB > 1, AC > λ .

The gauge factor is given by

_ IAB -1 + (AC - λ)y2γ
^ ~ ~n_ l+2m '

(1 + *2)2(1 + λy2) *

The Gaussian curvature is given by

_ C- λB Γ 2(2λAB - AC- λ) 3,4(1 - AB)(λB - C)

(4.63)

(4.64)

4m + 2m2)C2)] , (4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

It is a function of the second coordinate only, and is asymptotically constant.
The potential is given by

8V -(1 + 2m)(3 + 2m) Iλ - 6λAB + 4ΛC - A2BC

λB-C 1 + λy2 (AC - λ)(AB - 1+ (AC - λ)y2)

5A(AB - ί)(λB - C)

(AC - λ)(AB - 1 + (AC - λ)y2)2\2 (4.72)

The limiting case λB = C leads to a constant potential in a flat background, slightly
more general than the one in Example 4.1.4.



New Quasi-Exactly Solvable Hamiltonians in Two Dimensions 527

4.2. $1(3, R). This Lie algebra has a unique realization in terms of first-order
planar differential operators admitting a finite-dimensional module of smooth
functions, up to local diffeomorphisms and rescalings (2.3) and (2.4). This real-
ization, given by

Tl=p, T2 = q, T3 = xp, T4 = yp, T5 = xq, T6 = yq,

Tη = x2p + xyq — nx, T8 = xyp + y2q — ny , (4.73)

with the parameter n restricted to take nonnegative integer values, corresponds to
Case 15 in the classification of reference [7]. The finite-dimensional module
Λf consists of polynomials P(x9 y) of total degree in x and y less than or equal to n.
The eigenfunctions obtained by applying the algebraic method to any Hamiltonian
possessing $1(3) as a hidden symmetry algebra must therefore be of the form (4.24),
where μ is the gauge factor corresponding to each particular Hamiltonian, and P is
as before.

We have found the following multiparameter family of Hamiltonians with sl(3)
hidden symmetry:

4.2.1. The principal symbol of the multiparameter family of Hamiltonians we shall
present is generated only by the basis elements Γ1, Γ2, T1 and Ts. However, since
these operators form a generating set for the Lie algebra (4.73), this example meets
the irreducibility requirement defined earlier in this section.

The gauge Hamiltonian for this example is given by

2] + C[(Γ7)2

+ B\_{T\ T1} + {Γ2, Γ8} + (3 + 2n)(Γ3 + Γ6)] , (4.74)

where {Γfl, Tb} = TaTb + TbTa denotes the anticommutator of the differential
operators Ta and Tb, and the parameters A9 B, C and λ satisfy the inequality

δ = λAC - B2 Φ 0 . (4.75)

The contravariant metric coefficients are given by

gli=A + x2(B + p ) 9 (4.76)

012 = xy(B + p ) , (4.77)

g22 = λA + y2(B + p) , (4.78)
where

p = B + C(λx2 + y2) . (4.79)

The metric will be positive definite everywhere if the parameters satisfy

A>0, β^O, C>0, λ>0. (4.80)

The gauge factor is

μ = exp —^-=- arctan -£ (p2 + δ}~~^~ . (4.81)
δ,

Hence the eigenfunctions (4.24) obtained applying the algebraic method will
automatically be square integrable with respect to the measure ^/gdxdy.
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The Gaussian curvature, which is particularly simple for this example,

K= -2p= -2[B + C(λx2 + y2)] , (4.82)

is negative everywhere.
Finally, the potential is given by

8F= — 3p — (7 + I6n + Sn2)B

+ (p2 + λAC - B2)-1 [-16(1 + n)(2 + n)B3

+ λ(23 + 36n + l2n2)ABC

+ p(16(l + n)(2 + rc)B2 - A(l -f 2n)(5 + 2n)AC)] . (4.83)

If we look for solutions of the Schrόdinger equation with potential (4.83)
depending only on the "radial" coordinate p, we end up with an effective one-
dimensional Schrόdinger operator Hp given by

-2Hp =f(p) —2 + g(p) — + h(p) (4.84)

with

g ( p ) = 2[(3 - 2n)p2 + 2(1 + 2n)pB - (5 + 2n)B2 + 2λAC~] ,

Λ(p) = π[(π-l)p-(n+l)B], (4.85)

which does appear among the list of purely one-dimensional quasi-exactly solvable
Hamiltonians, albeit with a different cohomology parameter. The question of
whether the class of one-dimensional quasi-exactly solvable Schrόdinger operators
can be significantly enlarged via looking at reductions of two-dimensional quasi-
exactly solvable Hamiltonians remains unanswered.

4.3. gI(2,R)xlRr+1. The last Lie algebra we shall deal with, which from the
algebraic point of view is the semidirect sum of gl(2, R) with a (r + l)-dimensional
abelian ideal, corresponds to Case 24 in the classification of reference [7]. This class
of Lie algebras, depending on a positive integer r, is uniquely realized, up to
diffeomorphisms and rescalings (2.3) and (2.4), in terms of planar first-order
differential operators possessing a finite module of smooth functions. Explicitly,
this realization is given, for r = 1, by

Γ^p, T2 = q, Γ3 = xp, T4 = xq, T5 = yq ,

T6 = x2p + rxyq - nx , (4.86)

where n is a nonnegative integer. For r > 1 we must also include the differential
operators

T6 + i==χi+ι^ i ^ i ^ r _ i . (4.87)

Any g-invariant finite-dimensional module of smooth functions Jf consists of
polynomials P(x, y) of the form

p(χ,y)= Σ a^yj - (4 88)
i . J ^ O

i + rj^n

We have found the following multiparameter families of solutions for this Lie
algebra:
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4.3.1. For the first solution, we shall take

so that g is 6-dimensional. The coefficients Cab and Cα

following values:

529

(4.89)

1 ^ α, b ̂  6, have the

(Cab) =

IA
0

0

0

0

\ o

0

B

0

0

0

0

0

0

E

0

C

0

0

0

0
BC
— (E-2C + I
AD^

0

0

0

0

C

)) 0

D

0

I"

0

0

0

0

0

—

\

o/

(4.90)

(Cβ) - (0, 0, E - 2(1 + n)C, 0, C - 2(1 + n)D, 0) . (4.91)

For the moment, the parameter C0 is arbitrary, and the other parameters in (4.90)
and (4.91) will only be assumed to be nonnegative.

The contravariant metric coefficients are then

«"-jD. + . - C)x2]μ + Cx2),

^22 _ . B(E -2C

(4.92)

(4.93)

B . (4.94)

This metric is positive definite everywhere provided that the parameters satisfy the
additional conditions

A>0,

The gauge factor is

B > 0, E ̂  C, + 2C . (4.95)

C(E - 2C
1+n̂  (4 %)

(̂ β + BCx2 + ^4D}^2) 2

Since r = 1, the eigenfunctions arising from the application of the algebraic method
to this example are of the form (4.24), with P a polynomial of total degree in x and
y less than or equal to n. Therefore, to ensure the automatic square integrability of
the eigenfunctions we must impose the additional restrictions

C > 0, D > 0 . (4.97)

The Gaussian curvature for this solution is:

K = (E- 2C)C[AD + C(E - 2C + D)

x IA2D + 2A(E - 2C)(D - C)x2 C(C - E)(E -2C (4.98)

The potential is too complicated to display in all generality. We shall limit
ourselves to presenting two particular cases, instead:



530

4.3.2. If we set
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: (4.99)

in the previous solution, then (Cab) and (Cα) reduce to

, 4 0 0 0 0 0

(Cob) =

0 B 0 0 0 0

0 0 2C 0 C 0

0 0 0 ^ 0 0
0 0 C 0 D 0

0 0 0 0 0 —
A

(4.100)

and

(C.) = (0, 0, -2nC, 0, C - 2(1 + n)D, 0) .

We shall also set

C 0= -nC + (n + l)2D.

The metric, whose contravariant components are given by

-
A.

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

is everywhere positive definite and flat. In fact, this solution is a slight general-
ization of Example 4.2.

The gauge factor is

+ Cx2

(AB + BCx2 + ADy2)~
l+n '

(4.106)

The Cartesian coordinates (x, y) in which the Schrόdinger operator defined by
(4.100)-(4.102) adopts its normal form (2.22) are

1 C
x = .— arctan /—x ,

AC λM

D
arcsinh

ADy

(4.107)

(4.108)

Therefore, as in Example 4.2, the range of the "physical" coordinates (x, y) is a strip
C*min> ^max) x R Hence, as discussed in Example 4.2, additional boundary condi-
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tions will have to be imposed on the eigenfunctions yielded by the algebraic
method.

The potential in the physical coordinates is strikingly simple:

V = - n)(2 + n (4.109)

It is independent of x, and (as in Example 4.2) is simply a Pόschl-Teller potential
in y. Notice that this potential satisfies the conjecture of Turbiner, according to
which a quasi-exactly solvable Hamiltonian on a flat manifold in more than one
dimension should be separable.

Taking into account Eqs. (4.106) and (4.108), the algebraically computable
eigenfunctions expressed in terms of the physical coordinates are of the form

cosn(JACx)

with

x =

y =

(4.110)

(4.111)

(4.112)

and P(x, y) a polynomial of total degree in x and y not exceeding n.

4.3.3. In this example, which is again based on 4.3.1, we set

E = 2C - D , (4.113)

from which it follows that

IA 0

0 B

(Cab) =

o o o
0 0 0

0 0 2C-D 0 C

0 0 0 0 0

0 0 C 0 D

\0 0 0

0

0

0

0

0

0 0 -^(C-D)/

(4.114)

(C«) = (0, 0, -2nC - D, 0, C - 2(1 + n)D9 0) .

We shall also take

C0 = [(1 + 2n)(3 + 2n)D - 2(1 + 2n)C] .

(4.115)

(4.116)

Notice that the matrix (4.114) is degenerate, reflecting the fact that the
gauge Hamiltonian (4.20) does not depend on the fourth generator of cj in this
example. The irreducibility condition introduced earlier in this section is how-
ever satisfied, since the remaining generators and their commutators are easily
seen to span g.



532 A. Gonzalez-Lopez, N. Kamran, PJ. Olver

The contravariant components of the metric are:

(4.117)
1

g"=j(A + Cx2)ίA + (C-D)x2l,

-(C- D)x2y2 + Dy2 .
A

The Gaussian curvature simplifies to

and is therefore negative everywhere, by (4.95), (4.97) and (4.113).
The gauge factor reduces to

\_A + (C -

(4.118)

(4.119)

(4.120)

μ =
(AB + BCx2 + ADy2}

Finally, the potential is given by

AD_8 F.4(l + n)(2^)XBP 3C

AB + BCx2 + ADy2 ' (C - D)x2 + A + ~A^°~ D'X

Notice that for this example the potential and the curvature are indeed
totically proportional, according to (4.21).

4.3.4. A qualitatively similar solution to the previous one, also based on
obtained by setting

E = D .

We then have

(4.121)

(4.122)

asymp-

4.3.1, is

(4.123)

(C**)=

/A
0

0
0

0

\ o

0

B

0

0

0

0

0

0

D

0

C

0

0

0

0
EC

2AD(D~C)

0

0

0

0

C

0

D

0

0

0

0

0

0

>-

\

C)/

(4.124)

(C.) = (0, 0, - 2(1 + n)C + D, 0, C - 2(1 + n)D, 0) ,

and we shall also set

(4.125)

C0 = [2(7 + lOn + 4n2)C - (11 + 16n + 4n2)D] . (4.126)
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The contra variant metric coefficients are then given by

g22 = B + Dy2 + — x2(D - C)(2B + Dy2) . (4.127)
AD

The gauge factor is

μ = — . (4.128)
(AB + BCx2 + ADy2Y^

The Gaussian curvature, which is given by

„ „ D t 2A(D - 2C)(D - C) 3A2D(D - 2C)2

K. = C —— '
2 AD + 2C(D-C)x2 2[AD + 2C(D - C)x2γ

is asymptotically constant (positive or negative, but not zero, since in that case it is
easy to see that the irreducibility condition would be violated).

The explicit expression for the potential is

16F 2(D-2C) 2(D - 2C)(5D - 6C) 5AD(2C - D)2

A A + (D- C)x2 AD + 2C(D - C)x2 IAD + 2C(D - C)x2]2

. 8(1 + n)(2 + n)lB(D - 2C) + 2D(D - C)y2]

4.3.5. In this solution, in which we no longer restrict ourselves to taking r = 1, the
gauge Hamiltonian is given by

-2#gauge = B(T^)2 + y (1 + m){T\ T6} +^(r-2m- 2)(Γ3)2

+ ,4(l+m)2(Γ5)2+ X Cα6Γ
flΓ&

α,6e{2,4,7, ,m+5}

+ A 1 + 2(1 + m) ( " - A jl Γ3 - 2AA(1 + m)2Γ5

+ 4(1 + ro) - - λ + (1 + m)/l2 . (4.131)

The coefficients Cab with α,fce{2, 4, 7, . . . , m + 5} (i.e. those associated to the
generators of the form xkq, 0 ̂  k ̂  m) are chosen in such a way that

X C^rT* = v(,4x2 + B)m ̂  ' (
α,foe{2,4,7, ,m+5} ^
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where v is an arbitrary real constant, and the positive integer m ̂  r satisfies the
inequality

r φ 2 ( m + l ) . (4.133)

The metric, whose contravariant components are given by

011 =Ax2 + B , (4.134)

g12 = (1 + m)Axy , (4.135)

g22 = v(Ax2 + B)m + (1 + m)2Ay2 , (4.136)

is positive definite everywhere provided that the parameters A, B and v are positive.
The gauge factor is

μ = [y(Ax2 + B)1+m + AB(ί + m)V]~A/2 (4 137)

Hence the algebraic eigenfunctions are square integrable with respect to the

measure ^/gdxdy for large enough values of the parameter λ. The curvature is
negative and constant,

K = -A<0. (4.138)

The potential is given by

_ _ 1 ABv(l + m)2λ(l + λ)(Ax2 + B)m

~ 2 v(Ax2 + B)1+m + AB(1 + m)2y2 '

Since the potential does not depend on the cohomology parameter n, the above
Hamiltonian is exactly solvable (in the sense of reference [18]). Notice, further-
more, that the potential is also independent of r. We have thus constructed an
exactly solvable Hamiltonian associated to an infinite number of inequivalent Lie
algebras, e.g. the Lie algebras spanned by (4.86) with r = m, m + 1,. . . (and
r Φ 2(m + 1)). This underscores the essential nonuniqueness of the correspondence
between exactly or quasi-exactly solvable Hamiltonians and hidden symmetry
algebras.

Since the metric in this instance has constant negative curvature, it is of interest
to pass to a system of coordinates in which the metric adopts one of its well known
normal forms. For example, in the coordinate system (X, Y) defined by

R = ̂ /X2+Y2; - o o < X < o o , 0 < 7 < o o (4.140)

the metric (4.134)-(4.136) becomes

This is Poincare's famous half-plane model for a manifold of constant negative
curvature —A. In the new (X, Y) coordinates, the gauge factor and potential are
respectively given by

γ(m+l)λ

(ί+R2m+2)λ '
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and

V= -2Aλ(l + λ)(l + m)2

(1+

r^"2)2. (4.143)

One can find, in a totally analogous fashion, a change of coordinates mapping the
metric with contravariant components (4.134)-(4.136) to the standard constant
negative curvature metric A~1(dτ2 + sinh2τdφ2) on the two-sheeted hyperboloid.
However, the formulas in this case are a little more complicated, so we won't
display them here.

Perhaps the most natural coordinate system for this potential is the one defined
on the infinite strip ( —π/2, π/2) x JR. by

x = — tanw, y = —— - -^secm+1w sinh(m
\l A \l A(l + m)2

— - < w < -, — oo < t; < + oo . (4.144)

The expression of the metric in the (w, t;) coordinates is then

ds2 = A-1SQC2u(du2 + dv2} . (4.145)

This conformally flat version of a constant negative curvature metric is briefly
discussed in reference [4]. In the new coordinates, the gauge factor becomes

μ = cos(m+1)Aw sechλ(m + ί)υ (4.146)

and the potential is

V= - \Aλ(\ + λ)(ί + m)2cos2wsech2(m + l)υ . (4.147)

The Schrόdinger equation is separable in the (w, t;) coordinate system. Indeed,
from (4.145) it follows that

(4 148)

and therefore the Schrόdinger equation H ψ = Eψ is easily seen to separate into the
two one-dimensional boundary value problems

1 F

π/2

J sec2u\<%(u)\2du< oo (4.149)
-π/2

and

- --+ l)sech2

f |ιT(w)|2ί/w<oo , (4.150)
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where β is the separation constant and we have set w = (m + l)v. The potential in
(4.150) is a restricted Pόschl-Teller potential; in particular, when λ = N is a posi-
tive integer we obtain a ΛΓ-soliton reflectionless potential.

Finally, notice that in the coordinate system (4.144) the "algebraic" square-
integrable eigenfunctions of H automatically satisfy the natural boundary condi-
tion of vanishing on the boundary \u\ = π/2. Indeed, since the metric volume form
is simply A~ίsec2dudv, square integrability of ψ(u, v) implies that

π/2

J sec2u\ψ\2du< oo . (4.151)
-π/2

Since, by (4.88), (4.146), and (4.144), the algebraic eigenfunctions are easily seen to
be of the form

ψ(u, v) = cosβ u φ(u, v) (4.152)

with φ(u, v) smooth, (4.151) immediately yields β > 1/2, and therefore ψ vanishes
at u= ±π/2.
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