Irreducible Representations of Virasoro-Toroidal Lie Algebras

Marc A. Fabbri, Robert V. Moody

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Received: 16 November 1992/in revised form: 10 May 1993

To A. John Coleman on the occasion of his 75th birthday

Abstract: Toroidal Lie algebras and their vertex operator representations were introduced in [MEY] and a class of indecomposable modules were investigated. In this work, we extend the toroidal algebra by the Virasoro algebra thus constructing a semi-direct product algebra containing the toroidal algebra as an ideal and the Virasoro algebra as a subalgebra. With the use of vertex operators and certain oscillator representations of the Virasoro algebra it is proved that the corresponding Fock space gives rise to a class of irreducible modules for the Virasoro-toroidal algebra.

Introduction

Toroidal algebras $t_{[n]}$ are defined for every $n \ge 1$ and when n = 1 they are precisely the untwisted affine algebras. Such an affine algebra g can be realized as the universal covering algebra of the loop algebra $\dot{g} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$ where \dot{g} is a simple finite dimensional Lie algebra over \mathbb{C} . It is well known that g is a one-dimensional central extension of $\dot{g} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$. The toroidal algebras $t_{[n]}$ are the universal covering algebras of iterated loop algebras $\dot{g} \otimes_{\mathbb{C}} \mathbb{C}[t^{\frac{1}{1}}, \ldots, t^{\frac{1}{n}}]$ which, for $n \ge 2$, turn out to be infinite-dimensional central extensions.

Unlike the finite dimensional case, there is a distinguished irreducible highest weight module for any untwisted (or direct) affine Lie algebra. This is the *basic* representation. In 1980 Frenkel and Kac [FK] gave a remarkable construction of the basic representation by using vertex operators $X(\alpha, z)$, where α runs over the root lattice \dot{Q} of \dot{g} . Already in [FK] it was observed that the Virasoro algebra also operates on the basic representation and in particular the (energy) operator d_0 plays a distinguished role.

A decade later, the vertex operators $X(\alpha, z)$, where α now lies in the affine root lattice, $Q = \dot{Q} \oplus \mathbb{Z}\delta$, were used to produce indecomposable representations of the toroidal algebras $t_{[2]}$ [MEY]. Soon after, these results were shown [EM] to extend to arbitrary *n*.

However these representations are not completely reducible, nor do irreducible representations appear in a natural way in the picture. The objective of this paper is to show how one can greatly improve the situation by enlarging $t_{[2]}$. The key point is that our representations, as in the affine case, naturally afford representations of the Virasoro algebra \mathfrak{B} ir too. We thus extend $t_{[2]}$ to $\tilde{t}_{[2]} := \mathfrak{B}$ ir $\succ t_{[2]}$.

The vertex representations of $t_{[2]}$ constructed in [MEY] arise from a canonical representation of a degenerate Heisenberg algebra $\mathfrak{a}(Q)$ whose centre is infinite dimensional. We will embed Q in a nondegenerate lattice Γ and form the larger Heisenberg (oscillator) algebra $\mathfrak{a}(\Gamma)$. The representations of \mathfrak{B} ir that we will use are the oscillator representations corresponding to $\mathfrak{a}(\Gamma)$. Thus, to any generator d_k , $k \in \mathbb{Z}$, we associate the infinite normally ordered quadratic expression $L_k = \frac{1}{2} \sum_{j \in \mathbb{Z}} \sum_{i=1}^{l+2} : u_i(-j)u_i(j+k)$: where $\{u_i\}_{i=1}^{l+2}$ is an orthonormal basis for $\mathfrak{t} = \mathbb{C} \otimes_{\mathbb{Z}} \Gamma$.

The $\tilde{t}_{[2]}$ -module studied here is the Fock space $V(\Gamma)$ associated with the lattice Γ . It is the tensor product $\mathbb{C}[\Gamma] \otimes_{\mathbb{C}} S(\mathfrak{a}(\Gamma)_{-})$ of a twisted group algebra $\mathbb{C}(\Gamma)$ and the symmetric algebra $S(\mathfrak{a}(\Gamma)_{-})$. As a \mathbb{C} -space, $V(\Gamma)$ decomposes into a direct sum $\prod_{m \in \mathbb{Z}} K(m)$. We will show that if $m \neq 0$, K(m) is an irreducible $\tilde{t}_{[2]}$ -submodule of $V(\Gamma)$ and $K(m) \simeq K(m')$ if and only if m = m'. The submodule K(0) is not irreducible. In a forthcoming paper, [F1], the submodule structure of K(0) is investigated.

1. The Heisenberg Algebras $\alpha(L)$ and the Canonical Representation

Let $(L, (\cdot|\cdot))$ be a (geometric) lattice, that is, a free Z-module L of finite rank together with a nontrivial symmetric Z-bilinear form $(\cdot|\cdot)$: $L \times L \to \mathbb{Z}$. Let $l := \mathbb{C} \otimes_{\mathbb{Z}} L$ and extend $(\cdot|\cdot)$ to a symmetric \mathbb{C} -bilinear form (also denoted $(\cdot|\cdot)$) on l. We call the lattice L nondegenerate if $(\cdot|\cdot)$ is nondegenerate on l. Let l(n) be an isomorphic copy of l for every $n \in \mathbb{Z}$ under the correspondence $a(n) \leftrightarrow a, a \in l$.

Form the Heisenberg algebra $\mathfrak{a}(L) := (\prod_{n \in \mathbb{Z}} \mathbb{I}(n)) \oplus \mathbb{C} \mathfrak{c} \mathfrak{c}$, where \mathfrak{c} is some symbol, with multiplication $[\cdot, \cdot]$ on $\mathfrak{a}(L)$ defined by $[a(n), b(m)] := (a|b)n\delta_{n+m,0}\mathfrak{c}$, for all $a, b \in \mathbb{I}, n, m \in \mathbb{Z}$, and \mathfrak{c} is central. $\mathfrak{a}(L)$ is graded with deg a(n) := -n and by $\mathfrak{c} = 0$. Observe that $\mathbb{I}(0)$ is an abelian subalgebra of $\mathfrak{a}(L)$ and its complement $\mathfrak{a}(L) := (\prod_{n \in \mathbb{Z} \setminus \{0\}} \mathbb{I}(n)) \oplus \mathbb{C} \mathfrak{c}$ is a subalgebra of $\mathfrak{a}(L)$ satisfying $\mathfrak{a}(L) = \mathfrak{a}(L) \times \mathbb{I}(0)$, where \times denotes the direct product of Lie algebras. One easily proves

Proposition 1. centre
$$\mathfrak{a}(L) = \mathfrak{l}(0) \oplus \mathbb{C} \mathfrak{c} \oplus \left(\coprod_{\substack{n \in \mathbb{Z} \setminus \{0\}\\ \gamma \in \mathrm{rad}(\cdot|\cdot)}} \mathbb{C} \gamma(n) \right).$$

The most famous examples occur when \dot{Q} is a lattice of type ADE, that is, \dot{Q} is of type A_l , D_l or E_l , (l = 6, 7, 8). $\mathfrak{a}(\dot{Q})$ is a Heisenberg algebra with dim_c[centre($\mathfrak{a}(\dot{Q})$)] = l + 1. Another set of examples occurs when $Q = \dot{Q} \oplus \mathbb{Z}\delta$, where $(\dot{Q}|\delta) = 0 = (\delta|\delta)$. Note that Q is a degenerate lattice and the Heisenberg algebra $\mathfrak{a}(Q)$ has centre $[\mathfrak{a}(Q)] = \mathfrak{h}(0) \oplus \mathbb{C}\mathfrak{c} \oplus (\coprod_{n \in \mathbb{Z} \setminus \{0\}} \mathbb{C}\delta(n))$, where $\mathfrak{h} := \mathbb{C} \otimes_{\mathbb{Z}} Q$. We call $\mathfrak{a}(Q)$ a *degenerate Heisenberg algebra* since the associated skew-symmetric bilinear form $\psi : \mathfrak{a}(Q) \times \mathfrak{a}(Q) \to \mathbb{C}$ given by $\psi(\mathfrak{a}(k), \mathfrak{b}(l)) := k\delta_{k+l,0}(\mathfrak{a}|b)$ has nontrivial radical elements in the homogeneous subspaces of non-zero degree.

We recall the canonical Fock space representation of $\mathfrak{a}(L)$. Let $\mathfrak{a}(L)_{-} := \prod_{n < 0} \mathfrak{l}(n)$ and let $S(\mathfrak{a}(L)_{-})$ be the corresponding symmetric algebra.

Irreducible Representations of Virasoro-Toroidal Lie Algebras

Define an action of $\mathring{a}(L)$ on $S(\mathfrak{a}(L)_{-})$: for $n, m > 0, a, b \in I$, and $f \in S(\mathfrak{a}(L)_{-})$

$$\begin{cases} \phi \cdot f = f\\ a(-n) \cdot f = L_{a(-n)}f\\ a(n) \cdot f = \partial_{a(n)}f, \end{cases}$$
(1)

where $L_{a(-n)}f = a(-n)f$ is the left multiplication operator and $\partial_{a(n)}$ is the unique derivation of $S(\alpha(L)_{-})$ satisfying

$$\partial_{a(n)}(b(-m)) = n\delta_{m,n}(a|b)$$

Proposition 2. $S(\mathfrak{a}(L)_{-})$ is an $\mathfrak{a}(L)$ -module and the following are equivalent: (i) $S(\mathfrak{a}(L)_{-})$ is an irreducible $\mathfrak{a}(L)$ -module.

(ii) L is nondegenerate.

(iii) $S(\mathfrak{a}(L)_{-})$ is a faithful $\mathfrak{a}(L)$ -module.

Let *M* be any nondegenerate lattice containing *L*. One may choose M = L if *L* is already nondegenerate. Put $m := \mathbb{C} \otimes_{\mathbb{Z}} M$ and fix $\lambda \in m$. Let $\mathbb{C}e^{\lambda}$ be the one-dimensional space spanned by the symbol e^{λ} . Consider the \mathbb{C} -space

$$V_L(\lambda) := \mathbb{C}e^{\lambda} \otimes_{\mathbb{C}} S(\mathfrak{a}(L)_{-}) .$$
⁽²⁾

Of course, as \mathbb{C} -spaces, we have $V_L(\lambda) \cong S(\mathfrak{a}(L)_-)$. We make $V_L(\lambda)$ into an $\mathfrak{a}(L)$ -module by extending (1) as follows:

$$\begin{cases} \mathbf{\phi} \cdot (e^{\lambda} \otimes f) = e^{\lambda} \otimes \mathbf{\phi} \cdot f = e^{\lambda} \otimes f, \\ a(-n) \cdot (e^{\lambda} \otimes f) = e^{\lambda} \otimes L_{a(-n)}f, \\ a(n) \cdot (e^{\lambda} \otimes f) = e^{\lambda} \otimes \partial_{a(n)}f, \\ a(0) \cdot (e^{\lambda} \otimes f) = (a|\lambda)(e^{\lambda} \otimes f). \end{cases}$$
(3)

Note that $V_L(\lambda)$ is an irreducible $\mathfrak{a}(L)$ -module if and only if L is a nondegenerate lattice but that $V_L(\lambda)$ is never a faithful $\mathfrak{a}(L)$ -module.

2. Toroidal Algebras

Let \dot{g} be a simple finite dimensional Lie algebra over \mathbb{C} . Let A be any commutative algebra with unity over \mathbb{C} . Consider the Lie algebra $g_A := \dot{g} \otimes_{\mathbb{C}} A$ with bracket $[x \otimes a, y \otimes b] = [x, y] \otimes ab$, $x, y \in \dot{g}$ and $a, b \in A$. The structure of the universal covering algebra of $\dot{g} \otimes_{\mathbb{C}} A$ has been worked out in [Ka].

Let Ω_A be the A-module of differentials and $d: A \to \Omega_A$ the differential map. Thus d is linear and satisfies $d(ab) = a \cdot db + b \cdot da$. Let $-: \Omega_A \to \Omega_A/dA$ be the canonical map. Then for $a, b \in A$ we have $\overline{d(ab)} = 0$.

Theorem [Ka, and Kac, Ex. 7.9]. The Lie algebra $\mathfrak{g} := (\mathfrak{g} \otimes_{\mathfrak{C}} A) \oplus \Omega_A/dA$ with multiplication defined by

$$\begin{cases} [x \otimes a, y \otimes b] \coloneqq [x, y] \otimes ab + (x|y)(\overline{da})b \\ \Omega_A/dA \ central \end{cases}$$
(4)

is the universal covering algebra of $\dot{\mathfrak{g}} \otimes_{\mathfrak{C}} A$. (Here $(\cdot | \cdot)$ denotes the Killing form on $\dot{\mathfrak{g}}$.)

When $A = \mathbb{C}[t_1^{\pm}, \ldots, t_n^{\pm}]$ we denote the algebra g simply by $t_{[n]}$ and we call it the *toroidal algebra*. Consider the case n = 2 so that $A = \mathbb{C}[s^{\pm 1}, t^{\pm 1}]$. Then it is easy to check that a \mathbb{C} -basis for Ω_A/dA is given (see [MEY]) by

$$\begin{cases} a(p,q) \coloneqq s^{p-1}t^{q}dt , & (p,q) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\} ,\\ a(p,0) \coloneqq \overline{s^{p}t^{-1}dt} , & p \in \mathbb{Z} ,\\ a(0,0) \coloneqq \overline{s^{-1}ds} . \end{cases}$$
(5)

Next, let \mathfrak{h} be a fixed Cartan subalgebra of $\dot{\mathfrak{g}}$ and consider the subalgebra \mathfrak{h} of $\mathfrak{t}_{[2]}$ generated by the subspace $\dot{\mathfrak{h}} \otimes_{\mathbb{C}} \mathbb{C}[s, s^{-1}]$. Using (4), we have for $h, h' \in \dot{\mathfrak{h}}$ and $n, m \in \mathbb{Z}$, $[h \otimes s^m, h' \otimes s^n] = [h, h'] \otimes s^{n+m} + (h|h')(\overline{ds^m})s^n = (h|h')m\delta_{m+n,0}\overline{s^{-1}ds}$, and hence \mathfrak{h} can be identified as the Heisenberg algebra $\mathfrak{a}(\dot{Q})$ under the correspondences $h \otimes s^n \leftrightarrow h(n)$ and $\overline{s^{-1}ds} \leftrightarrow \dot{\mathfrak{q}}$.

The subalgebra $e := b \oplus (\coprod_{p \in \mathbb{Z} \setminus \{0\}} \mathbb{C}a(p, 0))$ of $t_{[2]}$ can be identified as the Heisenberg algebra $\mathfrak{a}(Q)$, where $Q = Q \oplus \mathbb{Z}\delta$ as in Sect. 1 under the above correspondences together with $a(p, 0) \leftrightarrow \delta(p)$, $p \in \mathbb{Z}$. The Heisenberg algebras $\mathfrak{a}(Q)$ and $\mathfrak{a}(Q)$ and their representations will play a central role in the sequel.

3. Vertex Representations of Toroidal Algebras

Let \dot{Q} be of type ADE, and let $\Gamma = \dot{Q} \oplus \mathbb{Z}\delta \oplus \mathbb{Z}\mu = Q \oplus \mathbb{Z}\mu$, where $(\dot{Q}|\mu) = 0 = (\mu|\mu)$ and $(\delta|\mu) = 1$. Following [EMY] we let $\varepsilon: Q \times Q \to \{\pm 1\}$ be a bimultiplicative map satisfying

$$\begin{cases} \mathbf{CC}(\mathbf{i}) & \varepsilon(\alpha, \alpha) = (-1)^{(\alpha|\alpha)/2} ,\\ \mathbf{CC}(\mathbf{ii}) & \varepsilon(\alpha, \beta)\varepsilon(\beta, \alpha) = (-1)^{(\alpha|\beta)} ,\\ \mathbf{CC}(\mathbf{iii}) & \varepsilon(\alpha, \delta) = 1 , \end{cases}$$
(6)

where $\alpha, \beta \in Q$. Extend ε to a bimultiplicative map $\varepsilon: Q \times \Gamma \to \{\pm 1\}$. For $\gamma \in \Gamma$ let e^{γ} be a symbol and form the vector space $\mathbb{C}[\Gamma]$ with \mathbb{C} -basis $\{e^{\gamma}: \gamma \in \Gamma\}$. Then $\mathbb{C}[\Gamma]$ contains the subspace $\mathbb{C}[Q] := \coprod_{\gamma \in Q} \mathbb{C}e^{\gamma}$. We give $\mathbb{C}[Q]$ a twisted group algebra structure by defining $e^{\alpha}e^{\beta} := \varepsilon(\alpha, \beta)e^{\alpha+\beta}$, $\alpha, \beta \in Q$. Then $\mathbb{C}[\Gamma]$ becomes a $\mathbb{C}[Q]$ -module in such a way that $e^{\alpha}e^{\gamma} := \varepsilon(\alpha, \gamma)e^{\alpha+\gamma}$, $\alpha \in Q$, $\gamma \in \Gamma$. Now form the *full Fock space*

$$V(\Gamma) := \mathbb{C}[\Gamma] \otimes_{\mathbb{C}} S(\mathfrak{a}(\Gamma)_{-}) .$$
⁽⁷⁾

Note that, as \mathbb{C} -spaces, $V(\Gamma) = \prod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$, where $V_{\Gamma}(\lambda) := \mathbb{C}e^{\lambda} \otimes_{\mathbb{C}} S(\mathfrak{a}(\Gamma)_{-})$.

Let z be a complex variable and $\alpha \in Q$. Define

$$T_{\pm}(\alpha, z) \coloneqq -\sum_{n \ge 0} \frac{1}{n} \alpha(n) z^{-n} .$$
(8)

Then the vertex operator, $X(\alpha, z)$, for α on $V(\Gamma)$ is defined by

$$\begin{cases} X(\alpha, z) \coloneqq z^{(\alpha|\alpha)/2} \exp T(\alpha, z), \text{ where} \\ \exp T(\alpha, z) \coloneqq \exp T_{-}(\alpha, z) e^{\alpha} z^{\alpha(0)} \exp T_{+}(\alpha, z), \text{ and} \\ z^{\alpha(0)}(e^{\lambda} \otimes f) \coloneqq z^{(\alpha|\lambda)}(e^{\lambda} \otimes f), \quad f \in S(\mathfrak{a}(\Gamma)_{-}) . \end{cases}$$
(9)

Irreducible Representations of Virasoro-Toroidal Lie Algebras

The $X(\alpha, z)$ can be formally expanded in powers of z to give

$$X(\alpha, z) = \sum_{n \in \mathbb{Z}} X_n(\alpha) z^{-n}$$

and the coefficients $X_n(\alpha)$ are called *moments*. The $X_n(\alpha)$ are operators on $V(\Gamma)$ and for any $f \in S(\mathfrak{a}(\Gamma)_-)$ and $\lambda \in \Gamma$, one has $X_n(\alpha)(e^{\lambda} \otimes f) = e^{\lambda + \alpha} \otimes f'$, where $f' \in S(\mathfrak{a}(\Gamma)_-)$. Thus, in the decomposition of the full Fock space $V(\Gamma) = \prod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$ one can view the moments $X_n(\alpha)$ as operators which move an element in the " λ -stalk" $V_{\Gamma}(\lambda)$ to an element in the " $(\lambda + \alpha)$ -stalk" $V_{\Gamma}(\lambda + \alpha)$.

The determination of the commutation relations of the moments can be made by standard techniques of contour integration [GO, MP] and yields

 $\begin{array}{ll} \mathbf{CR.0} & \left[\alpha(k), X_n(\beta)\right] = (\alpha|\beta) X_{n+k}(\beta) \ . \\ \mathbf{CR.1} & \left[X_m(\alpha), X_n(\beta)\right] = 0, \ (\alpha|\beta) \geqq 0 \ . \\ \mathbf{CR.2} & \left[X_m(\alpha), X_n(\beta)\right] = \varepsilon(\alpha, \beta) X_{n+m}(\alpha+\beta), \ (\alpha|\beta) = -1 \ . \\ \mathbf{CR.3} & \text{If } (\alpha|\alpha) = (\beta|\beta) = -(\alpha|\beta) = 2, \ \text{then} \\ & \left[X_m(\alpha), X_n(\beta)\right] = \varepsilon(\alpha, \beta) \left\{ m X_{n+m}(\alpha+\beta) + \sum_{k \in \mathbb{Z}} : \alpha(k) X_{m+n-k}(\alpha+\beta) : \right\}, \\ \text{where } : \alpha(k) X_{m+n-k}(\beta) ::= \begin{cases} \alpha(k) X_{m+n-k}(\beta) & \text{if } k \le m+n-k \\ X_{m+n-k}(\beta)\alpha(k) & \text{if } k > m+n-k \end{cases} . \end{array}$

Next we will state a result from [MEY] which gives vertex representations of the toroidal Lie algebra $\dot{t}_{[2]}$. We fix a simple finite dimensional Lie algebra \dot{g} of type ADE with Cartan subalgebra \dot{h} , root lattice \dot{Q} , root system \dot{A} and basis of simple roots $\{\alpha_1, \ldots, \alpha_l\}$. We assume that $\{e_{\pm \alpha_i}\}, \{\alpha_i\}$ is a Chevalley basis of \dot{g} (we identify \dot{h} with \dot{h}^* by the Killing form as usual) so that $e_{\pm \alpha_i} \in \dot{g}^{\pm \alpha_i}$ and $[e_{\alpha_i}, e_{-\alpha_i}] = -\alpha_i$.

Now in $\mathfrak{t}_{[2]}$ we can identify an affine algebra $\mathfrak{g} \otimes_{\mathfrak{C}} \mathbb{C}[s, s^{-1}] \oplus \mathbb{C}\mathfrak{c}$. Its root system is denoted Δ , its root lattice Q and its set of real roots Δ^{re} .

Proposition 3. Let \mathfrak{s} be the Lie algebra of operators on $V(\Gamma)$ generated by the moments $X_m(\alpha), \alpha \in \Delta^{\mathrm{re}}, m \in \mathbb{Z}$. Then \mathfrak{s} is isomorphic to \mathfrak{t}_{121} under the assignment

$$e_{\pm\alpha_i} \otimes \pm s^m t^n \mapsto X_m(\pm \alpha_i + n\delta), \quad n, m \in \mathbb{Z}, \ 1 \le i \le l \ . \tag{10}$$

Now for $\alpha \in \Gamma$ define the elementary Schur polynomials $S_r(\alpha)$, $r \in \mathbb{Z}$ by the expressions

$$\begin{cases} \exp T_{-}(\alpha, z) =: \sum_{r=0}^{\infty} S_{r}(\alpha) z^{r} \\ S_{r}(\alpha) := 0, \quad r < 0 \end{cases},$$
(11)

where $T_{-}(\alpha, z)$ is defined in (8). As in [MEY], we have

$$\sum_{k \in \mathbb{Z}} X_k(\varphi) z^{-k} (e^{\lambda} \otimes 1) = X(\varphi, z) (e^{\lambda} \otimes 1)$$
$$= z^{(\varphi|\varphi)/2} \exp T_-(\varphi, z) e^{\varphi} z^{\varphi(0)} (e^{\lambda} \otimes 1)$$
$$= \sum_{r=0}^{\infty} (e^{\lambda + \varphi} \otimes S_r(\varphi)) z^{r+(\varphi|\lambda) + \frac{(\varphi|\varphi)}{2}}.$$

Matching powers of z we get

$$X_{k}(\varphi)(e^{\lambda} \otimes 1) = \varepsilon(\varphi, \lambda)e^{\lambda + \varphi} \otimes S_{-k - (\varphi|\lambda + \frac{\varphi}{2})}(\varphi) .$$
⁽¹²⁾

4. The Virasoro-Heisenberg and Virasoro-Toroidal Algebras

In this section we introduce the Virasoro–Heisenberg and Virasoro-toroidal algebras. We first define a representation by derivations of the Virasoro algebra on both the Heisenberg algebra $\alpha(Q)$ and on the toroidal algebra $t_{[2]}$ and then form the corresponding semi-direct product Lie algebras. The representations used here can be identified as certain copies of the well-known module of tensor fields [FF, K].

Recall that the Virasoro algebra, denoted \mathfrak{Bir} , is the infinite dimensional Lie algebra with generators $\{d_k, k \in \mathbb{Z}\}$ and relations $[d_k, d_l] = (k - l)d_{k+l} + \frac{1}{12}\delta_{k+l,0}(k^3 - k)z$, where z is a central symbol. Define an action of \mathfrak{Bir} on $\mathfrak{a}(Q)$ in such a way that z acts trivially and for $k \in \mathbb{Z}$ and d_k is the unique derivation satisfying

$$d_k \cdot a(n) = -na(n+k) . \tag{13}$$

Define an action of \mathfrak{B} ir on $\mathfrak{t}_{[2]}$ in such a way that z acts trivially and, for $k \in \mathbb{Z}$, d_k acts as the unique derivation satisfying

$$d_k \cdot (e_{\pm \alpha_i} \otimes s^m t^n) \coloneqq \left\{ \frac{k}{2} (\alpha_i | \alpha_i) - (m+k) \right\} (e_{\pm \alpha_i} \otimes s^{m+k} t^n) , \qquad (14)$$

where $n, m \in \mathbb{Z}$ and $1 \leq i \leq l$.

One can verify directly that (13) and (14) do determine representations of \mathfrak{B} ir on $\mathfrak{a}(Q)$ and \mathfrak{t}_{121} respectively. As \mathbb{C} -spaces, define

$$\tilde{\mathfrak{a}} := \mathfrak{Vir} \oplus \mathfrak{a}(Q)$$
 and $\tilde{\mathfrak{t}}_{[2]} := \mathfrak{Vir} \oplus \mathfrak{t}_{[2]}$.

We make \tilde{a} (resp. $\tilde{t}_{[2]}$) into a Lie algebra in such a way that \mathfrak{V} is a subalgebra and $\mathfrak{a}(Q)$ (resp. $t_{[2]}$) is an ideal via (13) (resp. (14)):

$$\begin{cases} [d_k, a(n)] := d_k \cdot a(n) \\ [d_k, e_{\pm \alpha_1} \otimes s^m t^n] := d_k \cdot (e_{\pm \alpha_1} \otimes s^m t^n) . \end{cases}$$

We call \tilde{a} and $\tilde{t}_{[2]}$ the Virasoro-Heisenberg and Virasoro-toroidal algebras respectively.

5. Oscillator Representations of the Virasoro Algebra

A very interesting class of representations of \mathfrak{B} ir are the so-called *oscillator* representations. The operators used arise from the Fourier components of the energy-momentum tensor in quantum field theory and can be expressed in terms of the canonical representation of a corresponding representation of the Heisenberg (oscillator) algebra $\mathfrak{a}(L)$.

Let L be an arbitrary nondegenerate lattice of rank $l, l = \mathbb{C} \otimes_{\mathbb{Z}} L$ and $\{a_i\}_{i=1}^l$ an orthonormal basis for l. Consider the normally ordered sums

$$L_k := \frac{1}{2} \sum_{i=1}^{l} \sum_{j \in \mathbb{Z}} :a_i(-j)a_i(j+k):, \qquad (15)$$

where $k \in \mathbb{Z}$ and for all $n \in \mathbb{Z}$, $a_i(n) \in \mathfrak{a}(L)$. The normal ordering defined by

$$:a_i(r)a_i(s)::=\begin{cases} a_i(r)a_i(s), & r \leq s\\ a_i(s)a_i(r), & r > s \end{cases}$$

ensures that only a finite number of the terms in L_k act nontrivially and hence the L_k make sense as operators on $V_L(\lambda)$. A proof along the same lines as in [KR] gives

Proposition 4. The assignment $d_k \mapsto L_k$, $k \in \mathbb{Z}$ and $z \mapsto lI$ defines a representation of \mathfrak{V} ir on $V_L(\lambda)$.

Let \dot{Q} be of type ADE and $\Gamma = \dot{Q} \oplus \mathbb{Z}\delta \oplus \mathbb{Z}\mu$ as before. Let $\{u_i\}_{i=1}^l$ be an orthonormal basis for $\dot{\mathfrak{h}} \coloneqq \mathbb{C} \otimes_{\mathbb{Z}} \dot{Q}$. Let $u_{l+1} \coloneqq \frac{\delta}{2} + \mu$ and $u_{l+2} \coloneqq \sqrt{-1}\left(\frac{\delta}{2} - \mu\right)$. Then $\{u_i\}_{i=1}^{l+2}$ is an orthonormal basis for $\mathfrak{k} \coloneqq \mathbb{C} \otimes_{\mathbb{Z}} \Gamma$. Applying Proposition 4 with $\Gamma = L$ we obtain a representation of \mathfrak{V} or $V_{\Gamma}(\lambda), \lambda \in \Gamma$, with the centre *z* acting as multiplication by l+2. Since $V(\Gamma) = \coprod_{\lambda \in \Gamma} V_{\Gamma}(\lambda)$ we can at once extend the representation of \mathfrak{V} to all of $V(\Gamma)$.

Proposition 5. (i) $[L_k, a(n)] = -na(n+k), a \in Q, n, k \in \mathbb{Z}$, and hence $V_{\Gamma}(\lambda)$ is an \tilde{a} -module. (ii) $[L_k, X_m(\alpha)] = \left\{ \frac{k}{2} (\alpha | \alpha) - (m+k) \right\} X_{m+k}(\alpha), m, k \in \mathbb{Z}, \alpha \in Q, and hence V(\Gamma) is a \tilde{t}_{[2]}$ -module.

Proof. (i) follows by a standard calculation [KR] and (ii) follows easily from the well-known commutation relation

CR.4
$$[L_k, X(\alpha, z)] = z^k \left\{ \frac{k}{2} (\alpha | \alpha) + z \frac{d}{dz} \right\} X(\alpha, z)$$

whose proof can be found in [KF] or [GO].

6. Representations of the Virasoro-Heisenberg Algebra

The objective of this section is to study the structure of the \tilde{a} -module $V_{\Gamma}(\lambda)$ which we simply denote by $V(\lambda)$. We begin this section by pointing out that the Lie algebra \tilde{a} admits a triangular decomposition in the sense of [MP]. Indeed, define \tilde{a}^n to be $\mathbb{C}d_n + \mathfrak{h}(n)$, $n \neq 0$, and $\tilde{a}_0 \coloneqq \tilde{a}^0$ to be the linear span of $\{d_0, \mathfrak{h}(0), \mathfrak{c}, z\}$. Define $\tilde{a}_{\pm} \coloneqq \prod_{n \ge 0} \tilde{a}^n$. Then $\tilde{a} = \tilde{a}_- \oplus \tilde{a}_0 \oplus \tilde{a}_+$ provides a triangular decomposition with root spaces \tilde{a}^n determined by the eigenfunctions $n\phi: \tilde{a}_0 \to \mathbb{C}$ with $\langle \phi, d_0 \rangle = -1$ and $\phi|_{\mathfrak{h}(0) \oplus \mathbb{C}\mathfrak{q} \oplus \mathbb{C}z} = 0$ and with anti-linear anti-involution $\tilde{\sigma}: \tilde{a} \to \tilde{a}$ defined by $\tilde{\sigma}(d_n) \coloneqq d_{-n}, \tilde{\sigma}(a(n)) \coloneqq a(-n), \tilde{\sigma}(z) \coloneqq z$ and $\tilde{\sigma}(\mathfrak{c}) \coloneqq \mathfrak{c}$ where $n \in \mathbb{Z}$ and $a \in \mathfrak{h}$.

Moreover, we note that centre $[\tilde{a}] = \mathfrak{h}(0) \oplus \mathbb{C} \not\in \mathbb{C} z$ and hence $\dim_{\mathbb{C}}(\operatorname{centre} [\tilde{a}]) = l + 3$ where $l = \operatorname{rank} \dot{Q}$.

Now let $\mathfrak{Vir}_+ := \prod_{n>0} \mathbb{C}d_n$ and introduce the subalgebra

$$\hat{\mathfrak{a}} := \langle d_k, a(n): a \in Q, n \in \mathbb{Z}, k > 0 \rangle \subset \tilde{\mathfrak{a}},$$

where the angular brackets denote the subalgebra generated by the enclosed symbols. Observe that $\hat{a} = \mathfrak{Bir}_+ \bowtie \mathfrak{a}(Q)$ and we have the inclusion of algebras $\mathfrak{a} \subset \hat{\mathfrak{a}} \subset \hat{\mathfrak{a}}$, where $\mathfrak{a} = \mathfrak{a}(Q)$.

Proposition 6. Fix $\lambda \in \Gamma$ arbitrarily. Then $V_Q(\lambda) := \mathbb{C}e^{\lambda} \otimes S(\mathfrak{a}(Q)_{-})$ is an $\hat{\mathfrak{a}}$ -invariant subspace of $V(\lambda)$.

 \square

Proof. Clearly $V_Q(\lambda)$ is $\mathfrak{a}(Q)$ -invariant. Now using (13), extend the action of \mathfrak{B} ir on $\mathfrak{a}(Q)$ to one on $S(\mathfrak{a}(Q))$ uniquely so that each d_k becomes a derivation and z acts trivially. Then, for any homogeneous polynomial $f \in S(\mathfrak{a}(Q)_-)$, it is clear that $d_0(f) = (\deg f) f$. To prove the proposition, it suffices to show that for any $n \ge 0$,

$$d_n \cdot (e^{\lambda} \otimes f) = \left(\delta_{n,0} \frac{(\lambda|\lambda)}{2} f + d_n(f)\right) \cdot (e^{\lambda} \otimes 1) , \qquad (16)$$

since the right side of this equation belongs to $V_O(\lambda)$. Consider n = 0 first:

$$\begin{aligned} d_0 \cdot (e^{\lambda} \otimes f) &= \frac{1}{2} \sum_{j \in \mathbb{Z}} \sum_{i=1}^{l+2} : u_i(-j) u_i(j) : (e^{\lambda} \otimes f) \\ &= \frac{1}{2} \sum_{i=1}^{l+2} u_i(0) u_i(0) (e^{\lambda} \otimes f) + \sum_{j>0} \sum_{i=1}^{l+2} u_i(-j) u_i(j) (e^{\lambda} \otimes f) \\ &= \left(\frac{(\lambda|\lambda)}{2} + \deg f \right) (e^{\lambda} \otimes f) \\ &= \left(\frac{(\lambda|\lambda)}{2} f + d_0(f) \right) (e^{\lambda} \otimes 1). \end{aligned}$$

As for n > 0, first note that $d_n \cdot (e^{\lambda} \otimes 1) = 0$ since every summand $:u_i(-j)u_i(j+n):$ appearing in the definition of L_n can be written $u_i(p)u_i(q)$, where $p \leq 0$, q > 0 (after removing the normal ordering) and each of these terms kills $e^{\lambda} \otimes 1$. Thus

$$d_n \cdot (e^{\lambda} \otimes f) = d_n \cdot f \cdot (e^{\lambda} \otimes 1)$$

= $f \cdot d_n \cdot (e^{\lambda} \otimes 1) + [d_n, f] \cdot (e^{\lambda} \otimes 1)$
= $d_n(f) \cdot (e^{\lambda} \otimes 1)$,

as required.

Before proceeding to the main result of this section we will need a preliminary definition. For k > 0 let \mathscr{P}_k be the set of all partitions of k. We know that there is a one-to-one correspondence between the elements $\mathbf{m} = (m_1, \ldots, m_r) \in \mathbb{Z}'_+$ with $m_1 \ge m_2 \ge \cdots \ge m_r$, $\sum m_i = k$ and the monomials $\delta(-\mathbf{m}) := \delta(-m_1) \cdots \delta(-m_r)$ of degree k. Now we give \mathscr{P}_k the lexicographical ordering as follows. For $\mathbf{m} = (m_1, \ldots, m_r)$, $\mathbf{n} = (n_1, \ldots, n_s) \in \mathscr{P}_k$, r, s > 0, we say $\mathbf{m} < \mathbf{n}$ if $m_i < n_i$ for the first i such that $m_i \neq n_i$. Clearly then the partition $(k) \in \mathscr{P}_k$ of length 1 is the unique maximal element with respect to this ordering and the partition $(1, \ldots, 1) \in \mathscr{P}_k$ of length k is the unique minimal element. In the next three results, we assume that all given tuples $\mathbf{m} = (m_1, \ldots, m_r) \in \mathbb{Z}'_+$, r > 0, are ordered in such a way that $m_1 \ge m_2 \ge \cdots \ge m_r$.

Proposition 7. Fix $\lambda \in \Gamma \setminus Q$ and suppose $\mathbf{m} \in \mathbb{Z}_{+}^{r}$, $\mathbf{n} \in \mathbb{Z}_{+}^{s}$, where $\mathbf{n}, \mathbf{m} \in \mathcal{P}_{k}$ and $\mathbf{n} < \mathbf{m}$ in the lexicographical ordering. Consider the elements $e^{\lambda} \otimes \delta(-\mathbf{m})$, $e^{\lambda} \otimes \delta(-\mathbf{n}) \in V_{Q}(\lambda)$. Then $d_{\mathbf{m}} \cdot (e^{\lambda} \otimes \delta(-\mathbf{m})) \in \mathbb{C}^{\times} (e^{\lambda} \otimes 1)$ and $d_{\mathbf{m}} \cdot (e^{\lambda} \otimes \delta(-\mathbf{n})) = 0$, where $d_{\mathbf{m}} := d_{m_{r}} \cdots d_{m_{1}} \in \mathfrak{U}(\mathfrak{Bir}_{+})$.

Irreducible Representations of Virasoro-Toroidal Lie Algebras

Proof.

$$d_{\mathbf{m}} \cdot (e^{\lambda} \otimes \delta(-\mathbf{m})) = d_{m_{r}} \cdots d_{m_{1}} \cdot (e^{\lambda} \otimes \delta(-m_{1}) \cdots \delta(-m_{r}))$$

$$= d_{q_{t}}^{p_{t}} \cdots d_{q_{1}}^{p_{1}} \cdot (e^{\lambda} \otimes \delta(-q_{1})^{p_{1}} \cdots \delta(-q_{t})^{p_{t}}),$$
where $q_{i} > q_{j}$ for $i < j$ and $p_{k} > 0, 1 \leq k \leq t$

$$= (p_{1}!(m_{q_{1}})^{p_{1}}(\lambda|\delta)^{p_{1}})d_{q_{t}}^{p_{t}} \cdots d_{q_{2}}^{p_{2}} \cdot (e^{\lambda} \otimes \delta(-q_{2})^{p_{2}} \cdots \delta(-q_{t})^{p_{t}}),$$
by (16) and (13)
$$= \cdots = \left((p_{1}! \cdots p_{t}!) \prod_{i=1}^{t} m_{q_{i}}^{p_{i}}(\lambda|\delta)^{p_{1}+\cdots+p_{t}} \right) (e^{\lambda} \otimes 1)$$

$$\in \mathbb{C}^{\times} (e^{\lambda} \otimes 1),$$
since $(\lambda|\delta) \neq 0.$

Similarly, $d_{\mathbf{m}} \cdot (e^{\lambda} \otimes \delta(-\mathbf{n})) = 0.$

Proposition 8. Let $\lambda \in \Gamma \setminus Q$. Then $V_Q(\lambda) = \mathbb{C}e^{\lambda} \otimes_{\mathbb{C}} S(\mathfrak{a}(Q)_{-})$ is an irreducible $\hat{\mathfrak{a}}$ -module.

Proof. First note that $\lambda \in \Gamma \setminus Q$ is equivalent to the condition $(\lambda | \delta) \neq 0$.

Let W be a submodule of $V_Q(\lambda)$ and let $0 \neq x \in W$. Write $x = e^{\lambda} \otimes \sum_{i=1}^{m} g_i h_i$, where $g_i \in S(\mathfrak{a}(\dot{Q})_-)$ are linearly independent and $h_i \in D = S(\sum_{m>0} \mathbb{C}\delta(-m))$. By Proposition 2, $S(\mathfrak{a}(\dot{Q})_-)$ is an irreducible $\mathfrak{a}(\dot{Q})$ -module and hence by the Jacobson density theorem we can eliminate g_2, \ldots, g_m and reduce g_1 to 1 with some operator from $\mathfrak{U}(\mathfrak{a}(\dot{Q}))$. Thus we can assume without loss of generality that $x = e^{\lambda} \otimes h$, where $h = \sum_{i=1}^{r} \alpha_i \delta(-\mathbf{m}_i), \alpha_i \in \mathbb{C}^{\times}$, where $\mathbf{m}_1 > \mathbf{m}_2 > \cdots > \mathbf{m}_r$ in the lexicographical ordering. Finally, from Proposition 7, $d_{\mathfrak{m}_1} \cdot (e^{\lambda} \otimes h)$ $\in \mathbb{C}^{\times} (e^{\lambda} \otimes 1) \in W$. It follows that $W = V_Q(\lambda)$.

Proposition 9. Let $\lambda \in \Gamma \setminus Q$. Then $V(\lambda) = \mathbb{C}e^{\lambda} \otimes_{\mathbb{C}} S(\mathfrak{a}(\Gamma)_{-})$ is an irreducible $\tilde{\mathfrak{a}}$ -module.

Proof. Since $\Gamma = Q \oplus \mathbb{Z}\mu$ we can write $S(\mathfrak{a}(\Gamma)_{-}) = S(\mathfrak{a}(Q)_{-})M$, where $M := S(\coprod_{n>0} \mathbb{C}\mu(-n))$. Let W be a non-trivial $\tilde{\mathfrak{a}}$ -submodule of $V(\lambda)$. Let $0 \neq f \in W$ be arbitrary and write $f = \sum_{n} e^{\lambda} \otimes f_{n}\mu(-n)$, where $\mu(-n) = \mu(-n_{1})\mu(-n_{2}) \cdots$ and $n_{1} \ge n_{2} \ge \cdots$ and $f_{n} \in S(\mathfrak{a}(Q)_{-})$. Then we can use the $\delta(n)$, n > 0, to eliminate all terms but one and reduce to the case where $f = e^{\lambda} \otimes h \in W$, where $h \in S(\mathfrak{a}(Q)_{-})$. But by Proposition 8, $V_{Q}(\lambda)$ is an irreducible $\hat{\mathfrak{a}}$ -module. Thus $e^{\lambda} \otimes 1 \in W$. Now write $M = \coprod_{n \ge 0} M_{n}$, where M_{n} denotes the subspace of M spanned by elements of degree n. It suffices to show that for all n,

$$R := \mathfrak{U}(\tilde{\mathfrak{a}}) \cdot (e^{\lambda} \otimes 1) \supset \mathbb{C}e^{\lambda} \otimes_{\mathbb{C}} S(\mathfrak{a}(Q)_{-})M_{n} .$$
⁽¹⁷⁾

We will establish (17) by induction on the degree *n*. Since $M_0 = \mathbb{C}$ and $M_1 = \mathbb{C}\mu(-1)$, we can write $M = \mathbb{C} \oplus \mathbb{C}\mu(-1) \oplus (\coprod_{n=2}^{\infty} M_n)$. Since $\mathfrak{U}(\tilde{\mathfrak{a}}) \cdot (e^{\lambda} \otimes 1) \supset \mathfrak{U}(\tilde{\mathfrak{a}}_{-}) \cdot (e^{\lambda} \otimes 1) \supset \mathbb{C}e^{\lambda} \otimes_{\mathbb{C}} S(\mathfrak{a}(Q)_{-})$, (17) is clear when n = 0. For

n = 1 consider $d_{-1} \cdot (e^{\lambda} \otimes 1) = L_{-1}(e^{\lambda} \otimes 1) \in R$. By definition we have

$$L_{-1} \cdot (e^{\lambda} \otimes 1) = \sum_{i=1}^{l+2} u_i(-1)u_i(0) \cdot (e^{\lambda} \otimes 1)$$
$$= \sum_{i=1}^{l+2} u_i(-1)(\lambda | u_i) \cdot (e^{\lambda} \otimes 1)$$
$$= e^{\lambda} \otimes \left(\sum_{i=1}^{l+2} (\lambda | u_i)u_i(-1)\right)$$
$$= e^{\lambda} \otimes \lambda(-1).$$

Now writing $\lambda = \alpha + a\mu$, $\alpha \in Q$, $a \in \mathbb{C}^{\times}$, we have $L_{-1}(e^{\lambda} \otimes 1) = e^{\lambda} \otimes \alpha(-1) + a(e^{\lambda} \otimes \mu(-1)) \in R$. But $e^{\lambda} \otimes \alpha(-1) \in R$ from the case n = 0. Thus we have $e^{\lambda} \otimes \mu(-1) \in R$ and this shows (17) when n = 1.

Suppose then that (17) holds for all $0 \le n \le k - 1$. We call this the first induction hypothesis. We need to show $R \supset \mathbb{C}e^{\lambda} \otimes_{\mathbb{C}} M_k S(\mathfrak{a}(Q)_-)$. We prove this by induction on the lexicographical ordering defined on \mathscr{P}_k . We "anchor" at the top with the partition (k). That is, we will first show $e^{\lambda} \otimes \mu(-k) \in R$.

Recall that for k > 0,

$$\begin{split} L_{-k} &= \frac{1}{2} \sum_{j \in \mathbb{Z}} \sum_{i=1}^{l+2} : u_i(-j) u_i(j-k): \\ &= \frac{1}{2} \sum_{j \in \mathbb{Z}} \left\{ \sum_{i=1}^{l} : u_i(-j) u_i(j-k): + : \delta(-j) \mu(j-k): \\ &+ : \mu(-j) \delta(j-k): \right\}. \end{split}$$

Note that in the expansion of $L_{-k}(e^{\lambda} \otimes 1) \in \mathbb{R}$ the only $j \in \mathbb{Z}$ which contribute are $j = k, k - 1, \ldots, \left[\frac{k+1}{2}\right]$, where [x] denotes the largest integer less than or equal to x. We compute

$$\begin{split} L_{-k}(e^{\lambda} \otimes 1) &= \left(\sum_{i=1}^{l+2} u_i(-k)u_i(0)\right)(e^{\lambda} \otimes 1) \\ &+ \left\{ \left(\sum_{i=1}^{l} u_i(-k+1)u_i(-1) + \delta(-k+1)\mu(-1) \right) \\ &+ \mu(-k+1)\delta(-1)\right) + \cdots \\ &+ c\sum_{i=1}^{l} u_i\left(-\left\lfloor\frac{k+1}{2}\right\rfloor\right)u_i\left(\left\lfloor\frac{k+1}{2}\right\rfloor - k\right) \\ &+ c\delta\left(-\left\lfloor\frac{k+1}{2}\right\rfloor\right)\mu\left(\left\lfloor\frac{k+1}{2}\right\rfloor - k\right) \\ &+ c\mu\left(-\left\lfloor\frac{k+1}{2}\right\rfloor\right)\delta\left(\left\lfloor\frac{k+1}{2}\right\rfloor - k\right)\right\}(e^{\lambda} \otimes 1) \\ &= (e^{\lambda} \otimes \lambda(-k)) + y \;, \end{split}$$

where $c = \frac{1}{2}$ or 1 depending on the parity of $k, y \in \mathbb{C}e^{\lambda} \otimes_{\mathbb{C}} (\coprod_{n < k} M_n S(\mathfrak{a}(Q)_-))$, and $y \in R$ by the first induction hypothesis. Thus $e^{\lambda} \otimes \mu(-k) \in R$ by writing $\lambda = \alpha + a\mu$ and arguing as we did earlier in the case n = 1.

Next we fix $\mathbf{m} = (m_1, \ldots, m_r) \in \mathscr{P}_k$ and assume that for every $\mathbf{n} \in \mathscr{P}_k$ satisfying $\mathbf{n} > \mathbf{m}$ we have $e^{\lambda} \otimes \mu(-\mathbf{n}) \in R$. We call this the second induction hypothesis. We need to show that $e^{\lambda} \otimes \mu(-m_2) \cdots \mu(-m_r) \in R$. But then R also contains the element $x := L_{-m_1}(e^{\lambda} \otimes \mu(-m_2) \cdots \mu(-m_r))$. Now, in the sum defining L_{-m_1} , the only $j \in \mathbb{Z}$ which contribute in the calculation of x are $j \in \{m_1\} \cup \{m_1 - 1, \ldots, [\frac{m_1 + 1}{2}]\} \cup \{m_1 + m_2, \ldots, m_1 + m_r\}$. We calculate $L_{-m_1}(e^{\lambda} \otimes \mu(-m_2) \cdots \mu(-m_r))$ $= (e^{\lambda} \otimes \lambda(-m_1)\mu(-m_2) \cdots \mu(-m_r))$ $+ \left\{\sum_{i=1}^{l} u_i(-m_1 + 1)u_i(-1) + \delta(-m_1 + 1)\mu(-1) + \mu(-m_1 + 1)\delta(-1) + \cdots + c\sum_{i=1}^{l} u_i\left(-\left[\frac{m_1 + 1}{2}\right]\right)u_i\left(\left[\frac{m_1 + 1}{2}\right] - m_1\right)$ $+ c_{\lambda}\left(-\left[\frac{m_1 + 1}{2}\right]\right)\lambda\left(\left[\frac{m_1 + 1}{2}\right] - m_1\right)$ $+ c_{\mu}\left(-\left[\frac{m_1 + 1}{2}\right]\right)\delta\left(\left[\frac{m_1 + 1}{2}\right] - m_1\right)$

where the overbar denotes omission and $c = \frac{1}{2}$ or 1, as before.

Let x_1 denote the sum in the brace brackets and x_2 the sum with the overbar. By the first induction hypothesis $x_1 \cdot (e^{\lambda} \otimes 1) \in R$ and since $(m_1 + m_i, m_2, \ldots, \overline{m_i}, \ldots, m_r) > (m_2, m_3, \ldots, m_r)$ for each $2 \leq i \leq r$, the second induction hypothesis implies $x_2 \in R$. Finally since the left side belongs to R we conclude that $e^{\lambda} \otimes \lambda(-m_1)\mu(-m_2) \cdots \mu(-m_r) \in R$. Expressing $\lambda = \alpha + a\mu, \alpha \in Q, a \in \mathbb{C}^{\times}$, the first induction hypothesis gives $e^{\lambda} \otimes \mu(-m_1) \cdots \mu(-m_r) \in R$ as required. This completes the proof of Proposition 9.

Finally, we indicate how to identify $V(\lambda)$, $\lambda \in \Gamma \setminus Q$, as an irreducible highest weight module. Indeed, recall that \tilde{a} admits a triangular decomposition $\tilde{a} = \tilde{a}_{-} \oplus \tilde{a}_{0} \oplus \tilde{a}_{+}$. Let $\alpha \in (\tilde{a}_{0})^{*}$ be defined by $\alpha(a(0)) = (\lambda | a)$ for all $a \in \mathfrak{h}$, $\alpha(\mathfrak{q}) = 1$, $\alpha(d_{0}) = \frac{(\lambda | \lambda)}{2}$, $\alpha(z) = l + 2$. Consider the Verma module $M(\alpha) = \mathfrak{U}(\tilde{a}) \otimes_{\mathfrak{U}(\mathfrak{b})} \mathbb{C}_{\alpha}$, where $\mathfrak{b} = \tilde{a}_{0} \oplus \tilde{a}_{+}$ with unique irreducible quotient $L(\alpha)$.

Proposition 10. (i) $V(\lambda) \cong L(\alpha)$. (ii) If $\lambda, \lambda' \in \Gamma \setminus Q$, then $V(\lambda) \cong V(\lambda')$ if and only if $\lambda \equiv \lambda'$.

Proof. (i) Since $e^{\lambda} \otimes 1$ is a highest weight vector for \tilde{a} with weight α and since it generates the irreducible module $V(\lambda)$, $V(\lambda) \cong L(\alpha)$.

(ii) By [MP] Proposition 2.3.4, $L(\alpha)$ is uniquely determined by α and clearly $\lambda, \lambda' \in \Gamma \setminus Q$ determines the same α if and only if $\lambda = \lambda'$.

7. Irreducible Representations of the Virasoro-Toroidal Algebras

In this section we show that the full Fock space $V(\Gamma) = \mathbb{C}(\Gamma) \otimes_{\mathbb{C}} S(\mathfrak{a}(\Gamma)_{-})$ decomposes into a sum of subspaces K(m), $m \in \mathbb{Z}$, and for $m \neq 0$, K(m) is an irreducible $\tilde{\mathfrak{t}}_{[2]}$ -submodule with $K(m) \simeq K(m')$ if and only if m = m'.

Note that, as \mathbb{C} -spaces, $V(\Gamma)$ is the direct sum of the \mathbb{C} -spaces $K(m) := \mathbb{C}[m\mu + Q] \otimes_{\mathbb{C}} S(\mathfrak{a}(\Gamma)_{-})$. It is clear that each $K(m), m \in \mathbb{Z}$, is a $\tilde{t}_{[2]}$ -module. Suppose that $m \neq 0$, and hence $m\mu + Q \subset \Gamma \setminus Q$. We will need the following formula which is a special case of (12) in Sect. 3:

$$X_{-(\gamma|\lambda+\frac{j}{2})}(\gamma)(e^{\lambda}\otimes 1) = \varepsilon(\gamma,\lambda)(e^{\lambda+\gamma}\otimes 1), \quad \gamma \in Q, \ \lambda \in \Gamma.$$
(18)

Proposition 11. For $m \neq 0$, K(m) is an irreducible \tilde{t}_{12} -module.

Proof. It suffices to show

- (a) $K(m) = \mathfrak{U}(\tilde{\mathfrak{t}}_{[2]}) \cdot (e^{m\mu} \otimes 1)$ and,
- (b) every nonzero submodule R of K(m) contains $e^{m\mu} \otimes 1$.

For (a), note that $K(m) = \coprod (\mathbb{C}e^{m\mu+\alpha} \otimes_{\mathbb{C}} S(\mathfrak{a}(\Gamma)_{-})) = \coprod V_{\Gamma}(m\mu+\alpha)$, where α runs through Q. By (18), $\mathfrak{U}(\tilde{\mathfrak{t}}_{[2]}) \cdot (e^{m\mu} \otimes 1)$ contains $e^{m\mu+\alpha} \otimes 1$ for every $\alpha \in Q$ and since $m\mu + \alpha \in \Gamma \setminus Q$ $(m \neq 0)$, Proposition 9 implies $\mathfrak{U}(\tilde{\mathfrak{a}}) \cdot (e^{m\mu} \otimes 1) \supset \mathbb{C}e^{m\mu+\alpha} \otimes_{\mathbb{C}} S(\mathfrak{a}(\Gamma)_{-}), \forall \alpha \in Q$. This establishes (a).

To prove (b), we note that as an \hat{a} -module K(m) is a direct sum of nonisomorphic modules $V_{\Gamma}(m\mu + \alpha)$, and hence so too is R. Thus

$$e^{m\mu+\beta} \otimes 1 \in V_{\Gamma}(m\mu+\beta) \subset R$$

for some $\beta \in Q$. Now by (18), $e^{m\mu} \otimes 1 \in R$ and we are done.

Proposition 12. $K(m) \cong K(m')$ if and only if m = m'.

Proof. K(0) is not irreducible [F1]. Consider $m \neq 0$. Define

$$\operatorname{Vac}(K(m), \tilde{\mathfrak{a}}) := \{ x \in K(m) : \tilde{\mathfrak{a}}_+ \cdot x = 0 \} .$$

Note that since $V(m\mu + \alpha)$ is irreducible over $\tilde{\alpha}$ we have $\operatorname{Vac}(V(m\mu + \alpha), \tilde{\alpha}) = \mathbb{C}e^{m\mu + \alpha} \otimes 1$. Moreover, since $K(m) = \prod_{\alpha \in Q} V(m\mu + \alpha)$, $\operatorname{Vac}(K(m), \tilde{\alpha}) = \prod_{\alpha \in Q} \mathbb{C}e^{m\mu + \alpha} \otimes 1$. Now for $\alpha \in Q$, $\delta(0) \cdot (e^{m\mu + \alpha} \otimes 1) = (m\mu + \alpha | \delta)e^{m\mu + \alpha} \otimes 1 = m(e^{m\mu + \alpha} \otimes 1)$. Thus $\delta(0)$ acts as m on $\operatorname{Vac}(K(m), \tilde{\alpha})$. Finally, if $K(m) \cong K(m')$, where m, $m' \neq 0$, then $\operatorname{Vac}(K(m), \tilde{\alpha}) \cong \operatorname{Vac}(K(m'), \tilde{\alpha})$, as $\mathbb{C}\delta(0)$ -modules and hence m = m'.

References

[EM] Eswara, Rao, S., Moody, R.V.: Vertex representations for the universal central ex tensions for the *n*-toroidal Lie algebras and a generalization of the Virasoro algebra. Commun. Math. Phys., to appear

- [EMY] Eswara, Rao S., Moody, R.V., Yokonuma T.: Lie algebras and Weyl groups arising from vertex operator representations. Nova J. Algebra and Geometry 1, 15–57 (1992)
 - [F1] Fabbri, M.A.: The structure of a new class of modules over the Virasoro-toroidal algebra. Preprint
 - [F2] Fabbri, M.A.: Virasoro-toroidal algebras and vertex representations. C.R. Math. Rep. Acad. Sci. Canada 14, 77–82 (1992)
 - [FF] Feigin, B.L., Fuks, D.B.: Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra. Funct. Anal. Appl. (English Translation) 16, 114–126 (1982)
 - [FK] Frenkel, I., Kac, V.G.: Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 63, 23-66 (1980)
- [FLK] Frenkel, I., Lepowsky, J., Meurman, A.: "Vertex Operators and the Monster." New York, London: Academic Press, Inc. 1988
- [GO] Goddard, P., Olive, D.: "Algebras, lattices and strings." In: Vertex Operators in Mathematics and Physics, Edited by Lepowsky, J., Mandelstam, S., Singer, I.M., Mathematical Sciences Research Institute Publications 3 (1985)
- [Kac] Kac, V.G.: Infinite dimensional Lie algebras. Boston, Basel: Birkhäuser 1983
 - [K] Kaplansky, I.: The Virasoro algebra. Commun. Math. Phys. 86, 49-54 (1982)
- [Ka] Kassel, C.: Kahler differentials and coverings of complex simple Lie algebras extended over a commutative algebra. J. Pure Appl. Algebra **34**, 265–275 (1985)
- [KR] Kac, V.G., Raina, A.K.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras. Singapore: World Scientific 1987
- [MEY] Moody, R.V., Eswara, Rao S., Yokonuma, T.: Toroidal Lie algebras and vertex representations. Geometricae Dedicata **35**, 283–307 (1990)
 - [MP] Moody, R.V., Pianzola, A.: Lie Algebras with Triangular Decomposition. J. Wiley, to appear

Communicated by A. Jaffe