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Abstract. We compute the dynamical entropy in the sense of Connes, Narnhofer
and Thirring of space translations of the CAR and CCR algebras in v-dimensional
continuous spaces with respect to invariant quasi-free states. It turns out that the
dynamical entropies are equal to the corresponding mean entropies of the systems
under consideration. Computing the mean entropies explicitly we derive the entropy
formulas for the systems.

1. Introduction

In their recent paper [7] Connes, Narnhofer and Thirring extended the notion of a
dynamical entropy of classical dynamical systems introduced by Kolmogorov and
Sinai [9, 18] to the case of automorphisms of C*-algebras invariant with respect to a
given state. The dynamical entropy is the maximal entropy increase of a subalgebra
per unit time and measure how chaotically the system evolves. As in the classical
ergodic theory [5], the concept of the entropy should be mathematically useful to find
a classification of quantum chaotic evolutions. Some attempts have been undertaken
in this direction [10, 12, 13].

In order to find a classification of automorphisms of C*-algebras, it should be
important to develop the methods which enable to compute the entropy for quantum
systems. There have been some results in this field. The dynamical entropies of space
translation for the Gibbs state of one dimensional bounded quantum lattice systems
[7, 11] and the quasi-free evolutions of the CAR algebras [19] have been computed
by utilizing continuity properties of the entropy [7, 19]. Recently the chaotic behavior
of automorphisms on the rotation algebra [10] and noncommutative 2-shift [13] were
investigated. In [16] we have extended the continuity [7] of the Kolmogorov-Sinai type
for AF-algebras to non-AF situations and applied it to the unbounded quantum spin
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systems with product states. In this paper we shall compute the dynamical entropy of
space translations of the CAR and CCR algebras in v-dimensional continuous spaces
with respect to invariant quasi-free states. The main methods we use will be a further
extension of the entropy results in [16] and a careful investigation of the entropy

defects.

We shall work within the framework of quantum statistical mechanical systems
where we start from strictly local algebra .Z, indexed by bounded regions A in R”.
The norm closure of | J .Z, is the C*-algebra ..Z of quasi-local operators. For each

A

bounded region A C R", let .7, be the CAR algebra (resp. the CCR algebra) of local
observables satisfying the canonical anticommutation relations (resp. the canonical
commutation relations). Let & :R¥ — R be an integrable function and let K be its
Fourier transform:

Kk) = / K@ye ™ *d’z,

v A,
where k -z = ) k;z,. We assume that 0 < K(k) < 1 for the CAR algebra and
i=1
0 < K(k) < M < oo for the CCR algebra, respectively. Let A be the bounded
operator on L*(R") given by

(Af) (@) = / K@ — 9 f@)dy.

Then the gauge invariant quasi-free state w, on .7 is translational invariant. For
more details, see Sect.3. Denote by € the representation of Z”-action on .. Then
(#,0,w,) is the C*-dynamical system we are considering. Let th(9> be the
dynamical entropy of 6 with respect to w, [7]. Let n denote the real function on
[0, 00) defined by n(0) = 0, n(t) = —tlogt for ¢t € (0,00). We shall prove the
formulas

1 N N
by ® = s [ )+ 1 = K@@k (©AR) (LD
and .
hoy @ = i [ =1+ K} ©cR) ()

under appropriate conditions on A. For more details, see Sect. 3.

It may be worth to give some comments on the dynamical systems we are dealing
with. Our result in this paper can be viewed as the first step in the study of the
dynamical properties of interacting particle systems in quantum statistical mechanics
in continuous spaces [14, 17]. The main difficulty involved in the derivation of the
formulas (1.1) and (1.2) is the fact that each local algebra .7, is infinite dimensional,
which is contrasted to the bounded quantum lattice systems studied in [7, 11]. In [19]
Stormer and Voiculescu derived a formula similar to that in (1.1) for the entropy of
Bogoliubov transformations of the CAR algebra when the operator A in the quasi-
free state w4 has pure point spectrum. But in our case the operator A has continuous
spectrum and so our result for the CAR algebra may be considered as a complement
to that in [19]. Because of the reasons stated above, the derivation of the formulas
in (1.1) and (1.2) turns out to be technically more complicated than the previous
calculations [6, 7, 10-13, 19].
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We organize the paper as follows: In Sect.2, we recall the definition of the
dynamical entropy of C*-algebras in [7] and describe briefly an entropy result on
quasi-local algebras in [16]. We then extend the result of [16] to the CAR algebras
which will be needed in the sequel. In Sect.3, we review the notion of quasi-free
states on CAR and CCR algebras. After listing the basic assumptions (Assumption
3.1) we state our main result (Theorem 3.3) which says that the dynamical entropies
of the systems are equal to the corresponding mean entropies. The proof of the main
result is divided into several parts. In Sect.4, we use the general entropy results
in Sect.2 to show that the dynamical entropies of the systems are bounded by the
corresponding mean entropies. We then introduce a specific decomposition of the state
w4 and reduce the proof of the main result to that of vanishing of the mean entropy
defect (Proposition 4.3). In Sect.5 we collect basic apriori estimates. Sect. 6 is the
heart of the paper where we show that the thermodynamic limit of the average of
entropy defects vanishes, and so complete the proof of the main result. We compute
the mean entropies of the systems explicitly in the Appendix, and derive the entropy
formulas (1.1) and (1.2).

2. Dynamical Entropy and Some General Results

As a preparation, we review the definition of the dynamical entropy of C*-algebras
and then collect some entropy results which do not involve quasi-free states and which
are needed in the sequel. Throughout this section we consider a C*-dynamical system
(#,0,¢) where .Z is a unital C*-algebra, § is an automorphism on .# and ¢ is a
state over .2 which is invariant with respect to 6.

Let .Z be a finite dimensional C*-algebra and let ¢ and 1 be states on ./%. The
density operators corresponding to ¢ and v are denoted by o » and o, respectively.
The relative entropy for the states ¢ and 1 is defined by

S(¢ | ¥) = Tr(oy(log 0, — log o)), @1

where Tr denotes the trace.

We recall the definition of the CNT entropy in [7]. Let . be a unital C*-algebra,
My ..., finite dimensional C*-algebras and v, /¥, — % a completely positive
unital map, j = 1, ..., k. Let ¢ be a state on ..Z and P:.4 — % a completely
positive unital map of ..Z into a finite dimensional abelian C*-algebra .% such that
there is a state y on % for which ppo P = ¢. If p|, ..., p, are the minimal projections
in .%, then there are states ¢, i=1,..., 71, 0f 4% such that

T

P@)=>_ ¢@)p;, zE€.7. (2.2)

1=1

Since o P = ¢,
$=> np)e;- (2.3)
1=1

That is, ¢ can be written as a convex combination of the ¢,. As in [7], let

e (P) =) u@)S@|6,). 24)
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The entropy defect is given by
S,(P) = S(u) —£,(P). @5)

T
where S(u) = — > u(p;)log u(p;) is the entropy of s.
i=1

Let /J’J, j=1, ..., k, be C*-subalgebras of .77 and let E;: 78— 7, a pi-invariant
conditional expectation. Then the quadruple (5, E;, P, u) is called an abelian model
for (Z,¢,7;, ..., 7,) and its entropy is defined to be

S(uly.z) =Y S0y, 2.6)
J J

where o, = E; 0 Po~y, ./ — 7, is a completely positive map from ./} to .%7;. The
supremum of the entropies of all such abelian models is denoted by

Hy(Yy, -5 M) -

If 6 is ¢-invariant automorphism of .7, let v:./” — _Z be a completely positive
unital map of a finite dimensional C*-algebra ./ to .%, and denote by

1 _
ho o) = Jim - Hy(7,007, ..., 05 o). 2.7)

The dynamical entropy of € with respect to ¢ is defined by
h¢(9) = sgp h¢,9(7). (2.8)

For the details, we refer the reader to [7].

Next we recall an entropy result on quasi-local algebras from [16] which will be
applied to the CCR algebra. We work exclusively within the framework of quantum
statistical mechanical systems where we start from strictly local algebras . %, indexed
by bounded regions A in R” (or Z¥). The norm closure of |J .#Z, is the C*-algebra

A

% of quasi-local operators. For the general definition of quasi-local algebras indexed
by directed sets, we refer to [3]. Let ..Z be a quasi-local algebra whose generating net
{2} is formed of von Neumann algebras .Z, in separable Hilbert spaces .7,. A
state ¢ on ./ is said to be locally normal if ¢ is normal in restriction to each .7 ,.
Then ¢ in restriction to each .Z, is determined by a density matrix ¢, on a Hilbert
space .7 ,. We list some assumptions on quasi-local algebras.

Assumption 2.1. Let (2,{.%,}) be a quasi-local algebra indexed by bounded open
regions A C RY (or Z") and let ¢ be a state on .Z. We assume that the following
properties are valid:

(a) For each A, .7, is a von Neumann algebra in a separable Hilbert space .77 ,.
(b) Tensor product property: Let A, C A. Then there exists A, C A such that
ANMy=0and 2y =72, @2,

(c) Locally normal property: ¢ is locally normal and for each A the corresponding
density matrix o, belongs to .Z,.

For a given A, let A,,¢ = 1,2, ..., be the eigenvalues of the density matrix g,
listed in decreasing order (counting multiplicities), and let .7, , be the subspace
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of %, spanned by the eigenvectors corresponding to eigenvalues A, \,, ..., A,.
Denote by P, the projection operator from .7, to .7, , and

App =P AP, ®C- P, (2.9)

where Pi- = 1— P, . Then from Assumption 2.1(c) it follows that each .Z A, 18 a finite
dimensional unital subalgebra of .Z,. For each A and n, let 7, ,, be the embedding
map of .7, , into .Z,. Throughout the paper we will adapt the convention that
A T RY indicates A increases to R” so that A eventually contains any bounded region
of R”. The following is the main result in [16]:

Theorem 2.2 [16, Theorem 3.2]. Let (#,{.#4,}) be a quasi-local algebra indexed
by the bounded regions A C R” (or ZV), 0 an automorphism on % and ¢ a state on
% invariant under 0. Under the assumptions in Assumption 2.1, one has

hy(6) = /}iTIuTxlv nli{lgo hyo(-Zpn)-

Here the convention that the subalgebra 4 A 1S standing for the inclusion map
A n — & has been used.

Remark 2.3. (a) The tensor product in Assumption 2.1(b) is the von Neumann algebra
tensor product [8].

(b) In the most quantum statistical mechanical systems the equilibrium states obtained
via thermodynamic limits of local Gibbs states turn out to be locally normal [3, 14,
15, 17].

(c) There was a small gap in the proof of the above theorem in [16]. We shall discuss
it precisely and fill up the gap at the end of this section. See Remark 2.5.

We shall apply Theorem 2.2 to get an upper bound of the entropy for the CCR
algebra. In the case of the CAR algebra we do not have the tensor product property in
Assumption 2.1(b). Thus in order to get the result analogous to Theorem 2.2 for the
CAR algebra, we have to modify slightly the method used in the proof of Theorem
2.2 in [16]. For each A C R¥, let %, be the CAR algebra over L*(A). See Sect. 3 for
the details. Then .7, is isomorphic to £(%,), where .%, is the (antisymmetric) Fock
space [3]. Let . be the norm closure of | J .Z,. Then (%4, {.#,}) is a quasi-local

A

algebra [3]. The following is an extension of Theorem 2.2 to the CAR algebra.

Theorem 2.4. Let (%,{.#,}) be the CAR quasi-local algebra indexed by bounded
open region A C RY, 0 an automorphism on 4 and ¢ a locally normal state on 4
invariant under 0. Then one has

hy(0) = /}iTFlIle dim hyo(Ap ),

where 4%, ,, is the subalgebra defined in (2.9).

Proof. If we are able to show that for each A C R” there is a completely positive
unital map o, : %4 — %, such that

/HIHI«]V [Tyoop(x)—x|| =0 (2.10)

for each z € % [16, Lemma 4.1], where 7,:.4, — % is the inclusion map, the
proof of the theorem will be exactly the same as that of Theorem 2.2 in [16]. As in
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[16], we first define o4 on the norm dense subalgebra | J .Z,, as follows: For each
A

A" with A C A, let ./}, be the family of finite linear combinations of elements in
{yz |y € 4,2 € 24}, where A" = int(A'\A). Since L*(A') = L*(A) & L*(A"),
it follows that ./, is weakly dense in .Z,,, .Z, = £(#;). Let 2 be the Fock
vacuum vector [3]. For each y € .7, and z € %/, define

o4(yz) = (£2,2)y. (2.11)

Since ({2, 2§2) = 0 for each odd element z € .Z ., it follows that o ,(yz) = o 4(zy),
and so o, is well defined. By linearity, o, extends to ../;,. An inspection shows
that o ,(bab,) = bjo4(a)b,, b, € #~4, a € #}. Thus o, is a unital conditional
expectation from ./, to .7%,, and so it is a completely positive unital map. Any
vectors ¢, € %, can be considered as vectors in.%;,, A C A'. By (2.11) it is easy
to check that

(P, 04(@)Y) = (9, 29Y), €Ty (2.12)

Thus by a corollary of Hahn-Banach theorem it turns out that ¢, is a contraction.
Next we extend o, to .Z,,, A C A'. Let an element x in ..Z,, with unit norm
(llz|l = 1) be given, and let .7, be the closed unit ball in .Z ,,. Since .}, N.75, is o-
strong™® dense in .7, N.#, by the Kaplansky denisty theorem, there exists a sequence
{z,} in.#},N.%, which converges to x in the o-strong™ topology (and so in the weak
topology). By (2.12), {0 4(z,,)} converges to an element y € .Z,. Put 0,(z) = y.
Since 0, is a contraction on .7, it follows that |lo,(z)| < n@o losz )| < 1.

Thus we have extended o 4 to .4, as a contraction. By continuity o, extends to .Z.

We next show the convergence in (2.10). For any = € . and ¢ > 0, there exists
A" and ¢’ € Z,, such that ||z — 2’| < £/2. Notice that 74,00 ,(z') = 2’ for A’ C A.
For given « € .7 and € > 0 we choose A’ and z’ € .Z,, as above. Then for any A
with A’ C A, it follows that

I7aco4@ —z|| < Ity oo (z =) + |z — 2|
L2z -2 <e.

This proves the convergence in (2.10) completely. The remainder of the proof is
exactly same as that of Theorem 2.2 in [16]. For details, we refer to [16]. Q.E.D.

Remark 2.5. As stated in Remark 2.3(c), there was a small gap in the proof of Lemma
4.1 in [16]. The lemma stated that under Assumption 2.1, there is a completely
positive unital map o,:.4 — _%, such that the convergence in (2.10) holds.
For A C A’, let ¥}, be the family of finite linear combinations of elements in
ly@z|ye Ay ,z€ 44} Since A2y = Ay & A, Sy is weakly dense in
4. In [16], we defined o, as

oAY®2)=@(2)y, YE Ay 2E Ay, (2.13)

where ¢ is a state on .Z. The state ¢ should be the locally normal state in Assumption
2.1(a). Then the conclusion in [16, Lemma 4.1] holds by the following arguments:
By linearity o, extends to .%;,. Since ¢ is locally normal and so the restriction of
¢ to Ay, ¢l 4, is normal. For any 9y, ¢, € #,, let w,, ., be the state on .2,

defined by w, . (2) = (¢, 2¢,), z € A4,. Thenw,, ®¢]“'ZA” is a normal state on

A=A, QA . By using the Kaplansky density theorem and the argument used
in the proof of Theorem 2.4, o, extends to .% 4, as an completely positive contractive
unital map. This fills the gap in the proof of Lemma 4.1 in [16] completely.
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3. Quasi-Free States on CAR and CCR Algebras and Main Result

In this section we briefly review the notion of quasi-free states on CAR and CCR
algebras, and then state our main result. For detailed descriptions on the CAR and
CCR algebras, we refer the reader to [2, 3, 20]. Since these algebras are uniquely
determined by the appropriate form of commutation relations [3], we shall deal with
the CAR and CCR algebras in the Fock spaces.

Let .7, (resp..%_) be the symmetric (resp. antisymmetric) Fock space over L*(RY).
For each bounded region A C R, let %, , be the corresponding Fock space over
L*(A). Denote by a_(f) and a%(g), f,g € L*(R"), the annihilation and creation
operators on .%, respectively. These operators satisfy the canonical commutation
relations (CCRs)

la,(f)a (@1=0, [ai(f)al(@l=0, I[a,(f)al@l=( 91, G.D

and the canonical anticommutation relations (CARs)

{a_(Mra_@}=0, {aZ(N,aZ@}=0, {a_(N)aX@}=( 91, B2

where we used the notation [A, B] = AB — BA and {4, B} = AB + BA. Notice
that |la_(f)|| = ||a*(f)|| = ||f]|- For details, see [3]. From now on, we suppress +
in the notation if there is no confusion involved.

The CAR algebra is defined as follows: For each bounded region A C R, define
4%, as the von Neumann subalgebra generated by {a(f),a*(9) | f,g € L*(A)}, where
a(f) and a®(f) satisfy the CARs in (3.2). Let % be the norm closure of U Sy 1t
then follows that (%, {.Z,}) is a quasi-local algebra.

In order to describe the CCR algebra, let &(f) be the closure of (a(f)+ a*( /2,
where a(f) and a*(f) satisfy the CCRs in (3.1). Then for each f € L*(RY), &(f)
is a self-adjoint operator on the symmetric Fock space .#. Let W(f) denote the
unitary operator exp{i®(f)}, f € L*(R¥). These operators satisfy the Weyl form of
the CCRs:

W(f)W(g) = exp{—iIm(f, 9)/2} W(f + g). (3.3)

For each bounded region A C RR”, define .4, as the von Neumann subalgebra
generated by {W( HI1fe Lz(/l)} and let .Z be the norm closure of U Ay
Then (4, {.#%,}) is a quasi-local algebra.

Next we recall the gauge invariant quasi-free states on the CAR and CCR algebras
[3]. If 0 < A < 1 is an operator on L?>(R¥), then the quasi-free state on the CAR
algebra is defined by

wa@*(f,) - a*(falgy) - . a(g,)) = 6, det((g;, Af;).- (34

If A is a bounded positive operator on L*(RY), the quasi-free state on the CCR algebra
is defined by

wsW () =exp {7 (f,(1+24) N} . 3.5
A simple calculation shows that
walal(Nar(@) = (g, Af), (3.6)

for any f,g € L>(R"), and any higher order truncated functionals equal to zero [3].
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In the rest of the paper we only consider the gauge invariant quasi-free states w4
described above. For a given bounded positive operator A(0 < A < 1 for the CAR
algebra) on L*(RY), let B be the operator defined by

B=A/(1+cA), (c==1). 3.7)

Throughout this paper we shall use the convention that ¢ = +1 (resp. 0 = —1)
stands for the CCR (resp. CAR) algebra. Equivalently, for given bounded positive
oeprator B(0 < B < 1 for the CCR algebra) on L?(R¥), let A be the operator defined
by

A=B/(1-0B), (oc==1) (3.8)
and let w, be the quasi-free state corresponding to A. It will be convenient to
give conditions on B, instead of A. We assume that there exists an L' function
Kg:RY — R such that

(Bf) (@) = /KB(x —fdy (3.9

and let
Ky(k) = /KB(x)e~ik'dex. (3.10)

Similarly, let K 4 be the kernel function of A:
(Af)(x) = /KA(SE -fyd’y (3.11)
and K , the Fourier transform of K 4:
K, (k) = /KA(x)e—"k'Id"x. (3.12)

Throughout this paper we assume that the following conditons hold:

Assumption 3.1. We assume that the following conditions are satisfied:

(a) There exist constants 0 < M, < 1 and 0 < M, such that 0 < K g < M, for the
CCR algebra and 0 < K < M, for the CAR algebra.

(b) There exist constants 0 < M; and 0 < « such that the bound

K k) < My [T 1+ |k, =0+

=1
holds.
(c) Let K 1/2(x) be the kernel function of the operator B'/2, i.e., the inverse Fourier

transform of (K B)I/ 2. There exist constants 0 < M, and 0 < « such that the bound

K@) < M, [T+ [z,
1=1
holds.
Remark 3.2. (a) Assumption 3.1(a) implies that 0 < B < M, < 1 for the CCR
algebra and 0 < B < M, for the CAR algebra.
(b) Since . ) .
K,=Kg/(1-0Kp), (o ==1). (3.13)

Assumption 3.1(a) and (b) imply K 4 Is integrable.
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(c) We impose Assumption 3.1(c) to obtain a key technical estimate (the last
inequality in Lemma 5.2). If D' ... D} (Kp)'/? € L' for any 8 = (B, ..., 3,)
with 3, <3,7=1, ..., v, then the assumption holds. Since the condition is imposed
on K/, instead of K g, it would be nice if one can replace it by a condition on K .
(d) Since K () = (K g1/2* Kg1/2) (), it follows from Assumption 3.1(c) that there
is a constant M; such that the bound

|Kp@)| < Ms [T+ ;=
=1
holds.
(e) The states for ideal Fermi and Bose gases at inverse temperature § = 1/7 with
activity z = e* are the quasi-free states corresponding to

KB(k) = exp(—Fk* + p) (u < 0O for the CCRs).
Obviously all conditions in Assumption 3.1 are satisfied in these cases.

We consider the unit step space translations (Z”-action) on the CAR and CCR

algebras. We will use the following notation:
n=Mn,ny, ...,n,) €L,

- . . (3.14)

B(k) = Bk, ..., k,)={nezZ” |0§nj <k,j=1,..., v}.

For each 7 € ZV, let U(7) be the unitary operator on L*(R") defined by
U f(x) = flx—mn).
Then U (i7) induces an automorphism ™ on the CAR and CCR algebras by
0% (f)) = a* (U@ f). (3.15)

Obviously the quasi-free states w , are invariant under 7, i € Z¥. For a completely
positive unital map :./" — .Z from a finite dimensional C*-algebra./ " to ..%, and
for the Z"-action 6:.7Z — .7, denote by

. 1 l .= 7
hopo = Jim e H(O" o)1 € BE). (3.16)
1=1,..,v
The above limit exists by the subadditivity of the entropy functional H , A - Y-

The dynamical entropy of the space translations with respect to the quasi-free states
w4 on the CAR and CCR algebras is defined by

th(G) = sup th’g('y). 3.17)
vy
It may be worth to compare the above definition to that in (2.7) and (2.8).
For any bounded region A C RY, let x, denote the projection operator from

L*(R¥) onto L?(A), and let
Ay =xaA%4 (3.18)

and let |A| be the volume of A. From (3.11),(3.12), Assumption 3.1(b) and Remark
3.2(b), it follows that



506 Y. M. Park and H. H. Shin

and so the state w, is a locally normal [3]. Let o, be the density operator on .%,
corresponding to wy = wy| , . The local entropy for the state w, is defined by

Swyp) = —Trz (04l0goy) (3.20)
and the mean entropy is defined by

, 1

s(wy) = /H%lv |—/T| S(w,). (3.21)
The above limit exists by the subadditivity of S(w,) [3]. We now state our main
results:
Theorem 3.3. Let (#,{.%4,}) denote the CAR and CCR quasi-local algebras, 0 the
space translation automorphism on % and w 4 the quasi-free state on .%. Under the
assumptions in Assumption 3.1, the dynamical entropies h,, " (6) for the CAR and CCR
algebras are equal to the corresponding mean entropies s(w 4).

Theorem 3.4. Let s(w,) be the mean entropy for the quasi-free state w,. Under
Assumption 3.1 the following results hold:
(a) For the CAR algebra the formula

s(wy) = —Qm)7" /{XA(k:) log K 4(k) + (1 — K 4(k)log(1 — K ,(k))}d"k

holds.
(b) For the CCR algebra the formula

swy) = —Q2m)7" /{f{A(k) log K 4(k) — (1 + K (k) log(1 + K ,(k))}d"k

holds.

The main part of the paper will be devoted to proof of Theorem 3.3. The proof of
Theorem 3.4 will be given in Appendix.

4. Reduction of the Proof of Theorem 3.3

In this section we reduce the proof of Theorem 3.3 to the vanishing of the mean
entropy defect (Proposition 4.3). We first derive a upper bound for the dynamical
entropy and then state Proposition 4.3 which implies that the average entropy defects
tend to zero as A tends to R”. Using Proposition 4.3 we derive a lower bound for
the dynamical entropy, which completes the proof of Theorem 3.3. The proof of
Proposition 4.3 will be postponed to the following sections. The following is the
upper bound for the dynamical entropy.

Proposition 4.1. Let th (0) and s(w 4) be the dynamical and mean entropies defined
in (3.17) and (3.21) respectively. For both CAR and CCR algebras, the bound

hy, ,(0) < s(wy)
holds.

Proof. As a consequence of Theorem 2.2 for the CCR algebra and Theorem 2.4 for
the CAR algebra, it follows that

th (0) = /H%IV nan;o th,e(«/gA,n) )
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where

h (A%, )= lim
w4,0\ Y An
A kj—oo kl A
7=1,...,v

- H((0" (A, ,,):7 € BK)). (4.1)

v

We assert that the algebra .Z(A; B(l;)) generated by {07(.% An)iTE B(E} is finite
dimensional. Let .#(A; {mi}) be the algebra generated by {(.% An)s 0™ (4 An)} We
first show that .Z(A; {ni}), m € Z", is finite dimensional. Denote by .%, , the finite
dimensional subspace of .7, spanned by eigenvectors {¢,, ..., ¢,,} of 0,, and denote
by P, , the projection operator from %, (and also from %) to %, ,,. Recall from
(2.9) that

Apn=PpntpPy, ®C- P/Jl_,n .

Obviously .Z, ,, is generated by the finite dimensional algebra P, ,,.Z,P, ,, and the

identity 1. Let % (A; {m}) be the finite dimensional subspace of .%# spanned by the
vectors in either .7, , or 6™(P, )% . Then the algebra .5(A; {rm}) generated by
Py APy, and 07(P, .2, P, ) is finite dimensional represented C*-algebra on
F(A; {m}). Since 4(A; {m}) is also generated by .%(A; {m}) and the identity 1, it
is finite dimensional. The argument employed above shows that _Z(A; B(E)) is finite
dimensional. This proved our assertion.

By the monotonicity of the entropy functionals [7, Proposition I11.6(a)] and by [7,
Proposition II1.6(b)] it follows that

H((0™(A,,): 7 € B(k)) < H(AUN BK)), ..., AN Bk))
= H(AA; B(k)). 4.2)

We choose A by A = (—L/2,L/2)". Denote by A(k) the set {z +7 | z € A,7i €
B(k)}. As a consequence of Proposition 4.4 of [16], it follows that

H(AHABk)) < lim H( Ay )

< 1i P .
< lim SC2 50 4.3)
where S(4 e ) is the entropy for the state w 4| , Ao . To get the second inequality

we have used the fact that H(.Z, ) < S( A4 ) for any A.
Let {),;} be the eigenvalues of p AR) listed in the decreasing order. A direct
computation shows that

lim S(2 g ) = — Tim {Z A; log \; + < > )\j) log ( > /\j>}
=1

j=n+1 j=n+l1

oo
== Alogh =S,z (4.4)
i=1
where S(w Al ,3)) is the local entropy defined in (3.20). Thus from (4.1)—(4.4) it follows
that
1
(Aypp) < lim e S(wA(k))

koo Ky .
Jj=1,...,v

wA 6 S( A(k)) S(WA)a

’“ IA Bl
]_
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where s(w,) is the mean entropy defined in (3.21). This proved the proposition
completely. Q.E.D.

We consider the entropy functional H defined in Sect. 2 in more details. For multi-
index I = (4y, ..., 1,), let {w;}; be a decomposition of the state w:

B,y in ? E Wy =w.
I

wI = W.

Denote that n7(z) = —xlogz. Let

k) A(k (k) (k
W= 3w O =W W),
1y eeny tn
i, * fixed
Let .4,,i =1, ..., n, be finite dimensional subalgebras of .#. Then the entropy

function can be written as

H,( A,y A) = sup Z n(wy(1)) - Z > nwiPay

S wr=w E=1 iy
+3 5w ) Z W mSs@®| o). @)
k=1 k=1 g

For details, see [7].

In order to get a lower bound for the entropy functional, one has to choose a
decomposition of the state, w = > w;, as much as close as possible to the optimal
decomposition. In general a decomposition can be written

wr(a) = wzia) = w(o; (z)a)

with 2} € 7 ,(A), ; € 7 ,(4)", o, the modular automorphism of w [1, 3]. In our
case, we shall choose z; to be the projection operator P; consisting of the spectral
projections of the local density operator g,.

To be more precise, let B4 be the operator on L?(A) defined by

=AA/(1+G'AA), (o = =£1), (4.6)

where A, = x,Ax,. Let B the operator related to A by (3.7). Let h and h , be the
self-adjoint operators defined by

o (d*(fH=a*e*"f), fel’R"),
o a*(9) = a*(e"*1g), ge L)
respectively, where o' be the modular automorphism of wy =w| ,, . From the KMS
conditions w(zo_,(y)) = w(yz) and w (2’02, (y")) = w,(y'z"), it follows that
wla(g)a* (e ") = w@*(NHag), f.ge PRY),
wyla(gha® (e ") =w,@*(falg), [f.g € L),
and so by (3.1), (3.2), and (3.6)

(9,(1+cAe "f)=(9,Af), f.g€L*R"),
(@, (A+cApe"fy=(g,Af), [f.g € LX),

“4.7)
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respectively. From (3.7), (4.6) and the above relations, we conclude that the relations
B =exp(—h), B" =exp(—h,) (4.8)

hold. Thus the operators B and B4 are closely related to the modular automorphisms
o, and o} respectively. The argument used above can also be found in [22].

Now we are in the position to give a decomposition of the state w 4. By Assumption
3.1(b), it can be checked that the operator B4 defined in (4.6) is of trace class. See
Lemma 5.2 in the next section. Let {,}2, be the eigenvalues of h, listed in
increasing order and counting the multiplicities, and let { f, }32, be the corresponding
normalized eigenvectors. We describe the family of projection operators { P; } ;, which
will give a decomposition of w,, separately for the CAR algebra and for the CCR
algebra.

The case of the CAR algebra: Denote for k € N
N(f) = a*(fafy), N =1- N =a(fpa*(fy), 49

and A
P 0) = N(fy), FP(1)=N(fp). (4.10)

By the CARs, P,(0) and P, (1) are projection operators with P, (0) + P,(1) = 1. For
given (fixed) N € N, let

I=(ij,iy, ..., 10y5) € {0, 1}V 4.11)
be a multi-index, and let
P; = P(i)) Py(iy) ... Py (i) . 4.12)

Then {P;:I € {0,1}"} is a family of mutually commuting orthogonal projections
satisfying

doP=1. (4.13)
I

Denote by J%(/{V) the finite dimensional abelian C*-algebra generated by {P;:I €
{0, 1}"}. Clearly one has that 2" C .Z,.

The case of the CCR algebra: As in (4.9), let N(f,) be the number operator for the
state f;, N(f,) = a*(f,)a(f,). Then for each i € N, N(f,) has pure point spectrum
Z,, where Z, = NU{0}. Let {Q;(n):n € Z_} be the family of spectral projections
of N(f,). Denote for given (fixed) N € N,

P(k)y=Q,k), O0<k<N,ieN,
N-1

4.14
P =13 Q. @19
k=0
For given (fixed) N € N, let
I=0(if,...,ip) €{0,1,..., N} (4.15)

be a multi-index, and let

P; = Py(i}) Py(iy) . . . Py(iy) - (4.16)
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Then {P,:I € {0,1,..., N}N} be a family of mutually commuting orthogonal
projections satisfying > P; = 1. Denote by zﬁ(AN ) the finite dimensional abelian
T

C*-algebra generated by {P;},.
We come back to the entropy functional in (4.5). From now on, we choose A as

A = (0, L)”, where L is a positive integer. Let B(IZ) be defined as in (3.14) and let
B(Lk)y={i=,...,n)€L:0<n, <Lk,j=1,...,v}.

Let ./Z(AN  be the abelian C*-algebra generated by { P, }; defined as above. Then from
[7, Proposition I11.6.d] it follows that

H (0" (A" 7 € BILE) > H, (0" (A{):7i € Bk)).
From (3.16), (3.17) and the above inequality, we conclude that the bound
h, (6) > lim  lim 1y O (AN e Bk  @.17)
WS Loeo ky—oo (Lky)...(Lk,) ¥ A ‘

7=1,..,v

holds. We choose the decomposition of the state w, > w; = w, as follows: Let
J

J=U;:7 € B(E)) be a multi-index, where for each 7t € B(k), I, € {0,1}" for
the CARs and I; € {0, 1, ..., N} for the CCRs. Let

wjy(a) = w(ai/z(a:J)a) R (4.18)
where for J = ([;:7 € B(E))
z,= [ @) 4.19)

REB(K)

Notice that Y z; = 1, and so (4.18) is a decomposition of the state w.
J

Remark 4.2. (a) A comment on the decomposition of the state w given above is in
order. Since o; ,(N(f)) is not defined as an element of . Z if f is not in D(B~'/%), one
may think that there is a domain problem in the decomposition. But there is no domain
problem by the following reason. Let (%7, 7,(.%), §2,,) be the cyclic representation of
%, and let A and J be the modular operator and the modular conjugation associated
with {7, (2)", 2} respectively [3, Sect.2.5.2]. By w(o; 2(2)y) we really mean that

for any z,y € .7,
W(o, 5 (@) Y) = (2,7, (@) A1, (1) 2,,) .

Since _(.2)"(2, C D(A'/?), the r.h.s. of the above is well-defined. Throughout
this paper we use the above notation. Notice that the r.h.s. of the above equals
2,7 (x)Jr (y)JS2,) and so (4.18) defines a positive linear functional on 7.

(b) Using the above notation, (4.7) and the modular condition [3], it can be checked
that for any y € .Z and f € L*(R"),

W(Uz/z(a*(f)a(f))y) = W((a(Bl/?‘f)ya*(Bl/zf)) )

This is one version of the KMS conditon which will be used frequently in the sequel.
Even if N(f) is a unbounded operator for each f € L?>(RY) in the case of the CCR
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algebra, the above relation make sense by the fact that quasi-free states are regular

[3].
Using the decomposition in (4.18) and (4.19), we obtain from (4.5) that

H@O" (A )ie BE) > >, n (w( 11 (HLﬁ(PIﬁ))>>

J=(I5 : REB(K)) AREB(R)
— (k... P ” 2
(ky - k,) ; wP)S@i| ), (420)
where @;(a) = w(o; /2(P1)a) /w(P;). Here we have used the fact that
A0) =) @(Pp)

which follows from the definitions of P; and Jé(AN ) in (4.12) (resp. (4.16)) and the
below of (4.13) (resp. (4.16)). To simplify the notation, let us write

EANBH= Y n(w< 11 (0Lﬁ<P,ﬁ)>>>,

S(w

J=(I : REB(K)) e B(k) 4.21)
D(A,N) = P " .
(4, N) 2{: WP S@| av)
Then the inequality (4.20) becomes
H(O (AN 7t € B()) > E(A, N, k) — (k, ... k,) D(A,N). (4.22)

The quantity E(A, N, E) is the entropy of the state w on the finite dimensional abelian
C*-algebra generated by {OLﬁ(Jé(/lN) ) :7 € B(k)}, and D(A, N) is the entropy defect
of the decomposition (4.18) of the state w on ./é(AN ),

Proposition 4.3. Let D(A, N) be the entropy defect defined as in (4.21). For both
CAR and CCR algebras, there exists a constant c independent of A and N such that
the bound

L7Y|D(A,N)| < cL™V/8
holds.

Recall that A = (0, L)”. Thus the above proposition implies that the average of
the entropy defects tends to zero as L — oco. We postpone the proof of Proposition
4.3 to Sect. 6.

In the remainder of this section we shall prove our main result, Theorem 3,3 by
using the above proposition and Proposition 4.1. First we have the following result:

Proposition 4.4. Let F(A, N, 1_5) be the quantity defined in (4.21). For given A =
(0,L)” C R¥ and € > O, there exists Ny € N such that for N > N, the bound

SWap) < EAN B + (k... k,)e
holds for both CAR and CCR algebras, where A(LE) = {z:0 < z; < ij, j =
1, ..., v}

Proof of Theorem 3.3. From (4.17), (4.22), Proposition 4.3 and Proposition 4.4 it
follows that .
h,(8) > |ALK)| "' S(wy ) — — L7728,
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L= : —1/8
where w,;p) = wl“”/x(u;)' We choose L sufficiently large so that cL < € and

ALY T S 1) — sw)| <&
The above inequalities imply that for any ¢ > 0,
h, (@) > s(w) — 3¢.

Now Theorem 3.3 follows from the above bound and Proposition 4.1. This proved
Theorem 3.3 completely. Q.E.D.

In the rest of this section we prove Proposition 4.4.

Proof of Proposition 4.4.(a) The case of the CAR algebra: For given N € N, denote
that
I(KN)={1,2,....,N}, I>N)y={neN:n>N}. (4.23)

For any finite J C I(> N), let

P =TI Ny T] =N (4.24)

J€J keJe

Notice that

> > pp=1. (4.25)

I1€{0,1}V JCI(>N)

We define a density operator on .7, ; - by

R _ L#
Oy = Z Z w( H @ (PIﬁPJﬁ))>
Iz€{0,1}N JiCIGN)  \7FeB®)
’r—iGB(E) ﬁGB(E)

< ] 6P, (4.26)
e B(k)
We use the inequality
—Tr(A(log A — log B)) < Tr(B — A) (4.27)

for any positive operators A and B [3] and the fact that Tr(o ALHL) = w(x) for any

T € A ALy 1O obtain that

S(wl"/’A(LE)) = - Tr(QA(LE) log QA(LE))

S - Tr(QA(L;}’) log @A(LE))

> > n(w( 11 (9Lﬁ(PIﬁPJﬁ))>).

Iz€{0,1}V JrCIGN) AeB(K)

AeBk) ~ TEBE)
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It follows from the concavity of n(z) = — xlogz and (4.25) that

S(UJ' /A(LE)) < Z 77((.0( H (eLﬁ(PIﬁ))>>

Iz€{0,1}V AeB(K)
AeB(k)
+ 3 n(w< I1 (6”(3,5))))
Jr CI(>N) e B(k)
AeB((k)
= E(A,N,k)+ E(A, N, k), (4.28)

where E(A, N, /;) is defined to be the second term in the r.h.s. of (4.28). By using
the concavity of n(x) again, it follows that

EUANR <Ky k) Y. nwP))). (4.29)
JCI(>N)

Let {v,} be the eigenvalues of the operator &, defined in (4.7). Let rp=e J(1+
e~ 7). By (4.24) and (3.6), it can be checked that

w(PJ)-:Hr] H (I —=rp).
jeJ  kese
Thus it follows that
S onwey=-S T [Ja-r) [Z logry, + > log(l - rZ)J .
JCI(>N) J ieJ  jeJe keJ leJge

Following the procedure used in [20], we obtain

Yo nw®Py=— > rlogr,— Y (1—rylogl—r,).
JCI(>N) i=N+1 1=N+1

Since we know that [20] (see also Appendix)

Sw| ) ==Y rlogr,= > (1-r)log —r,), (4.30)

1= i=1

we conclude that
Z nw(P;) —0 as N — o0.
JCI(>N)

The proposition follows from (4.28), (4.29) and the above convergence.

(b) The case of the CCR algebra. As before, let {Q,(n):n = 0,1,2,...} be the
spectral projections of N(f;), ¢ = 1,2,.... Let Z, = {0,1,2,...}. Denote by
F(Z,; I(> N)) the set of multi-indices J € ZiON ) which have all but finite number
of elements zero. For multi-indices

I=C(ij iy, ooy i) €ZXSV 0 T =Gyrrdnaas ) €7@ I(> Ny,

denote by

Q=] @Gy, Q,=]] Qu.

1, €1 nedJ



514 Y. M. Park and H. H. Shin

Define the density operator g ;) on Zl( Lk by
R Lk
bar= D >, w( I1 @ (QlﬁQ,,ﬁ»)
[,eZI(EN) Jz€7 @43 I>N)  \ 7e B(R)
AeB(k) i€ B(k)
< 11 ¢""@.,Q.)- 4.31)
AEB(k)

We then follow the procedure used to obtain (4.28) and (4.29) for the CAR algebra
to obtian that

SWyp) <4 + 1, (4.32)
where )
L= 3 (w( 11 <9L“<Q,ﬁ))>> ,
1zeziEN REB() “33)

L=k .. k) >, nw@).

JET(Zy:I(>N))

We assert that

I, < E(AN,k)+ (k, ... k,)E'(A,N), (4.34)
where FE(A, N, I;) has been defined in (4.21), and
N oo
EUN =) ) nw@,®). (4.35)
j=1 k=N

In order to show the idea of the proof of our assertion, consider

I=3"% nw@ @0

=0 7=0
Using the concavity of 7(z) and the Jensen’s inequality, it can be checked that

(o oo o}

Mw(Q; (1) Q2()))

<.
1l

o
.

e &

N(w(Q, () — Z Z w(Q (1) Q2 (1) 1og(w(Q; (1) Qy(7))/w(@Q,(9))

j—O i=N

i
2

Nw(@, ) + Z WP (N)Q,(7))) — n(w(P (N))),

7=0

MS

z

1=

where P,(N) = > Q,(4). See the notation in (4.14). Thus I is bounded by
i=N

> PG Q0N + D n(w(@, (k).

3=0 k=N

'\a

I
=

2
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Employing the procedure used in the above again, we conclude that

N N 2 0
I<Y Y @GP+ Y > nw@,(k).
i=0 j=0 1=1 k=N

By using the method employed in the above (k,...k,) N-times, we proved the
assertion in (4.34).

We next consider 7, and E’(A, N) defined in (4.33) and (4.35) respectively. Notice
that for any multi-index I’ = (i, 1,, ...) € ZY,

w@p) = J] w@iGp).
ZkGI/
Thus it follows that
L=k k) Y, {Z n(w(czkuk»)}.
k=N+1 L2;=0

A direct computation shows that

Swa) =) [Z n(w(Qku’k)»} : (4.36)

k=1 L=0

Thus it follows that I, — 0 as N — oo. From (4.35) and (4.36) it also follows that
E'(A,N) — 0 as N — co. The proposition now follows from (4.32), (4.34) and the
above conclusions. Q.E.D.

5. Basic Estimates

In this section we derive some basic estimates which will be used in the sequel. As
before, let x 4 be the projection operator from L?(R”) onto L?*(A) and let o, (resp.
o{') be the modular automorphism of w (resp. w, = wl 4 ,)- Recall the definitions of

B and B% in (3.7) and (4.6) respectively:
B=A/1+0A), B'=A,/1+0A,).
Recall also the result in (4.8):
B=c¢e", BA =¢ha,
According to the notation in (3.18), we write that
BAEXABXA:XA€~hXA' (GR))
We first have the following result:
Lemma 5.1. For any bounded region A C R”, the relation
B/l — XAB1/2[1 _ O'Bl/zx}l‘_Bl/z]_lBl/ZXA

holds, where 0 = +1 (resp. ¢ = — 1) stand for the case of the CCR (resp. CAR)
algebra.
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Proof. The above result was stated in [7] without detailed proof. We produce the
proof. For any f;, g, € L*(A), i,5 = 1,2, ..., n, denote by

n n—1
G =[] I atg)-
j=1 7=l

Then by the KMS condition w(zy) = w(o,(y)x) and the fact that o,(a(g)) = a(Byg),
one has that

w(Ga(g,)) = w(o,(a(g,)) G)
= w(a(Bg,,)G)
= w(a(x 4By,) G) + w(a(x1Byg,)G)
= w(a(x, By, G) + ow(Ga(x} Bg,)).

Here we have used the CCRs and the CARs to get the last inequality. From the
method used above, it follows that

w(Galx1 Bg,) = w(alxaBx; Bg,) G) + ow(Ga(x; Bx; Bg,) -
Iterating the above process, one has that

w(Galg,)) = wla(x , Bx9,) &)
+ ow(a(x s Bx1 Bx 19,) G)

+ o"w(@(X ,BXFB .. XA Bx29:) G)
= w(a(x,B'*1 = o B'*x; B2 B'2x 19,0 G).

Here we have used Assumption 3.1(a) and (b) to show the convergence. The above
relation holds for any g,, € L*(/A). On the other hand, by the KMS condition for atA
we have that w(Ga(g,,)) = w(a(B1g,)G) for any G € .%,, g,, € L*(A). This proved
the lemma completely. Q.E.D.

We next derive some estimates on the operators B, and B4 defined in (5.1) and
(4.6) respectively:

Lemma 5.2. There are constants c,, ¢, and c; independent of A such that the bounds
Tr(By) < ¢f|A],  Te(BY) < c|4],
Tr(x 4 (B2 = (BN'2Px) < 3[04
h;l/cll forany A = (—L/2,L/2)", where Tr is the trace on L*(A), and OA the boundary
of A.

Proof. (a) The case of the CCR algebra: Assumption 3.1(b) implies that K 5 I8
integrable and so the first bound follows from the result analogous to that in (3.19).

Lemma 5.1 implies that
BY<B,. (5.2)

Thus the second inequality follows from (5.2) and the first inequality in the lemma.
We next prove the last inequality. Notice that

O aBY*x )* < By, (5.3)
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From (5.2), (5.3) and the fact that 0 < A < B = 0 < AY/2 < BY/2 it follows that

(BYHY? < BY? (5.4)
and
x,B'*x, < BY*. (5.5)
Denote by S(A) the term in the Lh.s. of the inequality in the lemma:
S(A) = Tr(x 4(B'* = (BM'*)x ). (5.6)
Notice that
S(A) = Te(B, + BY) = 2Te(x 4, B *x ,(BH?x ) . (5.7)

Using (5.4) and (5.5) we obtain that
Tr(x 4B x 4 (BN Px p) = = Te(BY* = x4 B"*x ) (BH') + Te(B*(BY)!7?)
> —Te(BY* = x,B*x ) BY) + Te(BY) by (5.4)
> —Tr(B, — (x4, B"*x ) + Te(B?). by (5.5)
Thus from (5.6) and the above bound it follows that
S(A) < Te(B, — BN +2Te(B, — (x4, B*x ).
Using Lemma 5.1, the fact that
By = (aB"*x 0 + xaB"*x51B"*x 4,
Assumption 3.1(c) and Remark 3.2(d), we conclude that

S(A) < Tr(x ,BxiBx ) + 2 Tr(x . B> x5 BY*x 1)

<e / &z / @y [T 1+, -y, 20+
J=1

A Ae
" L/2 0o k
<c Z ay, ( / dz / dy(1 + |z — y]_2(1+°‘)>
k=1 —L;2  L)2

L/2 L/2 n—k
X ( / dx / dy(l + |z — y|—2(1+a))
—L/2  -L/2
<drvt.
Here we have decomposed A€ into several regions to obtain the third inequality. This
proves the last inequality for the CAR algebra.

(b) The case of the CCR algebra: The first inequality follows from the argument for
the CAR algebra. The second inequality follows from (4.6) and Remark 3.2(b). Recall
the notation in (5.6). Lemma 5.1 implies that

B> B,
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and so from (5.7), the above bound and (5.5), it follows that

S(A) < Te(B, + B = 2Tr((x 4, B *x 1))
=Te(B" — B,) + 2Tr(x,B'*xiB*x ).

We now use Lemma 5.1 and the fact that || B'/?>x ,B'/?|| < M, < 1 by Assumption
3.1(a) to conclude that

S(A) < eTr(x4,BxxBx ) + 2 Tr(x 4B *x5B'*x »)

for some constant ¢ independent of A. As in the case of the CAR, the last inequality
follows from Assumption 3.1(c) and Remark 3.2(d), and the above bound. Q.E.D.

Recall the definitions of the operators B and h , in (4.6) and (4.7) respectively.
By (4.8) these operators are related as BA = exp(—h A)-

Lemma 5.3. Let A = (—L/2,L/2)" C R”. Then there exists a constant c independent
of A such that the bound
| Tr(h . BY)| < c|4]

holds, where Tr is the trace on L*(A).

Proof. Let {g,,:n = (n,, ..., n,) € Z"} be the orthogonal basis of L?(A) given by

gn(@) = [[{L™"* exp(i2mn,a;/ L)} (5.8)
j=1

and let A, p be the Laplacian operator on L*(A) with periodic boundary conditions

on OA. It follows that ,

2mn
9n > (5.9

L

_AA,Pgn =

where [n|> =n?+ ... + n?. Let o be the constant in Assumption 3.1(b). For given

(fixed) constant o satisfying 0 < 2/ < a < 1, we denote by
D,= exp{—(—AA’P)a’} . (5.10)
Using the inequality (4.27) we obtain that
Tr(h,B") = — Tr(B" log(B*))
= —Tr[B"(log(B*) — log(D ,))] — Tr(B" log(D 4))
< Te(D, — BY) + Tr((—A, p)* BY). (5.11)
Using Lemma 5.2 and (5.9), it can be checked that
| Te(D , — BY| < ¢,(a)) 4] (5.12)

for some constant ¢,(«) independent of A.
We denote for any n € Z",

. 2 L 2 27
L =] {\/m sin (E (kj - ?))/(/c] - 7an]>} (5.13)

j=1
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Since by (4.6) and Assumption 3.1(a) one has that BA< (A 4 for some constant ¢’
independently of 4, it follows that

Tr((~ Ay p)* BY < Tr(— Ay p)* Ay). (5.14)
On the other hand it follows from (3.11), (3.12) and (5.9) that
' 2mn 2/
Te(~Ay p)* A= > = /(gAm(k))zKA(k)d"k. (5.15)

nezy

Using Assumption 3.1(a) and (b), and the fact that

Rant®)] < c [T+ Ik, —27m, /L)~
7=1

for some constant ¢ independent of A, it is easy to show that

/(XA(/@)VKA(k)d”k <M [+ 2an;/L~0+

Jj=1

for some constant M independent of A. From (5.14), (5.15) and the above bound, we

conclude that )
Tr((— A, p)* BY) < cy(a) |4]. (5.16)

The lemma follows from (5.11), (5.12) and the above bound. Q.E.D.
From Lemma 5.3 and Assumption 3.1(a) and (b) we get the following result:

Lemma 5.4. Let A be as in Lemma 5.3. Then there exists a constant ¢ independent of
A such that the bound

| Te(h*/* BY)| < c|4]
holds.

Proof. Since B4 = exp(—h 1) we have that
Tr(h}{2B4) = —2Tr(h}{* B4 log((B*)!/?)) .
Let D, be defined as in (5.10). From the above, it follows that

Tr(h32B%) = — 2 Tr(h {2 B [log((B4)'/* — log(BY)!/? + D!{*))
— 2Tr(h{* B log((BY)'/? + DY/*)
=By, + By, (5.17)

As before, let {7,} be the eigenvalues of h, and {f, } the corresponding normalized
eigenvectors. Then we have that

Eyy=-2> v/ e ™ [loge /%) — (fy,log(e "4/> + DY) ).
k=1

By Jensen’s inequality we obtain that

(fy, log(e 472 4 DY) f,) < log(e™™/* + (f,, DY/ £,.)).
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By taking = exp(—v;/2), y = (fk,Dil/sz) and using the fact that —x(logz —
log(x + y)) <y for any positive = and y, we obtain that

By <2 Y 2e 2, D2 1)
k=1

= 2Te(h{*(BY'/*DY/*)
< 2(Tr(h 4, (BYNY2(Te(D )2 .

Thus from Lemma 5.3 and the fact that Tr(D,) < c|A| for some constant ¢
independent of A, it follows that the bound

By, <A (5.18)

holds uniformly in A.
We next consider £, , defined in (5.17). Notice that

By, < —2Te(hl{* B log(DY{*)
= Te(h*BA =2, p)*)
< (Tr(h,(BY) YA Tr(~A 4 p)*e B2

We choose ' so that 0 < 4o’ < «. Then by using the same method as that in the
proof of (5.16) we get that

Tr(— A g p)* BY) < ¢l 4]
for some constant ¢. Thus from Lemma 5.3 and the above bound we conclude that
By, < |4

uniformly in A. The lemma follows from (5.17), (5.18) and the above bound. Q.E.D.

6. Control of Entropy Defect: Proof of Proposition 4.3

We are now in position to show that the average of the entropy defects tends to zero
as /A tends to R” (proposition 4.3) and so complete our main result (Theorem 3.3).
Recall the entropy defect defined in (4.21):

D(A,N) = z}: w(P,)S(w,l'%%N)),

where . A(C . 7,) is the algebra generated by {P,};, and
Opa) = w(az/z(PI)a)/w(PI) . 6.1)

See the definition of P; in (4.12) and (4.16).
We first describe briefly the reason why Proposition 4.3 should hold. Let &#
be the state defined by replacing o, , with J{}Z in (6.1). Then one may check that

S(d)j‘|‘ v 4(/‘N)) = 0, and so the corresponding entropy defect equals zero. One may

expect that the difference, (&; — GJ}‘) (a), a € k/%(AN ), should be bounded by a term
which depends only on the surface A of A.
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The proof of Proposition 4.3 will consist of several steps. Let us try to make
the entropy defect D(A, N) bounded by a sum of terms which can be estimated

eventually. Recall that q/Z(AN) is the finite dimensional abelian algebra generated by

{P;};. Thus ./Z(AN ) can be represented by an abelian algebra on a finite dimensional

Hilbert space .7 (2 CM) such that Tr (v)(P;) = 1. Denote by o) the density
7 ,

operator on 77(’/(11\] ) corresponding to the state @;| ). Then for any a € (/Z(AN ),
A
Te (@) = W@y, (PPa)fwP) = Y Trpon(@ijaPn)  (6.2)
1/

and
D(A,N) = =3 w(P)) Tr v (0ly 1 log(e)) - (6.3)
I

From now on, we suppress ]KE‘N ) in the notation Tr v for notational simplification.
Y

For a given multi-index I (I € {0,1}" for the CAR algebraand I € {0,1, ..., N}V
for the CCR algebra), we define

B = {wlo, (PP w(PPYPy =Y {Tr(@Y ) Pid}Py (6.4)
g r

on .%AN). Notice that Tr(é(/ff}) = 1 by the fact that Tr(P;/) = 1 for any multi-index
I'. Using the inequality (4.27) and the relation (6.2), we get

Dyy<- Z w(P])Tr(Q(AAj} log(@(AAf])))
I

B W(Ui/z(PI) P w(al/z(P[) Py
__;;”(P’)[ e ()]

:IA,N+IIA,N’ (65)
where
Iyn =Y wio,(P) P logw(o, p(P) Pp)/w(P)p)
I
I, N =Y > wo, (PP logw(o, ,(Py) Pp)/w(P)). (6.6)
I .
I'#1

We first consider I, , defined in the above. We shall use the inequality
—z(logz —log(z +y)) < y 6.7)

for any positive numbers = and y. Take = = w(o,,,(P)Pp)/w(P) and y =
w(o; /2(P1) (1 — P;))/w(Py). Notice that = 4+ y = 1. From inequality (6.7), it follows
that —zlogz = —z(logx — log(z 4 v)) — xzlog(z + y) < y. Thus we conclude that
the bound

Iyn <Y wog (P = Pp) 6.8)
I

holds.
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We next consider I, , defined in (6.6). For notational convenience, denote that
for any subset J C {1,2, ..., N} = I(< N),
7)) ={0,1}7 (CAR),
7 ={0,1,..., N}Y (CCR).

Let, I,I' € 7(I(< N)) such that I # I'(P; # Pp). Then there exists a subset
JC{1,2,..., N} = I(< N) with J¢ # ) such that

PI:P11P12’ PI/:PIIPIé,

6.9)

, (6.10)
ILeg(), L,I,e7J9,
where for given I, = ((i;,): k € J¢), I} belongs to the following set:
T(J: L) = {G}) 1, € {0,1} = {i, },k € J°} (CAR), 6.11)

T L) ={G}) i, € {0,1, ..., N} = {i,},k € J°} (CCR).

Notice that in the case of the CARs, .7(J°:I,) is singleton. For instance, let

= [[ P,(@). Then P,/ = [I (1 — P@i)) in the case of the CARs. Thus
keJe keJe
the term 1, , defined in (6.6) can be written as

Hay== > > >

JCIEN): LeZ(J) Ie7(Je Iy
JAD  Lez(J%

w(a,/,(Py, Pr) Pp Ppy)
x {w(ai/z(lePh)lePI;)log( wu;] ;I) —2 )} (6.12)
1 2

As before, let {,}72, be the eigenvalues of h, and {f,} the corresponding
eigenvectors. For any J C I(< N), let .Z, ; be the algebra generated by the spectral

projections of N(fy), k € J. Define a state w, ; on .Z, ; by
was(N(f) = [A[TTe ™ /(0 =gl ATe™ ™) k € T,
wA,J( 11 N(fk>) = T was VD, (6.13)

keJ keJ
where 0 = +1 (resp. 0 = —1) stands for the CCR (resp. CAR) algebra. Define
Hy-- Yy

JCIENY: LEe7() Ie7(Je: I
J#  Le7JS)

WP Pr)wy ye(Pr)

X {w(oi/z(PI1 PIz)PI1 Plé)log ( 6.14
17

DD DS

JCIEN): L1eZ(J) Ijer(Je: I
JH e

X {W(Uz/z(PII PIZ)Pll P]é)log(WA,Jc(PIZ))}-
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The above quantities are defined so that the relation
Iy =110 + 11D (6.15)
holds by (6.12).

(,LJ(PIl PIZ)"‘)A,JC (Plz)
and y = w, JC(PIQ), and using the inequality (6.7) and — log(z + y) < — log(y), we
obtain that

We consider the term 11 %)N defined in (6.14). Taking x =

Yy <1y + 1147, (6.16)

where

(1.1
M= 2 > >
JCI(EN): Les () Ihe7(Je: 1)
J#  Ler (o)

X WPy Prywy je(Pr)wy je(Pp),

12 6.17)
myy=- > > >
JCIEN): [e7 () Ier(Je: I
JHAD  LerJ®)
From (6.5), (6.15) and (6.16), it follows that the bound
DA, N) < Iy o+ (L) + T + 115y (6.18)

holds.
In the rest of this section we estimate each term in (6.18). Remember that
A= (=L/2,L/2)¥ C R”. We first have the following result:

Proposition 6.1. Let I, \ be defined as in (6.6). There exists a constant c independent
of A and N such that the bound

A" gy S el
holds.

Proof. (a) The case of the CAR algebra. We use the notation in (6.9)—(6.11). By the
bound in (6.8) we have

Iyn < Z > wloy ), (Py) Pp)
Il
I'#I

> > Y. WPy PP P, (6.19)
JCIEN): LeZ()) Ie7(J I
JAD  Le7(J%)

Recall the definition of P; in (4.12). Since J¢ # (), there is k € J¢ such that
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where I, € 7(J¢ — {k}) and Ij € 7 (J¢ — {k} : I;). Thus it follows from (6.19) that

Lins D> ) 2. 2

JCI(XN): Ler() ILere—{k}:I3) keJ®
J#D e (J°—{k}) 1, =0,1

X {w(gi/z(PI, PI3Pk(ik))PII P[é(l — P(i))}

N
<> > S w(o,m(PrP(i) P(1 = Py(y))
k=1 i,=0,1 I€7(I(XN)—{k})
I'e 7(I(KN)—{k})
N
=" ) wio,p (i) (1 = Pyiy))) - (6.20)

k=1 i,=0,1
We shall use the KMS condition of the following form [3]:
w(o, jp(a*(Ha(g) ) = wio, pal@)zo_; @™ ()
= w(a(B'*g)za*(B'* ) (6.21)
for any f,g € L*(R") and x € ,(.#)". To obtain the second equality, we have used
(4.7) and (4.8). See also Remark 4.2(b). B
We recall that P,(0) = 1 — N(f,) = N(fp), P,(1) = N(f) and N(f;) =
a*(f,)a(f,). Using the KMS condition (6.21), we have
w(o, (N N(f) = w(aB2 [y N(f)a* (B2 £,)
= w(@((B'? = (BN )N (f,)a* (B2 f,))
+w(@(BY' P [N a* (B = (BY'?) )
+w(@(BY' 2N a* (BY'2 ). (6.22)
Since a((B1)!'/2f,) = exp(—v,/2)a(f,) and a(f;,)* = 0, the last term in the above
equals to zero. Using the fact that [w(ABC)| < ||A||||B||||C||, we obtain from the

above relation that
N

> wioy (NN N(F)

k=1
< S B — BY) £ (B2l + IBY 5D
k=1

< (Tr(x (B = (BY))) x p)'? - (Tr(B)/2 + Tr(BY'/?)
< c|gA]M2 A2 (6.23)
Here we have used Lemma 5.2 to obtain the last inequality. Notice that
w(o; (N N(f)) = wio, s (N N(S)
by the KMS condition and so from (6.23) we conclude that

N
3" W@, NN < cloA] /2| A]172.
k=1
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Thus the lemma in the case for the CAR algebra follows from (6.20), (6.23) and the
above bound.

(b) The case of the CCR algebra: In the case for the CCR algebra, the number
operators, N(f,), k € N, are not projections and so one has to modify the method
used in the proof of the proposition for the CAR algebra so that it can be applicable
to the CCR algebra. Notice that the spectral projections ),(n) of N(f,) can be
expressed as

1
Qum = 5 7{ (= (N(fy) — )~ 'dz. 6.24)

|z|=1/2

Recall that P,(n) = Q,(n) if n < N, and P, (N)=1— Z Q@ (n). If one employs

=0
the method similar to that used to obtian (6.20), one can obtam the bound

N N N
Lin €002 @, (B®) P < Z S w0, (@) Q).
klllz#(l) kllrl;g
(6.25)
We write that
AP ®) = w0, 5@y + 1)Q,(m)),
n=0
AP =33 wo,,Q) Q) (6.26)
n=0 l=n+2

Ay nR) = AD (k) + ARy ().
It follows from (6.25) and the KMS condition w(o, /2(A)B) = w(o, /Z(B)A) that

N

Iyny<2 Z Ay n(k). (6.27)
k=1

Let us estimate A, y(k). By the CCRs we have that
alf) N(fp) = (N(f) + Da(fy),
and so from (6.24) it follows that
a(f) Qy(n) = Qy(n — Da(fy) . (6.28)
Using the above relation and the method employed in (6.22), we obtain
w(a; (N (fi) Qr(n + 1) Q4 (1))
= w(0;/5(Q(n)a(B' f) Qy(n)a*(B'* f,))
= w(o, (@) al(BM' 2 f) Qp(n)a* (BN f,) + QY (k) ,  (6.29)
where
Q) (k) = w(o, 5 Q) a((B'? — (BM'?) ) Q,(n)a* (B2 £,))
+w(0, QN a((BH') [)Qr(m)a* (B> — (BN ). (6.30)
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Since N(f,,) Q. (n) = nQ,(n) and (B)/2 f, = exp(—,/2) f,., it follows from (6.29)
and (6.28) that

W(Ui/z(N(fk)Qk(n + 1) Q,(n)
= exp(—y,) nw(0; /5 (Q1 (M) Qp(n — 1) + QY (k). (6.31)

From (6.26) and the above relation, we obtain

A(/i?n(k) < Z w(@; (N (fy,) =) Qr(n + 1) Q1))

n=0
<Y H{exp(—7) (n+ 1) = n}w(o; 5 @Qp(n + 1) Q) + > QY ()
n=0 n=0
<exp(—1) AW, (k) + > QY (k). (6.32)
n=0

Here we have used the fact that exp(—7,) < ||B4|| < 1 by (4.8) and (4.6) to get the
third inequality. We note that by (4.6), and Assumption 3.1(a) (see Remark 3.2(a))

(1 —exp(—y,) " = 14 {exp(—v,)/(1 — exp(—y;,))}
=1+ (f, (B /(1 = B f)
=1+ (f)mAAfk)
<1+ M,

uniformly in A. Using the above inequality, we obtain from (6.23) that

N N o
S AR <A+ M) YD QY H). (6.33)
k=1 k=1 n=0
We use the Schwarz inequality twice, and the facts that ||Q.(n)] = 1 and
o0
> Qp(n) =1 to obtain from (6.30) and (3.6) that

n=0

N oo
D03 QW) < o(Tr(x 4 (B'? = (BY)' 2y )72
k=1 n=0

x {(Tr(B™)'/? + (Tr(B4))/?} . (6.34)
Thus from (6.33), (6.34) and Lemma 5.2, it follows that the bound
N
> A (k) < cloa] 4] 2 (6.35)
k=1

holds uniformly in A.



Dynamical Entropy of Space Translations 527

We next consider the term A(/i)n(k) defined in (6.26). Using the methods employed
in (6.29) and (6.31), one can check that

D w0, (N(F) Q1) Qi (m))
l=n+2
= Y wio,,@Qu — 1)aB f)Q(m)a* (B> £,)
l=n+2
=exp(—) Y, (o, n(@Ql — D)Qu(n— 1)+ BY (k),  (6.36)
l=n+2
where
BY ()= ) w(o,,(Qi — 1)a(B? = (BN £,)Q,(n)a*(B'2 f,))
l=n+2
+ Y w0, 5@ — 1)al((BY?£,) Q) ()
l=n+2
x a*(B'? — (BY'?) f). (6.37)

Thus from (6.26), (6.36) and the fact that exp(—+,) < 1, we obtain

AP <SS WO, , (N — (4 1) Q) Q)

n=0 [=n+2
o0
2
< Bk,
n=0

We use a method similar to that used to obtain (6.34) to conclude that
N
> AD (k) < cloA] 2| A]2
k=1

The proposition follows from (6.27), (6.35) and the above bound. This proves the
proposition completely. Q.E.D.

We next consider the term [ Iﬁll,'}\f defined in (6.17). We first state our result:

Proposition 6.2. There exists a constant c independent of A and N such that the
bound

AT Iy < el AT
holds.

Proof. (a) The case of the CAR algebra: Summing over PIl and using w(PI2) <1,
one has

IIX’II\; S Z Z E wA,JC(PIZ)wA,JC(Pfé) . (638)

JCI(EN): [HeZ(J¢) I[e7(Je: Ip)
JCHD
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Recall that P, (1) = N(f,) and P,(0) =1 — N(f,) = N(fk) in the case of the CAR
algebra. Thus from the definition of w, ; in (6.13), it follows that

8y < ST 1 {2waseNG)w g se (N}
JCI(KN): keJe
JEAD
< 3 T 24 exp—y)/(1 + 4] exp(—y,))}

JCI(KXN): keJe

< > I @4 exp=}

JCI(KN): keJ¢

H {1+ 2|A] " exp(—,)}
kEI(SN):
exp{Trlog(l + 2|A|'BY)}
exp{c|A|~! Tr(B4)}

Il

<
<

for some constant ¢ independent of A and N. The proposition for the CAR algebra
now follows from the above bound and Lemma 5.2.
(b) The case of the CCR algebra: From (6.11), (6.13), and (6.38), it follows that

miy< Yo ]I {}: Wy e(QrD)wy JC(Qk(n))}. (6.39)

JCI(KN): keJ¢ 1,n=0:
l#n

Since for any positive function f(/,n),

YorGm <Y fam + Y fG0+ Y fOn),
=1 n=1

l,n=0: lin=1

l#n

and ) Q.() < N(f,), we obtain from (6.39) that
=1

iy < S ] twasre W@+ >0 ] 2waseWNED} -

JCI(XNY: keJe JCI(XN): keJe

We now use (6.13) and the fact that [A|~!exp(—y,) < M < 1 uniformly in A (see
the inequality below (6.32)) to conclude that there exists a constant M independent
of A such that

Yy < > [ @a]A]7 e %) < exp{e|A]~ (B}
JCI(<NY: keJe

Here we have used the method same as that for the CAR algebra to obtain the
second inequality above. The proposition follows from Lemma 5.2. This proves the
proposition completely. Q.E.D.

Finally we consider the terms IIE;"IQ\; and [ Iﬁi)N defined in (6.17) and (6.14)
respectively. We state our result:
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Proposition 6.3. For sufficiently large L, there exists a constant ¢ independent of A
and N such that the bound

AT Iy + 11§ < eL™!/8
holds.
Proof. (a) The case of the CAR algebra: By a symmetry argument (P, < Plé),
(1.2) _ r7® ; (1.2)
1Ty =11, y and so we only need to consider 17 . Let Plé be of the form

Py = <H N(flk)> < II N(fm),

k=0 k=m+1

where J¢ = {l,,l,, ..., {,,}. Then from (6.13) it follows that

w2e(P) = [T A4 exp(=y, ) TT 1 + 141" exp(=y, 0"
k=0 k=1

If m = 0, then the first factor in the r.h.s. equals to 1. Thus

—log(wy se(Ppy)) = >y, +loglAp+ Y log(l + [A[7" exp(—;,)

k=0 k=1
m
<>y, +log|A]) + Trlog(1 + [4]~'BY),
k=0
where in the case m = 0, the first term in the r.h.s. equals to zero. Since

Tr(log(1 + |A|7'B?)) < c|A|7' Tr(B”) < M uniformly in A by Lemma 5.2, we
have
m
—log(w, se(Py) <Y (y, +log | A + M.
k=0
We substitute the above inequality into [ 151112\? in (6.17) to obtain that

H§N S HIan+M (Y Y wo(Pr Py P Pp))
JCI(EN) Le7(J)
Le7(J%)

— I, y+M ( Y G, /2(PI)PI,)>
LI'e 7(I(<N))
— [T, N+ M, (6.40)

where

m
HIzv= >0 Y > wio,,(P PPy, Py (y, +log(|4]).  (6.41)
JCI(EN) Ler(J) k=1
JHD  1e7(J%
We note that, if m # 0, there exists {, € J¢ such that PIé contains N(f;, ). Thus we

may write _
P12=P13N(fzk)7 P1§=P[§N(fzk)»
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where I, € 7(J¢ — {I,}) and I} € 7 (J¢ — {l,.}): I;). Notice that 7 (J — {l,.} : I})
is singleton. From (6.41), it follows that

I,y < XN: > >

k=1 JCI(KN)—{k} L€7(J)
I367(Jc)

X w(0; o (Pp, P N(£)) Pr, Py N (fi) (v + log(|A])

N
=Y > w(o, (PN () Py N(f) (v + log(|A])

k=1 I,I'e 7(I(<N)—{k})

N
=Y wo, s (N N) (7, + log(|A])

k=1
1 2
= 1119 + 1119, (6.42)

where

N
1Py = 3" 30 VN,

= (6.43)
1119y =og(A) >~ wo, , (NI N(f,).
k=1

Using methods similar to those employed in (6.22) and (6.23), it can be checked that
w(o, (NN < (B2 = BY') fll B2 fill + 1(BY £l - (6.44)
Thus it follows from (6.43), (6.44) and Lemma 5.2 that
ITID < log(|A]) Tr(x 4 (B'/? — (BY)/2)2x p)1/?

x {(Tr(B)'/? + (Te(B*)'/?}
< 2log(|A]) (04 |A]'/? (6.45)

We next consider I7 IX?N defined in (6.43). Writing v, = 'y,lc/ 47,3/ * and using the

Schwarz inequality, we obtain

N 1/2
Iy, < (Z 1 w0, (N (f) N(fk»)
k=1

N 1/2
< {3 3w, /2<N(fk))N<fk>>)
k=1

N 12 , N 1/4
< (Z o Zw(N(fk))) (Z W@, (N (f) N(fk»)
k= k=1

1

1/4

k=1
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We use (6.44) and the fact that w(ai/z(N(fk))N(fk)) < Ww(N(f,) < exp(—7,;) to
obtain from the above bound that

11Dy < (Te(B3* B2 (Tr(h , B4/
% {(TI‘(XA(BI/Z . (BA)I/Z)ZXA)I/S (Tr(BA)l/z + (Tr(BA)1/2}1/4
< cloA|81A]778. (6.46)

Here we have Lemma 5.2-5.4 to get the last inequality. The proof of proposition
follows from (6.40), (6.42), (6.45), and (6.46).

(b) The case of the CCR algebra: As before, we only need to consider [ 1511]2\; For
given I = (j,:k € J¢) € 7 (J°: 1), PIé has the form

Py =11 AGo-
keJe

Let .7, be the Hilbert space spanned by {(a*(f,))"f2:n = 0,1,...}. One may check
that

WA,JC(Qk(n)) = Tr,%k (eXp{—(Wk + log(|/1|)N(fk)} Qk(n))/NA,k )
where N, , is a normalization factor. A direct calculation shows that
W, 7e(@p(m) = (1 = |A] " exp{=7, 1) (AN~ exp(—y, )" (6.47)
for any k € J° and n =0, 1, .. .. Notice that by (6.47)
wa (PN = > wy 7e(Qr(g)) = (AN " exp(—y )Y . (6.48)
=N

From (6.47) and (6.48) it follows that

- lOg{wA,JC(Plé)} = Z —log{w, ;e(P, )}

keJe
< < > {~log(l - IAI“‘exp(—'yk))})
keJe
+ < > gkl + log(!AI))> . (6.49)
keJe

Notice that |A|~!||[B4|| < M < 1 for sufficiently large |A| by (4.6). Since the first
term in the r.h.s. of (6.49) is bounded by

Tr(—log{(1 — |A[~'BY}) < M’ Tr(|A) "' BN < M

uniformly in A, we have

—log{w, se(Pp)} < M+ > j(y, +log(|A) . (6.50)
keJe

Substituting (6.50) into I1%{"}) in (6.17) and employing methods similar to those used
to obtain (6.40) and (6.42), it can be shown that

189 <TTT, y+ M, 6.51)
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where

M=

. N N
=3 Y

k=1 =0 n=
n

(v, -+ 10g(|A]) (0, ;p(Pe(D) P (1) . (6.52)

~ O

It follows from (6.52) and the fact that w(o; /Z(A)B) = w(o; /Z(B)A) that

N oo e}

I,y < D" ny, + log(|AD) w(o, /(@ (1) @ (n))
k=1 =0 n=1:
n#l

n<l

N
<3 (o +log(|A]) { 3 lw(ai/z(Qku»Qk(n»} . (659)
k=1

We now use the method employed in (6.36) to obtain

D (0, (@) Q) <> w(ay (N (f) Q1 (1) Q4 (m))

n<l n<l

= exp(—7) > mw(o, /5(Q,(l — 1)Q,(n — 1))

n<l

+3 0 Qunh),

n=0

oC o0
where @, ,, (k) is defined by replacing ) with ) in the definition of Q(j?n(k)
l=n+2 l=n+1
in (6.37). The above inequality implies that

D w0, Q1) Q) < (1 —exp(—v )™ Y Qu (k). (6.54)

n<l . n=0

We substitute (6.54) into (6.53) and then use the bound at the below of (6.32) to
conclude that

N e}
IT, <M"Y (3 + log(|A]) { > QA,n(m} : (6.55)

k=1 n=0
Employing a method similar to that used to obtain (6.34), it can be shown that

(o]
D Qunk) < MB2 = BY) [l (IBV2 £l + IBH2filh . (6.56)
n=0

By the arguments used in (6.43)-(6.46), one obtains from (6.55) and (6.56) the

following bound: o
IIT, < cloA]"#1A["/8.

The proposition follows from (6.51) and the above bound. This proved the proposition
completely. Q.E.D.

Proof of Proposition 4.3. The proposition follows as a corollary of (6.18) and
Proposition 6.1-6.3. Q.E.D.
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Appendix. Estimate of Mean Entropy

In this appendix we study the thermodynamic limit of the local entropy S(w,)
introduced in (3.20), and produce the proof of Theorem 3.4. We remark that the
mean entropy of the Fermi lattice system with respect to quasi-free states have been
calculated in [21] by using a method which differs from that in this paper. We first
estimate the local entropy.

Proposition A.1. Let S(w,) be the local entropy defined by (3.20). One has that
Swy)=—-Tr(A log A, + (01— A, log(l —A,)) (CAR)

and
Swy)=—-Tr(A logA, —(1+ A log(l1+A,)) (CCR)

for any bounded region A C RY, where Tr is the trace over L*(A). Under Assumption
3.1(a) and (b), the r.h.s. of the above expressions are finite.

Proof. We first consider the case of the CCR algebra. For any bounded operator G
on L*(A), denote by I'(G) the second quantization of G [3]. Notice that

I(@a*(f) = d"(GHG), feL*A). (A1)

We assert that the density operator g, corresponding to w, and the operator B“
defined in (4.6) are related by

0, = I'(BY/ Ti(I'(BY)) (A.2)

where Tr is the trace on .%,.
From the CCRs and (A.1), it follows that

Tr((BY)a™(f)alg))/ Te(I(B™Y))
= Tr(a(g)a™(B* ) ['(BY)/ Te(I(BY))
= (g, B f) + Ti("(BY) a*(B* f) a(g))/ Te(I(BY)) .
By taking f = (1 — B4)~'h, we have that
Tr(I(BY)a*(h)a(g))/ Te(I'(BY) = (g9,(BA/(1 — BY)h) = (g, A4h).

Since the above relation holds for any g,h € L?(A), we proved our assertion. Let
{A\.} be the eigenvalues of B* counting multiplicites. Let .7(Z; N) be the family

of multi-indices I € Zﬁ which have all but finite number of elements zero. A direct
computation shows that [3]

B =Y ] W

I€7(Z1;N) my€el
=[Ja-»"
;

= exp{— Trp4,(log(1 — B)} (A.3)
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and

(I (B logI(BY) = 3. < I1 /\Z”“)log< II AZ’k)

I1€7(Z4+;N) mp€l my €l
[o¢] o0
= [H(l - Aj)‘IJ (Z ATIOgAZ")
i=1 Lj# m=0
o0

{H(l _ /\j)‘l] Qog A1 —A)72. (A4
i=1 | j#i

Thus it follows from (A.3) and (A.4) that

—Tr(I'(B log I'(B%))/ Te(I'(BY)) = — Z . i log \,
i=1

Az
lgA
= _'TTL%A) (]—:TE;IIOgIQA>

and so by (A.2) and (A.3)

A
S(wy)=—Tr (1 _BBA log BA> — Tr(log(1 — B%Y)

This gives the expression in the proposition for the CCR algebra. In the case of the
CAR algebra one may obtain the corresponding expression by replacing .7 (Z ; N)
with 7({0,1}; N) in (A.3) and (A.4). For the details, see [20].

We next show the finiteness of S(w,). Consider the case of the CCR algebra. By
Assumption 3.1(a) and (4.6), ||[B”|| < M, < 1 and so

BA/(1 - B <¢,BA,

—log(1 — BY < c2BA
uniformly in A. Notice that Tr(B* log B) = Tr(h , B"). Thus the finiteness of S ,(w)
for the CCR algebra follows from (A.S5), Lemma 5.2 and Lemma 5.3. The method

similar to that used in the above gives the proof for the CAR algebra. This proved
the proposition completely. Q.E.D.

We recall the notation in the proof of Lemma 5.3. Let A = (—L/2, L/2)" and let
{g,,} be the orthogonal basis of L?(A) given by (5.8). Denote by p,, the projection
operator onto the one-dimensional subspace spanned by the vector g,,. We introduce
an operator E, on L*(A) by

A 2nm
Ey=> K, (T) Dy (A.6)
nezv

where K 4 1s the Fourier transform of K 4 given in (3.12). Assumption 3.1(a) and (b),
and (3.13) imply that there exists a constant ¢ independent of A such that the bound

Kk <c [+ kh0 (A7)
j=1
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holds. Define
g(wA) =-Tr(E,logFE,) —Tr((1 - E,)log(1 — E,)), (CAR)
Swy) = —-Tr(E,log Ey) + Tr((1 + E)log(1 + E4)). (CCR)
We then have the following result:
Proposition A.2. For both CCR and CAR algebras, the equality
1 1

LILmOO T S(wy) = Lleoo W S(wy)

(A.8)

holds.
The proof of Theorem 3.4 follows as a corollary of the above result:
Proof of Theorem 3.4. Since K 5 € L'(R”), Assumption 3.1(a) and (3.13) imply that
K , is continuous. Notice that
~Tr(E,log By) = — Y | K,@nm/L)log(K ,(2n/L)).
nezy
Using the continuity of K 4 and the bound in (A.7), one concludes that
1 1
—— Tr(F logE,) —» — ——
] AR T T Gy

as L — oo. The second terms in (A.8) give the corresponding second terms in
Theorem 3.4 Q.E.D.

The rest of this paper is devoted to the proof of Proposition A.2.

/KA(k) log K 4(k)d"k

Proof of Proposition A.2. We first consider — Tr(A ,log A ). Let D , be the operator
on L*(A) defined in (5.10). Let a(L) be a positive number satisfying

Llim a(L)=0. (A9)

We shall specify the number a(L) later. For 0 < 2o’ < a < 1, denote
F.=E,+al)D,. (A.10)
Notice that
—{Tr(A,logA,) — Tr(E ,log E ,)}
=—-Tr(A logA, — A log Fy) — Tr((A, — Fy)log Fy)
—{Tr(Fylog Fy) — Tr(E ,log E )}
=1,+11,+111,. (A.11)

We assert that
|A|7Y (T, 4 [T, + [TTI,]) — 0 (A.12)

as L — oo. Under the assertion we conclude that
lim [A]7'(~Tr(A logAy) = lim |A|7'(~Tr(E,log E,)). (A.13)
L—oo L—oo

We prove our assertion in (A.12). Using inequality (4.27), we obtain

4] < [Te(Fy — Ay
=|Tr(E,+a(L)D, — Ay)l.
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Since |A|7! Tr(E, — A )| — 0 and a(L) |A|~! Tr(D,) — 0 as L — oo, we conclude
that |A|~'|1,| — 0 as L — oo. Similarly it is easy to show that |A|~1|I11,] — 0 as
L — oo.

We next consider I1,. Notice that if (g,,,(E, +a(L)D,)g,) <1,

(9., 10g(E4 + a(L) D 1) g,))| < |(9,,,log(a(L) D 4) g,,)|
and if (g,,, (E, +a(L)Dy)g,) > 1,
|(g,,,10g(E 4 + a(L)D 4)g,,)| < const
uniformly in A by Assumption 3.1(a), (3.14) and (A.6). Thus we have that

AL < 1A ST (G (A = Ep)g,)l 20/ L
nenv

— log(a(L)) |A| | Tr((A4 — B
+a(L) |A|7Y Tr(D 4 log(a(L) D »))|
= b,(L) 4 by(L) + by(L) . (A.14)
Since a(L) — 0 as L — oo, a direct computation shows that b;(L) — 0 as L — oo.
We now choose the number a(L) as a(L) = |A|~!|Tr(A, — E,)|. Then a(L) — 0

as L — oo, and so by(L) — 0 as L — oo. The term b,(L) defined in (A.14) can be
written as

by(Ly=[4" Y

nezv

2n7r

’

/ AW RRydk — K (22”)

where § , ,, has been defined in (5.13). Change of variables yields that

K., = / R OPR ARk

Jj=1

Notice that 7~! [(sin® k)k—2dk = 1. For given k' € R¥, take L — oo and |n| — oo
such that lim(2nw/L) = k. Then the dominated convergence theorem implies
that K, — K,(K'). If one uses the bound (A.7), 2¢/ < o and the dominated
convergence theorem, one can show that b;(L) — 0 as L — 0. We leave the details
to the reader. Thus from (A.14) and the above results it follows that [A|~!I1,] — 0
as L — 0. This proved (A.12) completely.

It is clear that a straightforward application of the method used in the proof of
(A.13) shows that

|47 Tr((1 £ A ) log(1 + A ) — Te((1 £ E 4 log(1 + E1))| — 0

as L — oo. We again leave the detailed proof of the above result to the reader. This
completes the proof of Proposition A.2. Q.E.D.
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