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Abstract. The structure of the automorphism group of a simple C*-algebra of real
rank zero which is an inductive limit of circle algebras is described. In particular, it
is proved that the automorphism group of the irrational rotation C*-algebra, Aθi

for any irrational number θ, is an extension of a topologically simple group by
GL2(Z).

1. Introduction

Let A be a unital C*-algebra. The automorphism group Aut(^4) of A decomposes
into a series

lnno{A) < Inn(4) < Aut{A) ,

where Inn (A) is the group of approximately inner automorphisms, and Inno(,4) is
the closure of the group of inner automorphisms determined by unitaries con-
nected to 1.

We shall prove, using an argument closely following a paper by de la Harpe and

Skandalis, [HS], that if A is a simple C*-algebra of real rank zero satisfying some

extra conditions, then the group lnno(A) is topologically simple (Corollary 2.4). In

particular, Inno(^4) is topologically simple for all simple inductive limits of circle

algebras which have real rank zero. It seems likely that Inno(A) is topologically

simple for all simple C*-algebras.
By the classification theorem for inductive limits of circle algebras of real rank

zero, [E2], it follows that the quotient group A\xt(A)/lnn(A) is isomorphic to the
group of automorphisms of the K-theory of A (Theorem 2.1).

Sections 3 and 4 are concerned with computing the quotient group

Inn(A)/lrmo(A) for a C*-algebra A which is a simple inductive limit of circle
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algebras of real rank zero. It is proved that Inn(^4)/Inno(^) is isomorphic (as
a topological group) to the inverse limit of the discrete groups K1(A)/nK1(Λ\
where n belongs to the directed_set of positive integers that divide [1] in Ko(^4)
(Theorem 4.5). It follows that Inn(^)/Inno(^4) is totally disconnected (Proposition
4.9). The group need not be discrete and is not even locally compact in general
(Example 4.12).

These results are illustrated with the following two examples. The irrational
rotation algebras Aθ9 where 0 e R \ Q , are proved in [EE] to be inductive limits of
circle algebras. We have that lnno(Aθ) = Inn(^4θ) (see Example 4.7), and the group
of automorphisms of the K-theory of Aθ is GL2(Z) (Example 2.2). Hence the
automorphism group of Aθ is an extension

{1} -> Inn(Λ) -> Aut(Aθ) -> GL2(Z) -> {1} ,

and the group of approximately inner automorphisms lnn(Aθ) is topologically
simple. We do not know if this extension splits.

Let B be the Bunce-Deddens algebra. The group of automorphisms of the
K-theory of B is GL^Z) = Έ/2Έ (Example 2.2). The quotient of approximately
inner automorphisms lrm(B)/Inno(B) is isomorphic to the additive group of 2-adic
integers Z2 (Example 4.12). Hence Aut(β) is described by the two extensions,

{1} -> Inn(β) -+ Aut(fl) -+ TLβTL -• {1} ,

{1} - Inno(β) -> Inn(β) - TL2 -> {1} ,

and Inno(^4) is topologically simple. The first of these extensions splits.
It is decided exactly when a simple inductive limit of circle algebras A of real

rank zero is asymptotically abelian, i.e. possesses a sequence (αn)£°=1 of automor-
phisms such that oίn(x)y — yocn(x) -> 0 for all x, y eA (Corollary 3.13 and Proposi-
tion 3.14). The methods behind the proof of this result are similar to those proving
the results about the quotient of approximately inner automorphisms. The second
named author thanks Nigel Higson for sharing ideas leading to these com-
putations, and for hospitality and support during a visit to Pennsylvania State
University in the fall of 1990.

2. The Automorphism Group

A circle algebra will here mean a C*-algebra of the form

φ Mnj (C(T)) * ( φ Mnj.(C)) (g> C(¥)
7=1 \j=l /i=i

The spectrum of such an algebra is the disjoint union of r copies of the circle TΓ. Let
A be a unital inductive limit of circle algebras, and suppose also that A has real
rank zero. Then A belongs to the class of algebras which in [E2] is classified by
a K-theory invariant. This invariant is the triple

(K0(A) ® KX(A), (K0(A) θ +

where (Ko04) ® Kί(A))+ consists of zero and all elements of the form ([p], [u]),
where p e A (x) K is a projection and u e p(A (x) K)p is unitary. If A is simple, then for
each projection peA (x) X, every element of KX{A) is of the form [w] for some
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unitary uep(A (x) K)p. Hence, for simple A, K0(A) © K1(A) has the strict ordering
from K0(A)9 and so the K-theory invariant is a quadruple,

where (K0(A), K0(A)+, [1^]) is the (usual) dimension group for A.
By an automorphism of the K-theory of A, we shall mean an automorphism of

K0(A)@Kί(A) which preserves the order structure (K0(A) φ K^A)^ and the
order unit [1^]. Let Aut(K(y4)) denote the group of all such automorphisms.

As usual, Aut(A) denotes the automorphism group of A Every automorphism
αe Aut(A) induces an automorphism of K-theory, α* e Aut(K(A)). By the classifica-
tion theorem ([E2], Theorem 7.3 and the remarks preceding it), every automor-
phism of K-theory lifts to an automorphism of the algebra; that is, the map
α ι-» α* e Aut(K(A)) is surjective. The uniqueness part of the classification theorem
implies that every automorphism that acts trivially on K-theory is approximately
inner ([E2], Theorem 7.4). Let Inn (A) denote the subgroup of inner automor-
phisms of A, and Inn(^4) its closure (in the topology of pointwise convergence), so
that Inn(^4) is the group of approximately inner automorphisms. The classification
results recalled above can be expressed as follows:

Theorem 2.1 ([E2]). Let Abe a unital inductive limit of circle algebras, and suppose
that A has real rank zero. Then we have a short exact sequence

{1} -> hm{A) -> Aut{A) -» Aut(K(A)) -> {1} .

2.2. Examples, (i) Let 0 e R \ Q and denote by Aθ the corresponding irrational
rotation algebra. The K-theory of Aβ is

K o μ β ) = Z + 0Z c: R, K1(AΘ) = Z\

with order unit [1^] = 1 eΈ + ΘΈ = KO(AΘ). It is easily seen that all (order and
order unit preserving) automorphisms of the K-theory of Aθ must fix each element
oίK0(Aθ). Hence,

Aut(K(Aθ)) = Aut(Kχμβ)) = GL2(Z) .

B. Brenken and Y. Watatani ([Bk] and [W]) found an SL2(Z) action on Aθ which
is a partial lifting of the map

Ant{Aθ) -> GL2(Z) = Aut(K(Aθ)) .

It seems less clear (but not unlikely) that all of GL2(Z) should lift. If that were true,

then Aut(^θ) would be the semidirect product of Inn(^lθ) with GL2(2£).
(ii) Let B denote the Bunce-Deddens algebra of type 2°°. The K-theory of B is

with order unit [ l β ] = l e Z [ i ] = K0(B). Again, all automorphisms of the K-
theory of B fix K0(B) elementwise, and so

Aut(K(J3)) = Aut(Ki(£)) = Z/2Έ .

This action does lift to Aut(B); that is, there is an automorphism of period two
which induces the Z/2Z-action on K(B). (The fixed point algebra of one such
automorphism was shown to be an AF-algebra by A. Kumjian in [K].)

(iii) The tensor product B (x) B, where B is as in (ii), is proved in [EG] to be an
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inductive limit of circle algebras. It has K-theory

where K0(B ® B) has the strict ordering from TL\)f\ ^ R and has order unit
(1, 0 ) e Z [ i ] θ Z. The automorphism group of the K-theory of B ® 5 is

Aut(K(B ® B)) = Z/2Z 0 G L 2 ( Z [ i ] ) .

The subgroup GL 2 (Z) of this group lifts to Aut(B ® B) by [EG].

We now turn to the structure of the group of approximately inner automor-
phisms Inn (A). Let Inno(A) denote the subgroup of all inner automorphisms
determined by unitaries in A which are in U0(A), the connected component of U(A)
containing 1. Let Inn0C4) denote the closure of Inno(>l) jin_ the topology of
pointwise convergence). Each of the four groups InnQ(A)9 Inno(^4), Inn(^) and
Inn(^4) is a normal subgroup of Aut(^).

It is proved below that Inno(^4) is topologically simple when A is simple. The
proof of this involves a variation of a theorem of de la Harpe and Skandalis, [HS],
which holds for a broader class of algebras but with a more restricted conclusion.
The proof presented below closely follows [HS], but some shortcuts are possible
since we aim for a lesser result. First, a lemma.

Lemma 2.3. Let A be an infinite dimensional simple unital C*-algebra of real rank
zero which is either purely infinite, or is finite and has the cancellation property for
projections and has K0(A) weakly unperforated. Then

(i) for every non-zero projection peA and for every neN there is a unital
subalgebra of pAp isomorphic to Mn © M n + 1 , and

(ii) for every pair of non-zero projections p,qeA,qis a finite sum of projections
in A each unitarily equivalent to a subprojection of p.

(The two last assumptions on A referred to in the lemma are the following: For any
pair of non-zero projections e,fsMn(A)9 if \_e] = [/] in K0(A), then e and / are
unitarily equivalent in MΛ(^4). If ng > 0 in K0(A) for some positive integer n and
some geK0(A% then g > 0.)

Proof Both (i) and (ii) are easily proved for purely infinite simple C*-algebras using
results from [C]. Assume that A is a finite simple unital C*-algebra of real rank
zero, which has cancellation of projections and has Ko(^4) weakly unperforated.
To prove (i), upon using the cancellation property, it suffices to show that for
every geK0(A)+ and every n e N there are hlfh2eK0(A)+ such that g = nh1

+ (n + 1)Λ2. Since A has real rank zero, it follows from Theorem 3.2 of [E2] (see
also [Z]) that Ko(^4) has the Riesz decomposition property. Hence, by Theorem 3.2
of [El] , there is a sequence Gλ -» G2 -• of ordered groups, each a finite direct
sum of groups Έ or ΊL φ Έ/kΈ, the latter ordered by (m, ή) > 0 if m > 0, such that

lim Gj^G .

Note that if geZ, then g = nhx + (n + 1)Λ2 for some strictly positive integers
hi and h2 if g ^ n2 + n + 1.
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The assumptions on A imply that A has no minimal projections. Therefore,
geK0(A) + is a sum of n2 + n + 1 non-zero elements in K o (^) + . Choose j large
enough that each of these n2 + n + 1 elements lies in Gj. Then # has coordinate
^ n2 4- n -f 1 in each of the summands of Gj. Hence g = nh1 + (rc + l)/i2 for some

huh2eG+.
Let p, ge A be non-zero projections. Because A is simple, rc[p] > \_q~\ for some

n e N (cf. [Bw]). Use (i) to find [<?] = nhγ + (n + l)ft2 for some ftx, /z2eK0(v4) + . It
follows that n[p] > n(hί + h2\ and so, because Ko(^4) is weakly unperforated,
[p] > hx + h2 and [p] > h2. Thus [g] is a sum of n + 1 elements of K 0(/l)+ each
dominated by [p]. Use the cancellation property to complete the proof.

Theorem 2.4. Let A be a simple unital C*-algebra of real rank zero which is either
purely infinite, or is finite, has the cancellation property for projections and has
K0(Ά) weakly unperforated. It follows that the group

uo(A)/τι

is topologically simple (i.e. has no non-trivial closed normal subgroups).

Proof. Let F b e a closed normal subgroup of V0(A) not contained in Tl . Let us
prove that V = Uo(^4). It suffices to show that V contains all exponentials exρ(ιTι)
with h = h*eA. Because A has real rank zero and V is closed it suffices to show
that all unitaries with finite spectrum are in F, and hence we need only prove that
λp + (1 — p)e F, where peA is a projection and λeΈ.

Let po εA be a fixed non-zero projection. From Lemma 2.3 every projection in
A is a finite sum of projections in A each of which is unitarily equivalent to
a subprojection of p 0 . Therefore, to prove that V = Uo04), it will suffice to show
that λp + (1 — p) belongs to F for every projection p ^ p 0 in A, and every AeT,
where p 0 is some fixed non-zero projection in A (to be specified later).

By assumption, F contains a non-central unitary u. Arguing as in Lemma 9.3 of
[HS], we may also assume that || u — 11| < 1/2. It follows that the spectrum of
u contains two distinct elements λ± and λ2 with \λx — λ21 ^ 21| u — 11| < 1. Use that
each hereditary subalgebra of A contains a non-zero projection ([BP]) to find
non-zero orthogonal projections r1 and r2 in A such that

\\urj ~ λjrj\\ < ε ( ; = 1,2),

where ε > 0 will be specified later. When also using simplicity of A, one finds
non-zero equivalent projections q1 and q2 in A with qj ^ rj (use for example
[R, Lemma 3.4] and [BP]). Let p 0 in the paragraph above be q1. Let px ^ p 0 = q±
be given and find p 2 ^ qi equivalent to p1. (Recall that we must prove that
^Pi + (1 - Pi)e Ffor k l ) Notice that

λjPjW <s ( . /=1,2) .

Let s e i be a partial isometry with s*s = px and ss* = p 2 . Put z = s + s*
+ (1 — pi — p 2). Choose ε > 0 small enough that

UzuΛ* - (Xi^pi + X 2 ^ p 2 + (1 - Pi - p 2 )) | | < -\λ± - A2| .

Then the spectrum of zwz*w* is contained in three disjoint balls with centres
λ1λ2,λ2λ1 and 1. (To see this note that \λx -\- λ2]^ 1.) It follows that
zuz*u* = xx + x2 -f x3, where x*Xj = qj = Xjxf for projections qj in A with sum
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1, and || p7- — qj \\ < 1 (j = 1, 2) if ε > 0 is small enough. Hence wgj\v* = Pj (j = 1, 2)
for some unitary weU0(A). Put

i? = wzuz*u*w* = Vι 4- v2 4- v3 e V,

where t ; * ^ = p^ = VjV*(j = 1, 2) and ι;*u3 = 1 — px — p2 = v3v*. Then

υzv*z* = υ1s*v2

<s 4- ϋ 2 sv*s* 4- (1 — p x — p2)e V.

Moreover,_the spectra of v1s*υ*s and p2sι?ί 5* are contained in balls with centres
λ\λ2

2 and λ\λ\ and radii which are small if ε is small. Because \λx — λ2\ < 1, the
imaginary part of λlλl is non-zero. We may therefore assume that Im(ΓiΛ,2) > 0,
and it follows that if ε > 0 is small enough, the spectrum of VιS*v*s relative to
p1Λp1 is contained in {ΛeTΓ|ImΛ > 0}.

We can now follow the proofs of Lemmas 9.7 and 9.8 in [HS] to find that
μPi + μp2 + (1 — p1 — p2)e Ffor some μeΈ, μ Φ μ. By (i), for any n o e N there is
a finite dimensional unital subalgebra B oϊ (pi 4- p2)A(p1 + p2) such that p1 and
p2 are equivalent projections in B and such that each direct summand of B is a full
matrix algebra of order ^ n0. Because the only proper normal subgroups of SU(rc)
are the subgroups of its centre, it follows that the normal subgroup of \J(B)
generated by μpγ + μp2 contains an element within |exp(2πi/n0) — 1| of Λ,px + p2-
Hence V contains an element within |exp(2πi/n0) — 11 of λpγ + (1 — p j . Since
noelN is arbitrary and Fi s closed, it follows that λp1 4- (1 - Pi) belongs to V.

Corollary 2.5. Under the same assumption on A as in Theorem 2.3 it follows that the

group Inno(A) is topologically simple.

Proof. Let G be a closed normal subgroup of Inno(^4) different from {1}. Set

V={ueU0(A)\AdueG} .

Then V is closed normal subgroup of U0(A). Choose αeG different from the
identity. Then V*OL{V)$<L\ for some veU0(A). Since

(Adι;)-1α(Adί;)α-1 = A d i ; * φ ) ,

it follows that υ*0L(υ)e V. Hence, by Theorem 2.3, V = UO{A) and G = lnno{A).

2.6. Remarks. All simple unital inductive limits of circle algebras of real rank zero
satisfy the assumptions of Theorem 2.4 and Corollary 2.5. Theorem 2.4 and
Corollary 2.5 apply more generally, for example, as noted, to all purely infinite
simple C*-algebras.

In Sect. 4 the quotient group Inn(y4)/Inno(^4) will be described. That, together
with Theorem 2.1, describes the automorphism group Aut(^l) modulo the topologi-
cally simple group lnno(A\ and modulo the unsettled questions whether the
sequence

{1} -> Inno(i4) -> Inn(i4) -* Inn(i4)/Inno(A) -^ {1}

and the sequence in Theorem 2.1 split.
It is conceivable that all unital simple infinite dimensional C*-algebras of real

rank zero satisfy the conditions (i) and (ii) considered in Lemma 2.3. Hence
Theorem 2.4 and Corollary 2.5 might be valid in that generality. It seems possible
that Inno(^4) may be a topologically simple group for every simple C*-algebra A,
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but the authors do not know that. An argument by Thomsen [T] using the
determinant of de la Harpe and Skandalis shows that the commutator subgroup
Uo(A)' is not dense in Uo(>4) if A does not have real rank zero. Hence UO(^4)/T1 is
not topologically simple when A does not have real rank zero.

Thomsen [ T ] has extended the results in [HS] and proved that Uo04)' = \J(A)'
and that this group modulo its centre is algebraically simple for A belonging to
a class of simple inductive limit C*-algebras which includes inductive limits of
circle algebras. Real rank zero is not assumed in [ T ] .

3. Asymptotically Abelian Systems

This section is concerned with constructing embeddings with prescribed K-theory
of one circle algebra into another, such that the relative commutant of the image of
the first algebra inside the second is large. One application is Theorem 3.7 which
will be an essential ingredient in computing the quotient group Inn(^)/Inno(^4) in
Section 4. As another application it will be decided precisely under what conditions
a simple unital inductive limit of circle algebras of real rank zero is asymptotically
abelian (Corollary 3.13 and Proposition 3.14).

Let

*i = θ M A (C(I)) and A2 = © Mβ,(C(TΓ))

be two circle algebras, and let φ: Ax -+ A2 be a homomorphism. Then φ induces
maps

Because K0(^4i) = ΈI and K0(v42) = ΊLS as ordered abelian groups, with distin-
guished order units ( p 1 ? . . . , pr\ respectively (qu . . . , qs\ the map K0(φ) may be
viewed as an sxr matrix with non-negative integral coefficients which maps
(pu. . . , pr) to {ql9. .., qs). We have K ^ ) = Έ and K ^ ) = Έs as abelian
groups, and so Kx (φ) is an s x r matrix with (possibly negative) integral coefficients.

The embeddings of the circle algebras will be composed from familiar examples
described below.

Amplification. The embedding of amplification by a factor n e N,

μn: A -> Mn ® A ,

where A is any C* -algebra, is the map

μn(a) = ln®a (asA) .

Note that K 0(μπ) = K x(μn) = n (multiplication by ri).

n-times around embedding. Let neZ\ {0} and consider the homomorphism
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that maps the generator z of C(ΊΓ) into

0 1

V

if n > 0,

'. 1

V

if n < 0 .

We have K0(An) = \n\ and Kj(An) = n/|n|.
Standard homomorphism. A homomorphism

is called standard if it is the composition of homomorphisms

M p ® C(ΊΓ) -> © Mα ί ® M p ® M | b., ® C(ΊΓ)

where α, elN, fcjeZ\{0}, the first homomorphism is

and the second homomorphism is i (x) idC(Ίr), where z is a homomorphism of finite
dimensional algebras that maps one-dimensional projections into one-dimensional
projections. The composed map MP(C(TΓ)) -> Mg(C(TΓ)) will be written

If all bjEZ\{-19 0,1}, then φ is called strictly winding. Note that

A homomorphism

is called a (strictly winding) standard homomorphism if each of the partial
homomorphisms

is either a (strictly winding) standard homomorphism or zero.
The following result is easily deduced from [BBEK].

Proposition 3.1. Let
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be a sequence of circle algebras. If each of the connecting homomorphisms
ψj'.Λj-^Λj+1 is a strictly winding standard homomorphism, then the inductive limit
C*~algebra has real rank zero.

It will be necessary to single out a certain subclass of the standard homomor-
phisms, the usefulness of which will follow from 3.3 to 3.7.

3.2. Definition. A standard homomorphism φ: Aγ -» A2 between circle algebras is
said to have property (SK) if for each summand MP(C(T)) of A± and Mg(C(T)) of
A2y the partial homomorphism of MP(C(ΊΓ)) into Mg(C(ΊΓ)) is of the form

k=l

where the integers (ak)\ = 1 are relatively prime.

Lemma 3.3. The composition of two standard homomorphisms with property (SK)
will also have property (SK).

Proof This follows from the facts that the composition of two n-times around
embeddings is given as

and that the family of integers (akbι) is relatively prime if the families (ak) and (bι)
are relatively prime.

Lemma 3.4. Let φ:A1^>A2bea unital standard homomorphism with property (SK)
between circle algebras Ax and A2. Write A1 = Mn (x) Bu where

ί = l

and the family of integers (pi) is relatively prime. Then the inclusion
φ(A1)' n A2 c; A2 induces a map

the image of which is nKί(A2).

Proof. It suffices to consider the case that A2 = Mq(C(Έ)). Then φ has the form

ί = l

1=1J=l

and the commutant of Aι relative to the intermediate algebra is

i=l}=\
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For every k = 1,. . . , r and / = 1,. . . , ίfc let uki e φC^i)' π A2 denote the unitary
operator which is the image in A2 of

r n

0 Θ Wi® l|α^| ®/u .

where fu=l if (U) * ( M , and /w(z) = z (zeT). Then [uw] = np*αweZ
= K1(^42) By the hypothesis on the integers pk and aku the integers rap/cα^ generate

the group nZ = nKi(Ά).

Lemma 3.5. Let Do = (α^ ) and D1 = (βij) berxs matrices with integral coefficients
satisfying

for all i, j . Let p1,. . . , pr be positive integers, and set

ίPi

\Pr

Then there is a strictly winding standard homomorphism with property (SK),

with K0(φ) = Do and Kt(φ) = D1.

Proof It suffices to consider the case r = s = 1. We must then find

of the desired type, such that K0(φ) = α and K x ( φ ) = β when α ^ max{13,3|j8|}.

One can find integers α i ? α 2 , . . . , ate{2, 3} and ε l 5 ε 2 5 . . . , ε f 6 { —1,1} with

ax = 2, α 2 = 3,

ί ί

α = X αk, and j? = £ εfc .
fe=l fc=l

Then

has the desired properties.

Lemma 3.6. Let A be a unital simple C*-algebra of real rank zero which is an
inductive limit of circle algebras. Let positive integers v0 = vo(vl5 C) be given for
each non-negative integer v± and each circle algebra C. Then A can be written as the
inductive limit of a sequence of circle algebras

φι Ψ2 Ψ3

Aγ >A2 >A3 •

in which the connecting maps φf Aj -> Aj+ ί are such that if v1 is the maximum of the
absolute values of the entries in K1(φJ ), then each entry of K0(φJ ) is greater than
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vo(v1,Aj). The connecting maps ψj can be chosen to be strictly winding standard
homomorphisms with property (SK).

Proof. Let A be written as the inductive limit of a sequence of circle algebras

(*) Bx >B2 >B3 >•-..

Replacing the given function v0 = vo(v l5 C) by a larger one, we may suppose that

vo(vi> Q ^ max{13,3v

Let r j denote the number of summands in Bj9 so that K0(Bj) = Έ/J = K1(Bj).
Upon passing to a subsequence of (*) we may assume that r1 ^ r2 ^ r3 ^ . The
image in A of each minimal projection in Bj is full in A because A is simple. By
a standard argument there is an i > j such that the image in B{ of each minimal
projection in Bj is full in B{. By passing to a subsequence of (*) we may suppose
that i = j + 1. In that case, each entry of K0(φj) is non-zero. Note that the smallest
entry in the matrix

KoOA^-i ψj) = KoίMKoM-i) ' KoO/o )

tends to infinity as for each fixed j , i > j tends to infinity.
Passing to a subsequence of (*), we may suppose that each entry in K0(ι/^j) is

greater than VQOΊ, Bj), where v1 = 0 if j = 1, and vx is the maximum of the absolute
values of the entries in K ^ ^ - i ) if j ^ 2.

By Lemma 3.5 there are strictly winding standard homomorphisms
ψj'.Aj -* Aj+1 with property (SK) and with

where Dx = 0, and Dj is the rj+1x Vj matrix which has the r} x r7 _ x matrix K t (φ7 _ ί)
in its upper left corner and zeros elsewhere when j ^ 2. By Proposition 3.1 the
inductive limit

has real rank zero. By construction, A has the same K-theory_invariant (for simple
algebras) as A, and so, by the classification theorem ([E2]), A is isomorphic to A.

Theorem 3.7. Let A be a unital simple C* algebra of real rank zero which is an
inductive limit of circle algebras. Then A is the inductive limit of a sequence of circle
algebras

Ai -> A2 -> A3 -+ - -

such that, if nj denotes the largest integer for which there is a decomposition
Aj = Mnj ® Bj, then each connecting map ψij'.Aj -» At (i > j) is such that the map

has image equal to njK1(Ai).

Proof This is an immediate consequence of Lemmas 3.3, 3.4 and 3.6.

A C*-algebra A will be said to be asymptotically abelian, with respect to
a sequence (an) of automorphisms, if
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for all x, y e A. We shall establish the existence of such sequences of automor-
phisms, and, moreover, inner automorphisms, for a large class of simple inductive
limits of circle algebras of real rank zero. The proof is along the same lines as the
proof of Theorem 3.7, but involves a little more arithmetic. The main step is to
prove the following proposition (an analogue of Lemmas 3.4 and 3.5).

Proposition 3.8. Let pu. . . , pr be positive integers with gcd equal tone IN. Then for
each V i θ N there is v o e N (depending on v1 and on pu. . . , pr) such that the
following holds'. Let Do and D1be sxr matrices with integral coefficients divisible by
n, such that each entry of D1 has absolute value ^ v 1 ? and each entry of Do is ^ v0.
Set

/Pi

Then there is a strictly winding standard homomorphism

φ: 0 MΛ(C(1Γ)) = A, -> © Mqj (C(T)) = A2

ί=ι j=i

with K0(φ) = D o and K^φ) = Dί9 and there is a symmetry ueA2 such that

uφ(A1)u¥ c φ(A1)
r r\A2 .

The proof of this proposition depends on solving some Diophantine equations,
which is done in the following lemmas.

Lemma 3.9. Let pu. . . ,pr be positive integers with gcd equal to neflSL
(i) For each v'oeIN there is v o e N such that if ocί9. . . , ocr are integers divisible by

n and greater than v0, then there are integers ytj ^ v'o (i, j = 1,. . . , r) with ytj = yjt

and

r

aj = Σ ytjPi
i=ί

(ii) For each vx e N there is v\ e N such that if β is an integer divisible by n and
\β\ ^ v l 9 then there are integers δt (ί = 1,. . . , r) with |<5f| ^ v\ and

β=Σ tiPi
i = l

Proof For both (i) and (ii) it suffices to consider the case that n = 1.
(i) Let ( β ! , . . . , er) be the standard basis for the additive group Z\ and set

tij = Piej + pjβi if i + , and tu = Pie{ .

It suffices to prove that the elements (tijyij=1 generate 7Lr, since it follows from this
that

contains all elements (α 1 ? . . . , ocn)eZr with oίj ^ v0 for some large enough v0.
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For every pair i + j , note that the subgroup spanned by the elements (ί i ί5 tjj9 ttj)
contains

(pi9Pj)ei and (pi9pj)ej9

where (ph pj) is the gcd of p{ and Pj. The hypothesis that pu . . . , pr are relatively
prime implies that for each j , the integers

(Pi> Pj)> (P2? Pj), >(Pr, P7) .

are relatively prime. It follows that each βj belongs to the group spanned by

(ty)L =i
(ii) This is just the definition of pu . . . , pr being relatively prime (except for the

bounds on \δ \9 which are trivial to obtain).

Lemma 3.10. For each v\ e N there is v'o e N such that (i) and (ii) below hold.
(i) For α/J integers y9 ^ and (52 satisfying

\δj\ ^ vi and y = v'o ,

are integers t > 0, b l f c , fc2fc
G {2, 3}, and ε l f c, ε2fce {~ 15 1} (fe = 1,. . . , ί) swc/z

ίfcaί

ϊ = Σ bikb2k, δj = X εjkbjk (j = 1 , 2 ) .
/ c = l fc=l

(ii) For all integers y and δ satisfying

\δ\ S vΊ and y = v'o ,

there are integers t > 0, αfee{2, 3}, and εfce{ —1,1} such that
(e) if γ = δ (mod 2),

(o) and 1/ y φ δ (mod 2), then

t t

y = Σ a i + 12' ^ = Σ «*<** + 5

fc=l

Proof (i) Let S denote the subsemigroup of the additive semigroup N consisting of
all elements of the form

ί

fc=l

where fou, fr2/ce{2, 3}, and where

t t

Σ εlkbik = 0 = Σ ε2^2fc

for suitable choices of εjke{ — 1, 1}. Check that 5 contains the numbers 8, 12, 18
and 25 (which generate 7L as a group) and hence that S contains all sufficiently large
integers. (In fact, S contains all integers = 40.)
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For each pair (<5l5 δ2) find (as is easily done) integers t > 0, blk, b2ke{2, 3}, and

<*1 = Σ
/ c = l

Now take the maximum of the numbers

arising in this way with (δί9 δ2) such that \δ1|, |<52| ύ v'i Add this maximum to the
number (40) found in the previous paragraph, and require that v'o be greater than
this sum.

(ii) It suffices to solve for the even case (e) (since the odd case (o) follows from
the even case - possibly after increasing v'o). Accordingly, let us assume that y = δ.
We shall follow the same strategy as in the proof of (i) and let T denote the
subsemigroup of N consisting of all elements of the form

/ ak 5

Λ = l

where αfee{2, 3}, and where

t

/ ok ilk — v

k=ί

for suitable choices of εke{— 1,1}. Check that T contains the numbers 8 and 18
(which generate 2TL as a group). Hence T contains all sufficiently large even
numbers (in fact, T contains all even integers ^ 48).

For each integer δ, find integers ake{2, 3} and εke{— 1,1} such that

δ = Σ
k=l

Take the maximum of the numbers

arising this way as δ takes all values in {— v\,. . . , v\ }, and add the number (48)
from the last paragraph to this maximum. Then (ii) (e) holds if v'o is greater than this
sum.

Proof of Proposition 3.8. Let v ^ N b e given, and let vΊ e N be in Lemma 3.9 (iii).
Let next v'o 6 N be as in Lemma 3.10 (corresponding to the given vΊ), and let finally
v o e M b e as in Lemma 3.9 (i).

It suffices to consider the case that

Λ2 = M,(C(ΊΓ)) .

Then D o = (α 1 ? . . . , αr), D, = (βu . . . , βr\ and
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U s e L e m m a 3.9 t o find in tegers ytj a n d <5I7 (i, j = 1, . . . , r) w i t h

7i7 ^ v Ό , I δ y l ^ v i , yij = yji9

r r

aj = Σ yyp» a n d ft= Σ ^ypi

Let 1 g i < j ^ r be fixed. Use Lemma 3.10 to find integers ί(i, j ) , α / ; fcj α/ίfe, εijk and
εjik(k= 1,. . . , ί(/, j)) with

tfϋfc, %k e {2, 3}, εijk, εjik e { - 1 , 1} ,

f(».7)

ytj= Σ aw"]* (= yji),

^ij ~ Σ Sijkaίjk> δji = Σ εβkajik
fc=l fc=l

Let 70 denote the set of i e {1,. . . , n} with yIt- ^ δa (mod 2). From Lemma 3.10 it
follows that there are integers ί(i, i)9 αίifc e {2, 3} and είί/c e {— 1,1} (fe = 1,. . . , ί(i, i))
with

ί(«. 0 t(i,i)

7ii = Σ fl«fc' ^» = Σ εϋfeflϋfe
k = l fc=l

if i^/0, and

f( i , i) t(i,i)

fc=l fc=l

if ielo.
The partial homomorphism φ^ : Mp. (x) C(1Γ) -• A2 is given by

»• ί(»,j)
(Pj= Σ Σ ^•α 1 J k ° ( idp < / (8)λβ i J k .β J i k )

i = l fc = 1

(+ μ2P</ ° (idPj ® λ3) + μ3 p j ° (idPj ® A2)),

where the summands in parenthesis are included if jelo. We have

r t(i,j) r
Kθ(φj) = Σ Σ Piaβk (+ 1 2Pj) = Σ VuPi = αJ '

i = l Λ = l ι = l

r t(hj) r

κι(<Pj) = Σ Σ Pi<*ijkZi]k(+ Spj) = Σ <*yPi = ft
/ = 1 fc = 1 i-ί

Let φ: A1 -• ̂ 2 denote the homomorphism of which the partial homomorphisms
are φί9. . . , φΓ. Then K0(φ) = Do and K^φ) = D1. The relative commutant

i)' n ^ 2 is contained in a subalgebra of y42 isomorphic to

Θ Θ Θ MPi ® MΛjj.t ® i w ® iαj,t ® c(T)
j = i ; = i t = i

® Λ ® M2 ® ίn ® lj) φ (Mβ ® Mj ® lp, ® 12)] ® C(T).
je/o
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The existence of a symmetry ueA2 with uφ{Aγ)u* ^ φ(A1)' n A2 follows from the
symmetry between the algebra displayed above and the image of Aγ in A2.

Theorem 3.11. Let A be a simple unital C*-algebra of real rank zero, which is an
inductive limit of circle algebras. Suppose that if n is a positive integer that divides
[1] in K0(y4), then n divides every element of both K0(v4) and K ^ ) . Then A is the
inductive limit of a sequence of circle algebras

<Pl Ψ2 Ψ3

Ax >A2 >A3 >- - ,

such that the connecting maps ψji Aj -> Aj+1 are unital homomorphisms, and

Uj(pj(Aj)uJ c φ.(AjY n Aj+1

for some symmetry UJGAJ+1.

Proof To every circle algebra

C=0MPJ(COΓ))

and every Vi e N associate a positive integer v0 as follows. With n being the gcd of
Pi , . . . , p r, let v0 = vo(C, vx) be as in Proposition 3.8 corresponding to the given
p l 5 . . . , pr9 but with nv1 in place of vx.

Next use Lemma 3.6 to write A as the inductive limit of a sequence of circle
algebras

ψί Ψ2

( t ) A, >A2 >A3 > • • •

such that each entry oϊK0(ψj) is greater than vo(v l5 Aj\ where vx is the maximum
of the absolute values of the entries in K^ij/j). Let rtj denote the greatest positive
integer dividing [1] in K0(Aj). By the hypothesis on K0(A\ we may assume that the
limit (*) in the proof of Lemma 3.6, on which (t) is built, satisfies that if n divides
[1] in K0(Bj), then n divides K 0 (^j ) ^Y t n e proof of Lemma 3.6 we may therefore
assume that rij divides K0(^j) in the limit (f) above.

From Proposition 3.8 and the choice of vo = vo(v1,C)5 there are strictly
winding standard homomorphisms ψj . Aj-> Aj+1 with

such that Uj(pj(Aj)u* c ψj{Aj)' nAj+ί for some symmetry UjSAj+1. By the as-
sumption on

z

and so the inductive limit, A, of the sequence

Aγ >A2 >A3 >• ' '

has the same K-theory invariant as A. Since A has real rank zero (Proposition 3.1),
the classification theorem ([E2]) yields that A is isomorphic to A. The proof is
complete.
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3.12. Remark. The K-theory condition of Theorem 3.11 is equivalent to the
following condition on the algebra: If n is a positive integer, and A has a unital
subalgebra isomorphic to MΛ, then A is isomorphic to A (x) Mπ», where Mπ=o is the
UHF-algebra of type n00.

Corollary 3.13. Let A be a C*-algebra satisfying the conditions in Theorem 3.11. It
follows that there is a sequence of inner automorphisms (αk)fc°= t of A, determined by
symmetries in A, such that

* ( ) ) y k ( ) o

for all x, y e A.

Proof Let vk denote the image in A of the symmetry ukeAk in Theorem 3.11, and
set oik = Kάυk. Then

for all x and y in the image in A of Ak-ί.
The K-theory conditions on A to ensure the asymptotic abelianness are also

necessary, as shown below. (See also Remark 3.12).

Proposition 3.14. Let A be a unital C*-algebra, and assume that A is asymptotically
abelian with respect to a sequence of (not necessarily inner) automorphisms (αk)£°= x of
A. Then for each n ^ 2, if MM is a unital subalgebra of A, then A is isomorphic to
A®Mn«.

Proof Assume that Mn is a unital subalgebra of A, and let (^j)?,j=i be a system of
matrix units for A. Then

(ock(eij))lj=ί

is a central sequence of systems oϊnxn matrix units for A. It follows from [BKR,
Proposition 2.12] that A is isomorphic to A (x) MMoo.

4. Approximately Inner Automorphisms

Let A be a simple unital C*-algebra of real rank zero which is an inductive limit of

circle algebras. The four groups of automorphisms Inn(^), Inn(^), Inno(A) and

Inn0G4^are as in Section 2. Recall that Inno(^4) is a normal subgroup of Inn (/I), and

that Inno(,4) is topologically simple if A is simple. We shall compute the quotient

group Inn(^4)/Inno(A).

Lemma 4.1. There is a group homomorphίsm Ki(A) -> Inn(^4)/Inno(/1) which makes
the following diagram with exact rows commute:

{1} -> υo(Λ) -+ υ(A) - KM) - {0}

I Ad i Ad i

{1} -* hmo(A) -> ϊϊΐϊϊμ) -+ ϊτm(A)/ϊrmo(A) -> {0}

Proof. Because A is an inductive limit of circle algebras the top row is exact. (It
suffices to check this for A = C(TΓ).) The existence of the map

Inn(^4)/Inno(>l) now follows from a diagram chase.
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It follows from the diagram that Inn(^4)/Inno(v4) is abelian (cf. Lemma 4.2). This
group and K.1(A) will both be written additively. Let g denote the image of
geKί(A) in Inn (A)/ Inn 0 (A) under the map given in Lemma 4.1.

Lemma 4.2. The image of Kλ(A) in lnn(A)/lnno(A) is dense. If (gk) is a sequence in
then

in Inn(^4)/Inno(^4) if and only if there is a central sequence (uk) of unitaries in A with

Proof The first assertion follows from the diagram in Lemma 4.1. By the definition
of the quotient topology, gk -» 0 if and only if the sequence lifts to a sequence in
Inn(^) that converges to the identity. Let ock be a lifting of gk such that αfc -> 1. Then
αk = βkAduk with j^_a unitary in A with [ufc] = gk, and βkeIrm0(A). Because the
topological group Inno(^4) is first countable, there is a sequence (γk) in Inno(^4) such
that βkγk

 ι -> 1. Hence γkAd uk->ί and γk Ad wfe is a lifting of #fc. Absorbing γk into
Ad wfc we have that Ad uk lifts gk9 [wfc] = ^ , and Ad uk -> 1. Finally, Ad wfc -^ 1 if and
only if the sequence (wfc) is central in A (i.e., wfcx — xuk^0 for all xe^4). This
completes the proof.

Lemma 4.2 implies that g = 0 in Inn(^4)/Inno(^l) if and only if there is a central
sequence (uk) of unitaries in A with [wft] = g for all /c.

4.5. The topology on the image oϊK1(A) in Inn(^)/Inno(^4) is given by data from
the group Ko(^4). More specifically, the data needed from Ko(^4) is the directed set
of positive integers that divide [1] in K0(y4). (This is the same as the set of positive
integers n such that Mn is a unital subalgebra of A.) It will be convenient to
represent this set by (any) sequence («,-) of positive integers satisfying

(i) ;
(ii) nj\nj+u

(iii) if rcI[1] in Ko(^4), then n\nj for some j .

An appropriate choice of sequence (rij) sastisfying these conditions is the
sequence of rij from Theorem 3.7. If there is a greatest integer that divides [1] in
K0(A), then we may take the sequence to be constant equal to that integer.

By construction of (rij) there is a sequence of surjections

which gives an inverse limit group

lim K

Equip each of the groups K1(A)/njK1(A) with the discrete topology, and give the
inverse limit group the natural topology from the inverse limit. Let

π,: lim K
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denote the canonical projection. Then xk -> x in the inverse limit if and only if
7ti(Xk)-> 7ti(x) for all zeJN, which happens if and only if for all ί e N ,
πί(xfc)enίK1(y4) + πf(x) eventually.

Since the quotient maps K^A) -• K i ^ / f l / K ^ ) commute with the surjections
in the inverse limit, they lift to a map

K1{A)-+]imK1(A)/nJK1(A) .

Denote by g the image in the inverse limit of g in K1(A). Part of the discussion
above is then summarized in the lemma below.

Lemma 4.4. The image of KX(A) in lim<_ K1(A)/njK1(A) is dense. Let (gk) be
a sequence in K1(A). Then

in l im_ Kί(A)/njK1(A) if and only if for all i e N the sequence (gk) lies in niK1(A)
eventually.

The theorem below, which is the main result of this paper, tells us that the

topological groups Inn(^)/Inno(^4) and lim^ K1(A)/njK1(A) are isomorphic.

Theorem 4.5. Let A be a unital simple C*-algebra of real rank zero which is an
inductive limit of circle algebras. Then there is an isomorphism of topological groups

\

commuting with the two inclusions of

Proof Notice first that the two topological groups Inn(y4)/Inno(^4) and
lim<_ K1(A)/njK1(A) are complete. Hence, by Lemmas 4.2 and 4.4, they are the
completions of the respective images of K1(A). It suffices therefore to prove that
these images give the same topology on KX(A). In other words, it must be shown
that for every sequence (gk) in KX(>1),

gk -»0 in Inn(/1)/Inno(,4)

gk -> 0 in lim

"ψ": Assume that gk -• 0. Then, by Lemma 4.2, there is a central sequence (uk) of
unitaries in A with [wfe] = gk. Let ZeN. By Lemma 4.4 we must show that (gk) is in

eventually. Let

be a system of matrix units for a unital subalgebra of A isomorphic to Mnι (see 4.3
for the existence of this). If k is large, then uk approximately commutes with each of
the matrix units eiy In that case,

enukeu + (1 - eu)
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is close to a unitary v^A. Moreover, \v{\ = [vβ in K ^ ) , and uk is close to
' vnr Hence, for large k,

"ft": Assume that gk -• 0. Let /I be expressed as an inductive limit of a sequence
of circle algebras as in Theorem 3.7. By Lemma 4.2, it will suffice to prove that for
each i e IN, if fee IN is large enough, then gk = \uk~] for some unitary ukeA which
commutes with the image of the algebra A{ in A.

Let i e IN be given. By Lemma 4.4 the sequence (gk) is in fyKx (A) eventually. Let
geriiK^A). Then g — nth for some heK1(A) in the image of K1(Aj) -> K^A) for
some j > ί. Hence, by Theorem 3.7, g is in the image of the composed map

K^φjtiAJ n Aj) - Kx{Aj) - ^(A) .

It follows that g = [u] for some unitary u in the image of (p^Atf n Aj in ^4, and so
u commutes with the image of At in A.

F r o m here on, A will be assumed to satisfy the conditions of Theorem 4.5.

Corollary 4.6. The group of approximately inner automorphisms Inn(^) coincides
with the group lnno(A) if and only if n divides each element ofKx(A) for every
positive integer n that divides [1] in K0(/l).

Proof The inverse limit Um+_K1(A)/njKί(A) is zero if and only if
K1(y4) = nJ K1(yl)forall .

Example 4.7. For the irrational rotation algebra Aθ (see Example 2.2 (i)), 1 is the
only positive integer dividing [1] in KO(AΘ). It follows from Corollary 4.6 that
I n n ^ a ) = I r n i o ^ ) . In particular, the canonical TΓ2-action on Aθ (that multiplies
the two generators by scalars of modulus 1) can be approximated by inner
automorphisms determined by unitaries connected to 1. Combining this with
Theorem 2.4 we see that the group of approximately inner automorphisms Inn(^4θ)
is topologically simple.

Remark 4.8. Let A be any C*-algebra that is asymptotically abelian with respect to
a sequence (ocn) of inner automorphisms (see 3.13). Then Inn(^) = Inno(^4). Indeed,
for every unitary u in A9 vn = uan{u*) is in Uo(^4) and

Ad vn -> Ad u .

Hence Inn(^) c lnno(A).
It may happen, even for inductive limits of circle algebras with real rank zero,

that the group Inn(^)/ϊnno04) vanishes without A being asymptotically abelian.
Consider for example the case that K1(A) = 0 and

K0(A) = Q Θ TL

with strict ordering from the first coordinate and order unit (1,0). Use Proposition
3.14 and Corollary 4.6.

The following proposition describes the topological structure of the quotient

group
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Proposition 4.9. The topologίcal group Inn(A)/lnno(A) is

(i) totally disconnected,
(ii) compact if and only if for every positive integer n dividing [1] in Ko(^4) the

group

is finite,
(iii) locally compact if and only if there is a positive integer n0 dividing [1] in

K0(Λ) such that

is finite for every positive integer n that is divisible by n0 and divides [1] in K0(A),
and

(iv) discrete if and only if there is a positive integer n0 dividing [1] in Ko(,4) such
that

for every positive integer n that is divisible by n0 and divides [1] in ¥L0(A).
In the last case,

// Inn(^4)/Inno(^4) is not discrete, then it has no isolated points.

Proof Each of these statements is easily proved for the inverse limit
\im^K1(A)/njK1(A), on using that the collection of subsets π7

r l({x}) ? j e N and
xeKiiAϊ/πjK^A), is a basis of clopen sets for its topology. The proposition then
follows by Theorem 4.5.

Corollary 4.10. The group lnno(A) is the connected component containing the
identity of the automorphism group A\xt(A) with the topology of pointwίse conver-
gence.

Proof This follows immediately from Proposition 4.9 (i) and Theorem 2.1, together
with the fact that Inno(^4) is connected.

From the properties of the group Uo(^4) it is seen that lnno(A) is arc-connected
and locally arc-connected. It is not true in general that every element of Inno(^4) is
the limit of a path from Inno(v4). Still, it does not seem unlikely that the following
two questions have affirmative answers:

Islnno(>4) locally arc-connected?

Islnno(^4) arc-connected?

(Of course, an affirmative answer to the first question implies an affirmative answer
to the second.)

4.11. Remarks. The conditions in (ii) and (iii) of Proposition 4.9 are satisfied if
Ki(A) has finite rank, i.e. if

d i K ( ^ ) ( ) Q < oo .
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Proposition 4.9 also says that Inn(^)/Inno(^l) is either discrete, locally compact
with no isolated points, or not locally compact. The examples below show that all
three of these possibilities occur.

4.12. Examples.
(i) Let B denote the Bunce-Deddens algebra with

K0(fl) = Z [ ± ] , KX(B) = Z9

and order unit 1 eΊL[j^] (see also Example 2.4(iii)). Then Inn(#)/Inno(£) is homeo-
morphic to the Cantor set. In fact, Inn(f?)/Inn0CB) is isomorphic to the 2-adic
integers 7L2. This can also be seen directly, as follows.

Write B (in the standard way) as an inductive limit

C(T) -* M2(C(T)) -* M4(C(ΊΓ)) -> • -» B ,

with each inclusion C(TΓ) -• M2(C(TΓ)) the standard twice around embedding.
Consider the unitary u e C(T), u(z) = z (z e T), which is the generator of Kx (B) = Z.
Then (the image of) u2" is central in M2n(C(TΓ)). It follows that the sequence (uHj) is
central in A if (and only if) Πj = 2kjnij and /G7- -• oo.

(ii) Let G be a countable, torsion-free, abelian group, and let n denote a positive
integer. Choose an irrational number 0, and let A denote the inductive limit of
circle algebras of real rank zero with K-theory

K0(Λ) = TL + ΘΈ <Ξ R, KM) = G ,

and with order unit n e TL + ΘΈ. Then

Inn(i4)/Inno(Λ) = G/nG

(as a discrete group). The class of groups G/nG attainable in this way contains of
course all finite cyclic groups as well as some infinite groups. It contains the Klein
four group Z/2Z 0 Z/2Z, and also Z/2Z 0 TLβTL © TLβTL, but not ΈjlΈ © Z/AΈ.

(iii) Let A denote the inductive limit of circle algebras of real rank zero with
K-theory

K0(A) = Z [ i ] <Ξ R, K±(A) i ( )

and order unit 3 e Z [ i ] . Then

is infinite, and so Inn(y4)/Inno(^4) is not compact. Since

3K1(i4)/3 2 " K 1 μ ) =

for all n, it follows that Inn(^4)/Inno(^4) is locally compact but has no isolated
points.

(iv) Let A be given by the K-theory

K0(A) = Z [ i ] <Ξ R,

and order unit l e Z [ i ] . Then

2"°K1μ)/2"K1(i4) =

for all integers 0 ^n0 < n. Hence Inn(^4)/Inno(^4) is not locally compact in this
case.
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4.13. Remarks and Questions. Some of the results about the group
proved in this section for simple inductive limits of circle algebras of real rank zero
may hold much more generally. Some of them perhaps even for all unital C*-
algebras.

If A is such that the map U(A) -> Kχ(A) is surjective, and its kernel is contained
in the kernel of U(A) -» Inn(A)/Inno(i4), then KX(A) -• lnn(A)/lrmo(A) is defined;
cf. Lemma 4.1. In 4.3 let the condition n divides [1] in Ko(^4) be replaced with the
condition A contains a unital subalgebra isomorphic to Mn. Then the "ψ" part of
the proof of the condition Theorem 4.5 remains valid, and we get a continuous
surjective homomorphism

(*) Inn(i4)/Inno(4) -> lim

However, this map is not injective in general. Consider for example
A = M 2 (C(T 3 )). For that algebra,

ϊϊm(A)/hmo(A) = (Z/2Z)3 Θ Z ,

lim K1{A)/nj

Ί^ΛA) = K^Ajβ^iA) = (Έ/2Έ)4 .

It is essential in this example that certain Kx classes do not live in some small
corners of the algebra. That phenomenon will disappear if the algebra has stable
rank one, and possibly also if the algebra is simple. Consider, as another example,
the simple C*-algebra C*(F2), the reduced C*-algebra of the free group on two
generators. Every central sequence in C*(F2) is trivial (see [P]). Hence, if
ueC* (F2) is unitary, then Ad u e Inn 0 (C* (F2)) only if u is in the connected compon-
ent of 1 (cf. Lemma 4.2). It follows that the group

Inn(C*(F2))/Inn0(C*(F2))

is non-trivial. On the other hand, by [PV], the right side of (*) is zero.
When is the map (*) an isomorphism?

The inverse limit lim <_ Kx {A)/njK1{A) is always totally disconnected, so if (*) is

injective, then Inn(yl)/Inno(^4) is also totally disconnected.
Is Inn(^4)/Inno(^4) totally disconnected for every (separable) unital C*-algebra

A?
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