Irreducible Representations of Virasoro-Toroidal Lie Algebras

Marc A. Fabbri, Robert V. Moody
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Received: 16 November 1992/in revised form: 10 May 1993
To A. John Coleman on the occasion of his 75th birthday

Abstract

Toroidal Lie algebras and their vertex operator representations were introduced in [MEY] and a class of indecomposable modules were investigated. In this work, we extend the toroidal algebra by the Virasoro algebra thus constructing a semi-direct product algebra containing the toroidal algebra as an ideal and the Virasoro algebra as a subalgebra. With the use of vertex operators and certain oscillator representations of the Virasoro algebra it is proved that the corresponding Fock space gives rise to a class of irreducible modules for the Virasoro-toroidal algebra.

Introduction

Toroidal algebras $\mathrm{t}_{[n]}$ are defined for every $n \geqq 1$ and when $n=1$ they are precisely the untwisted affine algebras. Such an affine algebra g can be realized as the universal covering algebra of the loop algebra $\dot{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}\left[t, t^{-1}\right]$ where $\dot{\mathfrak{g}}$ is a simple finite dimensional Lie algebra over \mathbb{C}. It is well known that \mathfrak{g} is a one-dimensional central extension of $\dot{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}\left[t, t^{-1}\right]$. The toroidal algebras $\mathrm{t}_{[n]}$ are the universal covering algebras of iterated loop algebras $\dot{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}\left[t_{1}^{ \pm}, \ldots, t_{n}^{ \pm}\right]$which, for $n \geqq 2$, turn out to be infinite-dimensional central extensions.

Unlike the finite dimensional case, there is a distinguished irreducible highest weight module for any untwisted (or direct) affine Lie algebra. This is the basic representation. In 1980 Frenkel and Kac [FK] gave a remarkable construction of the basic representation by using vertex operators $X(\alpha, z)$, where α runs over the root lattice \dot{Q} of $\dot{\mathfrak{g}}$. Already in [FK] it was observed that the Virasoro algebra also operates on the basic representation and in particular the (energy) operator d_{0} plays a distinguished role.

A decade later, the vertex operators $X(\alpha, z)$, where α now lies in the affine root lattice, $Q=\dot{Q} \oplus \mathbb{Z} \delta$, were used to produce indecomposable representations of the toroidal algebras $\mathrm{t}_{[2]}$ [MEY]. Soon after, these results were shown [EM] to extend to arbitrary n.

However these representations are not completely reducible, nor do irreducible representations appear in a natural way in the picture. The objective of this paper is
to show how one can greatly improve the situation by enlarging $t_{[2]}$. The key point is that our representations, as in the affine case, naturally afford representations of the Virasoro algebra $\mathfrak{B i r}$ too. We thus extend $\mathrm{t}_{[2]}$ to $\tilde{\mathrm{t}}_{[2]}:=\mathfrak{B i r} \bowtie \mathrm{t}_{[2]}$.

The vertex representations of $t_{[2]}$ constructed in [MEY] arise from a canonical representation of a degenerate Heisenberg algebra $\mathfrak{a}(Q)$ whose centre is infinite dimensional. We will embed Q in a nondegenerate lattice Γ and form the larger Heisenberg (oscillator) algebra $\mathfrak{a}(\Gamma)$. The representations of $\mathfrak{B i r}$ that we will use are the oscillator representations corresponding to $\mathfrak{a}(\Gamma)$. Thus, to any generator d_{k}, $k \in \mathbb{Z}$, we associate the infinite normally ordered quadratic expression $L_{k}=\frac{1}{2} \sum_{j \in \mathbb{Z}}$ $\sum_{i=1}^{l+2}: u_{i}(-j) u_{i}(j+k)$: where $\left\{u_{i}\right\}_{i=1}^{l+2}$ is an orthonormal basis for $\mathfrak{i}=\mathbb{C} \otimes_{\mathbb{Z}} \Gamma$.

The $\tilde{\mathrm{t}}_{[2]}$-module studied here is the Fock space $V(\Gamma)$ associated with the lattice Γ. It is the tensor product $\mathbb{C}[\Gamma] \otimes_{\mathbb{C}} S\left(\mathfrak{a}(\Gamma)_{-}\right)$of a twisted group algebra $\mathbb{C}(\Gamma)$ and the symmetric algebra $S\left(\mathfrak{a}(\Gamma)_{-}\right)$. As a \mathbb{C}-space, $V(\Gamma)$ decomposes into a direct sum $\coprod_{m \in \mathbb{Z}} K(m)$. We will show that if $m \neq 0, K(m)$ is an irreducible $\tilde{\mathfrak{f}}_{[2]}$-submodule of $V(\Gamma)$ and $K(m) \simeq K\left(m^{\prime}\right)$ if and only if $m=m^{\prime}$. The submodule $K(0)$ is not irreducible. In a forthcoming paper, [F1], the submodule structure of $K(0)$ is investigated.

1. The Heisenberg Algebras $\mathfrak{a}(L)$ and the Canonical Representation

Let $(L,(\cdot \mid \cdot))$ be a (geometric) lattice, that is, a free \mathbb{Z}-module L of finite rank together with a nontrivial symmetric \mathbb{Z}-bilinear form $(\cdot \mid \cdot): L \times L \rightarrow \mathbb{Z}$. Let $\mathrm{I}:=\mathbb{C} \otimes_{\mathbb{Z}} L$ and extend $(\cdot \mid \cdot)$ to a symmetric \mathbb{C}-bilinear form (also denoted $(\cdot \mid \cdot)$) on I. We call the lattice L nondegenerate if $(\cdot \mid \cdot)$ is nondegenerate on I. Let $\mathrm{l}(n)$ be an isomorphic copy of \mathbb{I} for every $n \in \mathbb{Z}$ under the correspondence $a(n) \leftrightarrow a, a \in \mathrm{I}$.

Form the Heisenberg algebra $\mathfrak{a}(L):=\left(\coprod_{n \in \mathbb{Z}} I(n)\right) \oplus \mathbb{C} \phi$, where ϕ is some symbol, with multiplication $[\cdot, \cdot]$ on $\mathfrak{a}(L)$ defined by $[a(n), b(m)]:=(a \mid b) n \delta_{n+m, o} \phi$, for all $a, b \in \mathfrak{l}, n, m \in \mathbb{Z}$, and ϕ is central. $\mathfrak{a}(L)$ is graded with $\operatorname{deg} a(n):=-n$ and by $\phi=0$. Observe that $\mathrm{I}(0)$ is an abelian subalgebra of $\mathfrak{a}(L)$ and its complement $\mathfrak{a}(L):=\left(\coprod_{n \in \mathbb{Z} \backslash\{0\}} \mathrm{l}(n)\right) \oplus \mathbb{C} \mathfrak{\phi}$ is a subalgebra of $\mathfrak{a}(L)$ satisfying $\mathfrak{a}(L)=\mathfrak{a}(L) \times \mathrm{l}(0)$, where \times denotes the direct product of Lie algebras. One easily proves

Proposition 1. centre $\mathfrak{a}(L)=\mathfrak{l}(0) \oplus \mathbb{C} \phi \oplus(\underset{\substack{n \in \mathbb{Z} \backslash\{0\} \\ \gamma \in \operatorname{rad}(\cdot \mid \cdot)}}{ } \mathbb{C} \gamma(n))$.
The most famous examples occur when \dot{Q} is a lattice of type ADE, that is, \dot{Q} is of type $A_{l}, \quad D_{l} \quad$ or $\quad E_{l}, \quad(l=6,7,8) . \quad a(\dot{Q}) \quad$ is a Heisenberg algebra with $\operatorname{dim}_{\mathbb{C}}[\operatorname{centre}(\mathfrak{a}(\dot{Q}))]=l+1$. Another set of examples occurs when $Q=\dot{Q} \oplus \mathbb{Z} \delta$, where $(\dot{Q} \mid \delta)=0=(\delta \mid \delta)$. Note that Q is a degenerate lattice and the Heisenberg algebra $\mathfrak{a}(Q)$ has centre $[\mathfrak{a}(Q)]=\mathfrak{h}(0) \oplus \mathbb{C} \boldsymbol{d} \oplus\left(\coprod_{n \in \mathbb{Z} \backslash\{0\}} \mathbb{C} \delta(n)\right)$, where $\mathfrak{h}:=\mathbb{C} \otimes_{\mathbb{Z}} Q$. We call $\mathfrak{a}(Q)$ a degenerate Heisenberg algebra since the associated skew-symmetric bilinear form $\psi: \mathfrak{a}(Q) \times \mathfrak{a}(Q) \rightarrow \mathbb{C}$ given by $\psi(a(k), b(l)):=k \delta_{k+l, 0}(a \mid b)$ has nontrivial radical elements in the homogeneous subspaces of non-zero degree.

We recall the canonical Fock space representation of $\mathfrak{a}(L)$. Let $\mathfrak{a}(L)_{-}:=\coprod_{n<0} \mathrm{l}(n)$ and let $S\left(\mathfrak{a}(L)_{-}\right)$be the corresponding symmetric algebra.

Define an action of $\stackrel{\circ}{\mathfrak{a}}(L)$ on $S\left(\mathfrak{a}(L)_{-}\right)$: for $n, m>0, a, b \in \mathfrak{l}$, and $f \in S\left(\mathfrak{a}(L)_{-}\right)$

$$
\left\{\begin{array}{l}
d \cdot f=f \tag{1}\\
a(-n) \cdot f=L_{a(-n)} f \\
a(n) \cdot f=\partial_{a(n)} f
\end{array}\right.
$$

where $L_{a(-n)} f=a(-n) f$ is the left multiplication operator and $\partial_{a(n)}$ is the unique derivation of $S\left(\mathfrak{a}(L)_{-}\right)$satisfying

$$
\partial_{a(n)}(b(-m))=n \delta_{m, n}(a \mid b)
$$

Proposition 2. $S\left(\mathfrak{a}(L)_{-}\right)$is an $\mathfrak{a}(L)$-module and the following are equivalent:
(i) $S\left(\mathfrak{a}(L)_{-}\right)$is an irreducible $\stackrel{\circ}{\mathfrak{a}}(L)$-module.
(ii) L is nondegenerate.
(iii) $S\left(\mathfrak{a}(L)_{-}\right)$is a faithful $\stackrel{\circ}{\mathfrak{a}}(L)$-module.

Let M be any nondegenerate lattice containing L. One may choose $M=L$ if L is already nondegenerate. Put $\mathfrak{m}:=\mathbb{C} \otimes_{\mathbb{Z}} M$ and fix $\lambda \in \mathfrak{m}$. Let $\mathbb{C} e^{\lambda}$ be the one-dimensional space spanned by the symbol e^{λ}. Consider the \mathbb{C}-space

$$
\begin{equation*}
V_{L}(\lambda):=\mathbb{C} e^{\lambda} \otimes_{\mathbb{C}} S\left(\mathfrak{a}(L)_{-}\right) \tag{2}
\end{equation*}
$$

Of course, as \mathbb{C}-spaces, we have $V_{L}(\lambda) \cong S\left(\mathfrak{a}(L)_{-}\right)$. We make $V_{L}(\lambda)$ into an $\mathfrak{a}(L)$-module by extending (1) as follows:

$$
\left\{\begin{array}{l}
\phi \cdot\left(e^{\lambda} \otimes f\right)=e^{\lambda} \otimes \phi \cdot f=e^{\lambda} \otimes f \tag{3}\\
a(-n) \cdot\left(e^{\lambda} \otimes f\right)=e^{\lambda} \otimes L_{a(-n)} f, \\
a(n) \cdot\left(e^{\lambda} \otimes f\right)=e^{\lambda} \otimes \partial_{a(n)} f \\
a(0) \cdot\left(e^{\lambda} \otimes f\right)=(a \mid \lambda)\left(e^{\lambda} \otimes f\right)
\end{array}\right.
$$

Note that $V_{L}(\lambda)$ is an irreducible $\mathfrak{a}(L)$-module if and only if L is a nondegenerate lattice but that $V_{L}(\lambda)$ is never a faithful $\mathfrak{a}(L)$-module.

2. Toroidal Algebras

Let $\dot{\mathrm{g}}$ be a simple finite dimensional Lie algebra over \mathbb{C}. Let A be any commutative algebra with unity over \mathbb{C}. Consider the Lie algebra $\mathfrak{g}_{A}:=\dot{\mathfrak{g}} \otimes_{\mathbb{C}} A$ with bracket $[x \otimes a, y \otimes b]=[x, y] \otimes a b, x, y \in \dot{\mathrm{~g}}$ and $a, b \in A$. The structure of the universal covering algebra of $\dot{\mathfrak{g}} \otimes_{\mathbb{C}} A$ has been worked out in [Ka].

Let Ω_{A} be the A-module of differentials and $d: A \rightarrow \Omega_{A}$ the differential map. Thus d is linear and satisfies $d(a b)=a \cdot d b+b \cdot d a$. Let $-: \Omega_{A} \rightarrow \Omega_{A} / d A$ be the canonical map. Then for $a, b \in A$ we have $\overline{d(a b)}=0$.
Theorem [Ka, and Kac, Ex. 7.9]. The Lie algebra $\mathfrak{g}:=\left(\dot{\mathfrak{g}} \otimes_{\mathbb{C}} A\right) \oplus \Omega_{A} / d A$ with multiplication defined by

$$
\left\{\begin{array}{l}
{[x \otimes a, y \otimes b]:=[x, y] \otimes a b+(x \mid y) \overline{(d a) b}} \tag{4}\\
\Omega_{A} / d A \text { central }
\end{array}\right.
$$

is the universal covering algebra of $\dot{\mathfrak{g}} \otimes_{\mathbb{C}} A$. $(\operatorname{Here}(\cdot \mid \cdot)$ denotes the Killing form on $\dot{\mathfrak{g}}$.)

When $A=\mathbb{C}\left[t_{1}^{ \pm}, \ldots, t_{n}^{ \pm}\right]$we denote the algebra \mathfrak{g} simply by $\mathrm{t}_{[n]}$ and we call it the toroidal algebra. Consider the case $n=2$ so that $A=\mathbb{C}\left[s^{ \pm 1,} t^{ \pm 1}\right]$. Then it is easy to check that a \mathbb{C}-basis for $\Omega_{A} / d A$ is given (see [MEY]) by

$$
\begin{cases}a(p, q):=\overline{s^{p-1} t^{q} d t}, & (p, q) \in \mathbb{Z} \times \mathbb{Z} \backslash\{0\}, \tag{5}\\ a(p, 0):=\overline{s^{p} t^{-1} d t}, & p \in \mathbb{Z} \\ a(0,0):=\overline{s^{-1} d s} .\end{cases}
$$

Next, let $\dot{\mathfrak{b}}$ be a fixed Cartan subalgebra of $\dot{\mathfrak{g}}$ and consider the subalgebra \mathfrak{b} of $\mathrm{t}_{[2]}$ generated by the subspace $\dot{\mathfrak{h}} \otimes_{\mathbb{C}} \mathbb{C}\left[s, s^{-1}\right]$. Using (4), we have for $h, h^{\prime} \in \dot{\mathfrak{h}}$ and n, $m \in \mathbb{Z}, \quad\left[h \otimes s^{m}, \quad h^{\prime} \otimes s^{n}\right]=\left[h, h^{\prime}\right] \otimes s^{n+m}+\left(h \mid h^{\prime}\right)\left(\overline{\left.d s^{m}\right) s^{n}}=\left(h \mid h^{\prime}\right) m \delta_{m+n, 0} \overline{s^{-1} d s}\right.$, and hence \mathfrak{b} can be identified as the Heisenberg algebra $\mathfrak{a}(\dot{Q})$ under the correspondences $h \otimes s^{n} \leftrightarrow h(n)$ and $\overline{s^{-1} d s} \leftrightarrow \phi$.

The subalgebra $\mathrm{e}:=\mathfrak{b} \oplus\left(\coprod_{p \in \mathbb{Z} \backslash\{0\}} \mathbb{C} a(p, 0)\right)$ of $\mathrm{t}_{[2]}$ can be identified as the Heisenberg algebra $\mathfrak{a}(Q)$, where $Q=Q \oplus \mathbb{Z} \delta$ as in Sect. 1 under the above correspondences together with $a(p, 0) \leftrightarrow \delta(p), p \in \mathbb{Z}$. The Heisenberg algebras $\mathfrak{a}(\dot{Q})$ and $\mathfrak{a}(Q)$ and their representations will play a central role in the sequel.

3. Vertex Representations of Toroidal Algebras

Let \dot{Q} be of type ADE, and let $\Gamma=\dot{Q} \oplus \mathbb{Z} \delta \oplus \mathbb{Z} \mu=Q \oplus \mathbb{Z} \mu$, where $(\dot{Q} \mid \mu)=0$ $=(\mu \mid \mu)$ and $(\delta \mid \mu)=1$. Following [EMY] we let $\varepsilon: Q \times Q \rightarrow\{ \pm 1\}$ be a bimultiplicative map satisfying

$$
\begin{cases}\mathbf{C C}(\mathbf{i}) & \varepsilon(\alpha, \alpha)=(-1)^{(\alpha \mid \alpha) / 2} \\ \mathbf{C C}(\mathbf{i i}) & \varepsilon(\alpha, \beta) \varepsilon(\beta, \alpha)=(-1)^{(\alpha \mid \beta)}, \tag{6}\\ \mathbf{C C}(\mathbf{i i i}) & \varepsilon(\alpha, \delta)=1,\end{cases}
$$

where $\alpha, \beta \in Q$. Extend ε to a bimultiplicative map $\varepsilon: Q \times \Gamma \rightarrow\{ \pm 1\}$. For $\gamma \in \Gamma$ let e^{γ} be a symbol and form the vector space $\mathbb{C}[\Gamma]$ with \mathbb{C}-basis $\left\{e^{\gamma}: \gamma \in \Gamma\right\}$. Then $\mathbb{C}[\Gamma]$ contains the subspace $\mathbb{C}[Q]:=\coprod_{\gamma \in Q} \mathbb{C} e^{\gamma}$. We give $\mathbb{C}[Q]$ a twisted group algebra structure by defining $e^{\alpha} e^{\beta}:=\varepsilon(\alpha, \beta) e^{\alpha+\beta}, \alpha, \beta \in Q$. Then $\mathbb{C}[\Gamma]$ becomes a $\mathbb{C}[Q]$ module in such a way that $e^{\alpha} e^{\gamma}:=\varepsilon(\alpha, \gamma) e^{\alpha+\gamma}, \alpha \in Q, \gamma \in \Gamma$. Now form the full Fock space

$$
\begin{equation*}
V(\Gamma):=\mathbb{C}[\Gamma] \otimes_{\mathbb{C}} S\left(\mathfrak{a}(\Gamma)_{-}\right) \tag{7}
\end{equation*}
$$

Note that, as \mathbb{C}-spaces, $V(\Gamma)=\coprod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$, where $V_{\Gamma}(\lambda):=\mathbb{C} e^{\lambda} \otimes_{\mathbb{C}} S\left(\mathfrak{a}(\Gamma)_{-}\right)$.
Let z be a complex variable and $\alpha \in Q$. Define

$$
\begin{equation*}
T_{ \pm}(\alpha, z):=-\sum_{n \gtrless 0} \frac{1}{n} \alpha(n) z^{-n} . \tag{8}
\end{equation*}
$$

Then the vertex operator, $X(\alpha, z)$, for α on $V(\Gamma)$ is defined by

$$
\left\{\begin{array}{l}
X(\alpha, z):=z^{(\alpha \mid \alpha) / 2} \exp T(\alpha, z), \text { where } \tag{9}\\
\exp T(\alpha, z):=\exp T_{-}(\alpha, z) e^{\alpha} z^{\alpha(0)} \exp T_{+}(\alpha, z), \text { and } \\
z^{\alpha(0)}\left(e^{\lambda} \otimes f\right):=z^{(\alpha \mid \lambda)}\left(e^{\lambda} \otimes f\right), \quad f \in S\left(\mathfrak{a}(\Gamma)_{-}\right) .
\end{array}\right.
$$

The $X(\alpha, z)$ can be formally expanded in powers of z to give

$$
X(\alpha, z)=\sum_{n \in \mathbb{Z}} X_{n}(\alpha) z^{-n}
$$

and the coefficients $X_{n}(\alpha)$ are called moments. The $X_{n}(\alpha)$ are operators on $V(\Gamma)$ and for any $f \in S\left(\mathfrak{a}(\Gamma)_{-}\right)$and $\lambda \in \Gamma$, one has $X_{n}(\alpha)\left(e^{\lambda} \otimes f\right)=e^{\lambda+\alpha} \otimes f^{\prime}$, where $f^{\prime} \in S\left(\mathfrak{a}(\Gamma)_{-}\right)$. Thus, in the decomposition of the full Fock space $V(\Gamma)=\coprod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$ one can view the moments $X_{n}(\alpha)$ as operators which move an element in the " λ-stalk" $V_{\Gamma}(\lambda)$ to an element in the " $(\lambda+\alpha)$-stalk" $V_{\Gamma}(\lambda+\alpha)$.

The determination of the commutation relations of the moments can be made by standard techniques of contour integration [GO, MP] and yields
CR. $0 \quad\left[\alpha(k), X_{n}(\beta)\right]=(\alpha \mid \beta) X_{n+k}(\beta)$.
CR. $1\left[X_{m}(\alpha), X_{n}(\beta)\right]=0,(\alpha \mid \beta) \geqq 0$.
CR. $2\left[X_{m}(\alpha), X_{n}(\beta)\right]=\varepsilon(\alpha, \beta) X_{n+m}(\alpha+\beta),(\alpha \mid \beta)=-1$.
CR. 3 If $(\alpha \mid \alpha)=(\beta \mid \beta)=-(\alpha \mid \beta)=2$, then

$$
\left[X_{m}(\alpha), X_{n}(\beta)\right]=\varepsilon(\alpha, \beta)\left\{m X_{n+m}(\alpha+\beta)+\sum_{k \in \mathbb{Z}}: \alpha(k) X_{m+n-k}(\alpha+\beta):\right\}
$$

where : $\alpha(k) X_{m+n-k}(\beta)::= \begin{cases}\alpha(k) X_{m+n-k}(\beta) & \text { if } k \leqq m+n-k \\ X_{m+n-k}(\beta) \alpha(k) & \text { if } k>m+n-k .\end{cases}$
Next we will state a result from [MEY] which gives vertex representations of the toroidal Lie algebra $\mathrm{t}_{[2]}$. We fix a simple finite dimensional Lie algebra $\dot{\mathfrak{g}}$ of type ADE with Cartan subalgebra $\dot{\mathfrak{h}}$, root lattice \dot{Q}, root system $\dot{\Delta}$ and basis of simple roots $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$. We assume that $\left\{e_{ \pm \alpha_{l}}\right\},\left\{\alpha_{i}\right\}$ is a Chevalley basis of $\dot{\mathfrak{g}}$ (we identify $\dot{\mathfrak{h}}$ with $\dot{\mathfrak{h}}^{*}$ by the Killing form as usual) so that $e_{ \pm \alpha_{1}} \in \dot{\mathfrak{g}}^{ \pm \alpha_{i}}$ and $\left[e_{\alpha_{1}}, e_{-\alpha_{2}}\right]=-\alpha_{i}$.

Now in $\mathrm{t}_{[2]}$ we can identify an affine algebra $\dot{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}\left[s, s^{-1}\right] \oplus \mathbb{C} \phi$. Its root system is denoted Δ, its root lattice Q and its set of real roots $\Delta^{\text {re }}$.

Proposition 3. Let \mathfrak{s} be the Lie algebra of operators on $V(\Gamma)$ generated by the moments $X_{m}(\alpha), \alpha \in \Delta^{\mathrm{re}}, m \in \mathbb{Z}$. Then \mathfrak{s} is isomorphic to $\mathrm{t}_{[2]}$ under the assignment

$$
\begin{equation*}
e_{ \pm \alpha_{i}} \otimes \pm s^{m} t^{n} \mapsto X_{m}\left(\pm \alpha_{i}+n \delta\right), \quad n, m \in \mathbb{Z}, 1 \leqq i \leqq l \tag{10}
\end{equation*}
$$

Now for $\alpha \in \Gamma$ define the elementary Schur polynomials $S_{r}(\alpha), r \in \mathbb{Z}$ by the expressions

$$
\left\{\begin{array}{l}
\exp T_{-}(\alpha, z)=: \sum_{r=0}^{\infty} S_{r}(\alpha) z^{r} \tag{11}\\
S_{r}(\alpha):=0, \quad r<0,
\end{array}\right.
$$

where $T_{-}(\alpha, z)$ is defined in (8). As in [MEY], we have

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} X_{k}(\varphi) z^{-k}\left(e^{\lambda} \otimes 1\right) & =X(\varphi, z)\left(e^{\lambda} \otimes 1\right) \\
& =z^{(\varphi \mid \varphi) / 2} \exp T_{-}(\varphi, z) e^{\varphi} z^{\varphi(0)}\left(e^{\lambda} \otimes 1\right) \\
& =\sum_{r=0}^{\infty}\left(e^{\lambda+\varphi} \otimes S_{r}(\varphi)\right) z^{r+(\varphi \mid \lambda)+\frac{(\varphi \mid \varphi)}{2}} .
\end{aligned}
$$

Matching powers of z we get

$$
\begin{equation*}
X_{k}(\varphi)\left(e^{\lambda} \otimes 1\right)=\varepsilon(\varphi, \lambda) e^{\lambda+\varphi} \otimes S_{-k-\left(\varphi \left\lvert\, \lambda+\frac{\varphi}{2}\right.\right)}(\varphi) \tag{12}
\end{equation*}
$$

4. The Virasoro-Heisenberg and Virasoro-Toroidal Algebras

In this section we introduce the Virasoro-Heisenberg and Virasoro-toroidal algebras. We first define a representation by derivations of the Virasoro algebra on both the Heisenberg algebra $\mathfrak{a}(Q)$ and on the toroidal algebra $t_{[2]}$ and then form the corresponding semi-direct product Lie algebras. The representations used here can be identified as certain copies of the well-known module of tensor fields [FF, K].

Recall that the Virasoro algebra, denoted $\mathfrak{B i r}$, is the infinite dimensional Lie algebra with generators $\left\{d_{k}, k \in \mathbb{Z}\right\}$ and relations $\left[d_{k}, d_{l}\right]=(k-l) d_{k+l}$ $+\frac{1}{12} \delta_{k+l, 0}\left(k^{3}-k\right) z$, where z is a central symbol. Define an action of $\mathfrak{B i r}$ on $\mathfrak{a}(Q)$ in such a way that z acts trivially and for $k \in \mathbb{Z}$ and d_{k} is the unique derivation satisfying

$$
\begin{equation*}
d_{k} \cdot a(n)=-n a(n+k) . \tag{13}
\end{equation*}
$$

Define an action of $\mathfrak{B i r}$ on $\mathrm{t}_{[2]}$ in such a way that z acts trivially and, for $k \in \mathbb{Z}$, d_{k} acts as the unique derivation satisfying

$$
\begin{equation*}
d_{k} \cdot\left(e_{ \pm \alpha_{i}} \otimes s^{m} t^{n}\right):=\left\{\frac{k}{2}\left(\alpha_{i} \mid \alpha_{i}\right)-(m+k)\right\}\left(e_{ \pm \alpha_{i}} \otimes s^{m+k} t^{n}\right), \tag{14}
\end{equation*}
$$

where $n, m \in \mathbb{Z}$ and $1 \leqq i \leqq l$.
One can verify directly that (13) and (14) do determine representations of $\mathfrak{B i r}$ on $\mathfrak{a}(Q)$ and $\mathrm{t}_{[2]}$ respectively. As \mathbb{C}-spaces, define

$$
\tilde{\mathfrak{a}}:=\mathfrak{B i n} \oplus \mathfrak{a}(Q) \quad \text { and } \quad \tilde{\mathfrak{t}}_{[2]}:=\mathfrak{B i r} \oplus \mathrm{t}_{[2]}
$$

We make $\tilde{\mathfrak{a}}$ (resp. $\tilde{\mathrm{t}}_{[2]}$) into a Lie algebra in such a way that $\mathfrak{B i x}$ is a subalgebra and $\mathfrak{a}(Q)$ (resp. $\mathrm{t}_{[2]}$) is an ideal via (13) (resp. (14)):

$$
\left\{\begin{array}{l}
{\left[d_{k}, a(n)\right]:=d_{k} \cdot a(n)} \\
{\left[d_{k}, e_{ \pm \alpha_{k}} \otimes s^{m} t^{n}\right]:=d_{k} \cdot\left(e_{ \pm \alpha_{k}} \otimes s^{m} t^{n}\right)}
\end{array}\right.
$$

We call $\tilde{\mathfrak{a}}$ and $\tilde{\mathfrak{t}}_{[2]}$ the Virasoro-Heisenberg and Virasoro-toroidal algebras respectively.

5. Oscillator Representations of the Virasoro Algebra

A very interesting class of representations of $\mathfrak{B i r}$ are the so-called oscillator representations. The operators used arise from the Fourier components of the energy-momentum tensor in quantum field theory and can be expressed in terms of the canonical representation of a corresponding representation of the Heisenberg (oscillator) algebra $\mathfrak{a}(L)$.

Let L be an arbitrary nondegenerate lattice of rank $l, \mathrm{I}=\mathbb{C} \otimes_{\mathbb{Z}} L$ and $\left\{a_{i}\right\}_{i=1}^{l}$ an orthonormal basis for I. Consider the normally ordered sums

$$
\begin{equation*}
L_{k}:=\frac{1}{2} \sum_{i=1}^{l} \sum_{j \in \mathbb{Z}}: a_{i}(-j) a_{i}(j+k):, \tag{15}
\end{equation*}
$$

where $k \in \mathbb{Z}$ and for all $n \in \mathbb{Z}, a_{i}(n) \in \mathfrak{a}(L)$. The normal ordering defined by

$$
: a_{i}(r) a_{i}(s)::= \begin{cases}a_{i}(r) a_{i}(s), & r \leqq s \\ a_{i}(s) a_{i}(r), & r>s\end{cases}
$$

ensures that only a finite number of the terms in L_{k} act nontrivially and hence the L_{k} make sense as operators on $V_{L}(\lambda)$. A proof along the same lines as in [KR] gives

Proposition 4. The assignment $d_{k} \mapsto L_{k}, k \in \mathbb{Z}$ and $z \mapsto$ II defines a representation of $\mathfrak{B i r}$ on $V_{L}(\lambda)$.

Let \dot{Q} be of type ADE and $\Gamma=\dot{Q} \oplus \mathbb{Z} \delta \oplus \mathbb{Z} \mu$ as before. Let $\left\{u_{i}\right\}_{i=1}^{l}$ be an orthonormal basis for $\dot{\mathfrak{h}}:=\mathbb{C} \otimes_{\mathbb{Z}} \dot{Q}$. Let $u_{l+1}:=\frac{\delta}{2}+\mu$ and $u_{l+2}:=\sqrt{-1}\left(\frac{\delta}{2}-\mu\right)$. Then $\left\{u_{i}\right\}_{i=1}^{l+2}$ is an orthonormal basis for $\mathfrak{f}:=\mathbb{C} \otimes_{\mathbb{Z}} \Gamma$. Applying Proposition 4 with $\Gamma=L$ we obtain a representation of $\mathfrak{B i x}$ on $V_{\Gamma}(\lambda), \lambda \in \Gamma$, with the centre z acting as multiplication by $l+2$. Since $V(\Gamma)=\coprod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$ we can at once extend the representation of $\mathfrak{B i r}$ to all of $V(\Gamma)$.

Proposition 5. (i) $\left[L_{k}, a(n)\right]=-n a(n+k), a \in Q, n, k \in \mathbb{Z}$, and hence $V_{\Gamma}(\lambda)$ is an
$\tilde{\mathfrak{a}}$-module.
(ii) $\left[L_{k}, X_{m}(\alpha)\right]=\left\{\frac{k}{2}(\alpha \mid \alpha)-(m+k)\right\} X_{m+k}(\alpha), m, k \in \mathbb{Z}, \alpha \in Q$, and hence $V(\Gamma)$ is a $\tilde{\mathrm{t}}_{[2]}$-module.

Proof. (i) follows by a standard calculation [KR] and (ii) follows easily from the well-known commutation relation

CR. 4

$$
\left[L_{k}, X(\alpha, z)\right]=z^{k}\left\{\frac{k}{2}(\alpha \mid \alpha)+z \frac{d}{d z}\right\} X(\alpha, z)
$$

whose proof can be found in [KF] or [GO].

6. Representations of the Virasoro-Heisenberg Algebra

The objective of this section is to study the structure of the $\tilde{\mathfrak{a}}$-module $V_{\Gamma}(\lambda)$ which we simply denote by $V(\lambda)$. We begin this section by pointing out that the Lie algebra $\tilde{\mathfrak{a}}$ admits a triangular decomposition in the sense of [MP]. Indeed, define $\tilde{\mathfrak{a}}^{n}$ to be $\mathbb{C} d_{n}+\mathfrak{h}(n), n \neq 0$, and $\tilde{\mathfrak{a}}_{0}:=\tilde{\mathfrak{a}}^{0}$ to be the linear span of $\left\{d_{0}, \mathfrak{h}(0), \phi, z\right\}$. Define $\tilde{\mathfrak{a}}_{ \pm}:=\coprod_{n \gtrless 0} \tilde{\mathfrak{a}}^{n}$. Then $\tilde{\mathfrak{a}}=\tilde{\mathfrak{a}}_{-} \oplus \tilde{\mathfrak{a}}_{0} \oplus \tilde{\mathfrak{a}}_{+}$provides a triangular decomposition with root spaces $\tilde{\mathfrak{a}}^{n}$ determined by the eigenfunctions $n \phi: \tilde{\mathfrak{a}}_{0} \rightarrow \mathbb{C}$ with $\left\langle\phi, d_{0}\right\rangle=-1$ and $\left.\phi\right|_{\mathfrak{h}(0) \oplus \mathbb{C} d} ^{\mathscr{C}} \mid=0$ and with anti-linear anti-involution $\tilde{\sigma}: \tilde{\mathfrak{a}} \rightarrow \tilde{\mathfrak{a}}$ defined by $\tilde{\sigma}\left(d_{n}\right):=d_{-n}, \tilde{\sigma}(a(n)):=a(-n), \tilde{\sigma}(z):=z$ and $\tilde{\sigma}(\phi):=\phi$ where $n \in \mathbb{Z}$ and $a \in \mathfrak{h}$.

Moreover, we note that centre $[\tilde{\mathfrak{a}}]=\mathfrak{h}(0) \oplus \mathrm{C} \phi \oplus \mathbb{C} z$ and hence $\operatorname{dim}_{\mathbb{C}}($ centre [$\left.\tilde{\mathfrak{a}}]\right)$ $=l+3$ where $l=\operatorname{rank} \dot{Q}$.

Now let $\mathfrak{B i r}{ }_{+}:=\coprod_{n>0} \mathbb{C} d_{n}$ and introduce the subalgebra

$$
\hat{\mathfrak{a}}:=\left\langle d_{k}, a(n): a \in Q, n \in \mathbb{Z}, k>0\right\rangle \subset \tilde{\mathfrak{a}},
$$

where the angular brackets denote the subalgebra generated by the enclosed symbols. Observe that $\hat{\mathfrak{a}}=\mathfrak{B i r}{ }_{+} \ltimes \mathfrak{a}(Q)$ and we have the inclusion of algebras $\mathfrak{a} \subset \hat{\mathfrak{a}} \subset \tilde{\mathfrak{a}}$, where $\mathfrak{a}=\mathfrak{a}(Q)$.

Proposition 6. Fix $\lambda \in \Gamma$ arbitrarily. Then $V_{Q}(\lambda):=\mathbb{C} e^{\lambda} \otimes S\left(\mathfrak{a}(Q)_{-}\right)$is an $\hat{\mathfrak{a}}$-invariant subspace of $V(\lambda)$.

Proof. Clearly $V_{Q}(\lambda)$ is $\mathfrak{a}(Q)$-invariant. Now using (13), extend the action of $\mathfrak{B i r}$ on $\mathfrak{a}(Q)$ to one on $S(\mathfrak{a}(Q))$ uniquely so that each d_{k} becomes a derivation and z acts trivially. Then, for any homogeneous polynomial $f \in S\left(\mathfrak{a}(Q)_{-}\right)$, it is clear that $d_{0}(f)=(\operatorname{deg} f) f$. To prove the proposition, it suffices to show that for any $n \geqq 0$,

$$
\begin{equation*}
d_{n} \cdot\left(e^{\lambda} \otimes f\right)=\left(\delta_{n, o} \frac{(\lambda \mid \lambda)}{2} f+d_{n}(f)\right) \cdot\left(e^{\lambda} \otimes 1\right) \tag{16}
\end{equation*}
$$

since the right side of this equation belongs to $V_{Q}(\lambda)$. Consider $n=0$ first:

$$
\begin{aligned}
d_{0} \cdot\left(e^{\lambda} \otimes f\right) & =\frac{1}{2} \sum_{j \in \mathbb{Z}} \sum_{i=1}^{l+2}: u_{i}(-j) u_{i}(j):\left(e^{\lambda} \otimes f\right) \\
& =\frac{1}{2} \sum_{i=1}^{l+2} u_{i}(0) u_{i}(0)\left(e^{\lambda} \otimes f\right)+\sum_{j>0} \sum_{i=1}^{l+2} u_{i}(-j) u_{i}(j)\left(e^{\lambda} \otimes f\right) \\
& =\left(\frac{(\lambda \mid \lambda)}{2}+\operatorname{deg} f\right)\left(e^{\lambda} \otimes f\right) \\
& =\left(\frac{(\lambda \mid \lambda)}{2} f+d_{0}(f)\right)\left(e^{\lambda} \otimes 1\right)
\end{aligned}
$$

As for $n>0$, first note that $d_{n} \cdot\left(e^{\lambda} \otimes 1\right)=0$ since every summand $: u_{i}(-j) u_{i}(j+n)$: appearing in the definition of L_{n} can be written $u_{i}(p) u_{i}(q)$, where $p \leqq 0, q>0$ (after removing the normal ordering) and each of these terms kills $e^{\lambda} \otimes 1$. Thus

$$
\begin{aligned}
d_{n} \cdot\left(e^{\lambda} \otimes f\right) & =d_{n} \cdot f \cdot\left(e^{\lambda} \otimes 1\right) \\
& =f \cdot d_{n} \cdot\left(e^{\lambda} \otimes 1\right)+\left[d_{n}, f\right] \cdot\left(e^{\lambda} \otimes 1\right) \\
& =d_{n}(f) \cdot\left(e^{\lambda} \otimes 1\right)
\end{aligned}
$$

as required.
Before proceeding to the main result of this section we will need a preliminary definition. For $k>0$ let \mathscr{P}_{k} be the set of all partitions of k. We know that there is a one-to-one correspondence between the elements $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}_{+}^{r}$ with $\quad m_{1} \geqq m_{2} \geqq \cdots \geqq m_{r}, \quad \sum m_{i}=k \quad$ and the monomials $\delta(-\mathbf{m}):=$ $\delta\left(-m_{1}\right) \cdots \delta\left(-m_{r}\right)$ of degree k. Now we give \mathscr{P}_{k} the lexicographical ordering as follows. For $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right), \mathbf{n}=\left(n_{1}, ., n_{s}\right) \in \mathscr{P}_{k}, r, s>0$, we say $\mathbf{m}<\mathbf{n}$ if $m_{i}<n_{i}$ for the first i such that $m_{i} \neq n_{i}$. Clearly then the partition $(k) \in \mathscr{P}_{k}$ of length 1 is the unique maximal element with respect to this ordering and the partition $(1, \ldots, 1) \in \mathscr{P}_{k}$ of length k is the unique minimal element. In the next three results, we assume that all given tuples $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}_{+}^{r}, r>0$, are ordered in such a way that $m_{1} \geqq m_{2} \geqq \cdots \geqq m_{r}$.

Proposition 7. Fix $\lambda \in \Gamma \backslash Q$ and suppose $\mathbf{m} \in \mathbb{Z}^{r}{ }_{+}, \mathbf{n} \in \mathbb{Z}^{s}{ }_{+}$, where $\mathbf{n}, \mathbf{m} \in \mathscr{P}_{k}$ and $\mathbf{n}<\mathbf{m}$ in the lexicographical ordering. Consider the elements $e^{\lambda} \otimes \delta(-\mathbf{m}), e^{\lambda} \otimes \delta(-\mathbf{n}) \in$ $V_{Q}(\lambda)$. Then $d_{\mathbf{m}} \cdot\left(e^{\lambda} \otimes \delta(-\mathbf{m})\right) \in \mathbb{C}^{\times}\left(e^{\lambda} \otimes 1\right) \quad$ and $\quad d_{\mathbf{m}} \cdot\left(e^{\lambda} \otimes \delta(-\mathbf{n})\right)$ $=0$, where $d_{\mathrm{m}}:=d_{m_{r}} \cdots d_{m_{1}} \in \mathfrak{U}\left(\mathfrak{B i r}{ }_{+}\right)$.

Proof.

$$
\begin{aligned}
d_{\mathbf{m}} \cdot\left(e^{\lambda} \otimes \delta(-\mathbf{m})\right)= & d_{m_{r}} \cdots d_{m_{1}} \cdot\left(e^{\lambda} \otimes \delta\left(-m_{1}\right) \cdots \delta\left(-m_{r}\right)\right) \\
= & d_{q_{t}}^{p_{t}} \cdots d_{q_{1}}^{p_{1}} \cdot\left(e^{\lambda} \otimes \delta\left(-q_{1}\right)^{p_{1}} \cdots \delta\left(-q_{t}\right)^{p_{t}}\right), \\
& \quad \text { where } q_{i}>q_{j} \text { for } i<j \text { and } p_{k}>0,1 \leqq k \leqq t \\
= & \left(p_{1}!\left(m_{q_{1}}\right)^{p_{1}}(\lambda \mid \delta)^{p_{1}}\right) d_{q_{t}}^{p_{t}} \cdots d_{q_{2}}^{p_{2}} \cdot\left(e^{\lambda} \otimes \delta\left(-q_{2}\right)^{p_{2}} \cdots\right. \\
& \left.\delta\left(-q_{t}\right)^{p_{t}}\right),
\end{aligned}
$$

by (16) and (13)

$$
\begin{aligned}
&= \cdots=\left(\left(p_{1}!\cdots p_{t}!\right) \prod_{i=1}^{t} m_{q_{i}}^{p_{i}}(\lambda \mid \delta)^{p_{1}+\cdots+p_{t}}\right)\left(e^{\lambda} \otimes 1\right) \\
& \in \mathbb{C}^{\times}\left(e^{\lambda} \otimes 1\right) \\
& \quad \text { since }(\lambda \mid \delta) \neq 0 .
\end{aligned}
$$

Similarly, $d_{\mathbf{m}} \cdot\left(e^{\lambda} \otimes \delta(-\mathbf{n})\right)=0$.
Proposition 8. Let $\lambda \in \Gamma \backslash Q$. Then $V_{Q}(\lambda)=\mathbb{C} e^{\lambda} \otimes_{\mathbb{C}} S\left(\mathfrak{a}(Q)_{-}\right)$is an irreducible $\hat{\mathfrak{a}}-$ module.

Proof. First note that $\lambda \in \Gamma \backslash Q$ is equivalent to the condition $(\lambda \mid \delta) \neq 0$.
Let W be a submodule of $V_{Q}(\lambda)$ and let $0 \neq x \in W$. Write $x=e^{\lambda} \otimes \sum_{i=1}^{m} g_{i} h_{i}$, where $g_{i} \in S\left(\mathfrak{a}(\dot{Q})_{-}\right)$are linearly independent and $h_{i} \in D=S\left(\sum_{m>0} \mathbb{C} \delta(-m)\right)$. By Proposition 2, $S\left(\mathfrak{a}(\dot{Q})_{-}\right)$is an irreducible $\mathfrak{a}(\dot{Q})$-module and hence by the Jacobson density theorem we can eliminate g_{2}, \ldots, g_{m} and reduce g_{1} to 1 with some operator from $\mathfrak{U}(\mathfrak{a}(\dot{Q}))$. Thus we can assume without loss of generality that $x=e^{\lambda} \otimes h$, where $h=\sum_{i=1}^{r} \alpha_{i} \delta\left(-\mathbf{m}_{i}\right), \alpha_{i} \in \mathbb{C}^{\times}$, where $\mathbf{m}_{1}>\mathbf{m}_{2}>\cdots>\mathbf{m}_{r}$ in the lexicographical ordering. Finally, from Proposition 7, $d_{\mathbf{m}_{1}} \cdot\left(e^{\lambda} \otimes h\right)$ $\in \mathbb{C}^{\times}\left(e^{\lambda} \otimes 1\right) \in W$. It follows that $W=V_{Q}(\lambda)$.

Proposition 9. Let $\lambda \in \Gamma \backslash Q$. Then $V(\lambda)=\mathbb{C} e^{\lambda} \otimes_{\mathbb{C}} S\left(\mathfrak{a}(\Gamma)_{-}\right)$is an irreducible $\tilde{\mathfrak{a}}$ module.

Proof. Since $\Gamma=Q \oplus \mathbb{Z} \mu$ we can write $S\left(\mathfrak{a}(\Gamma)_{-}\right)=S\left(\mathfrak{a}(Q)_{-}\right) M$, where $M:=S\left(\coprod_{n>0} \mathbb{C} \mu(-n)\right)$. Let W be a non-trivial $\tilde{\mathfrak{a}}$-submodule of $V(\lambda)$. Let $0 \neq f \in W$ be arbitrary and write $f=\sum_{\mathbf{n}} e^{\lambda} \otimes f_{\mathbf{n}} \mu(-\mathbf{n})$, where $\mu(-\mathbf{n})=$ $\mu\left(-n_{1}\right) \mu\left(-n_{2}\right) \cdots$ and $n_{1} \geqq n_{2} \geqq \cdots$ and $f_{n} \in S\left(\mathfrak{a}(Q)_{-}\right)$. Then we can use the $\delta(n)$, $n>0$, to eliminate all terms but one and reduce to the case where $f=e^{\lambda} \otimes h \in W$, where $h \in S\left(\mathfrak{a}(Q)_{-}\right)$. But by Proposition $8, V_{Q}(\lambda)$ is an irreducible \hat{a}-module. Thus $e^{\lambda} \otimes 1 \in W$. Now write $M=\coprod_{n \geqq 0} M_{n}$, where M_{n} denotes the subspace of M spanned by elements of degree n. It suffices to show that for all n,

$$
\begin{equation*}
R:=\mathfrak{U}(\tilde{\mathfrak{a}}) \cdot\left(e^{\lambda} \otimes 1\right) \supset \mathbb{C} e^{\lambda} \otimes_{\mathbb{C}} S\left(\mathfrak{a}(Q)_{-}\right) M_{n} \tag{17}
\end{equation*}
$$

We will establish (17) by induction on the degree n. Since $M_{0}=\mathbb{C}$ and $M_{1}=\mathbb{C} \mu(-1)$, we can write $\quad M=\mathbb{C} \oplus \mathbb{C} \mu(-1) \oplus\left(\coprod_{n=2}^{\infty} M_{n}\right)$. Since $\mathfrak{U}(\tilde{\mathfrak{a}}) \cdot\left(e^{\lambda} \otimes 1\right) \supset \mathfrak{U}\left(\tilde{\mathfrak{a}}_{-}\right) \cdot\left(e^{\lambda} \otimes 1\right) \supset \mathbb{C} e^{\lambda} \otimes_{\mathbb{C}} S\left(\mathfrak{a}(Q)_{-}\right)$, (17) is clear when $n=0$. For
$n=1$ consider $d_{-1} \cdot\left(e^{\lambda} \otimes 1\right)=L_{-1}\left(e^{\lambda} \otimes 1\right) \in R$. By definition we have

$$
\begin{aligned}
L_{-1} \cdot\left(e^{\lambda} \otimes 1\right) & =\sum_{i=1}^{l+2} u_{i}(-1) u_{i}(0) \cdot\left(e^{\lambda} \otimes 1\right) \\
& =\sum_{i=1}^{l+2} u_{i}(-1)\left(\lambda \mid u_{i}\right) \cdot\left(e^{\lambda} \otimes 1\right) \\
& =e^{\lambda} \otimes\left(\sum_{i=1}^{l+2}\left(\lambda \mid u_{i}\right) u_{i}(-1)\right) \\
& =e^{\lambda} \otimes \lambda(-1)
\end{aligned}
$$

Now writing $\lambda=\alpha+a \mu, \alpha \in Q, a \in \mathbb{C}^{\times}$, we have $L_{-1}\left(e^{\lambda} \otimes 1\right)=e^{\lambda} \otimes \alpha(-1)$ $+a\left(e^{\lambda} \otimes \mu(-1)\right) \in R$. But $e^{\lambda} \otimes \alpha(-1) \in R$ from the case $n=0$. Thus we have $e^{\lambda} \otimes \mu(-1) \in R$ and this shows (17) when $n=1$.

Suppose then that (17) holds for all $0 \leqq n \leqq k-1$. We call this the first induction hypothesis. We need to show $R \supset \mathbb{C} e^{\lambda} \otimes_{\mathbb{C}} M_{k} S\left(\mathfrak{a}(Q)_{-}\right)$. We prove this by induction on the lexicographical ordering defined on \mathscr{P}_{k}. We "anchor" at the top with the partition (k). That is, we will first show $e^{\lambda} \otimes \mu(-k) \in R$.

Recall that for $k>0$,

$$
\begin{aligned}
L_{-k}= & \frac{1}{2} \sum_{j \in \mathbb{Z}} \sum_{i=1}^{l+2}: u_{i}(-j) u_{i}(j-k): \\
= & \frac{1}{2} \sum_{j \in \mathbb{Z}}\left\{\sum_{i=1}^{l}: u_{i}(-j) u_{i}(j-k):+: \delta(-j) \mu(j-k):\right. \\
& +: \mu(-j) \delta(j-k):\}
\end{aligned}
$$

Note that in the expansion of $L_{-k}\left(e^{\lambda} \otimes 1\right) \in R$ the only $j \in \mathbb{Z}$ which contribute are $j=k, k-1, \ldots,\left[\frac{k+1}{2}\right]$, where $[x]$ denotes the largest integer less than or equal to x. We compute

$$
\begin{aligned}
L_{-k}\left(e^{\lambda} \otimes 1\right)= & \left(\sum_{i=1}^{l+2} u_{i}(-k) u_{i}(0)\right)\left(e^{\lambda} \otimes 1\right) \\
& +\left\{\left(\sum_{i=1}^{l} u_{i}(-k+1) u_{i}(-1)+\delta(-k+1) \mu(-1)\right.\right. \\
& +\mu(-k+1) \delta(-1))+\cdots \\
& +c \sum_{i=1}^{l} u_{i}\left(-\left[\frac{k+1}{2}\right]\right) u_{i}\left(\left[\frac{k+1}{2}\right]-k\right) \\
& +c \delta\left(-\left[\frac{k+1}{2}\right]\right) \mu\left(\left[\frac{k+1}{2}\right]-k\right) \\
& \left.+c \mu\left(-\left[\frac{k+1}{2}\right]\right) \delta\left(\left[\frac{k+1}{2}\right]-k\right)\right\}\left(e^{\lambda} \otimes 1\right) \\
= & \left(e^{\lambda} \otimes \lambda(-k)\right)+y,
\end{aligned}
$$

where $c=\frac{1}{2}$ or 1 depending on the parity of $k, y \in \mathbb{C} e^{\lambda} \otimes_{\mathbb{C}}\left(\coprod_{n<k} M_{n} S\left(\mathfrak{a}(Q)_{-}\right)\right)$, and $y \in R$ by the first induction hypothesis. Thus $e^{\lambda} \otimes \mu(-k) \in R$ by writing $\lambda=\alpha+a \mu$ and arguing as we did earlier in the case $n=1$.

Next we fix $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathscr{P}_{k}$ and assume that for every $\mathbf{n} \in \mathscr{P}_{k}$ satisfying $\mathbf{n}>\mathbf{m}$ we have $e^{\lambda} \otimes \mu(-\mathbf{n}) \in R$. We call this the second induction hypothesis. We need to show that $e^{\lambda} \otimes \mu(-\mathbf{m}) \in R$. Since $\sum_{i=2}^{r} m_{i}<k$, by the first induction hypothesis $e^{\lambda} \otimes \mu\left(-m_{2}\right) \cdots \mu\left(-m_{r}\right) \in R$. But then R also contains the element $x:=L_{-m_{1}}\left(e^{\lambda} \otimes \mu\left(-m_{2}\right) \cdots \mu\left(-m_{r}\right)\right)$. Now, in the sum defining $L_{-m_{1}}$, the only $j \in \mathbb{Z}$ which contribute in the calculation of x are $j \in\left\{m_{1}\right\} \cup\left\{m_{1}-1, \ldots\right.$, $\left.\left[\frac{m_{1}+1}{2}\right]\right\} \cup\left\{m_{1}+m_{2}, \ldots, m_{1}+m_{r}\right\}$. We calculate

$$
\begin{aligned}
& L_{-m_{1}}\left(e^{\lambda} \otimes \mu\left(-m_{2}\right) \cdots \mu\left(-m_{r}\right)\right) \\
& =\left(e^{\lambda} \otimes \lambda\left(-m_{1}\right) \mu\left(-m_{2}\right) \cdots \mu\left(-m_{r}\right)\right) \\
& \quad+\left\{\sum_{i=1}^{l} u_{i}\left(-m_{1}+1\right) u_{i}(-1)+\delta\left(-m_{1}+1\right) \mu(-1)+\mu\left(-m_{1}+1\right) \delta(-1)+\cdots\right. \\
& \quad+c \sum_{i=1}^{l} u_{i}\left(-\left[\frac{m_{1}+1}{2}\right]\right) u_{i}\left(\left[\frac{m_{1}+1}{2}\right]-m_{1}\right) \\
& \quad+c \delta\left(-\left[\frac{m_{1}+1}{2}\right]\right) \mu\left(\left[\frac{m_{1}+1}{2}\right]-m_{1}\right) \\
& \left.\quad+c \mu\left(-\left[\frac{m_{1}+1}{2}\right]\right) \delta\left(\left[\frac{m_{1}+1}{2}\right]-m_{1}\right)\right\} \cdot\left(e^{\lambda} \otimes 1\right) \\
& \quad+\sum_{i=2}^{r} m_{i}\left(e^{\lambda} \otimes \mu\left(-m_{1}-m_{i}\right) \mu\left(-m_{2}\right) \cdots \overline{\mu\left(-m_{i}\right)} \cdots \mu\left(-m_{r}\right)\right)
\end{aligned}
$$

where the overbar denotes omission and $c=\frac{1}{2}$ or 1 , as before.
Let x_{1} denote the sum in the brace brackets and x_{2} the sum with the overbar. By the first induction hypothesis $x_{1} \cdot\left(e^{\lambda} \otimes 1\right) \in R$ and since $\left(m_{1}+m_{i}\right.$, $\left.m_{2}, \ldots, \overline{m_{i}}, \ldots, m_{r}\right)>\left(m_{2}, m_{3}, \ldots, m_{r}\right)$ for each $2 \leqq i \leqq r$, the second induction hypothesis implies $x_{2} \in R$. Finally since the left side belongs to R we conclude that $e^{\lambda} \otimes \lambda\left(-m_{1}\right) \mu\left(-m_{2}\right) \cdots \mu\left(-m_{r}\right) \in R$. Expressing $\lambda=\alpha+a \mu, \alpha \in Q, a \in \mathbb{C}^{\times}$, the first induction hypothesis gives $e^{\lambda} \otimes \mu\left(-m_{1}\right) \cdots \mu\left(-m_{r}\right) \in R$ as required. This completes the proof of Proposition 9.

Finally, we indicate how to identify $V(\lambda), \lambda \in \Gamma \backslash Q$, as an irreducible highest weight module. Indeed, recall that $\tilde{\mathfrak{a}}$ admits a triangular decomposition $\tilde{\mathfrak{a}}=\tilde{\mathfrak{a}}_{-} \oplus \tilde{\mathfrak{a}}_{0} \oplus \tilde{\mathfrak{a}}_{+}$. Let $\alpha \in\left(\tilde{\mathfrak{a}}_{0}\right)^{*}$ be defined by $\alpha(a(0))=(\hat{\lambda} \mid a)$ for all $a \in \mathfrak{h}, \alpha(\phi)=1$, $\alpha\left(d_{0}\right)=\frac{(\lambda \mid \lambda)}{2}, \alpha(z)=l+2$. Consider the Verma module $M(\alpha)=\mathfrak{U}(\tilde{\mathfrak{a}}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\alpha}$, where $\mathfrak{b}=\tilde{\mathfrak{a}}_{0} \oplus \tilde{\mathfrak{a}}_{+}$with unique irreducible quotient $L(\alpha)$.
Proposition 10. (i) $V(\lambda) \cong L(\alpha)$.
(ii) If $\lambda, \lambda^{\prime} \in \Gamma \backslash Q$, then $V(\lambda) \cong V\left(\lambda^{\prime}\right)$ if and only if $\lambda \equiv \lambda^{\prime}$.

Proof. (i) Since $e^{\lambda} \otimes 1$ is a highest weight vector for $\tilde{\mathfrak{a}}$ with weight α and since it generates the irreducible module $V(\lambda), V(\lambda) \cong L(\alpha)$.
(ii) By [MP] Proposition 2.3.4, $L(\alpha)$ is uniquely determined by α and clearly $\lambda, \lambda^{\prime} \in \Gamma \backslash Q$ determines the same α if and only if $\lambda=\lambda^{\prime}$.

7. Irreducible Representations of the Virasoro-Toroidal Algebras

In this section we show that the full Fock space $V(\Gamma)=\mathbb{C}(\Gamma) \otimes_{\mathbb{C}} S(\mathfrak{a}(\Gamma)$ _) decomposes into a sum of subspaces $K(m), m \in \mathbb{Z}$, and for $m \neq 0, K(m)$ is an irreducible $\tilde{\mathrm{t}}_{[2]}$ submodule with $K(m) \simeq K\left(m^{\prime}\right)$ if and only if $m=m^{\prime}$.

Note that, as \mathbb{C}-spaces, $V(\Gamma)$ is the direct sum of the \mathbb{C}-spaces $K(m):=\mathbb{C}[m \mu+Q] \otimes_{\mathbb{C}} S\left(\mathfrak{a}(\Gamma)_{-}\right)$. It is clear that each $K(m), m \in \mathbb{Z}$, is a $\tilde{\mathrm{t}}_{[2]}$-module. Suppose that $m \neq 0$, and hence $m \mu+Q \subset \Gamma \backslash Q$. We will need the following formula which is a special case of (12) in Sect. 3:

$$
\begin{equation*}
X_{-\left(\gamma \left\lvert\, \lambda+\frac{1}{2}\right.\right)}(\gamma)\left(e^{\lambda} \otimes 1\right)=\varepsilon(\gamma, \lambda)\left(e^{\lambda+\gamma} \otimes 1\right), \quad \gamma \in Q, \lambda \in \Gamma . \tag{18}
\end{equation*}
$$

Proposition 11. For $m \neq 0, K(m)$ is an irreducible $\tilde{\mathrm{t}}_{[2]}$-module.
Proof. It suffices to show
(a) $K(m)=\mathfrak{U}\left(\tilde{\mathfrak{t}}_{[2]}\right) \cdot\left(e^{m \mu} \otimes 1\right)$ and,
(b) every nonzero submodule R of $K(m)$ contains $e^{m \mu} \otimes 1$.

For (a), note that $K(m)=\coprod\left(\mathbb{C} e^{m \mu+\alpha} \otimes_{\mathbb{C}} S\left(\mathfrak{a}(\Gamma)_{-}\right)\right)=\coprod_{\alpha} V_{\Gamma}(m \mu+\alpha)$, where α runs through Q. By $(18), \mathfrak{l}\left(\tilde{\mathfrak{t}}_{[2]}\right) \cdot\left(e^{m \mu} \otimes 1\right)$ contains $e^{m \mu+\alpha} \otimes 1$ for every $\alpha \in Q$ and since $m \mu+\alpha \in \Gamma \backslash Q \quad(m \neq 0)$, Proposition 9 implies $\mathfrak{U}(\tilde{\mathfrak{a}}) \cdot\left(e^{m \mu} \otimes 1\right) \supset \mathbb{C} e^{m \mu+\alpha}$ $\otimes_{\mathbb{C}} S\left(\mathfrak{a}(\Gamma)_{-}\right), \forall \alpha \in Q$. This establishes (a).

To prove (b), we note that as an $\hat{\mathfrak{a}}$-module $K(m)$ is a direct sum of nonisomorphic modules $V_{\Gamma}(m \mu+\alpha)$, and hence so too is R. Thus

$$
e^{m \mu+\beta} \otimes 1 \in V_{\Gamma}(m \mu+\beta) \subset R
$$

for some $\beta \in Q$. Now by (18), $e^{m \mu} \otimes 1 \in R$ and we are done.
Proposition 12. $K(m) \cong K\left(m^{\prime}\right)$ if and only if $m=m^{\prime}$.
Proof. $K(0)$ is not irreducible [F1]. Consider $m \neq 0$. Define

$$
\boldsymbol{V a c}(K(m), \tilde{\mathfrak{a}}):=\left\{x \in K(m): \tilde{\mathfrak{a}}_{+} \cdot x=0\right\} .
$$

Note that since $V(m \mu+\alpha)$ is irreducible over $\tilde{\mathfrak{a}}$ we have $\operatorname{Vac}(V(m \mu+\alpha), \tilde{\mathfrak{a}})$ $=\mathbb{C} e^{m \mu+\alpha} \otimes 1 . \quad$ Moreover, since $\quad K(m)=\coprod_{\alpha \in Q} V(m \mu+\alpha), \quad \operatorname{Vac}(K(m), \tilde{\mathfrak{a}})=$ $\coprod_{\alpha \in Q} \mathbb{C} e^{m \mu+\alpha} \otimes 1$. Now for $\alpha \in Q, \quad \delta(0) \cdot\left(e^{m \mu+\alpha} \otimes 1\right)=(m \mu+\alpha \mid \delta) e^{m \mu+\alpha} \otimes 1=$ $m\left(e^{m \mu+\alpha} \otimes 1\right)$. Thus $\delta(0)$ acts as m on $\operatorname{Vac}(K(m)$, $\tilde{\mathfrak{a}})$. Finally, if $K(m) \cong K\left(m^{\prime}\right)$, where $m, m^{\prime} \neq 0$, then $\operatorname{Vac}(K(m), \tilde{\mathfrak{a}}) \cong \operatorname{Vac}\left(K\left(m^{\prime}\right), \tilde{\mathfrak{a}}\right)$, as $\mathbb{C} \delta(0)$-modules and hence $m=m^{\prime}$.

References

[EM] Eswara, Rao, S., Moody, R.V.: Vertex representations for the universal central ex tensions for the n-toroidal Lie algebras and a generalization of the Virasoro algebra. Commun. Math. Phys., to appear
[EMY] Eswara, Rao S., Moody, R.V., Yokonuma T.: Lie algebras and Weyl groups arising from vertex operator representations. Nova J. Algebra and Geometry 1, 15-57 (1992)
[F1] Fabbri, M.A.: The structure of a new class of modules over the Virasoro-toroidal algebra. Preprint
[F2] Fabbri, M.A.: Virasoro-toroidal algebras and vertex representations. C.R. Math. Rep. Acad. Sci. Canada 14, 77-82 (1992)
[FF] Feigin, B.L., Fuks, D.B.: Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra. Funct. Anal. Appl. (English Translation) 16, 114-126 (1982)
[FK] Frenkel, I., Kac, V.G.: Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 63, 23-66 (1980)
[FLK] Frenkel, l., Lepowsky, J., Meurman, A.: "Vertex Operators and the Monster." New York, London: Academic Press, Inc. 1988
[GO] Goddard, P., Olive, D.: "Algebras, lattices and strings." In: Vertex Operators in Mathematics and Physics, Edited by Lepowsky, J., Mandelstam, S., Singer, I.M., Mathematical Sciences Research Institute Publications 3 (1985)
[Kac] Kac, V.G.: Infinite dimensional Lie algebras. Boston, Basel: Birkhäuser 1983
[K] Kaplansky, I.: The Virasoro algebra. Commun. Math. Phys. 86, 49-54 (1982)
[Ka] Kassel, C.: Kahler differentials and coverings of complex simple Lie algebras extended over a commutative algebra. J. Pure Appl. Algebra 34, 265-275 (1985)
[KR] Kac, V.G., Raina, A.K.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras. Singapore: World Scientific 1987
[MEY] Moody, R.V., Eswara, Rao S., Yokonuma, T.: Toroidal Lie algebras and vertex representations. Geometricae Dedicata 35, 283-307 (1990)
[MP] Moody, R.V., Pianzola, A.: Lie Algebras with Triangular Decomposition. J. Wiley, to appear

Communicated by A. Jaffe

