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Abstract. The tensor products of (restricted and unrestricted) finite dimensional
irreducible representations of $&q(sl(2)) are considered for q a root of unity. They are
decomposed into direct sums of irreducible and/or indecomposable representations.

1. Introduction

When the parameter of deformation q is not a root of unity, the theory of representa-
tions of quantum algebras ?Sq(%?) (with W a semi-simple Lie algebra) is equivalent
to the classical theory [1]. In the following, we consider %q(sl(2)), with q a root
of unity. In this case, the dimension of the finite dimensional irreducible represen-
tations (irreps) is bounded, and a new type of representations occurs, depending on
continuous parameters [2-5]. Moreover, finite dimensional representations are not
always direct sums of irreps: they can contain indecomposable sub-representations.
Some kinds of indecomposable representations actually appear in the decomposition
of tensor products of irreps.

Another peculiarity with q a root of unity is that the fusion rules are generally not
commutative. There exist, however, many sub-fusion-rings that are commutative. The
well-known one is the fusion ring generated by the irreps of the finite dimensional
quotient of %Sq(sl(2)) [6-8)]. Families of larger commutative fusion ring that contain
the latter will also be defined later.

The following section is devoted to definitions, to the description of the centre of
&q(sl(2)), and finally recalls the classification of the irreps of %άq(sl(2)). The irreps
of ?^q(sl(2)) can be classified into two types:

- The first type, called type ,& in the following, corresponds to the deformations
of representations that exist in the classical case q — 1. These representations are
also called restricted representations since they are also representations of the finite
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dimensional quotient of % (sl(2)). [This quotient consists in imposing classical values

to the enlarged centre of %6q(sl(2))]

- The second type, denoted by JF, contains finite dimensional irreducible repre-
sentations that have no finite dimensional classical analogue. They are generically
characterized by three continuous complex parameters, which correspond to the val-
ues of the generators of the enlarged centre, and they all have the same dimension.
(This property is a particularity of %q(sl(2)). At higher ranks, several dimensions are
allowed for irreps. The dimension remains however bounded.)

Section 3 is a review of the fusion rules for type J& or restricted irreps [6-8]. The
fusion ring generated by the type Λ> irreps also contains a class of indecomposable
representations of dimension called SfvA/& representations in the following.

Section 4 deals with the composition of type ^ (restricted) with type J?
(unrestricted) irreps. These tensor products generically lead to sums of type J%}
irreps. For non-generic parameters, these fusion rules also lead to a new class of
indecomposable representations called ^nά^ representations.

The composition of type J3 irreps is the subject of Sect. 5. The tensor product
of two type JB irreps is generically reducible into type JB irreps. However, it can
also contain J^Ίidj, representations when the components of the tensor product
do not have generic parameters. For sub-sub-generic cases, the indecomposable
representations ^ n d ^ reappear, together with, in even more particular cases, another
type of indecomposable representations denoted by i^nd^' .

The results presented in Sects. 3, 4, 5 are summarized in Tables 1, 2, 3.
In Sect. 6, we prove that the fusion ring generated by the irreducible representations

closes with the indecomposable representations !7vA ,̂ &vA/$' and ^nd^>.
The results of Sect. 5 are finally used as an example in Sect. 7 in the decomposition

of the regular representation of ?όq(sl(2)).

2. Definitions, Centre, and Irreducible Representations

2.1. Definitions

The quantum algebra %q(sl(2)) is defined by the generators k, k~[, e, /, and the
relations

fcjfe-1 = k~ιk = 1, kek'1 = q2e ,

q-q

The coproduct Δ is given by

Δ(k) = k® k,

Δ(e) = e <g> 1 + fc ® e, (2.2)

while the opposite coproduct Δ! is Δ! — PΔP, where P is the permutation map
Px 0 y = y (g) x. The result of the composition of two representations ρx and ρ2 of
%q(sl(2)) is the representation ρ — (ρ{ 0 ρ2) ° A whereas the composition in the
reverse order is equivalent to ρ' = (ρ{ 0 ρ2) o Δ'.
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2.2. Centre of Vόq{sl{2))

The usual g-deformed quadratic Casimir

C = fe + (q- q-ly\qk + q^k'1) (2.3)

belongs to the centre of %όq(sl(2)). When q is not a root of unity, C generates this
centre.

In the following, the parameter q will be a root of unity. Let ml be the smallest

integer such that q171 = 1. Let m be equal to ml if ml is odd and to ml J2 otherwise.
Then the elements e m , / m , and k±rn of ?Sq{sl{2)) also belong to the centre [2].

Together with C, they actually generate the centre of ?άq(sl(2))> and these generators
are related by a polynomial relation [5]. We write here this relation as follows: let
Pm be the polynomial in X, of degree ra, (P(X) — Xm + •••)» s u c n m a t

where T m is the m t h Chebychev polynomial of the first kind

Tm(X) = cos(ra arccos X ) . (2.5)

Then the relation becomes

Pm(C) = e™Γ + r { q q _ { ) 2 m - (2.6)

23. Finite Dimensional Irreducible Representations of %q(sl(2j)

We now recall the classification [2] of the irreducible representations of %q(sl(2)).
The new facts (with respect to the classical case or to the case q not being a root of
unity) are that the dimensions of the finite dimensional irreps are bounded by ra, and
that the irreps of dimension m depend on three complex continuous parameters. In the
following, we will call type J& irreps those that have a classical analogue (restricted
representations) and type Jβ irreps the others. We will mostly use a module notation.

We will denote by x, y, z±ι, and c the values of e m , / m , k±m, and C on irreducible
representations.

The g-deformed classical irreps (type y&) are labelled by their half-integer spin j ,
which is such that 1 < 2j + 1 < m, and by another discrete parameter ω = ±1 [9].
They are given by the basis {ωQ,..., ω2j} and, in a notation of module,

(2.7)<

' kwp = ωq i '
fm = ID ,
J Wp UJp+\
fw2j = 0

ewp = ω\p][2

where as usual

^wp

j -p +

forO
forO

iH-i f o r l

qx - q~x

<P

<P

< p

<2j

< 2j

< 2j

ί-β- ( 2 8 )
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We denote this representation by ^ p i n ( j , ω). On it, the central elements e m , / m , k171,
and C take the values x = y = 0, 2 = (ωq23)171 = ± 1 , and c = CJ(<? - q~ι)~2(q2j+ι +
q~2j~ι) respectively.

Note that the representation J^pin(j, α; = — 1) can be obtained as the tensor product
of J^pinO', 1) by the one-dimensional representation ό^pin(j = 0,CJ).

A Γy/?e Jξ? irrep is an irreducible representation that has no finite dimensional
analogue when q is equal to one. It has dimension m.

It is characterized by three complex parameters x, y, z corresponding to the values
of e m , / m , km, and by a discrete choice among m values ct for the quadratic Casimir
C. These values are just the roots of

z 4" z

If we define ζ by
4- ^~ [ ^ m 4- C~πι

W = έ ^ ' (2 10)

then, by virtue of the identity

m-l

cos mψ — cos ?7i0 = 2 m ~ 1 IT (cos ^ — cos(φ + 2kπ/m)), (2.11)

the q 's are given by

Z = 0, . . . , m - 1. (2.12)

Let λ be an m t h root of z and c one of the cz's. Then the type ^-representation,
denoted in the following by ^ ( x , y,z,c), is given in the basis {υ 0,..., i;m_1}, by

/cvp = \q~2pvp for 0 < p < m — I

fυp = vp+ι for 0 <p <m — 2

eυp =(c- J (λq~2p+ι -f A " ^ 2 ^ 1 ) jυp_x for 1 < p < m - 1

71-1 '

(2.13)

Remark L In this basis, the generators e and / do not play symmetric roles. The
normalizations of the vectors are such that / is extremely simple in this basis. There
exist of course more symmetric bases, and bases where e has a simple expression
(related to the latter by a simple change of normalization). The advantage of this basis
is that it can describe (irreducible) representations with two highest-weight vectors
(e vanishes on two vectors of the basis) and a non-vanishing y. For cases where y
vanishes but not x, another basis could be preferable. However, the limit y —> 0 is

well-defined if c = _ι 2 and eυ0 = βvπι_λ, β G G.
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The representation (2.13) is actually irreducible iff one of the four following
conditions is satisfied:

a) x ^ O ,
b) y φ 0,
c) zφ±l,

2ω
d) c = (q-q-1)2

Remark 2. Note that ^ f θ , O , ± 1 , ^ΓTTO) = ^pin((ra - l)/2,u) (fourth case)
v (q-q Ύ'

is actually of type ^ . This case will not be considered as type ,$ in the following.
So a type J? irrep will have (x, ?/, z) φ (0,0, ±1).
Remark 3. The representations described by (2.13) with (x,y,z) = (0,0, ±1), and
one of the other possible values for c (β arbitrary, cf. Remark 1) are indecomposable.
These representations, called ^xvά y', will appear in the last section as indecompos-
able parts of some tensor products.

For further use, we define the function c(ζ) by

_ c + - 1

The representation (2.13) will be called periodic if xy φ 0 In this case it is
irreducible and has no highest-weight and no lowest-weight vectors. A semi-periodic
representation is a representation for which only one of the parameters x and y
vanishes. It is then also irreducible. Following [10], a type .i? representation with
x = y = 0, z φ ±1 will be called nilpotent.

3. Composition of Type ,Λ Representations

This section will be a brief review of the results of Pasquier and Saleur [6], of Keller
[7], and of Kerler [8]. The tensor product of two representations S^pin(j1,ωι) and
S^pin(j2,ω2) decomposes into irreducible representations of the same type and also,
if 2(j"i + Jz) + 1 is greater than m, into some indecomposable spin representations.

An indecomposable spin representation ^nd^fj^ω) has dimension 2m. It is
characterized by a half integer j such that 1 < 2j -f 1 < m and by ω — ± 1 . In
a basis {w0,..., wrn_ι,x0,...,xm_\} the generators of %4q(sl(2)) act as follows:

Id!) /ι)Π •) Poll

κwp — ωq wp

fwp = wp+ι for 0 < p < m — 2
M n - i = 0

ewn = ω[p][—2j — p — l]u> , for 0 < p < m — 1

fxp = xp+ι for 0 < p < m - 2

exp = fp+m~2^~2w0 + ω[p][2j — p -f- l]a:p_1 for 0 < p < 7n — 1 .

(In particular, ex0 = wπι_2j_2 and ex 2 j + 1 = t^ m _ 1 , and e m , / m are 0 on such a
module.)
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Table

,^pin(

20Ί +

20Ί +

1.

•32.

h

Summary

) + l > m

of the fusion

)inO2,cj2)

rules for type ,A irreps

Decomposes into

This indecomposable representation contains the sub-representation ypm(j,ω).
It is a deformation of the sum of the classical S^pin(j) and 5^pin(m/2 — j — 1)
representations.

The fusion rules are

(3.2)

where the sums are limited to integer values of j if j λ +j2 is integer, and to half-(odd)-
integer values if j { + j 2 is half-(odd)-integer. In conformal field theories, the fusion
rules (3.2) are truncated to the first parenthesis, keeping only those representations
that have a g-dimension different from 0.

The fusion rules for type ^β irreps are summarized in Table 1.
The fusion rules of type ,Λ representations close with

(3.3)

some j,ω

The ,5^pin and 5^nd ^ representations thus build a closed fusion ring.

4. Fusion Rules Mixing Type ^S and Type J? Representations

Proposition 1. The tensor product of a type 38 representation 38(p, y,z,c) with the
±2

spin 1/2 representation J?ήpin(l/2,1) is completely reducible iff c φ rγ~2" More

precisely, ifc = c(ζ) = —-z,

(4.1)

±2
If c — c(±l) = r-r, ί/ιe i^^or product is a type 38 indecomposable

(q-q-ψrepresentation of dimension 2m, denoted by ^nά^(x^ qrny,qrnz,c/ = c(±g) =

±- 7-= and defined below.
(qq-ψ
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C + C" 1

Proof. First write c = r-^. The matrix of the quadratic Casimir on a weight
(q - q-γY

space of the tensor product is diagonalizable iff ζ Φ ±1 and the eigenvalues are
c(qζ) Φ c(q~ιζ). Each eigenvector of C generates a type J? irrep J3{x, qrnyy qπιzJ c)
since (x,qrny,qrnz)φ (0,0,±l).

When ζ = ± 1 , the eigenvalues c(qζ) and c(q~ιζ) coincide and C is not diago-
nalizable. It has only one eigenvector (up to a normalization) on each weight space,
which generates a type M irrep &(x, qmy, qmz, c(±q)). The quotient of the total rep-
resentation by this subrepresentation is again equivalent to J$(x,qπιy,qrnz,c(±q)).
The tensor product is hence the 2ra dimensional indecomposable representation

Definition. The type J$ indecomposable representation ^ n d M ( x , y, z, c) is charac-
terized as follows: the central elements fm and km take the scalar values (y,z), and
there is a basis {VQ\ . . . , v^_x}, (i = 1,2), in which this representation is written

^ = Xq-2pv^ for 0 < p < m - 1

Hl) = vplι forO<p<m-2

Jυrn-l — yV0

,,(1) _ „,-! ^ i "

( 4 2 )

kvf = λq-2pυ^ for 0 < p < m - 1
/^2) = v^{ for 0 < p < m - 2

_ (2)

with λ m = z. We call this representation a type .i? indecomposable representation,
because (x, 2/, 2;) φ (0,0, ±1). It does not belong to the fusion ring generated by the
type ^ irreps.

The sub-representation generated by the set of υ£\ as well as the quotient of the

whole representation by this sub-representation are equivalent to ^ ( x , y) z, c).
If c = c(0 with C 2 m = 1 and ζ φ ±1 (which will always be satisfied in the cases

we will consider), the central element e m is scalar with value x on ^ n d ^ ( x , y, z, c(Q)
Otherwise, we would have

em

υ™ = xυ^ , emυf = xvf + - C ^ C _ T <

In the following, we restrict the definition of i/Ίnd^> representations to those represen-
tations that have one of the special values for c (i.e ζ2rn — 1). The operators e m , / m
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and km hence take scalar values on i^nd^ representations. As we will see in the next
section, the property that these operators are scalar on a representation is preserved
in the composition of representations. The fusion ring generated by the irreducible
representations then contains only representations with diagonal e m , / m and k™.

The case x = 0 and y φ 0 (semi-periodic representation 0 spin 1/2) is included
here. The description of the case x φ 0 and y = 0 is simply obtained by considering
bases with simple action of e instead of /. The case x = y = 0 (nilpotent
representation 0 spin 1/2) is included in this proposition and it does not lead to
indecomposability since the parameter z, c (related to the highest weight λ through
z = λm and c = c(qζ)) of the type J? nilpotent representation has to be generic (see
Remark 2).

Let us again consider J9(x, y, z, c) with c = c(ζ) (2.14). As a consequence of the
previous proposition, we have:

Theorem 1. The tensor product of the type J3 representation J$(x, y,z,c) with the
spin j representation J^pin(j, 1) is completely reducible as long as all the values
cι — c(q2j~2lζ) for I = 0,. . . ,2j are different (which is satisfied in particular if
C2 m φ 1). Moreover,

13

Mx, y, z, c) <g> J^pinϋ, 1) = 0 Mx, q2jπιy, q2jmz, cz = c(q2j-2lζ)). (4.3)
1=0

The tensor product is not-completely reducible when some pairs of cι = c(q2j~2lζ)
(I = 0, . . . , 2j) coincide (since 2j + 1 < m, the 2j -f 1 values q can be only
doubly degenerate). In this case, the decomposition is obtained from (4.3) by simply
replacing each pair of irreps arising with the same cι by the indecomposable type ,W
sub-representation J?nά^(x, q2jmy, q23mz, c{) (4.2).

Proof The previous proposition with the coassociativity of Δ is the basic tool.
The representation Jff(x, y, z, c) is composed with (^pin( l/2, I))®2-7, which contains
J$(x,y,z,c) 0 J^pin(j, 1). We however still need to know the result of the
composition of J^nd^ix, y, z, c) with ι5^pin(l/2,1), since ̂ n d ̂ (x, y,z,c) can appear
in intermediate stages.

^ e t c = 7 ^TΫr ^ e ^ 0 0 ^ a t l ^ e m a t r ^ x °^ A(C) on a weight space of the

tensor product
(x, y, z, c) 0 5^pin(l/2,1).

This matrix is a 4 x 4 matrix. It can be decomposed into two 2 x 2 non-diagonalizable
blocks with eigenvalues c(qζ) and c(q~ιζ) if ζ is different from ±q and ±q~ι. If
ζ = ±q±ι, it can be decomposed into one 2 x 2 non-diagonalizable block with
eigenvalue c(±q2) and two l x l blocks containing c(=bl). So the tensor product of

(x, y, z, c) with t ^pin(l/2,1) reduces to

, y, z, c) 0 ^pin(l/2,1)

my, qmz, c(qζ)) 0 ^nd^(z, qmy, qmz, c(q-ιζ)) (4.4)

if ζ is different from ±q and ±q~~ι, and

, y, z, c) 0 .^pin(l/2,1)
qmy, qmz, c(±q2)) Θ 2^(x, qmy, qmz, c(±l)) (4.5)
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if ζ — ±q±ι. The factor 2 means a multiplicity of 2 of the representation in the
decomposition, i.e. C 2 ® . . . .

Proposition 2. Ifζ2rn Φ 1 the tensor product of the type JS representation JB(x, y,z,c)
with a type ,/& indecomposable representation ^nd/f(j,l) is completely reducible
and

jjyx^ y, Z)C) 09 <y n α ^ i j , 1)

2im lira g ^ ' ζ + ί Γ ^ V 1

(4.6)

ι=o

Ifζ2™ = I, we have

m-\

Mx, y, z, c) 0 &nάd{j, 1) = 0 ^ n d ^ ( x , q2jrny, q2jrnz, c(q2j-2ίζ)), (4.7)
ι=o

with the prescription that ^nd^,(x,g 2 j my,g 2 : ? mz, c(±l)), if it appears, has to be
replaced by 2J9(x, q2jmy, q2jmz, c(±l)). (Such a prescription is of much easier use
than an exploration of all the cases: the parity ofmf, 2j and the value of ζ enter in
the game.)

Proof The proof follows from the fact that ^nd/3(j, 1) enters in the decomposi-
tion of tensor products of some ordinary spin irreps, as explained in the previous
section. This result is then obtained as the previous theorem by further composition
with the ^pin(l/2,1) representation and using the coassociativity of Δ. (Note that
the reducibility obtained for ζ2m φ 1 holds although each root of the characteristic
polynomial of the quadratic Casimir is doubly degenerate, whereas in the case of
non-complete reducibility we do not get 4m-dimensional indecomposable represen-
tations.)

The same technique leads to the decompositions of the tensor products ,^nd^ 0

t5^pin and i^nd^ 0 ^nά/3. We can actually replace J$ by i^nd^, in (4.3) and
(4.6), (4.7), always using the prescription given for (4.7). (The representations
J7nά^(., ., .,c(zbl)) never appear in our fusion rules, which is a key point for
the closure of the fusion ring.)

We have only considered ω = 1 in the type j£ representations entering in the
fusion rules. We complete the fusion rules of type y& with type 3S representations by
adding

JS{x, y, z, c) 0 ^pin(0, -1) = J?(z, (- l ) m y, ( - 1 ) ^ , - c ) . (4.8)

These fusion rules were already considered in [11], in the cases involving generic
semi-periodic representations. The sub-cases leading to indecomposability were
however not considered.

The decomposition of tensor products of type JΘ irreps with type ^ irreps is
summarized in Table 2. The cases involving the ^nd^> and ^nd/f representations
are also summarized.

One could remark here that the "logarithm" of the parameter ζ used in the
expression of c extends the role of the spin to the case of type Jθ representations:
the value of ζ for J^pin(j, 1) is g 2 j + 1, whereas the tensor product by the spin 1/2
representation changes ζ to q±ιζ. This is however not so simple in the following.



184 D. Arnaudon

Table 2. Summary of the results of fusion of 3d or ,7nά^ representations with type Λ representa-
tions

Mx Λ2 Decomposes into

3d irrep with ζfm Φ 1

%ϊ irrep with ζ^m φ 1 .7nά /y(j2,ω2) M

9d irrep with Cfm = 1 J^pin(j2,u;2) .7nά^ and/or Λ

rep (with ζfm = 1) <cfyp'm(j2, ω2) ^ ^ J S and/or .i

irrep with ζ ^ m = 1 ,^nd ^0*2^2) ^nά^ and/or .i

rep (with ζfm = 1) ^ n d ̂ (j2,ίc;2) •^nd^> and/or J

5. Fusion of Type J$ Irreducible Representations

This section has many subsections. A summary of its content, including the subsection
numbers, is given in Table 3.

C o n s i d e r t w o i r r e p s o f t y p e Jβ\ ρx — ^ > ( x l J y ι , Zγ,Cγ) a n d ρ 2 = j${x2,y2i Z2->C2)-
Then the central elements e m , / m , km are scalar on the tensor product ρ — (ρλ 0

ρ2) o A and take the values

X z=z X | ~T" ZγX^ 5

+ y 2 , (5-1)

They are also scalar on ρ' = (pj 0 ρ2) o Z\; and take the values (xf — x2 + ^ 2

χ i 5 2/' =

y2zfι +yuz' = zλz2).
In fact, since

the fact that the operators e m , fm and fcm are scalar is preserved by the tensor product
operation. Hence, since they are scalar on irreps, they remain diagonal on the whole
fusion ring generated by the irreps.

We also see from (5.1) that ρ and ρ' can be equivalent only if their parameters
belong to the same algebraic curve [12]:

Xγ - Xl Vι - Vl (5.2)
1 - *i 1 - Z2 ' 1 - zλ

 x 1 - z2

l '

and that in this case x — x', y = y'', z = z' also satisfy these relations. In other
words since the coproduct is not co-commutative, the fusion rules of representations
are not commutative. If the values of the parameters are restricted to belong to the
same algebraic curve, the corresponding restricted fusion rules are commutative.

For physical purposes, this condition will probably always be required. However,
for more generality, we now consider the composition of ρx and ρ2 with A, without
imposing the condition (5.2).
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The set of tensor products that we consider in this paper can be restricted in such
a way that the representations belong to a given subset defined by

x — const (1 - z) and/or y = const7 (1 - z~ι). (5.3)

This subset of representations is stable under fusion. Restriction of the fusion rules
to this subset defines a sub-fusion-ring that is commutative (when both conditions
are imposed). The sub-ring generated by the type ,A irreps is contained in these
commutative sub-rings. (The question of the closure of the fusion rings will be
considered at the end.)

Each weight space of ,^?(xι,yllzι,cι) (8> J?(x2,y2, z2,c2) has dimension m. The
weights are all the mth roots of z = zιz2.

The following lemma is the main tool for all the further decompositions:

Lemma 1. On a weight space of the tensor product

3B(xx, 2/!, *!, q ) ® W(x2, y2,z2, c2),

the characteristic polynomial of Δ(C) is equal to the polynomial

(5.4)

where x, y and z are given by (5.1).

Proof. The matrix of

+ r-"1

Δ(C) = e <8) / + fk <8) k e + C ® fc + fe <g> C —-^p^fe <8) fc ' (5.5)

on a weight space is an m x m tridiagonal matrix (with three full diagonals, including
two terms in the corners). The characteristic polynomial of this matrix is then of
degree m, and it contains basically two types of terms:

- The first type consists of the product of the elements of the upper diagonal (respec-
tively lower diagonal) elements. These two terms do not involve the indeterminate
X. They correspond to the values of (e (8) f)m and (fk ® k~[e)m, i.e. xxy2 and
x2yxzxz2

ι.
- The terms that involve at least one diagonal element of the matrix of Δ(C)—
X - I (8) 1. These consist in fact of products of diagonal elements with pairs of
symmetric off-diagonal ones. The diagonal elements, which are evaluations of the
last three terms of (5.5), depend on ci and zi only (i = 1,2). The products of
symmetric off-diagonal elements have the same property, since the products ef and
fe are involved in their evaluation, not e and / individually.

So, one part of the constant term of the characteristic polynomial of Δ(C) is
(—l) m + 1 (2̂ 7/2 + x2yxzxz2

{) whereas the remaining terms only depend on cτ and
z{. The values c{ are related with the products xιyi through (2.9), but it is clear that
we can vary xi and yi in such a way that their products (and ct) remain constant. This
proves that we can vary continuously the constant term of the polynomial, keeping
the other terms constant. So this polynomial has m distinct roots for generic values
of the parameters. These roots are then the m distinct values for c allowed by (2.9)
with the corresponding generic (x,y,z). The characteristic polynomial of Δ(C) is
then equal to (5.4) for generic (x,y,z). Since the characteristic polynomial of Δ(C)
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on the tensor product is continuous in the parameters, it is equal to the polynomial
(2.9) for all the values of the parameters of the representations.

We know that the roots of (5.4) are either simple, or doubly degenerate. The tensor
product will then always be decomposable into a sum of representations of dimension
m or 2m, corresponding to the characteristic spaces of C (each of them being either
irreducible indecomposable or again decomposable).

5.7. Generic case

Theorem 2. Consider two type J3 irreps J3(xx,yx,zx,cx) and J9{x2ly2l ^ C2) Let
(x, yy z) be defined by (5.1), and ζ by (2.10). If ζ is not a 2m-root of 1 (generic case),
the tensor product Jβ(xx )yχjzx^cx) ® J9(x2, y2lz2,c2) is reducible and

|, c/|, /6|, L-̂ y W ^ v ̂ 2 ' ^ 2 ' 2 ' 2/

9; Cq^+ζ-'q-21

(5.6)
:=0

/V00/. We first note that the assumption on ζ forbids (x,y,z) — (0,0, ±1). So the
tensor product cannot contain type .Λ irreps. The type & irreps involved in the
decomposition will be related to eigenvalues of the quadratic Casimir C (2.3) (by the
way, today is St. Casimir's day!). The previous Lemma identifies the characteristic
polynomial of Δ(C) with the polynomial (5.4), which has only simple roots if
ζim _£ Y rp ĝ ejgenspaces of C then have dimension m and they correspond to
the type Jffi irreps of (5.6), which are the only m-dimensional representations of
%q(sl(2)) with parameters (x, y, z, ct).

Remark 4. This theorem shows that two tensor products of type Jθ representations
leading to the same (x,y,z) with ζ2rn φ 1 are equivalent, since their decompositions
are identical.

The generic case of composition of type & irreps is then reducibility into type J^
irreps.

Remark 5. In [12], the underlying quantum Lie algebra is the affine ?Sq{SL{N)).
Analogous tensor products are in this case irreducible, in contrast with the present
results. Remember that in our case the dimension of irreps is bounded by m.

5.2. Sub-generic cases

We consider in this subsection the tensor product

x,yx,zucx=c(ζx)= ^ ι + ^ l ) :

%2> Vli Z2i C2 = C(C2) = / 2Z -21)2 ) ( 5 7 )

leading to (x,y, z) with ζ2m = 1 (2.10). (The generic case was ζ2m φ 1.)
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5.2.1. (x,y,z) Φ (0,0, ±1). We first assume (x,y,z) Φ (0,0, d=l). All the values ct

(2.12) are now doubly degenerate roots of the characteristic polynomial of Δ(C) on
±2

any weight space, except c(±l) = irπ>» which can occur at most once.
(q-Q )

The characteristic spaces of Δ(C), which are sub-representations of the tensor
product, can have the following structure:
- If related to the eigenvalue c(±l), it has dimension m and is equivalent to
J?(x,y, z, c(±l)). In this case,there is only one possibility.
- If related to the eigenvalue cι φ c(±l), it has dimension 2m. The only possibilities
in this case are
- the corresponding representation is equivalent to the indecomposable representation
&nάj#(x, y, 2, cz).

- it is reducible into a sum of two representations equivalent to J2(x, y, z, q).

The study of some cases shows that the first possibility is generic, whereas the
second also exists for special values of the parameters.

Conjecture. We conjecture that the tensor product (5.7), in the case ζ2rn — 1 (2.10)
and (x, y, z) φ (0,0, ±1) (5.1), is obtained from the decomposition (5.6) by coupling
the pairs of type .$ irreps .^(x,y,z,q) whose values of cι coincide into type .%)
indecomposable representations J^nd^Or,?/, z,Cj) (4.2). For special values of the
parameters, however, they can remain decoupled. A necessary condition for this
decoupling is that ζx and ζ2 are also 2m-roots of 1.

5.2.2. (x,y,z) = (0,0,±1). Consider now Ή(xι,yι,zvcι = c(ζx)) 0 J9(x2,y2,
z2lc2 = c(ζ2)) leading to (x,y,z) = (0,0, ±1). We choose z = + 1, the other case
being similar. Thus x2 = —zx~

ιxx, y2 = ~zxyx, z2 — zx~
x. Applying Eq. (2.10) to

each set of variables (x^i/j^^Cj) and (x2^y2^z2^c2), we can fix ζ2 = q2jιζ{ with
2jx integer (< m).

5.2.2.1. xxyx φ 0. In this case, Δ(e) and Δ(f) have a rank equal to m - 1 on each
weight space of the tensor product. In other words, each weight space contains one
and only one highest-weight vector, and also one and only one lowest-weight vector
(up to normalization).

Each highest-weight or lowest-weight vector is an eigenvector of Δ(C) (since it
is an eigenvector of Δ(k)),

Lemma 2. The (5^pin(j,cj) irrep is a sub-representation of the tensor product
.S(xx,yx,zλ,cx) 0 J?(x2ly2,z2,c2) if and only if ζx/ζ2 or ζxζ2 is a weight of

Proof Consider a vector of weight ωq2j in the tensor product, annihilated by Δ(e)
(unique up to a normalization; its computation is straightforward). This vector is the
only candidate as highest weight of J^pin(j, ω). From the relations satisfied by the
generators of %(sl(2))9 we know that the first power of zA(/)'that can annihilate this
vector is either 2j -f-1 or m. In the first case (and in this case only), the representation
J^pin(j, ώ) is a sub-representation of the tensor product. An explicit calculation proves
that the condition for Z\(/) 2 j + 1 to cancel our highest-weight vector is then exactly

Π {Ci + CΓl - u{ζ2q
21 + C2~V2')} = 0. (5.8)

In this subsection, we already fixed C2 — ^ 2 j l Ci' but Lemma 2 forces us to consider
again two cases:
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5.2.2.1.1. C?m Φ l Consider (j,ω) such that q2jmωm = 2. In the case ζ\m φ 1,
the preceding lemma proves that the tensor product contains either ^ p i n ( j , ω) or

J^pin ( y - J - 1,9m^) (not both).

Each characteristic space of Δ(C) (of dimension 2m) then contains one, and
only one, irreducible sub-representation, which is of course of type 3^pin since
x — y — z1 - 1 = 0 . The only representation of %(sl(2)) of dimension 2m, with
weights of multiplicity 2, with two highest-weight vectors, two lowest-weight vectors

and only one sub-irrep J^pin(j, ω) (or J^pin ( j — 1, q^ωJ respectively) is

j7ndyS(j,ω) (or ^nά/S (——j - l,qrnω) respectively).

We then have the following proposition:

Proposition 3. The tensor product J?(xx ,yι,zι,cι) <g> J?(x2,y2> z2, c2), with

Z\X1

Z\Z2

xιV\

C2

/-2m

=

=

φ
=

φ

V\Z2

1,

o,

ί 2 J 1 C i

1,

is equivalent to the sum

1) Θ 0 ^nd^ϋ, ^ m ) , (5.9)

J " 2 J l ' 2

wzϊ/z by convention J/nά/3((m - l)/2, ώ) = ^pin((m - l)/2, ώ).

Only type ^ representations appear in this decomposition. No continuous param-
eter survives in the result.

5.2.2.1.2. C^m = 1. In this limit, some Clebsch-Gordan coefficients related to the
decomposition (5.9) diverge and the equivalence does not hold. The previous lemma
shows that more type ,A irreps (J^pin(j, ω)) (than in (5.9)) are sub-representations of

the tensor product. For some (j, ω), the irreps 5^pin(j, ω) and J^pin f j — 1, qmω)

can both be sub-representations of our tensor product. They appear in this case
as sub-representations of the same characteristic space of Δ(C). In this case, the
only possibility for the corresponding characteristic space of Δ(C) is neither

^nd/f(j, ώ) nor 3^nά/f ( — — j - 1, qmω), which contain only one sub-irrep, but the

direct sum

d^ '(j, ω, β) θ ^ n d ^ ' ( ^ - j - 1, qmω, β) , (5.10)
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where ^nd^Ό' 3 ω,/3) is an ra-dimensional indecomposable representation1 contain-
ing j^pin(j,cϋ) as sub-irrep, and described by (2.13) with

(x = 0, y = 0, * = ( α ^ Γ , c = c(ωq2^1)), λ = ω<?3 ,

(respectively λ = ωqm~2j~2), but β φ 0 (see Remarks 1 and 3). These representations
never appear in the fusion rules of type Λ irreps for the following reason: although
they are not periodic (they correspond to x = y = 0), they share with periodic
representations the fact that ep and / m ~ P can have non-vanishing matrix elements
between the same vectors, in the basis of (2.13), which diagonalizes k. Moreover,
unlike the previous case, a continuous parameter (β in Remark 1) remains in these
representations, which depends on the parameters of the initial representations. (After
all our constraints are taken into account, two parameters remain, e.g. yx and zv)

The parameter β in J7nά ̂ '(j^ω^β), which is the ratio of the action of e and
frn-ι o n e-ijker/}, can be considered as intrinsic and basis-independent. The limit
β = 0 is well-defined and appears in the following. The limit β —> oo, which is the
symmetric of β —» 0 when the roles of e and / are exchanged, is also well-defined
but the representation has first to be written in the basis where e, instead of /, has a
simple expression.

Let Ci = qh, ζ2 = Qh, 0 < h < m ~ h 2jx = \l2 - lx |. Denote by 2j2 either lλ +1 2

if lx + l2 < m9 or 2m — l{ — l2 otherwise.

Proposition 4. With the data given above, the decomposition is

j=supu1,,2),sup(i1 ^ ' + I ' - J = 2 -infϋi ,J2),f "MO, J2)+I, -
^ m— 1

/<9Γ .some β's.

, (5.11)

5.2.2.2. x ^ = 0. The results in this case are essentially the same as when x1yι φ 0.
However, they can be obtained through different proofs, using simpler expressions
for the highest-weight and lowest-weight vectors of tensor products.

The representations involved in the tensor product (5.7) are now semi-periodic or
nilpotent. In the case of a tensor product of semi-periodic representations, we consider
x\ — X2 = 0> m e c a s e °f lowest-weight semi-periodic representations (yι = y2 = 0)
being symmetric of the latter. In this case, their parameter ζ can be related to their
highest-weight λ through ζλ = qλx and ζ2 = q~ι λ2

ι.
As for periodic representations, we have to distinguish two cases:

5.2.2.2.1. Ci2m Φ 1 (and hence Cfm φ 1). In this case, the ranks of Δ(e) and Δ(f)
are still m — 1 on each weight space of the tensor product (5.7). So the number of
highest- and lowest-weight vectors on each characteristic space of Δ(C) is the same
as when xxyx φ 0. Lemma 2 is still valid, and the decomposition (5.9) still holds.

1 These indecomposable representations were denoted by .^nd^>' in a previous version of this paper.

We apologize for this change of notation (note that there is no possible confusion) motivated by the

fact that ^ n d ,ό' representations are representations of the finite dimensional quotient of %6q(sl(2)\

like type .A irreps and .^nd ^ representations. They are actually quotients of ,^nd ^ representations
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Table 3. Summary of the results of type :ffi irreps

Section jβ\ ,i?2 Such that Decomposes into

5.1 C 2 m φ 1 -%

5.2 C 2 m = 1

5.2.1

5.2.2

5.2.2.1 X\V\Φ§

5.2.2.1.1 C?m Φ 1 C | m ̂  1

5.2.2.1.2 ζ 2 m = 1 C | m = 1

5.2.2.2 x{yx = 0 x2^2 = °

5.2.2.2.1 C?m ^ 1 C | m / 1

5.2.2.2.2 C?m = 1 C?m = 1

5.2.2.2.2. ζ2πι — 1 (and hence ζ2rn = 1). In this case, each representation entering
in the tensor product has two highest-weight vectors, since the weights are 2m-roots
of 1. We consider only tensor products of irreps, so we must have no lowest-weight
vectors and hence y^2 φ 0. (The representations are semi-periodic, not nilpotent.)

The rank of Δ(e) can now be m — 1 or m — 2 on each weight space, depending on
the weight, whereas the rank of Δ(f) remains m— 1 on each weight space. If a highest-
weight q2j is degenerate, we can check that the weight q~2j~2 also corresponds to
two highest-weights. Consequently, the characteristic space of Δ(C) that contains

them is equivalent to I7nά # '(j, 1,0) 0 .^nd € ' ( j - 1, - 1 , 0 j . For the pairs of

highest-weights q2i and q~2i~2 which are not degenerate, it is easy to see, from their
explicit expression, that one only is the highest-weight of a J^pin sub-representation.
This leads then to the same decomposition as for periodic representations, i.e. formula
(5.11) with now vanishing /?'s.

The results of this section are summarized in Table 3.
Some of the fusion rules of type Jβ irreps have already been considered in the

literature. In [7,8,10,13], the fusion of nilpotent representations was studied. The
generic case of fusion of semi-periodic irreps was considered in [10]. The fusion of
generic periodic irreps for q = i was described in [14]. Generic fusion rules were
also presented in [15]. General results on fusion rules and ^-matrices for %q(sl(2))
were given in [16], and developed in [17].

6. Fusion Ring Generated by all the Irreps of ?άq(sl(2))

Theorem 3. The fusion ring generated by all the irreducible representations of
%Sq(sl(2)) consists in

- the irreducible representations of type </§ and .$,
- the type ^4 indecomposable representations j7nd ̂ (j? ω)>
- the type J9 indecomposable representations ^nά%(x, y,z, c(ζ)) (with ζ2rn = 1 and

- the indecomposable representations of type ,7nά/f'(j,ω,β).
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This fusion ring contains sub-fusion-rings defined by imposing one or both of the
relations (5.3) on the parameters (x,y,z). When both conditions are imposed, these
sub-rings are commutative.

Proof, previous results show that these four types of representations are involved
in the fusion ring. We still have to prove that it closes without other types of
representations.

The tensor products that have already been considered are

- irrep 0 irrep
- :7nά ^ 0 ,5^pin —> .ΨvΔ € (Sect. 3)

0 ,^nd /A —> ^7nd € (Sect. 3)
0 .7nd A —>' JB or ^ n d ^ (Sect. 4)

0 .i^pin —• ^ n d ^ or J ? ( . , . , . , c(±l)) (Sect. 4)
^ 0 ^ n d ^ —> &*&.& or J§X., ., . ,c(±l)) (Sect. 4)

(Reversed tensor products are similar, although not always equivalent.)

For the remaining tensor products, we will apply the following procedure: we
consider the indecomposable representations involved in the tensor product as a term
of the decomposition of a tensor product of irreps. These irreps will always be chosen
with the most generic allowed parameters. The decomposition of the original tensor
product will then be a part of the decomposition of a tensor product of three or four
irreps, on which we will use the coassociativity of Δ (associativity of the fusion rules)
and the previous results on the composition of irreps. The first case will be treated in
detail, the other being sketched.

- .J? 0 i^nd^) with, on the result, (x, y, z) and ζ, depending, as usual, on the original
parameters. Then

38 0 ynά^ C Jβ 0 <JBX 0 .S>)

c ( ^ 0 J9{) 0 .J?2.

,SX is considered as generic and the parameters of ,S2 are related to those of J5\ in
order to contain J^nά^ in their fusion. Then j§ 0 iS\ = φ . ^ 3 , the irreps J^3 being
as generic as 9B

2 then J ^ 0 JB2- If C 2 m φ 1, then J ^ 0 JB2 = 0 J9A, so that

- If C 2 m = 1 and (x, y, z) φ (0,0, ±1), then

^ 3 0 .^ 2 = 0 ^ n d ^ and/or .

so that

38 0 ^nd^ —> φ ^nd^, 38.

_ I f ^2m = 2 a n d ( χ ? y^ z^ = φ^ 0 ? ± 1 ^ t h e n ^ (g) jg>2 = 0 ^ n d ^, so that

38

^ ' C J%t(x,y,z,c) 0 ^ 0 J?2 The parameters (x,y,z)
of the result are those of the type J? irrep of the tensor product since the .^nd /f/'
representations carries (0,0, ±1).
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- If ζ2m φ i9 then Jg> <g> J9γ = φ ^ 3 and Jg^ 0 ^ 2 = 0 J^4, so that

- ζ2rn = 1 (and (x,y,z) ^ (0,0, ±1) otherwise the first irrep is of type ^ ) , then
, ^ 3 and C^nd^ or Jg>3) 0 Jg^ = 0 ^ n d ^ , Jg>4, so that

^ ' (8) i^pin C Jg\ 0 ^?2 <g> 5^pin. Since Jg>2 <g> 5^pin = 0^ r nd J β > , Jg*, and
Jg\ 0 ( l ^ n d ^ , ^ ) = 0 ^ n d ^ , ^ n d ^ ' , we have

- The remaining cases, ^ n d 0 i^nd, with at most one i/Ίnd ^ in the tensor product,
can be seen as included in J9X 0 J?2 <g> ^nd, for which we use the previous cases.
The conditions (5.3) define sub-rings of the whole ring of representations. Taking
the intersection of the fusion ring generated by irreps with these sub-rings provides
interesting commutative sub-fusion-rings.

7. Decomposition of the Regular Representation of %q(sl(2))

Using (5.9) for nilpotent representations, we can achieve the decomposition of the
regular representation.

The regular representation of $6q(sl(2)) is the finite dimensional module defined

by the left action of ̂  (5/(2)) on itself, with the further relations e m = fm = 0 and

k171' = 1.
A n a t u r a l b a s i s is g i v e n b y {fTιer2kr3} w i t h rv r2 e {0, . . . , m — 1} a n d

ra'-l

r3 G {0,...,ra' - 1}. Using the basis {vrur2iP = Σ q~r3Pfrierikri} which

diagonalizes the action of k, the regular representation was decomposed in [16] into
the sum

m ' - l

0 J&(0,0, λ m , c(qλ)) (g) ̂ ( 0 , 0 , λ- m , c(qp+ι\-1)), (7.1)

which is then equivalent to

(m-l)/2 Am-\)/2

(
jo / i s e v e n ) \ j=o

We see that the multiplicity of each indecomposable representation is equal to the
dimension of its irreducible part. Although (7.1) is valid for arbitrary λ, it is not a
surprise to find that the regular representation is of type ^4. This result agrees with
the decomposition obtained in [18].
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