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Abstract. We study the finiteness of total scattering cross sections from an arbit-
rary channel to a two-cluster channel and establish the high energy asymptotics for
total scattering cross sections with initial two-cluster channel and those from an
arbitrary channel to a two-cluster channel.

1. Introduction

The total scattering cross sections are usually defined, within a normalization in
energy, as the square integral over all outgoing directions of the scattering ampli-
tude ([1, 2, 10]). To study total scattering cross sections through this definition,
one needs to know a priori some information on scattering amplitudes. In [5], Enss
and Simon introduced another method to define total cross sections. Let S be the
scattering operator for the pair (—4, —4 + V(x)) in L>(R?). For any ge C¥(R ),
put
go(x) = 2m) 712 [ *¥0g(2)dA .
R

Then the total cross section, o(4, w), with the incident direction w is defined
through the relation ([5]):

fo@ w)lg@)Pda =S - 1)gul®, (1.1)

so long as the right-hand side of (1.1) makes sense. It is clear that g, ¢ L(RY), if
d > 1. By considering ||(S — 1)g,, | as the limit of a family of appropriate cut-off
functions, Enss and Simon proved that if V(x) decays like O(<{x)~*) with
p > (d + 1)/2, the total cross section is finite when averaged over any energy
interval. They also established similar results for total scattering cross sections with
initial two-cluster scattering channel in many-body problems ([5]). In [14], using
Enss and Simon’s approach and studying the spectral representation for two-
cluster scattering matrices, Robert and the author proved the pointwise finiteness
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of the total cross sections with two-cluster initial channel. The purpose of this work
is to study the finiteness of total cross sections with an arbitrary initial channel and
establish high energy asymptotics for total scattering cross sections. We find the
approach of [5] particularly useful in handling total cross sections with arbitrary
initial scattering channel. In fact, the definition (1.1) allows to study the total cross
sections for each fixed incident direction w and making use of microlocal resolvent
estimates established in [ 197, we shall prove that the total scattering cross sections
from an arbitrary initial channel to a two-cluster channel are finite for some
distinguished directions w and may be infinite for the other directions. See The-
orem 3.1 and the remark following its statement.

Let us now introduce some notations. Let 4 be the Laplacian on the Euclidean
space X = R’ Let .o/ be the set of all cluster decompositions of an N-body system
labelled by {1, 2, ..., N}. The N-body Schrodinger operator to be studied in this
work is of the form:

P=—4+4 ) V,(x9.
aesf
Here x* = nx with n* the orthogonal projection from X onto some subspace X*.
Assume the following conventions on the collection {X*“, ae o/ }: (i). & is partially
ordered by the relation: a < b iff X* = X?; (ii). There are elements a,,, and d.;, in
&/ such that X“x = X and X*™i» = {0}; (iii). For any a, be <, the union a U b is
defined in o/ with the property that X*“? = X“ 4+ X”. Since x*» =0, V,__ is
a constant. To fix the idea, we take V, . = 0.

For each ae </, we denote by X, the orthogonal complement (with respect to
the Euclidean structure on X) of X®in X: X = X*® X,. Accordingly, a generic
point x € X can be decomposed as: x = x* + x,. We denote — 4% ( — 4,, resp.) the

Laplacian in x®-variables (x,-variables, resp.) and D* = — i9/0x° D, = — i0/0x,.
Put
P'=—4+ Y Vy(xb), P,=P°—4,,
bca
L(x)= Y, Vp(x").

bta

Then for any a€ 7, one has: P = P, + I,(x). Let  denote the set of all thresholds
(including the eigenvalues) of P:

T = 0pp(P?) .

S, will denote the unit sphere in X,. Put
=S\ U X;. (1.2)

b¢a
Due to the geometry of an N-body system, one can check that X, = S, if #a =2
(# a being the number of clusters in a). The norm and the scalar product in L%(X,)
will be denoted by || - ||, and < -, >,, while those in L?(X) will be denoted by | - ||
and <-,- >, respectively.
Let a be a non-trivial cluster decomposition (i.e., ae o with # a = 2). A scatter-
ing channel « stands for a collection of data: a = (a, E,, ¢,), where E, € 6,,(P*) and
¢, is an associated normalized eigenfunction:

Pa¢a = Ead’w ” ¢u” =1.
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When a = a,;,, one uses the convention that P* = 0, P, = — A4 and in this case, the
only scattering channel is the free one: o = (apia, 0, 1). We shall say that a is
a scattering channel with non-threshold energy, if

E €05(P)\ (J 0pp(P?).

bca

Let #,: L*(X,) — L%*(X) be the channel identification:
(faf)(x) = ¢a(xa)f(xa) .

To be simple, we assume that Vae </, V, is smooth on X* and
103V(y)] £ Coyy~ele, (1.3)

for any a e N™ (n* = dim X*). Here p > 0 will be precised later. Let us indicate that
in the main part of this work, local singularities of Coulomb type can be included.
See Remark 4.1. Under the assumption (1.3) with p > 1, it is well known that the
wave operators
T =s5— lim UQ@)*U.(t) S
t—>too
exist for any scattering channel « and are complete ([15]). Here U (t) and U,(t) are

unitary groups generated by P and P,, respectively.
Now let a = (a, E,, ¢,) and = (b, E;, ¢;) be two given scattering channels. Let

Spa = WE W™
be the scattering operator from an initial channel o to a final channel f. As in

[5, 14], we define the total scattering cross section a,(4, w) with incident direction
weS,, from an initial channel o to a final channel § by

J 02, @) g(A)2dA = [ (Spa — ) 17 - (1.4)
Here || - ||, is the norm in L?(X,), ge C¥(1,) with I, = ]E,, o[ and

L tineo 94
— ing(A)x, @
gw(xa) 2\/;{ e na(/l)l/z dA ’

where n,(4) = /1 — E, and x,-w denotes the scalar product of x, and w. The
right-hand side of (1.4) should be understood as follows: Let yz(+) = x(:/R) be
a family of cut-off functions in y = x, — (x,- w)w variables with y(0) = 1. For
example, we can take y(y) = e ([5]). If the limit

Ili_{H 1(Spx — 9p2) ARG Il
exists, we put
(S — Opa)9nlls = ;gn [1(Spe — Spa) ARGl -

Equation (1.4) means that if the above limit exists for all ge C& (I,), the total cross
section d,(4, @) is defined as a positive distribution for Ael,.

Remark 1.1. Actually, our definition differs from that of [S] by the scale of energy:
They took A% as the energy, while here we take A as the energy. For further
discussions about the equivalence between this definition and the usual one for
total scattering cross sections, we refer to [5, 14].
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Now let a be a two-cluster scattering channel with non-threshold energy
and f be an arbitrary scattering channel. Assume the condition (1.3) with
0> (n, + 1)/2,n, = dim X,. In [14], it is proved that the total cross section for the

initial channel o
0.(4, w) = Z o'ﬁa(/l’ o)
all g

is a well defined continuous function for (4, w)e(I,\J)x S,. Assume (1.3) for
p > (ng + 1)/2 with n, = max{n,, n,}. We shall show in Sect. 3 that for an
arbitrary f, the total cross section, ,4(4, ), from f to « is a continuous function in
(4, ) for any we 2, and A > | E4|ctg?6,, (9,, being the opening angle between w and
Sp\2Zp). See Theorem 3.1. We believe that o,5(4, @) should be finite for all
(4, w)e( 5\ T ) x 2,. Here

Ip = Jmax {E,, Eg}, + oo[ .

So far with the results on microlocal resolvent estimates of [19], we are only able to
prove this conjecture for any N-body Schrédinger operator P having the spectral
structure of a three-body operator. See Remark 3.1.

Admitting the result on the finiteness of total cross sections, our results on the
high energy asymptotics can be stated in the following two theorems.

Theorem 1.1. Let o = (a, E,, ¢,) be a two-cluster channel with non-threshold energy.
Assume the condition (1.3) with p > (n, + 1)/2. Put

1 3

2 "f”>na; ’ (1.5)
Mg = 1.5

1 _\n,,+1_8 'fn“+1< <n,,+3

2 p 2 b Y 2 p: 2 b

for any & > 0. Then one has:
2
o4, ®) - L [ 1¢x) | <I1a(X",y + Sw)d5> dydx* + O(A~'7"), (L.6)
44 xa 1, \R

as A — oo, uniformly in w€S,. Here y = x, — (X, w)w and I1, = {x,; x,*® = 0}.

Remark 1.2. (i) The high energy asymptotics of total scattering cross sections in
two body scattering can be studied by Born approximation, which is essentially
a perturbation theory around the free hamiltonian. See [10]. This, however, does
not apply to many-body problems, because in the later case, the intercluster
interactions do not decay on the whole configuration space X. To overcome this
difficulty, we shall use microlocal resolvent estimates obtained in [19] (see Sect. 2).
For rigorous results on total cross sections at high energies in two-body scattering,
see [6,9, 17, 21] and the references therein.

(i) The semiclassical asymptotics of total cross sections, o,(4, w, h) (h — 0), with
an initial two-cluster scattering channel is established in [14]. Seeing the relation
P — A= A(—h*4 + h*Y.V,(x*) — 1) with h = A7 !/2, the reader may ask if one can
directly apply the result (or the methods) of [14] in the semiclassical limit to obtain
high energy asymptotics for o(4, w). To answer this question, we just indicate that
in the semiclassical limit, the contribution from small impact parameter y (com-
pared with O(h™!)) is negligible, while in high energy asymptotics, this contribu-
tion gives the leading term in (1.6). In addition, the final result in [14] is written
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down in terms of I,(0, x,), while the substitution of I,(x* x,) by 1,(0, x,) in (1.6)
gives an error of the order O(4™!). Our viewpoint is that high energy asymptotics
for total cross sections should be simpler than the semiclassical ones and with
microlocal resolvent estimates established in [19], we can obtain better remainder
estimates. Note that microlocal resolvent estimates are not needed in [14].

Theorem 1.2. Let o = (a, E,, ¢,) be a two-cluster channel with non-threshold energy
and p = (b, Ez, ¢g) be an arbitrary channel. Assume the condition (1.3) with
p > (g + 1)/2, ng, = max {n,, n,}. Then the following results hold.

(@) Ifa=b,

a4, w) = ﬁn [ | L%y + sw)p(x*) o(x*)dx?ds| dy + O(A~17"), (1.7)

as 4 — oo, for each we Xy.
(i) If a+ b,
Oap(Ay )= 0(A172™), J—> 0. (1.8)

Here n,, is defined as n, with a replaced by b and the estimates (1.7) and (1.8) are
locally uniform in we X,.

Note that in (i) of Theorem 1.2, f may be a two-cluster channel with threshold
energy. The result of (ii) of Theorem 1.2 shows that in high energy scattering, the
probability for the particles to change clusters is small if the potentials are
bounded.

Remark 1.3. (i) Equations (1.6) and (1.7) can be rewritten as follows. Define
1°(x% y) = [ 1(x*, y + sw)ds .
R

Then, (1.6) and (1.7) become

1
0o(d ®) = — [ 11°(+, Y)Pallf2xaydy + O(A™ "), (1.9)
4h .
1
Oop(d, ®) = ﬁg [<I®(+, Y)Pa, ¢ﬂ>L2(Xa)|2dy + 017", (1.10)

Roughly speaking, this shows that when a = b, the leading term of og,(4, w) as
A— o0 is determined by the f-channel projection of the effective potential
12(x%, y) o (x).

(ii) If the potentials have local singularities, the methods of the proof for
Theorems 1.1 and 1.2 still allow to give the leading term in high energy asymptotics
for g,(A, w) and g,45(4, w). See the remark at the end of Sect. 4.

(iii) One can also study the asymptotics of total cross sections for N-body
Schrodinger operators with a coupling constant g = 1: P(9) = — 4 + gV in the
regime g/A'/? — 0. See[10] and [21] for two-body problems. To do this, we need to
establish microlocal resolvent estimates as in [19] for P(g) with g = o(ﬂ) as
A — oo . This is possible at least for bounded potentials, because for the conjugate
operator constructed in [19], we have an explicit lower bound for the commutator.
But we shall not go into details in this direction.
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The main ideas in the proofs of Theorems 1.1 and 1.2 consist in using eikonal
approximation (see also [10, 13, 17, 21] in the two-body case and [8, 14] in semi-
classical asymptotics in the many-body case) to obtain the leading term and
applying the microlocal resolvent estimates of [19] to establish precise remainder
estimates. While we believe that the remainder estimates in (1.6) and (1.7) are
optimal at least for p > (n, + 3)/2 or p > (1 + 3)/2, it is still unknown in (ii) of
Theorem 1.2 whether one can prove g,4(4, @) = O(A~*) or one can find a non-
vanishing leading term at a finite order of A~*. The method of eikonal approxima-
tion used in this work does not allow us to answer this question.

The plan of this work is as follows: In Sect. 2, we recall from [19] some results
on microlocal resolvent estimates. Section 3 is devoted to studying the finiteness of
045(4, w) when we X, and to establishing a representation formula for o,4(4, ®)
when 4 is large. In Sect. 4, we prove Theorem 1.1 and in Sect. 5, we give a general
upper bound for g,4(4, w). The proof of Theorem 1.2 is completed in Sect. 6.

The results of this work are announced in [20].

2. Microlocal Resolvent Estimates

In this section, we recall some results on microlocal resolvent estimates on N-body
Schrédinger operators which will play an important role in this work. We refer to
[18, 19] for the proofs of these results.

Let P be a generalized N-body Schrédinger operator: P = — A4 + Y .., Va(x%).
We write formally V2(x*) = V,(x* and Vi(x* = (x*-V)Vi~'(x%), for
j=1,2,... . To simplify the statement of our results, assume that the following
conditions are satisfied for some p > 0, R > 0:

Vaesof, jeN, Vi(-)is relatively compact in
L?(X*®) with respect to — 4° and
|05 Va9 £ Coly>~?71%, YaeN™ 21
for |y|>R.

Note that for physical N-body systems, Coulombic singularities are allowed in
(2.1). Let d(4) denote the distance between 4 and J n ]— oo, A]. Under the
assumption (2.1), positive thresholds of P are absent: < ]— o0, 0]. See Theorem
4.19 in [4]. So one has for 4 > 0, d(1) = A.

For ae .o with a # a,,,, and ueR, we denote by S% () the class of u-dependent
bounded symbols, a., on T*X, satisfying

suppas < {(%e, &a)y £ X0 &aZ + ucxa)}
aieC“’(T*Xa), ‘a?caagaai(xaa éa)l é Caﬁ<xa>—|a|<€a>_lﬂl ) (22)

uniformly in ueR.
In the following, we denote by a(x, D) the pseudo-differential operator with
symbol a defined by

1
@2n)*
and by R(z) = (P — z)~! the resolvent of P.

a(x, Dyu(x) =

[§ =7 %a(x, &u(y)dyds
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Let o' = {a€A;a # G }. For ac o/’ and n > 0, we define:
Q,(n) = {x;[x*| <n|x| and Vb&a, |x"| > n*|x|} U {|x| < 1} .

When a = a,,;,, we shall write: Q,(1) = Q,(1) to indicate the free cluster regions.
Due to the geometrical structure of N-body systems, {Q,(n); a€ «/'} is a covering of
the configuration space X, if # > 0 is small enough: UaQa(n) =X.

Theorem 2.1. Assume the condition (2.1). For ¢ > 0, denote by J ¢ an ¢-neighbour-
hood of I . Then for any ¢ > 0, the following results hold uniformly in k€ ]0, 1].

(i) For any leN and s > | — 1/2, there exists C > 0 such that
I<x>*R(A £ ix)' {xy 7| < CA>T2, VAgT . (2.3)

(i) For any ae /', leN,s >1— 1/2, J, a bounded function with support con-
tained in Q,(n) and b’ € S% (u< ), there exists C > 0 such that

1<x>* " Ta(x)b% (%0, D)(R(A £ i)' <x) 72| < CLAYTY2, VAET®,  (24)

uniformly in F p+ < (1 — g)(d(1))*2
(iii) Foranya,d €', J, and J, bounded functions supported in Q,(n) and Q. (n),
respectively, and for any leN, s, reR and b% € S (u+) with puy > p_ + e(d(A))*/?
for ¢ = a or d, there exists C > 0, such that
I1<x°Ta(x)b% (Xas D)(R(A £ 1)) T (X)b% (Xar, D) {x)" | < CKAYTH2, A4 T2,
(2.5)
uniformly in + pz < (1 — &)(d(1))*2

In Theorem 2.1, we control the support of symbols in terms of the energy. In
some cases, this allows to replace the microlocalizations with symbols in S% (u#+)
by those with support in a largest possible outgoing or incoming region. For this
purpose, let us introduce another class of symbols on T*X,. Let S% be the class of
all smooth bounded symbols on T*X, with the following support property:
b €8% iff there exist ¢ > 0 and d > 0 such that

supp bi < {(xa) ga); i xa'éa > — (1 - e)lxa| Ifal and léal g d} .
Introduce two subclasses of cluster decompositions in .</:
At ={aeod; P* 20}

and
o5 ={aed; #a=2and o.,(P)=[0, +0[}.

The following theorem shows that if ae.o/ * U /5, we can replace the symbols
4 e5% () by b% €S54

Theorem 2.2. Assume the condition (2.1).

(i) For ae o, let J, be a bounded function supported in Q,(n) for some n > 0. Let
“eS%, if aed T U AT, and b eS% (us) with + ps > — (1 —e)d(W)V? if
a¢ A" U AT Forany leN, e >0 and s > | — 1/2, there exists C > 0 such that

I1<x° 7 Ta(x)b% (Xa, D)(R(A £ i)Y <x) 75| < CLAYTY2, VAET S, (2.6)

uniformly in 0 < x < 1.
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(ii) For any a,d € o/, let J. and b’ be taken as in (i) accordingtocesd™ U A5
orc¢d™ U AT for c = aor d. Assume in addition that (b, b% ) and (b% , b%) are
pairs of symbols with the property of disjoint support. Then, for any leN, ¢ > 0,
s, r€R, there exists C > 0, such that

1 <x)* Ja(x)b% (%4> Da)(R(A % i)' D% (X0, Do) T ()XY || £ CLAYTY2, A¢TE,
@.7)

uniformly in 0 < x < 1.

We refer to Sect. 2 in [19] for the definition of the notion of pairs of symbols
with the property of disjoint support.

Remark 2.1. If an N-body Schrodinger operator has the spectral structure of
three-body Schrodinger operators (ie., there is no negative eigenvalue for any
sub-Hamiltonian P with #a = 3), then, o * U o/ 7 = /. In this case Theorem 2.2
gives complete sharp microlocal resolvent estimates. In general case, our results are
almost optimal in high energy estimates.

Theorem 2.3. Assume the condition (2.1).

(i) For any ¢ > 0, there exists Ao > O such that for any ac o/, b’ € S% with
supp b% < { F x,- & < (1 — g)lx,|[&al} (2.8)

estimates (2.4) hold for A = A,.
(i) For any & > 0, there exists Ay > 0 such that for any a, a'€ &/ and for any
‘. €8%, c=a,d, such that (b%,b%) are pairs of symbols with the property of
disjoint support and that (2.8) is satisfied for supp b’., c = a, a'. Then estimates (2.5)
hold for A = A,.

Theorems 2.1-2.3 are proved in [19] under less restrictive conditions on the
regularity and the decay of potentials.

3. Finiteness of Total Cross Sections 6,4(1, ®)

Let o = (a, E,, ¢,) be a two-cluster channel with non-threshold energy. Let
B = (b, Eg, ) be an arbitrary scattering channel. The finiteness of total cross
section with initial two-cluster scattering channel «, ,(4, w) = Z,, 0pa(4, @), is
studied in [2, 3, 5, 14]. In [2, 3], an average was taken over all incident directions,
while in [5] an average was taken over any energy interval. In [14], the pointwise
finiteness of ¢,(4, w) is proved for each (4, w)e(I,\J ) x S,. Here we want to give
a pointwise meaning to the total scattering cross sections o,5(4, w) from an
arbitrary initial channel to a two-cluster channel with non-threshold energy de-
fined through (1.4).
Fix an incident direction we X,. Define 6, by

0, = inf{@e]O, 7/2]; 3w’ €S, N < U Xc) with cos 0 = Iw-a)'l} . (3.1

cEb

Since we X}, 6, > 0 and for any ¢ > 0, the intersection between ch »X. and the
cone {x; |xw| > cos(,, — &)} is void.
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For a given initial channel § = (b, E4, ¢4) and w € X}, we construct microlocal-
izations in the following way. Let 74, ,, = |Eg||ctg 0,|* For 4o > — E; + 15, take
0 > 0 so small that

[ —26)A¢, (1 +20)Ag] = 114,00 — Eg, + o0 [ .
Let I = [(1 — 6)Ag, (1 + 6)4o]. For ¢ > 0 sufficiently small, take y, € C(XF) with

(5)_{1, for |&[2€l and |&,/|&] — o] <e&;
B =00, for &2 ¢[(1 — 20)A0, (1 + 20)A0] oOF |&/1&] — ] > 26 .

Let je C§¥(R) with j(t) =0if t < 1/2 and j(t) = 1 if t = 1. Put:
. Ix‘|>
Ji(x) = ,
1( ) cl;[bj<5|x|

Jo(x) = J1(x)j(Ix]) + (1 —j(|x])) - (3-2)

On the support of VJ, = VJyj + (J; — 1)Vj, there exists at least one ¢ £ b with
|x¢| < 6]x|. Recall that by the choice of 6,,,

and

min {|7n°%|;|%-w| = cos(f, — &)} >0.
x;cgb

Here x = x/|x|. Taking
0< 6 < min {|n°%];|%- 0| = cos(b, — &)}
x;ctb

sufficiently small, the support of VJ, is disjoint from the cone {x;|%-w|
= cos (6, — ¢)}. Consequently, for x esupp VJ, and &, esupp x;, one has

[Sp — [Elw]| < 2e]&y],

x5+ &bl < (2e[x5] + |%5+ @]) &3] = (26 + cos (0 — &))Ix5[/(1 + 20) Ao -
Now let A; = Ag + Eg. It can be checked that
E 1/2
(e + cos(8, — &))(1 + 25)1/2(1 - /Tﬂ> <(1-¢),
1

for A; > (1 — 28)"'14, 4, if &, & > 0 are chosen sufficiently small. This proves that on
the support of VJ,(x)xs(&s),

1%+ &l < (1 — &) A1 |xs < (1 — &)d(D)?|x,], & >0, (3.3)

for Ael; = [(1 — 0)A1, (1 + 6)A1] if 6 > 0 is small. Choosing appropriately x;, we
can verify that

V() 1s(+)eS% (1) 0 S%(n-), A€l .

Here u+ = F (1 — €)d(4)"/2. Therefore, we can apply the results in Theorem 2.1 to
this microlocalization and obtain, for instance, for any s > 1/2,

[1<x>*V Ty (x)25(Dp)R(A £ i0)<x) ™| < CAYTY, Aely, (3-4)
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for all 4, > 15 ,,. Remark thatif be &/ * U &7, (3.4) is true for all A¢ 7, because
VJb(‘)Xb(')ESI:. me_, Vi .
Our result on the finiteness of g,4(4, w) is following

Theorem 3.1. Assume the condition (2.1) with p > (n,, + 1)/2. Let 0,4(A, w) denote
the total cross section from an arbitrary channel B to a two-cluster channel o with
non-threshold energy. For each we Xy, let A, > 15 ,,. Construct Jy, x», I1 as above.
Then the total scattering cross section from [ to o is finite on 1, and one has, for any
geCqIy),

[ 0ap (4, ) g ()2 dA

2
= j'nHFa(/l)f:‘ {1 —I,R(A + iO)}Qbeﬂ(l, ) “IZJ(S‘,) ———|g(i)| 72 di. (3.5)
(4 — Ep)

Here F,(J) is the spectral representation for — A, + E, (see (3.9)),
50, ) = y(xt) eVt = B
and Q, is defined by
Q5 = I(x) Jp(x) x6(Ds) + [ — 4, Jp(x) 1 25(Ds) - (3.6)

In particular, the total cross section 6,5(4, @) defined by (1.4) extends to a continuous
function in (4, w) for (4, w)e {(u, O)eRx Sy; 02y , > 15 4}

Oup(A, @) = AT *¥{1 — LLR(A +i0)} Qpep(d, ®) || F2s,y - (B.7)

T
gy
Remark 3.1. (a) Under the condition of Theorem 3.1, we expect that for any initial
channel B, 0,4(4, ) is finite for any (4, w) € (I,5\ ) x ;. The result of Theorem 3.1
implies that this is true if f is a scattering channel with energy 0: E; = 0. More
generally, if be o/ U /5, (3.4) is true for any A¢7 . We can then apply the
method of the proof for Theorem 3.1 to prove that for any be o/ * U o5, 6,4(4, w)
is finite for (4, w) e (I,5\7") x Z; and is given by (3.7). In particular, this shows that if
P is an N-body Schrodinger operator with a three-body spectral structure, then
VB, 6,4(4, w) is finite for any (4, w)e(I,5\J ) x Z,. Our conjecture may be com-
pared with that on the smoothness of scattering amplitudes raised in [16]. The
methods of the present work show that to study total cross sections, one can avoid
studying the properties of scattering amplitudes.

(b) For weS,\2, =S, n (ch »X ), the finiteness of g,4(4, ) is a subtle ques-
tion. To see this, let us recall that the structure of the scattering amplitude,
So«(4; @, @), from a two-cluster channel with non-threshold energy to the free
channel in three-body scattering was studied in [7]. Since S, is formally equal to
S§, with a reverse of the time, one can apply the same method of [7] to verify that
S.0(4; @', w) has the same structure as So,(w, »’). As a consequence of Theorem 1.1
in [7], we see that S,¢(4; @, ') is continuous for (w, w’')€ S, x X, with b = a,,;, and
when w' e Xy, o' — S, N X, for some ce o/ with #c =2, S,0(4; w, ) has a singu-
larity of the form:

Sl 0,0)= || 1A_; + Ay, as 0 =710 -0, (3.8)
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where A_; and A, are continuous functions and 4 _; = 0if 0 is neither eigenvalue
nor resonance of P¢. Therefore, we can conclude that if 0 is neither eigenvalue nor
resonance of P¢, the total scattering cross section o,4(4, @) (B being the free
channel) extends to a continuous function near S, N X, and if 0 is an eigenvalue or
a resonance of P, g,5(4, @) tends to infinity when w®— 0.

The proof of Theorem 3.1 is divided into three steps.

(a) As the first step, we study the spectral representation of the scattering

matrices for T,;.
Let Fy: L*(X,) > Hy = L?(Ip; L*(S;)) be defined by:

(Fpf)(4 60) = cp(2) [ e =V B0 f(x,)dxy (39)

where
(1) = (2m) ™20 — Ep) D

with n, = dim X,. Then we can verify that ]IFﬁfl[Hﬂ =|flly. Put Fp=Fz 7.
Then #,P,F } acts as the multiplication by 4 in H;. By Sobolev’s lemma, Fj
defines a family of maps, Fy(4), A€ly, from L?5(X,), s > 1/2, to L3(S,):

(Fp(DS)O) = (Fg)(4, 6) .

Here L% *is the weighted L? space L>%(X,) = L*(X,, {x;>**dx;). Similarly, we can
construct a spectral representation %, for P,. Then F,T,;F } can be represented by
a family of operators {T,5(4) = F (A) T,4F p(A)%; Aela,,} mapping L2(S,) to L2(S,).
Note that T,z(4) is a priori only defined a.e. in A.

Proposition 3.2. Assume the condition (2.1) for some p > 1. For we Xy, let y, J, and
I, be constructed as before. For any f.e ¥(X.) with ¢ =a or b, we denote:
o4, 0) = (Fpfo)(4, 0) and fo(4, ') = (F, fo)(A, 0'). Assume that f.(4,) = O for 4 outside
I,. Then one has:

{Topx(Dy) fos faDa = If T(W oA ) folhs ) D250 24 (3.10)

where

T = — 2miE,(A) £ & {Q — LR(A + 10)Qs} FpFp(A)* (3.11)

for A¢ 7. Here Q,, is defined by (3.6). In particular, the localized scattering matrix
T%(4) = Fo(A) Tosx (Dy) Fg(A)* is continuous for Ael;.

Proof. Notice that J, is supported in @, = {x; V¢ & b, |x‘| > d|x|} for some suit-
able 5, § > 0, such that J,(x) = 1 for |x; - &| > (1 — )| xs|| s, VE, € supp . Mak-
ing use of microlocal propagation estimates for U, (t) # = e *"4*E) g, we can
verify:
S'tllmw (L = Jo)x(Dp) Us(t) 5 =
Therefore,
i x(Dy) = s- lim U(t)*J,x(Dp) Uy(t) 7 »

t—t o0

where U(t) = e~ **. We denote B = J,x(D,). Then

Tupx(Do)fy = Wi*(Wg — Wi )x(Ds)
= _1{ W U @)*iQyUs(t) Py frdt
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where
Qy=PB—BP,=1,B+ [ — 4,J,1x(Ds) .

Since supp J, < @y, it is clear I,B = O({x)~*). Put
By =[—4,J,1x(Dy) .
The symbol of B, is supported in
Q0 {1x+ &l = (1 — o) x| &5} (3.12)

and is of the order O({x) ~!). Introducing a convergent factor and making use of
the intertwining property of the wave operator W, , we can verify that

<TaﬂX(Db)ﬁn.ﬁz>a
= — 1{ (WU () iQpUs(t) Ppfys faradt

—ling | <f§‘Ua(t)*{1 —if e’“Ua(S)*IaU(S)dS}inUb(t)d)pﬁ,,ﬁz}adt
&0 R R,

= —2n !ljlg J<F(3) ¥ {1 — LR + ie) }iQy FpFp(A)* fioA +)s falAs*) D125,y dA -
(3.13)

Applying (3.4), one sees that the last limit in the above equations exists. This proves
(3.10). Let s = p/2 > 1/2. Then

A= FiF () e L (L*(S,); L* ~*(X))

is continuous. Since ¢, is rapidly decreasing in x° we can see that £Q,{(x)* =
0({x,>~%). Therefore,

A= Fo(A) 750 FpFp(4)

is continuous for A€1l,4. By (a) of Theorem 2.1 and (3.4) with s = p/2, it is easy to
see that
A= Fo(d) FE1.R(A + ie)Qp Fp F p(R)*

is continuous for Ael;. From this it follows that A > T%(4) e L (L*(S;); L*(S,)) is
continuous for Ael;. O

(b) The second step of the proof of Theorem 3.1 is to insert a localization by
%(Dy) in the definition (1.4), if supp g = I;.
We shall work locally in A€I;. Let

&g = eMeX  with ng(A) = [} — Es,

g€ L* ~5(X,) for any s > n,/2. Since x(D,) is continuous on L>"(X,), for any reR,
and since x(ng(4)w) = 1 for A1, (by the choice of ), one can verify that for A€l

X(Db)gﬂ = ﬁp, in Lz’ _S(Xb) , (3.14)
for any s > n,/2. In the rest of this work, we shall freely use this relation.

Lemma 3.3. Let hy be the family of cut-off functions defined by:

hg = e~ =G @ @2/R
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Then one has:
hm (X(Db)hng - hng) = 0: in Lz(Xb) s (315)
R—- o

for any ge C§ (Iy).

Progf. We assume that  is pointed at the x; direction and write x, = (xy, X').
Let f denote the Fourier transform of /. Then the Fourier transform of (D) hgg., is
equal to y(&,)hr(£')d,(¢1). We can compute:

Jo(&1) = c(¢1)g(E] + Ep) ,

where c(£,) is some bounded function which we do not need to compute explicitly.
By the choice of y, (&) = 1 for &, in the support of g(¢% + E4) and |&'| < & with
¢ > 0 small enough. If |&'| > &, |Ar(£')] £ CRNee R for some N, > 0. Therefore,
limgq [|(1 — %(Dy))hrgolls = O for any ge Ce(I;). O

By Lemma 3.3, (1.4) is equivalent with the definition:
§ 0up (R, @)l g(A1PdA = || Topx(Dy)goll® , (3.16)
for any ge C§ (I1). The right-hand side of (3.16) is again taken as the limit:
Iy_l};lo [ Topx(Dp)hr G %,

if it does exist.
(c) Finally, we can finish the proof of Theorem 3.1 by studying the right-hand
side of (3.16) by means of the time-dependent method.

Proof of Theorem 3.1. To prove the finiteness of || T,5x(Dp)g. |, we use the equality
I Tupx (D)9 I* = § || T2(A)(Fpgon) (2 +) | 225,y d2
Ly

and the properties of localized scattering matrices.

By the microlocal resolvent estimate (3.4) and the decay assumption (2.1) on the
potentials, one sees that TZ%(A): L*(S,) - L*(S,) given by (3.11) extends to
a bounded operator from H ~**5(S,) to L*(S,), for some s > 1/2. Here H"(S,) is the
Sobolev space on S, of order reR. By a direct computation, one can verify that Fy(4)g,,
is a distribution in H~#'(S,), for any p’ > (n, — 1)/2 and limg-,,, Fp(4)(hrg.) =
Fy(A)g,, in H™?'(S,) for any p’ > (n, — 1)/2. This shows that the right-hand side of
(3.16) is finite.

To prove (3.5), we proceed to calculate

[ I T%(DFp(N)golltzs, dA
Iy

by the time-dependent method which is easier to justify. Let y; be a cut-off function
on R so that y; (2 + Eg)x(&) = x(&). Using the intertwining properties of wave
operators, we have:

Taﬂ X(Db)hng

=lj;f;kUa(S)*{ — ix1(P) —Rj Ua(t)*IaXI(P)U(t)dt}QbUb(s)(¢Bhng)ds‘
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Note that F,(1) £¥U,(t) = e "*F,(A) #¥ and that for any p’ > n,/2,

, _ e p)
lim x>~ Ue) (@yhnge) = ] 70> ¥ eyl ) z(n)l,zf;_) e

Making use of microlocal resolvent estimates established in [19] (see Sect. 2), we
can compute,

Ili_{n F,(A)Topx(Dp)hrger

=] e"“Fa(l)f;k{ —ip(P)— | e“'Iaxl(P)U(t)dt}
R R

+

duds

‘ 1
xQp [ e g(pes(p, ) 2m)!/*(u — Ep)'"*

1/2 % . _ iAt ;
— W)2F,(1) 42 { —in(P) = [ ¢l U(t)dt}ngweﬂ“’ ) G

1
— (n)llea(ﬂ)f:{ — i+ lIaR(j. -+ iO)}Qbeﬂ(l, (D)g(}.) m .
- =B
In the last equality, we used the fact that y;(4) = 1 on suppg. We indicate in
particular that the last expression is well defined. In fact, by the definition of Q, (see
(3.6)), we can verify that

Fx0ep = 0({xs) ") + {Bieg, Po)12x9)

where B; =[ — 4, J,]x(D;). Recall that o is a two-cluster channel with non-
threshold energy. If a & b, one has |x*| = ¢|x| on supp J,. If a < b, then, b = a, since
#a = 2. On the support of VJ,, there exists a ¢ £ b = a with

oOlx|/2 = |x°| = dlx| .

By the geometry of N-body systems, there exists ¢y > 0 such that |x®| + |x°|
= co|x|. This shows that on the range of B,, one always has: |x*| = ¢;|x|,¢; > 0, if
& > 0 is chosen small enough. Consequently, F,(4) #*Q,e; € L*(S,) and is con-
tinuous in A. Applying the microlocal resolvent estimates (3.4) with n,/2 — 1 <s
<p—1—1/2, we can also derive that #¥I,R(A + i0)Q,e;s(4, w) e L>"(X,) for
some r > 1/2 and is continuous in A. This proves Theorem 3.1. O

4. High Energy Asymptotics of ¢,(4, »)

In this section, we assume that (1.3) is satisfied for some p > (n, + 1)/2. Let
o = (a, E,, ¢,) be a two-cluster scattering channel with non-threshold energy. Let
us first recall a result from [14] on the pointwise finiteness of o,(4, w) = Zﬂ 045(4, @)
formally defined through (1.4). The finiteness of o,(4, ) when integrated over the
energy was proved in [5]. Let ge C¥(I,) with suppg nJ = 0. Then one has:

1
ny(4)

[ 04, w)|g(A)1>dA = | IC(R(A + i0)1,e,, Le,>|g(A)2dA . 4.1)
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Here R(A + i0) are the boundary values of the resolvent (P — z) ™! and e, is defined
by:
e (X, 4, 0) = P (x?) e D¥a

with n,(A) = (1 — E,)*/2. In particular, ¢,(4, ») is a continuous function in (4, w):
1
ny(4)
for (A, w)e(I,\J) x S,. The study of high energy asymptotics for ¢,(4, w) is based
on the formula (4.2). In the two-body case, this formula is reduced to the following:
1
7
where now ¥ is a two-body potential and e(4, w) = e'V*®**, The high energy
asymptotics (or Born approximation) for ¢(4, ) is usually carried out by a per-
turbation around the free Hamiltonian — 4. In fact, one can write, for short range

potential V,
VR(A +i0)V = VRo(A + i0)V + (VRo(A + i0))*V + - - -.

Here Ry(z) = (— 4 — z)~!. The leading term of ¢(4, w) can be derived by inserting
this expression into (4.2). See [9, 10, 21]. However, this argument does not apply to
many-body problems, since I,(x) = Zbga Vy(x%) does not decay on the whole
configuration space X. We shall construct an eikonal approximation for the
outgoing wave function R(4 + i0)I,e,(4, ) and use microlocal resolvent estimates
in Sect. 2 to estimate remainders.

Notice first that ¢, is rapidly decreasing in x*. Under the assumption (1.3) for
p > (n, + 1)/2, we have for any 1/2 <s < p — n,/2

[[{x>*1,e4(4, @) || < Cs,
uniformly in 4, w. Therefore as a consequence of Theorem 2.1,
o,(l, ) =011, - oo

Lemma 4.1. Let y (x4, A) = O(x,/A''?), where © is a smooth function with
supp O < {|x,| <1} and @ =1 for |x,| < 1/2. Then

1
n,(4)

0u(4, ) = S<CR(A + 10, b e, 1ae,y (4.2)

o(h, @) = —= IR + 10) Ve(h, »), Ve(h, @) . 4.3)

04(4, ) = SR+ i0)y1Laes, L€z + O(A71 7 ¢ 70T D27902) - (4.4)

for any ¢ > 0.

Proof. 1t suffices to apply (a) of Theorem 2.1 and the estimate || {x>*(1 — y(x,))1.e,|l
= QA P mal2=seIDI2) for s = (1 + ¢)/2. O

Let f= y11,. Define:

it

1 ® — | I,(x% x, — (t — s)w)ds
g(x) = R [ (x4 x, — tw)e s ¢ =99 dt (4.5)
«(4) o

with n, (1) = 2n,(4). g(+) is a well defined smooth function, since the integration is
just taken over a finite interval in t. We can verify that

nM(@-V)g +il.g=f. (4.6)
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Put y,(x4, 4) = O(x,/(MA?)) with M > 1 to be chosen later. Since y, =1 on
supp f, one has:

(P — D(ix29€z) = fex + il — 4o, x219€x — ix2{eadg + 2V g-V7e,}
=fe,— 1y —1,5. 4.7
This shows R(4 + i0)(fe,) = ixage, + R(A + i0)(r; + r3).
Lemma 4.2. With the above notations, one has
[KR(A + i0)7), Ipe,p| = O(A7/27m)
for j =1,2. Here 1, is defined in Theorem 1.1.

Proof. Since x*-w = 0, ¢,g is rapidly decreasing in x*. Let y = x, — (£, w)w. We
can also check that

[9a(x))g(x)] < CyA~12x*>~N(y)~#*1, for any N > 0. (4.8)

Let {0,, 0,} be a partition of unity in £,-weR with supp 6; < {%,-we]— 00,1 —
¢/2[} and supp 0, = {X,-we]l —¢ o [}. On the support of 6,,|x, — tw| =
ce(|xa] + t) for t > 0. Consequently we can verify that on the support of 6,

Va T

|62(x) 38, g(x)| < Cipd ™3¢, ™P 1T (x)y N, WBeN™ . (49)
Let us first estimate the remainder related to r,.
[{R(A + i0)ry, Ie,>| < C||{x>~P+"al2*eR(] + i0)(6; + O,7,) ||
S C{ATHIKxa ) TPF 2 g, |
+ [|[{x)"P*nl2*ER(A + i0)0,74 | }
S C{ATH27Me 4 [ Kx) TP "2 R(A + i0)0,x (Do)r2 ||} -

Here y is supported near £, = n,(4)w and we used the fact y(D,)e, = e, in L*(X“) x
L* ~m/27¢(X ) and that the terms related to the commutators between y(D,) and
the derivatives of g can be bounded by O(4~ /27 "), On the support of 0, (x,) x (),
we have: x,- £, = 0. Applying (b) of Theorem 2.1 with s = p — n,/2 — ¢, we obtain

[<xy™PFnel2* R(A + 00,4 (Do)ra | < CA™2| <X>_"+”“/2“”r2 I=0@27m).

The desired estimate for r, follows.
For r;, we write it as

ry= — 2na()“)w' VaXdea + 2ivag : Vaxzea + iAaXZQea .

The pieces corresponding to the last two terms can be treated as above, while for
the piece corresponding to the first term, we need a new argument since there is an
additional factor n,(4). Note that supp Vy, = {M1'?/2 <|x,| < MA'?} and
supp,, f(x% + — tw) is contained in {|x, — tw| < A}/?}. Consequently, for x, in the
support of w-V,x.g, one has for some ¢ = 0,

MAY2)2 < |x,| < MAY? (4.10)
X, — to] < AL2 (4.11)
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Writing x, = (xy, y) with x; = x,- o, (4.11) implies |y| £ 1}/? and |x; — t| < A}
Equation (4.10) gives

X112 MAY2/2 — |yl = (M/2 — DAY

Taking M > 4, it follows from the estimates |x;| = (M/2 — 1)A'/2 > J'/? and
|x; — t] £ AY2% (t = 0) that x; > 0 and therefore, x; = A'/2 > |x,|/M. Let x(&,) be
chosen as in the first part of the proof. The support of w-V,y,(x.)g(x)x(&,) is
contained in an outgoing region. Since V,x, = O(A~'/?), we can apply (b) of
Theorem 2.1 and the arguments already used to treat r, to finish the proof of
Lemma 4.2. [

From Lemmas 4.1 and 4.2, we obtain

o.(4 ) = i )S<1)52ge (A, o), Ie (A, )y + O(A~ 171, (4.12)

Proof of Theorem 1.1. It remains to calculate the asymptotics of

I<ix29€ss Luez) = R [ 12(xa)g () 1a(x) o (x)|? dx“dx,
X

as 1 — oo. Decompose X, as X,=RxII, with II, = {x,; x,- @ = 0}. Write
x, = (s, y)eR x I1,, and let x* be fixed (the indication of x? variables is omitted in
the following formulas). Making use of (4.5), we can compute the integral

R j X2gladxa
Xa
d il,,(y+t’w)dt’

R f f(XzIa)(y + SCU){ E (ada)(y + tw)e ™0

. ( 0 dt}dsdy

{ } (il (y + tco)dt} dsdy + O(A™ 1)

1 N
=73 | j],,(y+sw){ [ L(y+ tw)dt}dsdy—k O(A~1/27Ma) |
24 I, R -0

uniformly in x* Here we used the fact that y;(x,) = 1,j = 1,2, for |x,| < 4'/?/2 and
that for any be .o/ with b & a, one has |x?| = §|x,| for some § > 0. From (4.12), it
follows that

2
7,(4, ) j ld’a(xa)lz j <lj;la(x“,y + scu)d3> dydx® + O(A~17)

as A—o0. O

Remark 4.1. The smoothness assumption on potentials is more than necessary. In
fact, if each potential has only a local singularity at the origin so that the
assumption (2.1) (with p > (n, + 1)/2) is satisfied outside 0 and for each b%a,

Ve LE(X™), @.13)
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we can still establish the high energy asymptotics for ¢,(4, w):

2
04(4, @) =Zl/—1 [ 19 | (I{Ia(X“, y+ Sw)d5> dydx" + o(A™1),

@

as A — oo. 4.14)

To see this, let y, be a cut-off function for the set {|y|<e} and let
I5(x) = ), (1 — %:(x®)) V5(x®). By Theorem 2.1, one has:
bta

o,(A, w) = IR + i0)yx I%e,, e,y + o(1)A7?1

a(/l)

Here o(1) - 0 uniformly in 4, as ¢ —» 0. Now I} is smooth, Repeating the proof of
Theorem 1.1, we obtain:

JCR(A + i0)x 1se,, Iie,
5 SCRG+ 0 )

2
=— [ |¢(x)* | <j1f,(x“, y+ sa))ds> dydx® + 0,(A"17") + o(1)A™ 1!
1 Xa , \R
Equation (4.14) follows from the fact
2
lim | |¢(x*)I* | <j IE(x% y + scu)ds) dydx®
=0 Xe

I, \R

= [ 1¢axP | <j L(x% y + Sa))ds>2dydx“ .
Xa

I, \R

Note that according to (4.13), the last integral is finite. [

5. Upper Bounds on 6,4(4, ®)

From now on, we assume that the condition (1.3) is satisfied for p > (n,, + 1)/2. Let
o be a two-cluster channel with non-threshold energy and f be an arbitrary
channel. With the notations of Theorem 3.1, one has

Top(4, @) = | Fo) £2{1 — LR( + i0)} Qpep(4, 0) [ 225, »

T
(A — Ep)?
fordel; =](1 — )4, (1 + 5)/11[ A1 > 15,,/(1 — 8). To study 0,4(4, w) in the limit
A — oo, we replace J, by J}(x) = J,,(x/,l” 2) and denote by Qp' the operator
defined by (3.6) with J, replaced by J#:. It is clear from the proof of Theorem 3.1
that (3.9) still holds for A€l;. Setting 4 = 1;, we obtain

Oop(4, ) = F,() f%{1 - LR( +10)} Qses(h o) |2,y > (5.1)

a5
for all 1 > 74 ,,/(1 — 6). Define
Jap = FE{l — L,R(A + i0)} Qpe4(4, @) . (5.2
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By microlocal resolvent estimates (Theorem 2.1), f,;€ L**(X,) for some s > 1/2.
Applying Stone’s formula (see for example [12]), we see that

IFo(A) fap | E2i50) = <FalWV*Fo(D) fops fopd 1250

1 . .
- <% (Ru(A + i0) — R,(A — lO))fapsfaﬂ>a

1
=- I(R(A + 10) fops foupDa -

Here R,(z) denotes the resolvent for — 4 + E,. This proves

1 .
Oop(A, ) = —— ICRU(A + 10) fop, fapDa - (5.3)
ng(4)
The formula (5.3) looks similar with (4.2), but the dependence of f,; on A is rather
complicated. We decompose
f;tﬂ = gaﬂ + raBa WIth gaﬂ = szgeﬂ(l> CU) . (54)
Lemma 5.1. Let 1/2 <s < p — n,/2.

(i) If a = b, [|<{Xa)’guplla = C uniformly in 4 > 74 ,/(1 — 9).
(ii) If a # b, then for any M > 0, ||[{x,)°guplle £ Cud™™, for 1 > 14 ,/(1 — 9).

Proof. Recall that ¢,(-) is rapidly decreasing in x* and

gaﬂ(xa) = j. (Ql};eﬂ)(xa, xa)d)a(xa) dx* s

Xa

where Qf = [ — 4, J§1x(Dy) + I,J £ x(Dy). As in the proof of Theorem 3.1, we can
show that on suppVJ 2, |x%| = c|x|, ¢ > 0, and |x| > A/2/2, due to the dilation in
A. Consequently,

§ [—4,J51x(Dy)epda(x")dx® = O({xa) ™24 ).
Xa
In the case a = b, | I(x)$,(x%)| £ Cp{x> P<{x*> "M, VM > 1. It follows that
[ 1,J§2(D)egdodx* = O((xa)™*)

Xa

uniformly in A. This proves (i).
In the case a + b, we have a£ b, because #a = 2. This means that

o =7n°w £ 0, forwel,. (5.5
Writing w+x, = w+x = w*+ x* + w,*x,, we have in this case
j‘ Ile};X(Db)eﬂ—(E dx® = ein,(l)wa-xa j‘ einﬂ(,l)wa.xa Ibe,l(]bp(xb)(ba(xa) dx® . (46)
Xa Xa

Since w® & 0, we have an oscillatory integral with non-stationary phase. Making
use of the relation

a, na M
<%> e x = i  yMEeN
ng(A)| 0|



352 X.P. Wang

we obtain by integration by parts that

[ e DXL, TEPp(x) po(xM)dx = O(<xa>7PA™M),
Xﬂ

for any M > 1. Here we used the smoothness of the potentials and the eigen-
functions. (ii) is proved. O

Lemma 5.2. Let n, be defined as in Theorem 1.2 and 1/2 < s < p — n,/2. One has:
I<xa> Taplla = CAT™.

Proof. By the decay assumption on the potentials, one has:
1<Xa>*Taplla < Cl1{x) P **R(A + 10)Qf e4(2, ) | (5.7)

and
04 = 0(Kx>77) + Ip(1 — J1(x))(1 —j(Ix|/A"/*)x(Dy) + B,

with By = [— 4, J§]x(D.).

The contribution from the term O({x) ~*) can be estimated by O(4~1/2), using
(@) of Theorem 2.1. (1 — J{)(1 —j(+/AY?))x(D,) is a pseudo-differential operator
with symbol in S% ( — (1 — g)A'/?). We can apply (b) of Theorem 2.1 to show that
the contribution from this term is bounded by

CATM2[<xy =P * 1 (1 — j(1x]/A ) Lyep | < CA7™ .

Here we have used the fact that supp (1 — j(-/A*/?)) is contained in {|x| < 1'/?} to
estimate

_ . C, if p—s—1>n/2;
s+1 2
1600~ OVt < i sssecmis, g o 1 2y

The term || {x>*"?R(A + i0) B, ¢;|| can be estimated by applying (b) of Theorem
2.1 and the estimate VJ, = O(4~1/2). The details are omitted. O

As a consequence of Lemmas 5.1 and 5.2, we obtain an upper bound on
045(4, @) which implies (ii) of Theorem 1.2.

Corollary 5.3. Assume the condition (1.3) for p > (ng + 1)/2. For any we X, one
has:
cit ifa=b,

Gaﬂ (A’ CO) é { ’

C/l—l—z'lb’ ifa*b, (58)

Jor A> (1 4 )14, -

6. High Energy Asymptotics of 6,4(1, ®) with a = b

From the results established in the preceding section, one sees that

1 . - .
) ICRAA + 10)gap, Gupa + 0271 7™), if a=b,

0ap(4, ©) = 6.1)

1
—— JR(A + 10)rup, Popa + O(A™ %), if ab.
"ﬁ(}»)
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Note that by the method of non-stationary phase used in the proof of Lemma 5.1,
the leading term in the eikonal approximation to o,s(4, @) with a % b gives
a contribution of the order O(A~*), while the remainder terms are only of finite
order in A~ 1. This suggests that one should use other methods to obtain the high
energy asymptotics of g,4(4, @) with a % b.

To study the high energy asymptotics of a,4(4, w) when a = b, we only need to
look at I<R,(A + i0)gup, gup) - By the argument used in the proof of Lemma 5.1,
we see that

guﬂ(xa) = j Qz'}ep(l)a(x“)dx"
Xa
= [ LJ}esa(x?)dx® + O(<x,) ™47 %)
Xa

= Mo ](x,) + O((x,> " A7), 6.2)

where
o) = T L(x) 5 (x") alx") dx* .

In the last equality in (6.2), we have used the fact that on the support of
1 —J =1 —Jy)j(-/AY?), |x%| = c|x| for some ¢ > 0 and |x| > A'/2/2. This gives
1
ng(2)

Proof of (i) of Theorem 1.2. Since l(x,) = O({x,»~*), we can apply the method of
the proof of Theorem 1.1 to construct an eikonal approximation for

L
ng(4)

In fact, it is now easier since R,(4 + i0) is a free resolvent. Define

Oup(d, ) = IR, + i0)eg(A, )], e5(A, @)D, + O(A™1 7). (6.3)

S (Ry(A + i0)e"s D0 %a, M BO Xl

g(x0) = [ U(x, — 2ng(A)tw)e ~ME~EDgp .
0

Following the line of the proof given in Sect. 4, we can estimate:

1

73 R<G Da+ 06717

O-aﬁ (’19 (1)) =

1 t
=—R [ ly+tw)s [ Uy+sw)dspdidy + O(A~1 ")
22 RxII, — o

2
dy + O(A~ 171,

[ 1y + sw)ds
R

= ﬁ Hu
The details are omitted. O

Note added in proof. After the submission of this paper, the author received a preprint from
H. Ito: “High energy behavior of total scattering cross sections for 3-body quantum systems”, in
which he proved Theorem 1.1 in the three-body case under the assumption that 0 is not eigenvalue
of any two-body subhamiltonians.
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