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Abstract. A bicovariant calculus of differential operators on a quantum group is
constructed in a natural way, using invariant maps from Fun((5J to Uq% given by
elements of the pure braid group. These operators - the "reflection matrix"
Y= L+SL~ being a special case - generate algebras that linearly close under
adjoint actions, i.e. they form generalized Lie algebras. We establish the connection
between the Hopf algebra formulation of the calculus and a formulation in
compact matrix form which is quite powerful for actual computations and as
applications we find the quantum determinant and an orthogonality relation for
YinSOq(N).
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1. Introduction

In the classical theory of Lie algebras we start the construction of a bicovariant
calculus by introducing a matrix Ω = A~ιdAeΓ of one-forms that is invariant
under left transformations,

A -> AΆ: d -> d, Ω -> Ω , (1)

and covariant under right transformations,

A-+AA': d-+d,Ω^A!-χΩA . (2)

The dual basis to the entries of this matrix Ω form a matrix X of vector fields with
the same transformation properties as Ω:

<fl l

i, X\ > = δ^j (classical) . (3)

We find,

X = IAT—\ (classical). (4)

Woronowicz [1] was able to extend the definition of a bicovariant calculus to
quantum groups. His approach via differential forms has the advantage that
coactions (transformations) ^Δ: Γ -> 91 ® Γ and A®: Γ -> Γ ® 91 can be introduced
very easily through,

*A(da) = (id® d)Aa, (5)

Δ%(da) = (d® id)Aa , (6)

where 91 is the Hopf algebra of "functions on the quantum groups," a e 91 and A is
the coproduct in 9ί. Equations (5,6) rely on the existence of an invariant map
d: 91 -• Γ provided by the exterior derivative. A construction of the bicovariant
calculus starting directly from the vector fields is much harder because simple
formulae like (5, 6) do not seem to exist. We will show that in the case of
a quasitriangular Hopf algebra lί invariant maps from 9ί to the quantized algebra
of differential operators 9 I x l ϊ can arise from elements of the pure braid group on
two strands. Using these maps we will then construct differential operators with
simple transformation properties and in particular a bicovariant matrix of vector
fields corresponding to (4).

Before proceeding we would like to recall some useful facts about quasi-
triangular Hopf algebras and quantum groups. A thorough introduction to these
topics and additional references can be found in [2].
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1.1. Quasitrίangular Hopf Algebras. A Hopf algebra 21 is an associative unital
algebra (91, , +, k) over a field fc, equipped with a coproduct A: 9ί -» 91 ® 91, an
antipode 5: 91 -• 91, and a counit ε: 91 -• k, satisfying

(A ® id) A (a) = (id ® A) zl (α), (coassociativity), (7)

• (ε (x) id) A(a) = - (id ® ε) A (a) = a, (counit) , (8)

• (S ® id) A(a) = - (id ®S)A (a) = lε(α), (coinverse) , (9)

for all a e 9ί. These axioms are dual to the axioms of an algebra. There are also
a number of consistency conditions between the algebra and the coalgebra struc-
ture,

A(ab) = A{a)A{b), (10)

ε(ab) = s(a)s(b), (11)

S(ίA) = S(b)S{a% (antihomomorphism), (12)

Δ(S{a)) = τ{S ® S)Δ{a), with τ(α ® b) = b ® α , (13)

e(S(α)) = ε(α), and (14)

J ( 1 ) = 1 ® 1 , S ( l ) = l , ε ( l ) = l f c 5 (15)

for all α, b e 91. We will often use Sweedler's [3] notation for the coproduct:

Δ(a) ΞΞ α ( 1 ) ® α ( 2 ) (summation is understood). (16)

Note that a Hopf algebra is in general non-cocommutative, i.e. τoA+A.

A quasitriangular Hopf algebra U [4] is a Hopf algebra with a universal

01 e U ® U that keeps the non-cocommutativity under control,

m-γ , (17)

and satisfies,

2 3 , and (18)

12 , (19)

where upper indices denote the position of the components of 01 in the tensor
product algebra U ® U ® U: if ^ = αf ® βt (summation is understood), then e.g.
f 1 3 Ξ α j ( χ ) l ® f t . Equation (19) states that 01 generates an algebra map
<βl, - ® id>: U* -• U and an antialgebra map <βt, id ® >: U* -• U.1 The following
equalities are consequences of the axioms:

^ 1 2 ^ 1 3 ^ 2 3 = ^ 2 3 ^ 1 3 ^ 1 2 , (quantum Yang-Baxter equation), (20)

^ - 1 , (21)

^ , and (22)

(ε ® \d)m = (id ® ε)3t = 1 . (23)

1 Notation: "•" denotes an argument to be inserted and "id" is the identity map, e.g.
<#,id <g>/> Ξ= aiiiβijy, 0tΈΞΛi®βieVL®VL, where / e l l * has here replaced "•"
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An example of a quasitriangular Hopf algebra that is of particular interest here is
the deformed universal enveloping algebra UqQ of a Lie algebra g. Dual to Uqq is
the Hopf algebra of "functions on the quantum group" Fun(©J; in fact, Uq g and
Fun((5J are dually paired. We call two Hopf algebras U and 91 dually paired if
there exists a non-degenerate inner product <, >: U ® 91 -• fc, such that:

{xy,a} = (x®y, Δ(a)} = <x,a(1)}(y,a(2)) , (24)

(x,ab) = (Δ(x\a® b} = <x(i),α><x(2),fc> , (25)

<S(x),α> = <x,S(α)>, (26)

<x,l> = ε(x), and <l,α> = ε(α), (27)

for all x,yeU and α, ί? e 91. In the following we will assume that U (quasitriangular)
and 9Ϊ are dually paired Hopf algebras, always keeping Uq§ and Fun(©J as
concrete realizations in mind.

In the next subsection we will sketch how to obtain Fun(©9) as a matrix
representation of Uq§.

1.2. Dual Quantum Groups. We cannot speak about a quantum group &q directly,
just ,as "phase space" loses its meaning in quantum mechanics, but in the spirit of
geometry on noncommuting spaces the (deformed) functions on the quantum
group Fun((5^) still make sense. This can be made concrete, if we write F u n ^ ) as
a pseudo-matrix group [5], generated by the elements of an NxN matrix
A = (Ai

j)uj=1._NeMN(F\m(0ΰq)).2 We require that plj = < , ^ > be a matrix
representation of Όq% i.e.

Σ (28)
k

3just like in the classical case.3 The universal &eUq§® UqQ coincides in this
representation with the numerical ^-matrix:

(@,Ai

k®Aj

l) = Rij

kl. (29)

It immediately follows from (24) and (28) that the coproduct of A is given by matrix
multiplication [5, 6],

ΔA = A®A, i.e. zl(^) = A\ ® Akj. (30)

Equations (17), (25), and (28) imply [4, 6],

(x,Aj

sA
i

r} = (Δx,Aj

s®Ai

ry

= (τoΔx,Ai

r®Aj

s)

(31)

2 We are automatically dealing with GLq(N) unless there are explicit or implicit restrictions on
the matrix elements of A
3 The quintessence of this construction is that the coalgebra of Fun((5q) is undeformed, i.e. we
keep the familiar matrix group expressions of the classical theory
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i.e. the matrix elements of A satisfy the following commutation relations,

Rij

klΛ
k

mAι

n = A\A\RrSmn, (32)

which can be written more compactly in tensor product notation as:

R12A1Λ2 = A2A1R12; (33)

R12 = (Pi ® Pi){Λ) = < # , ^ i ® Λ2 > . (34)

Lower numerical indices shall denote here the position of the respective matrices in
the tensor product of representation spaces (modules). The contragredient repres-
entation [7] p~λ = < , SA} gives the antipode of Fun(©^) in matrix form:
SiA'j) = (A"1)1;. The counit is: εiA'j) = <1, A'j} = δ1^

Higher (tensor product) representations can be constructed from A:
AίA2, A1A2A3,. . . , AίA2 . . . Am. We find numerical R-matrices [2] for any pair
of such representations:

. . . . An,(g)A1A2 . . . Am}

'Rn'm 'Rn'(m-1) ' - - ' Rn'ί (35)

Let A 7 ΞΞ AVA2> . . . An> and A 7 / = ^4i^42 Am, then:

Rj fjjA/A/J = A / J A J R / f / / . (36)

R/jj is the "partition function" of exactly solvable models. We will need it in
Sect. 3.

We can also write Uqq in matrix form [6, 7] by taking representations ρ - e.g.
ρ = < , A > - of 01 in its first or second tensor product space,

L+ = (id <g> Q){3t\ L+ = < ^ 2 1 , A ® id> , (37)

SL; = (ρ® id)(^), SL~ = (@,A®id}, (38)

L~ Ξ ( ρ ® i d ) ( ^ " 1 ) , L" Ξ <^,Syl®id> . (39)

The commutation relations for all these matrices follow directly from the quantum
Yang-Baxter equation, e.g.

0 = < ^ 2 3 ^ 1 3 ^ 1 2 - ^ 1 2 ^ 1 3 ^ 2 3 , id (x) A1 (x) A2 >

= R12Lί Lϊ - Lϊ L} R12 , (40)

where upper "algebra" indices should not be confused with lower "matrix" indices.
Similarly one finds:

R12L2LΪ =LΪL2R12, (41)

R12LΪL~γ = L Γ L 2

+ R12 . (42)
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2. Quantized Algebra of Differential Operators

Here we would like to establish the connection between the actions of differential
operators [8], written as commutation relations of operator-valued matrices and
the more abstract formulation of the calculus in the Hopf algebra language.

2.1. Actions and Coactίons. A left action of an algebra i o n a vector space V is
a bilinear map, >: A ® V-> V: x®v\-^ x>v, such that: (xy)>v = x>(y>v). V is
called a left yl-module. In the case of the left action of a Hopf algebra H on an
algebra A' we can in addition ask that this action preserve the algebra structure of
A\i.Q.x>(ab) = (x ( 1 )>α)(x ( 2)>fc) 4andx>l = lε(x), for allxef/, α, be A'. ^4'is then
called a left /ί-module algebra. Right actions and modules are defined in complete
analogy. A left action of an algebra on a (finite dimensional) vector space induces
a right action of the same algebra on the dual vector space and vice versa, via
pullback. Of particular interest to us is the left action of lί on 31 induced by the
right multiplication in U:

:= (yx,a) = (

=> x>a = α(i)<x, 0(2)X for Vx, yel l , α e β l , (43)

where again Δa = α ( 1 ) (x) α ( 2 ). This action of U on 91 respects the algebra structure
of 31, as can easily be checked. The action of U on itself given by right or left
multiplication does not respect the algebra structure of U; see however (62) as an
example of an algebra-respecting "inner" action.

In the same sense as comultiplication is the dual operation to multiplication,
right or left coactions are dual to left or right actions respectively. One therefore
defines a right coaction of a coalgebra C on a vector space V to be a linear map,
Δc\ K-> V® C: v^> Ac(v) = v(1) <g> v(2y, such that, (Ac <g> id)Ac = (id ® Δ)ΔC.
Following [2] we have introduced here a notation for the coaction that resembles
Sweedler's notation (16) of the coproduct. The prime on the second factor marks
a right coaction. If we are dealing with the right coaction of a Hopf algebra H on an
algebra A, we say that the coaction respects the algebra structure and A is a right
iί-comodule algebra, if ΔH(a b) = ΔH(a)* ΔH(b) and ΔH(1) = 1 (x) l,for alia, be A.

If the coalgebra C is dual to an algebra A in the sense of (24-27), then a right
coaction of C on V will induce a left action of A on V and vice versa, via

x>υ = v(1\x, ι/2)'>, (general), (44)

for all x e A, v e V. Applying this general formula to the specific case of our dually
paired Hopf algebras U and 91, we see that the right coaction Δ& of 9ί on itself,
corresponding to the left action of lί on 31, as given by (43), is just the coproduct
A in 31, i.e. we pick:

Asa(a) = aiί)® a(2y = α ( 1 ) ® a{2), for Vαe31 . (45)

To get an intuitive picture we may think of the left action (43) as being
a generalized specific left translation generated by a left invariant "tangent vector"
xeU oϊ the quantum group. The coaction A^ is then the generalization of an
unspecified translation. If we supply for instance a vector x G It as transformation

xois called a generalized derivation
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parameter, we recover the generalized specific transformation (43); if we use 1 e U,
i.e. evaluate at the "identity of the quantum group," we get the identity transforma-
tion; but the quantum analog of a classical finite translation through left or right
multiplication by a specific group element does not exist.

The dual quantum group in matrix form stays very close to the classical
formulation and we want to use it to illustrate some of the above equations. For the
matrix A eMN(Fun((SJ) and x e ί / 9 g w e find,

Fun(©β) -> Fun(©β) ® Fun(©β) :

Δ^A = AA\ (right coaction), (46)

Fun(©β) -> Fun(ffiβ) ® Fun(©g) :

S&ΔA = A A, (left coaction), (47)

l/ β g®Fun(©J->Fun(<δ β ) :

x>A = A(x,A), (left action), (48)

where matrix multiplication is implied. Following common custom we have used
a prime to distinguish copies of the matrix A in different tensor product spaces. We
see that in complete analogy to the classical theory of Lie algebras, we first evaluate
xeUqQ, interpreted as a left invariant vector field, on AeMn(Fun(®q)) at the
"identity of dδq," giving a numerical matrix < x, A > e Mn (fc), and then shift the result
by left matrix multiplication with A to an unspecified "point" on the quantum
group. Unlike a Lie group, a quantum group is not a manifold in the classical sense
and hence we cannot talk about its elements, except for the identity (which is also
the counit of Fun(©g)). For L+ eMN(Uqq) Eq. (48) becomes,

A1y = A1R12, (49)

and similarly for L~ GMN(Uq§):

A1} = AίR21

1 . (50)

2.2. Commutation Relations. The left action of x e XI on products in 21, say bf, is
given via the coproduct in U,

Dropping the ">" we can write this for arbitrary functions / in the form of
commutation relations,

xb = Ax>(b® id) = b(ί)(x(lh b{2)}x{2) . (52)

This commutation relation provides 2ί (x) U with an algebra structure via the cross
product,

•: (21 ® U) ® (21 (x) U) -> 21 ® U :

αx ® by H-> αx by = α&(1) < x ( 1 ), b(2) > x ( 2 ) y (53)

That 2ί ® U is indeed an associative algebra with this multiplication follows from
the Hopf algebra axioms; it is denoted 21 x U and we call it the quantized algebra of
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differential operators. The commutation relation (52) should be interpreted as
a product in 31 x U. (Note that we omit (x)-signs wherever they are obvious, but
we sometimes insert a product sign "•" for clarification of the formulas.) Right
actions and the corresponding commutation relations are also possible:
b<x = <5c, b(i)>i>(2) and bx = 5c(1)<5c(2), b(1)ybi2).

Equation (52) can be used to calculate arbitrary inner products of U with 31, if
we define a right vacuum ">" to act like the counit in U and a left vacuum "<" to act
like the counit in 31,

= < -(id <g> ε)A(x),-(ε ® id) A(b))

= <x,fo>, forVxelI ,6e9I. (54)

Using only the right vacuum we recover formula (43) for left actions,

= x>b, for VxeU,fce3I. (55)

As an example we will write the preceding equations for A, L + , and L~:

L2 Λx = Λ1R12L2 , (commutation relation for L+ with A), (56)

L^"^! = A LR.21 L2 , (commutation relation for L~ with ^4), (57)

(A = I<, (left vacuum for 4 ) , (58)

L+y = L~} = >/, (right vacua for L+ and ZΓ) . (59)

Equation (55) is not the only way to define left actions of U on 31 in terms of the
product in 31 x U. An alternate definition utilizing the coproduct and antipode in lί,

X(l)bS(X(2)) = b ( i ) < X ( i ) , b ( 2 ) y χ S ( x )

= x>v, for VXGU, fee31, (60)

is in a sense more satisfactory because it readily generalizes to left actions of U on
3IxU,

x>by:=x{1)byS(x{2))

ad

= (X(i)>6)(X(2) > y\ for Vx, yeU, b e 3 I , (61)

5 Notation: (A <g) iά)A(x) = (id <g) A)A(x) = x ( 1 ) (g) x ( 2 ) (g) x ( 3 ) = ^J2(x),
x d ) ® x(2) ® X(3> ® x(4) = ^ 3 W , etc., see [2]
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where we have introduced the left adjoint (inner) action in U:

ad

x> y = x(ί)yS(xi2)l for Vx,yeU. (62)

Having extended the left U-module 91 to 21 x U, we would now like to also extend
the definition of the coaction of 21 to 2ί x U, making the quantized algebra of
differential operators an 2I-bicomodule.

2.3. Bicovarίant Calculus. In this subsection we would like to study the trans-
formation properties of the differential operators in 21 x U under left and right
translations, i.e. the coactions <%A and A% respectively. We will require,

2 I x U , (63)

U ® 21 , (64)

for all b e 21, y e lί, so that we are left only to define ^Δ and A^ on elements of U. We
already mentioned that we would like to interpret U as the algebra of left invariant
vector fields; consequently we will try

« Λ ( ) 0 = l ® 3 > e 8 I ® U , (65)

as a left coaction. It is easy to see that this coaction respects not only the left action
(43) of U on 21,

(66)

but also the algebra structure (52) of 21 x it,

*A (x-b) = KA(&(1))<x(i), b(2)>

(67)

The right coaction, A%\ U - ^ U ® 2Ϊ, is considerably harder to find. We will
approach this problem by extending the commutation relation (52) for elements of
U with elements of 21 to a generalized commutation relation for elements of U with
elements of 2Ϊ x U,

(68)

for all x, y e U, b e 21. In the special case b = 1 this states,

2 (69)
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and gives an implicit definition of the right coaction A<%{y) = y(1) ® y(2y of 91 on U.
Let us check whether A% defined in this way respects the left action (43) of lί on 91 :

y(ί) ® yi2), b(ί) ® x ( 2 ) '

(70)

for all x, 3;, zel ί , fee91. q.e.d. It is straightforward also to check that A^ respects
the algebra structure of 91x11 as well.

Remark. If we know a linear basis {ej of U and the dual basis {fj} of 9ί = U*,
= <5i> then we can derive an explicit expression for A* from (69):

Aκ{ei) = {ejiei)®fj, (71)

or equivalently, by linearity of ̂ 1^:

^^(y) = ( ^ > % ) ® Λ y e l l . (72)

It is then easy to show that,

(Δ« ® id)Δ*(et) = (id ® J ) J « ( β , ) , (73)

(id®ε)Δfί(ei) = ei9 (74)

proving that A^ satisfies the requirements of a coaction on U, and,

(ek), (75)

showing that A% is an U-algebra homomorphism. Note however that zl^ is in
general not a lί-Hopf algebra homomorphism.

In the next subsection we will describe a map, Φ: 91 -^ lί, that is invariant under
(right) coactions and can hence be used to find A% on specific elements Φ(b)eU in
terms of A<% on be91: z!#($(&)) = (Φ ® id)Am(b).

2.4. Invariant Maps and the Pure Braid Group. A basis of generators for the pure
braid group Bn on n strands can be realized in U, or for that matter Uq$, as follows
in terms of the universal 0l\

= (id

" 2 ) ® zJ)(id ( M" 3 ) ® A) . . . (id
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Fig. 1. Generators of the pure braid group

and their inverses; see Fig. 1 and ref. [7]. All polynomials in these generators are
central in A^'^U = {A^'^ix^xeU}; in fact we can take,

span{J3M} := {^ , for (76)

as a definition.
Remark. Elements of span{5n} do not have to be written in terms of the universal
M, they also arise from central elements and coproducts of central elements. This is
particularly important in cases where U is not a quasitriangular Hopf algebra.

There is a map, Φn: <Ά -> 21 ® U Θ ( n - 1 } <+ (21 xU)®{n~l\ associated to each ele-
ment of span{Bn}:

Φn{a):= j ς > ( α ® i d ( w - 1 ) ) , with M}, αe2I . (77)

We will first consider the case n = 2. Let <& = <3/u ® ^ 2 i be an element of
span{£2} and Φ(b) = ®/>(b (g) id) = b(1)(^/u, bi2))$/2ι> for fee21. We compute,

= (WA{x)>(b®\ά)

2 ) > (78)

which, when compared with the generalized commutation relation (68), i.e.

x-Φ(b) = [Φ(i)] ( 1 )<*(i>, [Φ(fc)](2>'>x(2,, (79)

gives,

(80)

as promised. However we are especially interested in the transformation properties
of elements of U, so let us define,

(81)

for ^espan(B 2 ) , be91. From (64, 80) we find:

: Γ*(2)®S(fe(1))fe(3) . (82)

Here are a few important examples: For the simplest non-trivial example,
= MlγMγi and b = Al

j9 we obtain the "reflection-matrix" YεMn(U), which has
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been introduced before by other authors [9,10,11,12] in connection with integr-
able models and the differential calculus on quantum groups,

1$22>,A® A®\dy)lj

ί, A ® id> < ^ 1 2 , A ® ic

= ( L + S L " ) ^ , (83)

with transformation properties,

A-+AA': Ylj -> ̂ (ΐΓ,) = 7^ ® SiA^A^

ΞΞdA'y^A'Yj, (84)

A -> AΆ\ Ylj -> αΛ ( r , ) = 1 ® r ^ . (85)

The commutation relation (52) becomes in this case,

= AιRι2L2 SL2 R2ι

= A1R12Y2R2ί, (86)

where we have used (56), (57), and the associativity of the cross product (53); note
that we did not have to use any explicit expression for the coproduct of Y. The
matrix Φ(Alj) = Ai

kY
k

j transforms exactly like A, as expected, and interestingly
even satisfies the same commutation relation as A,

# 1 2 ( ^ ) 1 ( ^ ) 2 = (AY)2(AY)1R12 , (87)

as can be checked by direct computation.
The choice, ®j = (1 - ^ 2 1 ^ 1 2 )/A, where λ = q - q'1, and again b = Alj gives

us a matrix XeMn(U\

Λ j .= \\l — m, m, )/λ9 Λ j (X) 1O/ — ([1 — / )/λ) j , \P*)

that we will encounter again in Sect. 4. X has the same transformation properties as
Y and is the quantum analog of the classical matrix (4) of vector fields.

Finally, the particular choice b = d e t ^ in conjunction with ®J = ̂ £ 2 1 ^ 1 2 can
serve as the definition of the quantum determinant of Y9

Det 7 : = YdctqA = (@21 &12, detqA ® id} (89)

we will come back to this in the next section, but let us just mention that this
definition of Det Y agrees with [13],

detq(AY) = detq{A(@21@12, A (x) i d »

^ 1 2 , detqA ® id>

. (90)



Bicovariant Quantum Algebras and Quantum Lie Algebras 317

Before we can consider maps Φn for n > 2 we need to extend the algebra and
coalgebra structure of 91 x l [ to (21 xll)®^" 1*. It is sufficient to consider
(21 x l ί ) ® 2 ; all other cases follow by analogy. If we let

(a ® b)(x ® y) = ax ® by, for Vα, b e91, x, y eH , (91)

then it follows that

x. a ® y b = α ( 1 ) <x ( 1 ), α ( 2 ) >x ( 2 ) (g) fe(1) <y ( 1 ), ft(2) >y{2)

= (α ® % ) <(x ® j;) ( 1 ) , (α ® fe)(2) >(x ® y)(2)

= (x ® y)-(a® ft), for Vα, &G9I, x , y e U , (92)

as expected from a tensor product algebra. If we coact with 91 on (91 xtf)® 2 , or
higher powers, we simply collect all the contributions of A^ from each tensor
product space in one space on the right:

Δv(ax ® by) = (ax)(ί) ® {by){1) ® (ax){2y(by)i2y ,

for Vα,&e9l,x,j;eU. (93)

Let Φn be defined as in (77) and compute in analogy with (78):

(2)>*(2) ® * * ® X(n) (94)

Compare this to the generalized commutation relation,

Δl"-2\x)-ΦH(b) = [Φn(ft)](1)<Xi,[Φn(b)](2)'>^(2)® ' ' ' ® x(ϊl) , (95)

to find:

A9(Φn(b)) = [Φw(fc)](1) ® [Φw(ft)](2)' = ΦB(fc(1)) ® 6(2,

^> ^^(ΦM(fe)) = (ΦM®id)zl^(fe)6(9Iχlί)® ("- 1 )®9l. (96)

Following the n = 2 case we also define Z n > b := < ^ n , fo ® i d ^ " 1 ^ and get:

Δv(ZΛtb) = Zn>6(2) ® S(&(1))fe(3) . (97)

As an example for n = 3 consider ^ 3 = ^ 2 1 ^ 3 1 ^ 1 3 ^ 1 2 and b = A^ , then

^ 1 2 , ^ 7 ® i d 2 )

(98)

is nothing but the coproduct of Y which, as we can see from Eq. (97), transforms
exactly like Y itself. We see that Δ& is actually a U-coalgebra homomorphism on
the subset {Yb\be<Ά}.
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3. ^-Gymnastics

In this section we would like to study for the example of Ye MN(U) the matrix form
of U as introduced at the end of Sect. 1.2. Let us first derive commutation relations
for Y from the quantum Yang-Baxter equation (QYBE): Combine the following
two copies of the QYBE,

= ^ 2 3 ^ 1 3 ^ 1 2 , and

resulting in,

and apply the QYBE to the underlined part to find,

which, when evaluated on < , A1 ® A2 ® id>, gives:

R Y R Y Y R Y R ίQQ^

3.1. Higher Representations and the ~Product. As was pointed out in Sect. 1.2,
tensor product representations of U can be constructed by combining ^4-matrices.
This product of ^-matrices defines a new product for U which we will denote " ."
The idea is to combine y-matrices (or L + , L~ matrices) in the same way as
,4-matrices to get higher dimensional matrix representations,

(100)

(101)

(102)

Let us evaluate (100) in terms of the ordinary product in U,

Yι-Yi =

= RΪ2X Y1R12Y2, (103)

where we have used,

Similar expressions for L+ and SL~ are:

LΪ-Ll=LΪLt , (104)

SLϊ SL2 =SLϊSL2 . (105)
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All matrices in MN(U) satisfy by definition the same commutation relations (33) as
A, when written in terms of the -product,

Rί2Lΐ-Ll =LΪ-LΪR12oRί2LlLΐ =LΪLΪRί2, (106)

Rl2SLt-SL} = SLΪ SLΐR12oR12SLΐSLΪ = SL}SLtR12 , (107)

#12 Yi*Y2= Yi-YiRnoRuiRΰ1 Y1R12 Yi)

= (R21 ^2^21^1)^12

<>R21Y1R12Y2=Y2R21Y1R12. (108)

Remark. Equations incorporating the -product are mathematically very similar
to the expressions introduced in ref. [14] for braided linear algebras - our analysis
was in fact motivated by that work - but on a conceptional level things are quite
different: we are not dealing with a braided algebra with a braided multiplication
but rather with a rule for combining matrix representations that turns out to be
very useful, as we will see, to find conditions on the matrices in MN(U) from
algebraic relations for matrices in MN(SΆ).

3.2. Multiple -Products. We can define multiple (associative) -products by,

Γ1 72 . . . Yk:=(@21M12,A1A2 . . . Ak®id> , (109)

but this equation is not very useful to evaluate these multiple -products in
practice. However, the "big" R-matrix of Eq. (35) can be used to calculate multiple
•-products recursively: Let Y7 = Yr Y2> . . . Yn> and Y77 = Y1 Y2 ... Ym,
then:

Y7 Y77 = R J . J J ^ Y J R J . J J Y / J (110)

compare to (36) and (103). The analog of Eq. (108) is also true:

R/,//Y/ Y// = Y// Y/R/,// (i l l)

The -product of three 7-matrices, for example, reads in terms of the ordinary
multiplication in U as,

YiΛYi Y*) = RΓ.(23) Γ i R i W I V Y3)

= (RrfRΰ1 YtRisRuKRIs1 Y2R23) Y3 (113)

This formula generalizes to higher -products,

Y(1 *)=ΓΊ ^ = Π Yψ k,6 where :

{ }

All products are ordered according to increasing multiplication parameter, e.g.
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3.3. Quantum Determinants. Assuming that we have defined the quantum determi-
nant detg A of A in a suitable way - e.g. through use of the quantum extensor,
which in turn can be derived from the quantum exterior plane - we can then use the
invariant maps Φn for n = 2 to find the corresponding expressions in U; see (89). Let
us consider a couple of examples:

Det Y\= <^ 2 1^ 1 2,det,v4®id> , (115)

DetL + := <#21,detgA<g)id> , (116)

DetSZΓ := < ^ 1 2 , det β 4 ® id > . (17)

Because of Eqs. (104) and (105) we can identify,

DetL + = d e t ^ Z / , DetSX" = detβSZΓ . (118)

Properties of det^^l, namely:

AάQtqA = άQtqAA {central), (119)

A{detqA) = dεtqA®det^ (group-like), (120)

translate into corresponding properties of "Det." For example, here is a short proof
of the centrality of Det Y = YdetqA based on Eqs. (69) and (82) : 7

xYb = Ybl2)<X(i), S{b{ί))bi3))xi2)9 VxeU;

^*YdctqA = YdetqA<*(i), S(dGtqA)detqA}x{2)

= YdetqAx, VxeU. (121)

The determinant of Y is central in the algebra, so its matrix representation must be
proportional to the identity matrix,

<Det7, A) = κl, (122)

with some proportionality constant K that is equal to one in the case of special
quantum groups; note that (122) is equivalent to:

det 1 (K 2 1 ^ 1 2 ) = κ / 1 2 , (123)

where detx is the ordinary determinant taken in the first pair of matrix indices. We
can now compute the commutation relation of Det Y with A [7],

(Det Y)A = AφQt Y,A} (Det Y)

) , (124)

showing that in the case of special quantum groups the determinant of Y is actually
central in 91 x U . 8

7 This proof easily generalizes to show the centrality of any (right) invariant c e l ί , Δ^{c) = c(g) 1,
an example being the invaraint traces iτ{D~1Yk) [6]
8 The invariant traces are central only in H because they are not group-like
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Using (120) in the definition of Det 7,

Det 7 = < < ^ 2 1 ^ 1 2 , detqA <g> id>

= < ^ 3 1 ^ 2 3 , detβ4<g)detβ,4<g>id>

= det^-iL+ det^SL" , (125)

we see that "Det 7 " coincides with the definition of the determinant of 7 given in
[12].

A practical calculation of Det Fin terms of the matrix elements of Ystarts from,

$ - ' " , (126)
fc=l / jί . . . JN

and uses Det 7 = det^ 7, i.e. the g-determinant with the -multiplication:

Det Yεq

ι ••'ίN = ( Π 7 , ) 1 ' " ' " ε{1 '"JN. (127)
\ fc=l / jί ••• JJV

Now we use Eq. (114) and get:

\iι . . . IN

ΐ ^'"j\ where:
J l . . . JN

1 k = l ^ i = k . ( 1 2 8 )

It is interesting to see what happens if we use a matrix TEMN(SΆ) with
determinant det^ T = 1, e.g. Γ:= A/(detqA)1/N, to define a matrix Z e M^U) [7] in
analogy to Eq. (83),

>; (129)

we find that Z is automatically of unit determinant:

DetZ:= <^ 2 1 ^ 1 2 ,de

m12)= 1 . (130)

3.4. An Orthogonality Relation for 7. If we want to consider only such transforma-
tions

x\-+vΔ{x) = A®x, xeC^iεM^Sl), (131)

of the quantum plane that leave lengths invariant, we need to impose an ortho-
gonality condition on A; see [6]. Let C e MN(k) be the appropriate metric and
xτCx the length squared of x, then we find,

ATCA = C (orthogonality), (132)

as the condition for an invariant length,

= \®xτCx . (133)
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If we restrict A - and thereby 31 - in this way we should also impose a correspond-
ing orthogonality condition in U. Use of the -product makes this, as in the case of
the quantum determinants, an easy task: we can simply copy the orthogonality
condition for A and propose,

( L + ) T C L + = C => L+CT(L+)T = CT, (134)

{SL~)T CSL- = C => (SL'fCSL- = C, (135)

γτ CY = C, (matrix multiplication understood),

(136)

as orthogonality conditions in U. The first two equations were derived before in [6]
in a different way. Let us calculate the condition on Y in terms of the ordinary
multiplication in U,

= Ckl(RΰίY1Rί2Y2)
kl

ij, (137)

or, using Cij = qiN-^Rlk

ijCkl:

Cίj = q(N-1)Cmn(Y1Rί2Y2)
nm

ij. (138)

Remark. Algebraic relations on the matrix elements of Y like the ones given in the
previous two sections also give implicit conditions on 0t\ however we purposely did
not specify 01, but rather formally assume its existence and focus on the numerical
^-matrices that appear in all final expressions. Numerical i^-matrices are known
for most deformed Lie algebras of interest [6] and many other quantum groups.
One could presumably use some of the techniques outlined in this article to
actually derive relations for numerical ^-matrices or even for the universal ^ .

5.5. About the Coproduct of Y. It would be nice if we could express the coproduct
of Y9

A(Y) = < ( i d ® z l ) ^ 2 1 ^ 1 2 , A®id} , (139)

in terms of the matrix elements of the matrix Y itself, as it is possible for the
coproducts of the matrices L+ and L~. Unfortunately, simple expressions have
only been found in some special cases; see e.g. [15,16,17]. A short calculation
gives,

j

 2(l®Yί

k)m12(Yk

j®l); (140)

this could be interpreted as some kind of braided tensor product [14, 18],

A(Yi

j)=:Yi

k®Yk

j, (141)

but for practical purposes one usually introduces a new matrix,

O^^^^Sn^M.^ίU), (142)

such that,

= O/®YB, (143)
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where capital letters stand for pairs of indices. The coproduct of Xιj = (I — Y)ιj/λ
is in this notation:

A (XA) = XA ® 1 + 0/ ® XB . (144)

We will only use 0A

B in formal expressions involving the coproduct of Y. It will
usually not show up in any practical calculation, because commutation relation
(86) already implicitly contains A(Y) and all inner products of Y with strings of
y4-matrices following from it.

4. Quantum Lie Algebras

Classically the (left) adjoint actions of the generators χ, of a Lie algebra g on each
other are given by the commutators,

Xt>Xj = [Xi,Xj] = Xkftkj, (145)

expressible in terms of the structure constants/^ j9 whereas the (left) adjoint action
of elements of the corresponding Lie group (5 is given by conjugation,

7 a d 7 7 - 1 / AX (ΛλίL\

n > g = hgh , /z, g e (y . (146)

Both formulas generalize in Hopf algebra language to the same expression,

Xi > Xj = Xi(1) XjS(Xi{2))> with: S(χ) = - χ ,

h>g = h(1)gS(hi2)l with: S(h) = h'1 ,

~'h{i)®h{2) = h®h, f o r V / z G ® , (148)

and agree with our formula (62) for the (left) adjoint action in l ί . We can derive two
generalized Jacobi identities for double adjoint actions,

ad ad ad

x > (y > z) = (xy) > z

ad ad

> y) > (^(2) > z) , (149)

and,

(x > y)> z = (xωyS(xi2))) > z

= X(i) > (y > (S(X(2)) > z)) . (150)
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Both expressions become the ordinary Jacobi identity in the classical limt and they
ad

are not independent: Using the fact that > is an action they imply each other.

In the following we would like to derive the quantum version of (145) with
"quantum commutator" and 'quantum structure constants." The idea is to utilize
the (passive) transformations that we have studied in great detail in Sects. 2.3 and
2.4 to find an expression for the corresponding active transformations or actions.
The effects of passive transformations are the inverse of active transformations, so
here is the inverse or right adjoint action for a group:

h-i»g = g < h = S(h{1))ghi2) . (151)

This gives rise to a (right) adjoint coaction in Fun((5):

A\->S(A')AA\ i.e.

Fun(ffijBX'j M> A\ ® S(A\) Alj e Fun(®g)(x) Fun(ffij (152)

here we have written "Fun(©^)" instead of "Fun(©)" because the coalgebra
of Fun((5^) is in fact the same undeformed coalgebra as the one of Fun ((5).
In Sect. 2.4 we saw that the Γ-matrix has particularly nice transformation
properties:

A\-*S(A')A:

A\-+AA': Y\-+S(A')YA' .

It follows that:

A\-+S{A')AA': Ylj h-> Yk

ι®S{Ai

k)Aι

j. (153)

This is the "unspecified" adjoint right coaction for Y; we recover the "specific" left
adjoint action,

of an arbitrary x e Uq§ by evaluating the second factor of the adjoint coaction (153)
on x:

x > Y'j = Y^x, SiA1,) Alj}, for Vx e Uqβ . (154)

At the expense of intuitive insight we can alternatively derive a more general
formula directly from Eqs. (62), (69), and (82),

x > Yb = χ(1) YbS(x(2))

(155)
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note the appearance of the (right) adjoint coaction [1] in Fun(©J,

AAd(b) = (b(2)®S(b(1))b(3), (156)

in this formula.
We have found exactly what we were looking for in a quantum Lie algebra; the

adjoint action (154) or (155) - which is the generalization of the classical commuta-
tor - of elements of UqQ on elements in a certain subset of Uqq evaluates to a linear
combination of elements of that subset. So we do not really have to use the whole
universal enveloping algebra when dealing with quantum groups but can rather
consider a subset spanned by elements of the general form Yb = (βj, 2>(x)id>,
<& e span {B2}; we will call this subset the "quantum Lie algebra" $q of the quantum
group. Now we need to find a basis of generators with the right classical limit.

Let us first evaluate (154) in the case where x is a matrix element of Y. We
introduce the shorthand,

M ' j , (157)

for the adjoint representation and find,

YAtγB=Yc(YA,A
c

B), (158)

where, again, capital letters stand for pairs of indices. The evaluation of the inner
product (YA, AC

B} =: CA

C

B is not hard even though we do not have an explicit
expression for the coproduct of Y; we simply use the commutation relation (86) of
Y with A and the left and right vacua defined in Sect. 2.2:

2 Λ3R31Yi

)™^ (159)

The matrix Y becomes the identity matrix in the classical limit, so X = (I — Y)/λ
is a better choice; it has the additional advantage that it has zero counit and its
coproduct (144) resembles the coproduct of classical differential operators and
therefore allows us to write the adjoint action (147) as a generalized commutator:

ad

YA > XB = YA(1)XBS(YA(2))

= OΛ

DXBS(YD)

= OA

DXBS(OD

E) (IE - λXE + λXE)
YE

= YAXB + {O/txB)λXE

= γAxB + λ(oA

E,AD

ByxDxE,

with: 0D

EIE = YD, S(OD

E) YE = ID;

=> XA txB = XAXB - < O / , AD

B) XDXE . (160)
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Following the notation of reference [19] we introduce the iV4 x JV4 matrix,

feD£^:=<O/,AV, (161)

& ) - 1 ) " m % p , , (162)

but realize when considering the above calculation that R is not the ".R-matrix in
the adjoint representation" - that would be <^ 5 A£^(χ) AD

B} - but rather the
.R-matrix for the braided commutators of §q, giving the commutation relations of
the generators a form resembling an (inhomogeneous) quantum plane.

Now we can write down the generalized Cartan equations of a quantum Lie
algebra $q:

> = XC/A B > (163)

where, from Eq. (159),

IACB = (IAI
CIB ~ CA

c

B)/λ . (164)

Equation (163) is strictly only valid for systems of N2 generators with an
N2xN2 matrix 1R because X eMN(qq) in our construction. Some of these N2

generators and likewise some of the matrix elements of R could of course be zero,
but let us anyway consider the more general case of Eq. (155). We will assume a set
of n generators Xb. corresponding to a set of n linearly independent functions
{bt e Fun (®β)| ί = 1, . . ., n} and an element of the pure braid group ΘC e span(2?2)
via:

Xbi = <&,bt®idy. (165)

We will usually require that all generators have vanishing counit. A sufficient
condition on the b/s ensuring linear closure of the generators Xb. under the adjoint
action (155) is,

AAd(bi) = bj®MJ

t + kι®k\, (166)

where M ^ e MM(Fun((5^)) and kh k\ e Fun(©^) such that <$Γ, fe^id) = 0. The
generators will then transform like,

Af[(Xbt) = Xbj®M>i; (167)

from (Aκ®id)Aκ(Xb.) = (id®A)A^(Xb.) and (id®ε)Aκ(Xb.) = Xb. immediately
follows9 A(M) = M ® M , ε(M) = / and consequently S(M) = M " 1 . M is the
adjoint matrix representation. We find,

Xbktxbi = Xbj(Xbk,M{}, (168)

as a generalization of (163) with structure constants fk

J

t = (Xb , MJ,>. Whether
ad

Xbk > Xb. can be reexpressed as a deformed commutator should in general depend

on the particular choice of 3C and {frj.

This assumes that the Xb's are linearly independent



Bicovariant Quantum Algebras and Quantum Lie Algebras 327

Equations (153) and (157)-(164) apply directly to GLq(N) and SLq(N) and other
quantum groups in matrix form with (numerical) ^-matrices. Such quantum
groups have been studied in great detail in the literature; see e.g. [6, 19, 20] and
references therein. In the next subsection we would like to discuss the 2-dimen-
sional quantum euclidean algebra as an example that illustrates some subtleties in
the general picture.

4.1. Bicovariant generators for eq(2). In [21] Woronowicz introduced the functions
on the deformed Eq(2\ the corresponding algebra UM(e(2)) was explicitly con-
structed in [22]; here is a short summary: m, m and θ = θ are generating elements of
the Hopf algebra Fun(Eq(2)% which satisfy:

mm = q mm, em = q me• , em = q me ,

A(m) = m® 1 + eίθ®m, A{m) = m® 1 + e~iθ®m ,

A(eiθ) = eiθ®eiθ, S{m) = - e~iθm, S(m) = - eiθm ,

S(θ)= -θ, ε(m) = ε(m) = ε(0) = 0 . (169)

Fun(£^(2)) coacts on the complex coordinate function z of the euclidean plane as
Δ^(z) = z®eίθ + 1 ® m; i.e. θ corresponds to rotations, m to translations. The dual
Hopf algebra Uq(e(2)) is generated by J = J and P± = P+ satisfying:

[J,P±]= ±P±, [P+,P-] = 0,

A(P + ) = P+®qJ + q~J(g)P±, A{J) = J ® 1 + 1 ® J ,

S(P + ) = - ^ ± 1 P + , S{J)=-J, ε (P ± ) = ε(J) = 0 .

(170)

The duality between Fun(E4(2)) and l/€(e(2)) is given by:

(P+
kPJqmJ, eίθambmc)

= ( - l ) ^ - 1 / 2 ( * - I ) ( * + I - 1 ) + I ( * - 1 ) ^ * + | - m ) β [ i t ] β ! [Z] ί - i !5 / 6 5 i k c , (171)

where fc, l,b,ce N o , m, α e Z, and,

W^Π [0]! [l]! l

Note that P+ P_ is central in t/β(e(2)); i.e. it is a Casimir operator. Uq(e(2)) does not
have a (known) universal ^ , so we have to construct an element 3£ of span (2?2)
from the Casimir P+P-:

q-q-

1 ,-j,

+ + q'2J®P+P-} . (172)

9C commutes with A(x) for all x e Uq(e(2)) because P+P- is a Casimir. We intro-
duced the second term (P+P- ® 1) in 9C to ensure (id® ε)SF = 0 so that we are
guaranteed to get bicovariant generators with zero counit. Now we need a set of
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functions which transform like (166). A particular simple choice is ao\— eiθ — 1,
a+ := m, and a- := eiθm. These functions transform under the adjoint coaction as:

AAd(aθ9 a + 9a-) = (ao,a+9a-

- eίσmy

(173)

0

Unfortunately we notice that α0 and thereby Xao are invariant, forcing Xao to be
a Casimir independent of the particular choice of SC. Indeed we find Xao = qP+P-,

Xa+ = - \/q/(<l - q~1)qJP+9 and Xa_ = q/(q - q~x)qJP-9 making this an in-
complete choice of bicovariant generators for eq(2). An ansatz with four functions
b?:=(eiθ- I) 2, b^= -meiθm,b+:= - (eiθ - l)m, and b. := q~2(eiθ - 1) eiθm
gives:

Δ A d ( b 0 , b l 9 b + 9 b - )

= (^o,'

/I
0

0

mm

1

— m

— m

- e~iθ

0

0

m -q. ~2ewms

0

0
(174)

The corresponding bicovariant generators are:

Xt0 = q(q2 ~ l)P+P-, Xbl = (ί -

Xb,=qJP+, Xb_=qqJP-. (175)

In the classical limit (q -• 1) these generators become "zero," J, JP+ and ir-
respectively. The same generators and their transformation properties can alterna-
tively be obtained by contracting the bicovariant calculus on SUq(2). The commu-
tation relations of the generators follow directly from (170), their adjoint actions
are calculated from (168), (171), and (174) and finally the commutation relations of
the generators with the functions can be obtained from (52), (169) and (170).

5. Conclusion

In the first two sections we generalized the classical concept of an algebra of
differential operators to quantum groups, combining the "functions on the quan-
tum group" Fun(© 4) and the universal enveloping algebra Uq$ into a single
algebra. This structure, called the cross product Fun((Sq)xUqQf is a Hopf algebra
version of the classical semidirect product of two algebras. We proceeded by
extending the natural coaction of Fun((SJ, i.e. its coproduct, to the combined
algebra Fun((δq)xUqq9 introducing a left and right Fun(©^)-coaction on Uq§.
These coactions are to be interpreted as giving the transformation properties of the
elements of Uq§. In our construction we choose all elements of Uq§ to be left
invariant (<&Δ(x) = \®x) and give a general formula (72) for the right coaction A%.
The problem with the right coaction is that it is hard to compute as it will generally
give infinite power series in the generators of Uq g and Fun((5^). At the end of Sect.
2 we showed how a large subset of Uq§ with "nice" transformation properties arises
via the use of invariant maps from Fun (©J to Uq 9, which are given by polynomials
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in elements of the pure braid group. In this article we were not interested in
a possible extension of the Uqg-coaction from Uq§ to Fun((5q)χUqQ. Such
a program would likely lead to braided linear algebras as they are considered in
[12]. In Sect. 3 we utilized the invariant maps to translate (matrix) expressions
known for Fun(©€) to corresponding relations in Uq§ that would be very hard to
obtain directly. The subset of elements of Uq g that we obtained through the use of
invariant maps turns out to close onto itself under adjoint actions and this leads
naturally to the introduction of a class of generalized Lie algebras in Sect. 4. The
adjoint action in Uq§ is directly related to the transformation properties of its
elements and so it comes as no surprise that a finite set of bicovariant generators
can generate a closed quantum Lie algebra. It is the adjoint action that is important
for physical applications as e.g. deformed gauge theories. A general feature of these
quantum Lie algebras is that they typically contain more generators than their
classical counterparts. These extra generators are Casimir operators that only
decouple in the classical limit (q -»1) as we illustrated in the example of the
2-dimensional quantum euclidean group.
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