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Abstract. We prove that twist maps of the cylinder that are attracted by any fixed
point of MacKay's renormalization operator have a transitive invariant golden circle,
provided the fixed point satisfies a few simple, purely topological conditions. These
conditions can be verified by finite-precision arithmetics; they are fulfilled for the
simple fixed point and seem to be fulfilled for the critical fixed point. Taking existence
and hyperbolicity of the critical fixed point for granted, we conclude that the standard
map has a critical invariant golden circle; the induced map on the circle is topologically
conjugate to a rigid rotation; we can show that the conjugator is Holder continuous;
moreover, it is not differentiable on a dense set of points.
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0. Introduction

0.1. Statement of Results. Let us consider one-parameter-families of symmetric area-
preserving twist maps of the cylinder. A well known example is the standard family,
given by

x — x + y', y' = y sin 2πx .
2π

* This paper is part of a PhD thesis that is in preparation under the supervision of Oscar E. Lanford
III at the ETH. I thank Oscar Lanford for having asked me precisely the right questions
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Fig. 1. The action of the critical fixed point

We focus on the question of whether a homotopically non-trivial invariant circle with
the golden rotation number exists. For the standard family, there seems to be a critical
value κc « 0.9716 such that below this value there exists a smooth golden circle,
while above this value there is none. Our main interest is to find a critical circle,
i.e., an invariant curve at precisely the critical parameter value. MacKay has related
this problem to the existence of a so-called critical fixed point of a renormalization
operator for periodic twist maps (see [2,3]). Numerical evidence strongly suggests
that such a fixed point indeed exists; a proof, however, is still lacking. Our aim is to
show that, if the critical fixed point exists and satisfies a few simple assumptions, then
any map attracted by it has a transitive invariant golden circle. These assumptions
are purely topological and can be verified by finite-precision arithmetics. They appear
to be fulfilled for the critical fixed point, in the sense that they are satisfied by an
approximate fixed point of degree 28.

If we take existence and hyperbolicity of the critical fixed point for granted, it
follows from our theory that any map on its stable manifold has a transitive invariant
golden circle. Since the linearization of the operator seems to have exactly one
essential expanding eigenvalue at the critical fixed point, the stable manifold has
codimension one, and it follows that a generic one-parameter family will intersect it.
The critical value mentioned above is interpreted as giving the point of intersection of
the standard family with the stable manifold of the critical fixed point. We conclude
from our theory that at this parameter value, the standard family has a transitive
invariant golden circle.

There is a so-called simple fixed point of the renormalization operator (see [2,
Sect. 4.3]), given by a linear shear, that seems to be related to the existence of a
smooth golden curve. For this fixed point, everything can be calculated explicitly, and
it turns out that it satisfies our assumptions too. It follows that any map attracted by
the simple fixed point has a transitive invariant golden circle. The argument presented
here does not give smoothness of the invariant circle or of the conjugator to the rigid
rotation; it only implies that the conjugator is Lipschitz continuous.

We now state the assumptions that make our theory working. Let Όυ and Dτ

be connected open bounded subsets of the plane. A pair (E7, T) of homeomorphisms,
defined on Dυ and Dτ respectively, is called self-similar if it satisfies the fixed point
equation:

U = BTB~ι, T = BUTB~X.

Here, B is assumed to be a linear-diagonal map. A self-similar pair will sometimes be
called a fixed point. Both the critical and the simple fixed point of MacKay's operator
are in this sense self-similar.

Figure 1 shows the action of the critical fixed point on its domains. To the left,
we see the sets Dτ and TDT, to the right the sets UDV and Dv. Roughly speaking,
T shifts to the right, and U to the left.
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Fig. 2. The domain extension property

A pair of maps (Ϊ7O, To), defined on the domains Όυ and Dτ respectively, is called
asymptotically self-similar if there exists a sequence of pairs (Uk,Tk) (defined on the
same domains) and a sequence of linear-diagonal rescalings Bk+ι such that

(Uk+x,Tk+ι) = Bk+ι{Tk,UkTk)Bklχ , k > 0;

the maps Uk and Tk are required to converge uniformly on their domains, and the
diagonal elements of Bk+ι are required to converge. Of course, the limit pair (ί/,T)
is self-similar in the above sense.

Let F be a homeomorphism of the cylinder. Its lift, which will be denoted by the
same letter, is a periodic map of the plane; we implement periodicity by requiring
that F commute with the backward rotation R:(x,y) ι-» (x — l,y). The map F is
called asymptotically self-similar if the pair (R, F) is asymptotically self-similar.

We now state the basic assumptions on the fixed point (t/, T). These assumptions,
of course, will not hold for arbitrary domains on which U and T are well defined.
But it turns out that we can find special domains, for the critical fixed point as well
as for the simple fixed point, such that the assumptions are fulfilled simultaneously.
There are six of them. The first three are enough to guarantee existence of a golden
circle, but they do not give transitivity.

Al. The diagonal elements of B are of absolute value strictly greater than one.

(This assumption implies that B~ι is a contraction. For the critical fixed point,
the diagonal elements of B are a « - 1.415 and β « - 3.067. For the simple fixed

point, we have a = and β = -, where ω = 0.618 . . . is the golden number.)
ω ωz

A2. The fixed point has the so called domain extension property (see Sect. 1):

C D,
T •> B~ιDτ C D.T 5 TB~[DT cDτ

(These assumptions play an independent role in renormalization theory: if they hold
for complex domains, then the linearization of the renormalization operator (on an
appropriate space of analytic pairs) at a fixed point is a compact operator (see [2,
Sect. 2.3.8]).)

We illustrate these conditions for the critical fixed point (see Fig. 2). The big
rectangle is the set Dτ, the square shaped domain is Du. These are said to belong
to the zeroth generation. The small patches are (from left to right) B~ιDu, B~ιDτ,
and TB~ιDτ. (Observe that the rescaling B is a negative matrix.) These are said to
belong to the first generation. The conditions imply that the first generation has to be
contained in the zeroth one; we see that this is indeed the case for the critical fixed
point and the particular domains chosen.
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The third group of assumptions is needed for precluding gaps in the invariant set:

A3.
ΓΊ n Π _L Ch TT ΓΛ r~\ Γ\ _L ίλ ΓΓD~1 Π π D~l ΓUDT n D T ^ e , UB~1DT n B~1DL

These will be called connectedness assumptions (see Sect. 1). We illustrate them for
the critical fixed point (see Fig. 3). The left picture in the first row shows the set UDT

and Dτ; the right one shows the sets Dτ and Du. The picture in the second row
shows the sets UB~[DT and B~ιDu.

Fig. 3. The connectedness assumptions

Under the assumptions stated so far, we can prove the following result:

Theorem 5.17. If a homeomorphism of the cylinder is attracted by a fixed point that
satisfies the assumptions Al, A2, and A3, then it has a compact, connected, separating
invariant set.

Here, the term separating means that the complement of the invariant set on the
cylinder has exactly two unbounded components. If the homeomorphism is an area-
preserving, orientation-preserving, end-preserving C 1 twist diffeomorphism, then by
Birhoff's theorem (see [1,4]), the invariant set is the graph of a Lipschitz function
(see Sect. 6). This gives the following result:

Theorem 6.9. Let F be an area-preserving, orientation-preserving, end-preserving C1

twist diffeomorphism of the cylinder. If F is attracted by any fixed point that satisfies
the assumptions Al, A2, and A3, then F has an invariant golden circle that is the
graph of a Lipschitz function.

Fig. 4. The first and the second generation

In particular, since the critical fixed point satisfies the assumptions Al, A2, and
A3, and since the standard family intersects its stable manifold, the standard map has
an invariant golden circle at the critical parameter value.

For the idea of the proof, look at Fig. 4. The picture shows the first and the second
generation (see Sects. 1 and 7). Observe that the second generation is contained in the
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first one and that its five patches overlap. (These are, from left to right: UTB 2DT,
B~2DT, B~2DU, TB~2DT, and TB~2DU.) Moreover, the second generation looks
like a thick curve. We shall show that the union of the patches of one generation
converges to an invariant curve, with increasing generation.

As mentioned above, these assumptions are not sufficient for transitivity. Transi-
tivity follows if we impose the fourth basic assumptions (see Sect. 7):

A4. The map TB~~2 is a uniform contraction on Όυ U Dτ.

The assumptions of the fifth group will be called disjointness assumptions (see
Sect. 7):

A5.
UD

B - 1 Dur\UB-γDu =

We illustrate them for the critical fixed point (see Fig. 5). The picture in the first
row shows the sets UDT and Όυ. On the left picture of the second row, we se sets
UB~XDU and B~ιDτί. The middle picture shows UB~ιDu and B~ιDτ, and the
right one shows UB~ XDT and B~XDT.

Fig. 5. The disjointness assumptions

Using the disjointness assumptions, we can dispense with the Birkhoff theory in
the construction of an invariant curve. This approach, moreover, yields a much more
powerful result, namely:

Theorem 7.34. If a homeomorphism of the cylinder is attracted by a fixed point
that satisfies the assumptions A1-A5, then it has an invariant golden circle, and
the induced mapping on the curve is continuously conjugate to a rigid rotation. In
particular, the invariant curve is topologically transitive. Moreover, the conjugator is
Holder continuous. For maps attracted by the critical fixed point, the conjugator is
not differentiable on a dense set of points.

The last statement of Theorem 7.34 is implied by the following result:

Lemma 7.32. Under the conditions A1-A5, the number

μ =
log]α[

l o g -
ω
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is an upper bound for the Holder exponent of the conjugator at the origin. Here, a is
the smaller (in absolute value) of the diagonal elements of the rescaling B.

For maps attracted by the critical fixed point, μ is strictly smaller than one,
its numerical value being equal to 0.712. It follows that the conjugator of the
critical golden curve is not differentiable at the origin, and, therefore, that it is not
differentiable on the orbit of the origin, which is dense. (For maps attracted by the
simple fixed point, μ is equal to one.)

We can show that the Holder exponent of the conjugator is, in fact, equal to μ;
for this, however, we need an additional assumption:

A6. The map TB~ι is a uniform contraction on Όυ U Dτ.

This assumption is stronger than the fourth one. A direct calculation shows that it
is satisfied for the simple fixed point. In the case of the critical fixed point, it looks
as if it was satisfied too, but the numerical evidence is not conclusive.

Lemma 7.33. Under the conditions A1-A6, the Holder continuity holds with the
number μ from Lemma 7.32 as exponent.

By Lemma 7.32, this Holder exponent is optimal.
For maps attracted by the simple fixed point, this lemma implies that the conjugator

is Lipschitz continuous.
Now that we have stated all the assumptions, let us indicate how this theory

applies to one-parameter families of twist maps and to the critical fixed point. For
this purpose, we need a precise definition of the renormalization operator.

0.2. The Three-Step Operator. We shall be dealing only with twist maps of the
cylinder, respectively with periodic twist maps (of period one) of the plane. Intuitively
speaking, since the rescaling, i.e., conjugation by B, destroys this periodicity, we have
to renormalize the periodicity too; this leads to the consideration of pairs of maps,
the idea being that the initial pair is (R, F), where R is the rigid rotation by - 1 , and
where F is the periodic twist map. Pairs arising like this from periodic twist maps
obviously commute exactly.

We shall be dealing only with symmetric (or reversible) twist maps. Symmetry
(or reversibility) means the following. Let S be the reflection across the y-axis:
S(x,y) = (—x,y). A homeomorphism F of the plane will be called "symmetric"
if conjugation by S reverses it:

SFS = F~ι .

Notice that there are (parameter-dependent) coordinate-changes that make the maps
of the standard family symmetric in this sense (see [2, Sect. 1.1.4]). The line {y = 0}
will be called the symmetry axis. Symmetry is important in this business for several
reasons:
• Symmetry makes it easy to find periodic orbits numerically (see [2, Sect. 1.2.3.1]).
(Periodic orbits of certain types are essential for determining the critical parameter
value in a given one-parameter family, see [2, Sect. 4.4.1].)
• Symmetry is crucial in the very definition of the renormalization operator (see
below).
• Restricting to symmetric maps eliminates many unstable directions from the fixed
point problem for the renormalization operator.
• The particular symmetry chosen in the renormalization of a one-parameter family of
commuting pairs fundamentally affects the result of the iteration process. For instance,
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if we choose the involution SR instead of S in the standard family (at the critical
parameter value), we observe convergence to a three-cycle instead of convergence to
a fixed point (see [2, Sect. 4.4.1]).
• Symmetric area-preserving maps automatically have zero Calabi invariant (zero
flux) (see [2, Sect. 4.2.4]); restricting to zero flux is useful, because maps with non-
zero flux cannot have invariant curves that go around the cylinder.

On an appropriate space of pairs of symmetric area-preserving maps, MacKay's
renormalization operator for the golden number acts as follows (see [2, Sect. 4.1.1]):

U = BTB~ι, f = BTUB~ι.

(Notice that for reasons that will become apparent in Sect. 2, we chose a different
composition order in the second equation than MacKay; namely UT instead of TU.)

This operator has a disadvantage: it breaks the symmetry, unless U and T commute.
For the composition TU of two symmetric maps U and T is symmetric if and only
if their multiplicative commutator C = U~ιT~ιUT is equal to the identity:

STUSTU = STSSUSTU = T~ιU~ιTU = C~ι.

Since exact commutativity is a very restrictive condition, this disadvantage is a grave
one. Although it is not crucial for our purposes, a possible solution of this problem
may be of interest. The idea is to iterate the operator three times and to rearrange the
composition order such that it becomes palindromical. Since the critical fixed point
is commutative, this makes sense. Let us, therefore, consider the following operator:

U = B3TUTB3

ι, f = B3TUTUTB3

ι, S = B3SB3

ι.

Here, the rescaling B3 is a product of three single-step rescalings. The third equation
expresses the fact that the rescaling B3 preserves the symmetry.

We shall call this operator the three-step operator and denote it by TV. The three-
step operator has the following properties:
• TV preserves symmetry.
• TV preserves area-preservation.
• TV preserves commutativity.
• A commuting fixed point of TV is a fixed point or a three-cycle for MacKay's
operator.

0.3. The Normalization Conditions. In order to have a well defined renormalization
operator, we need a prescription for calculating the rescaling B3 for a given pair
(£/, Γ). We shall do this by giving two normalization conditions that determine the
rescaling B3 by the requirement that the pair B3(TUT, TUTUT)B3

X be normalized.
A possible choice is the following: a pair (£7, T) is called normalized if the map T has
a fixed point at a prescribed location on the symmetry axis, e.g. at (0, —1), and if U
maps this point by one unit to the left: ^ i/(0, — 1) = — 1. (Here, πλ is the projection
onto the first coordinate direction.) It can be shown that the set of normalizable pairs
is open in an appropriate space of symmetric pairs. (A fixed point of a symmetric
map T on the symmetry axis can be interpreted as the point of intersection of a
particular curve with the symmetry axis. Namely as the point where the symmetry
line of the involution ST intersects the symmetry axis. (For the notation of symmetry
lines, see [2, Sect. 1.1.4].) For symmetric twist maps, this intersection can be shown
to be transversal. Numerical evidence suggests that the operator can be iterated many
times in a neighborhood of the pair (R,F)9 where F is the standard map at the critical
parameter value.
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0.4. The Critical Fixed Point. It is well known that MacKay's operator has a critical
fixed point that is area-preserving and commuting. (These latter claims follow from
the fact that there are area-preserving commuting pairs attracted by the critical fixed
point.) (Note that there may be non-trivial fixed points different from MacKay's; in
this paper, the term critical fixed point always refers to the one found by MacKay.)

Furthermore, it is well known that, besides the critical fixed point, MacKay's
operator has a critical three-cycle (see [2, Sect. 4.4.1]). We expect, therefore, that
the three-step operator has (at least) four non-trivial fixed points, three of which
correspond to the critical three-cycle. This is indeed the case. The non-trivial fixed
point of the three-step operator that is a fixed point for MacKay's operator too will
be called the dominant fixed point. Let us denote it by (E/,T). Then we have

U = B3TUTB3

ι , T = B3TUTUTB3

ι , 5 - B3SB3

ι,

where B3 is the third power of the critical single-step rescaling B. We show that
existence of additional (so-called subdominant) fixed points can be deduced from this
equation; these correspond to the critical three-cycle of MacKay's operator. Consider,
for instance, the involution SU. Since U and T commute, SU is a symmetry for both
U and T. Using the first and the third of the above equations, we write

SU = SB3TUTB3

ι = B3STUTB~ι = B3T~lSUTB3

l

Since T (and therefore T~ι as well) commutes with U, we may rewrite the fixed
point equation as follows:

U = B3T-lTUT(B3T~lrl,

T = B3T-]TUTUT(B3T-ιΓι ,

SU = B3T-ιSU(B3T~1)-1 .

This fixed point equation corresponds to an operator that has the same temporal
part (i.e., that involves the same compositions) as the old one, but that preserves
the symmetry SU instead of the standard symmetry. It is this operator, therefore,
that governs the critical behavior observed for instance in the standard family with
the involution SR. If we choose coordinates such that B3T~ι is linear-diagonal, we
obtain one of the three universal pairs forming the three-cycle, and we see that this
one is just a coordinate transform of the dominant fixed point, a fact conjectured by
MacKay (see [2, Sect. 4.4.2, p. 4.4.42]).

The fixed point of the rescaling B3T~ι is the point of intersection of the golden
curve with the symmetry line of the involution SU, because the map B3T~ι has the
golden curve as well as this symmetry line as invariant curves. The eigenvalues of
the linearization D(B3T~ι) at the fixed point are the so-called subdominant scaling
factors as ~ —4.85 and βs ~ — 16.86. It is a numerical fact that they are different
from the third powers of the dominant single-step scaling factors a and β. But there
is a simple relation between the dominant and the subdominant scaling factors, which
can be derived as follows:

asβs = det(D(B3T-1)) = det(B3)det(DT~ι) = det(£3) = άtt(B)3 = (aβ)3.

(Here, the Jacobian is to be taken at the fixed point of B3T~ι.) This identity explains
a well known experimental fact (see [5]).
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0.5. The Spectrum at the Dominant Fixed Point. We shall concentrate on the dominant
fixed point, because the subdominant ones add nothing essentially new. Let us
discuss the spectrum of the linearization of the three-step operator at this fixed point.
Numerical evidence suggests that there is exactly one essential expanding eigenvalue
δ3 « 1.6283; this one plays the role of Feigenbaum's constant. Furthermore, two
parts of the spectrum can be analyzed explicitly: the so-called coordinate-change
spectrum and the non-commuting spectrum see [2, Sects. 2.3.4 and 4.2.4). (The
coordinate-change eigenvalues belong to perturbations generated by infinitesimal
coordinate-changes. The non-commuting eigenvalues belong to perturbations breaking
commutativity.)

It turns out that the coordinate-change spectrum of DN in the space of symmetric
perturbations looks as follows:

α3-
2fc/33"

ί, ufmβ\~n, (k,l,m,n)eNΛ

0, (k,l) φ(0,0), (m,n) φ (0,1),

where α 3 = o? and β3 = β3. (This is shown in the author's thesis [6]; the calculation
is the same as the corresponding one in [2].)

The only expanding values are β3 (corresponding to a shift along the symmetry
axis) and β3/θί\, corresponding to a perturbation Γ(x,y) = (0, x2), which generates
a quadratic shear. For the dominant fixed point (with scaling factors α 3 « — 2.838
and β3 ~ —28.65), the absolute value of β3/ct\ happens to be smaller than one.

It turns out that the non-commuting spectrum looks as follows:

-a:2kβ;1, -a:2mβι

s-
n , (k, I, m, n) e (N0)

4 .

Here, as and βs are the subdominant scaling factors introduced above. (This is shown
in the author's thesis [6]; the calculation is similar in spirit to the corresponding one
in [2]).

We see that the non-commuting spectrum, apart from the two eigenvalues equal to
— 1, is the negative of the coordinate-change spectrum, with the subdominant scaling
factors replacing the dominant ones. (Compare this with MacKay's operator, where
the non-commuting spectrum is the exact negative of the coordinate-change spectrum
(see [2, Sect. 4.2.4]).)

We are going to work with pairs that stem from symmetric periodic twist maps.
Then the non-commuting part of the spectrum does not turn up. But the coordinate-
change eigenvalues certainly do, and we have seen that there are two expanding
ones. In general, these will make the iteration process divergent. We can cope with
this problem in two ways. Either we work with quadratic rescalings, obtained by
composing a linear-diagonal rescaling with a quadratic symmetry-preserving shear of
the form

(x, y) ι-> (x, -c + y + Qx2).

(For the details, see the next paragraph. In order to determine the two additional
coefficients c and Q, we need two more normalization conditions.) Then we argue
that the whole theory to be developed in the next sections works just as well with
quadratic rescalings. (In particular, it is not necessary for our theory that different
rescalings commute.) Or we can argue as follows: the presence of two unstable
coordinate-change eigenvalues implies that the stable manifold of the fixed point
has codimension 3; therefore, generic three-parameter families can be expected to
intersect it. Now we simply make the standard family a three-parameter family, by
conjugating it with the above quadratic shears. Numerical experience suggests that
there is a quadratic shear such that the standard family, conjugated by it, intersects
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the stable manifold of the dominant fixed point. (The coordinates given by this shear
are called scaling coordinates by MacKay, see [2, Sect. 2.3.5]; scaling coordinates are
coordinates in which the linear-diagonal renormalization converges; we shall clarify
this concept in the next paragraph.)

One last remark: for combinatorial reasons, the three-step operator is not conve-
nient for our theory. But it is easy to see that a twist map that is asymptotically
self-similar with respect to the three-step operator and the dominant fixed point is
asymptotically self-similar with respect to the single-step operator too. Therefore, it
is asymptotically self-similar in the sense stated at the beginning of this section.

Summing up: Nothing prevents us from applying our theory to generic one-
parameter families of symmetric twist maps on the cylinder, and to the critical fixed
point.

0.6. Scaling Coordinates. In the last paragraph, we showed by an abstract argument
that there are coordinates, given by a quadratic shear, such that, at the critical value,
the linear-diagonal renormalization yields convergence to the critical fixed point. Here,
we are going to construct these coordinates explicitly. I suggest that this paragraph
be skipped on first reading.

For simplicity, we consider the single-step operator:

U = BTB~ι , T = BUTB~ι .

As mentioned before, we have to use quadratic rescalings in order to make
the renormalization process at the critical value convergent. Let us write B in the
following form:

x' = ax, y' = β(-c + y + Qx2).

(The number c can be thought of as (an approximation to) the ^-coordinate of the
point of intersection of the golden curve with the symmetry line {x = 0}.)

The rescaling B is obtained by composing a quadratic, symmetry-preserving shear

Γ:(x,y) ι-> (x, -c + y + Qx2)

with a linear-diagonal scale change

Δ:(x,y) ι-> (ax,βy);

i.e., we have

B = ΔΓ.

Note that conjugation by B preserves symmetry. Moreover, it preserves area-
preservation, the Jacobian of B being constant.

The rescaling B can be defined by enforcing certain normalization conditions. (Of
course, we need four of them.) Their precise nature is not important for our present
purposes.

The stable manifold at the critical fixed point of the operator thus defined has
codimension 1 (in the space of commuting pairs). Let (£/0,T0) be a commuting pair
on this stable manifold. We shall use the notation

where (Pj.Qj) denotes the j t h Fibonacci pair; the sequence of Fibonacci pairs, starting
with j = — 1, looks as follows:

(1,0), (0,1), (1,1), (1,2), (2,3), (3,5), . . . .
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Iterating the operator j times, with starting point (f/0,T0), generates the pair

Since, by assumption, (f/0,T0) lies on the stable manifold of the fixed point, the
pairs (U3,T3) converge. Moreover, the rescalings B3 converge (in the sense that the
sequences a-, βj9 c j 9 and Q- converge).

The limits a^ = lim α^ and β^ — lim β3- are simply the scaling factors at the
critical fixed point, which we denoted by a and β in Sect. 0.1. (The limits of the
sequences c3 and Q- depend on the normalization conditions; they are not important
here.)

We shall need the following numerical facts:

< 1, < 1.

(Remember that we have a^ « - 1.415 and β^ « - 3.067.)
In the same way as before, we write B- — Δ-Γ3. In this notation, we have

- j j

Now we make two simple observations. First: any two of the above quadratic
shears commute: Γ-Γk = ΓkΓ . Moreover, the composition is a shear of the same
kind, given by c = c- + ck and Q = Q3 +Qk. Therefore, the quadratic shears can be
identified with R2, composition corresponding to vector addition.

Second: commuting a quadratic shear Γ through a linear-diagonal scale change Δ
acts on Γ as follows:

ΓΔ = ΔΓ => Γ =

ΔΓ = ΓΔ^Γ =

-„ 0

0 1
1β o

r,

0 ^2
β r.

From now on, we regard the shears as two-dimensional vectors; the first equation,

e.g., means that the number c is multiplied by — and that the number Q is multiplied
.2 \ βo?

In the expression for (£7̂ , 7 p , we commute the shears Γ to the center. According
to the above observations, we obtain

where

ΓJ = Γi +

1

Γ, + ... +

\

βχ . β3-ι

0

0

Λ,2 Λ / 2
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The maps Γ- converge, since the resulting series is dominated by a convergent
geometric series. (Here, we are using the convergence of the series α and β ,
the above numerical facts, and the fact that the maps Γ- are bounded (they even

converge).) Let Γ denote the limit. We have

1 Λ \ /Ik 0

A +....
0

PΛΛ
Now, we replace Γj by Γ in the expression for (U}, TJ) and claim that the resulting
pairs

ά...
-1... ΔJ1

still converge. In order to prove this, we commute the error term Γ — Γ all the way
through to the left, and its inverse to the right. Because of

1

\ o

0

> ? . . .

\ 0 \

<*! a

3+\

the error term commuted through becomes

/ 1
0 \

V
0

By dominated convergence, these maps converge as j -^ oo, and we have proved
that the modified sequence (*) converges. (Here, we are using the convergence of
the sequences o^ and βj, the above numerical facts, and the fact that the maps Γ3

converge.) But this is the same as saying that the pair Γ(U0, T0)Γ~ι is asymptotically

self-similar. The scaling coordinates, therefore, are those given by the map Γ.

1. Domain Pairs

We consider an arbitrary fixed point of the renormalization operator for twist maps.
The aim of the first three sections is to construct a compact connected invariant pair
of sets for this fixed point. In the first section, we recursively define a sequence of
pairs of sets and show that the limit pair is compact and connected. In the second
section, we give an explicit representation of these pairs, which is used in the third
section to show that the limit pair is invariant for the fixed point in a sense that will
be defined there. The assumptions on the fixed point are stated as they are needed.

Let Όυ and Dτ be connected open bounded subsets of the plane, and let (£/, T)
be a pair of homeomorphisms defined o n D ^ and Dτ respectively.

We assume that the pair (U,T) satisfies the fixed point equation

U = - 1 T = BUTE - 1



Renormalization for Golden Circles 381

where B is a linear-diagonal map. The only additional assumption on B we shall
need later on is the following:

Al. The diagonal elements of B are of absolute value strictly greater than one.

(For the present purposes we need not, and do not, assume that U and T commute.
Therefore, the composition order in the second equation is significant.)

The second basic assumption is that the maps on the right-hand sides of the fixed
point equation are defined on domains that are strictly larger than the domains of U and
T respectively. This property will be called domain extension property. Specifically,
we require

A2.

In particular, it follows from this that TDT and UDJJ are bounded sets. Moreover, it
follows that the equation U — BTB~X extends U to a homeomorphism on DUUDT.
From now on, we take U to be this extension, i.e., we assume that U is defined on
Dτ as well.

Let us now define a sequence of pairs {M-,N3) of open sets that starts with the
pair (DJJ, Dτ); the terms of this sequence will be called domain pairs.

We put Mo = DU9 No = Dτ and

M J + 1 = TB~ιN3 , Nj+ι = B-\M0 U Nά)

for j > 0, so long as TB~{ is well defined on Nj.

Lemma 1.1. Under the assumption A2, the pairs (M ,7V ) are well defined for all
non-negative integers j , and the following relations hold:

for all

Proof

MJ+ι C .

non-negative integers j .

We prove the claims

TB'WjCMj, 1

M} , NJ+i

1B~ιWά C N3

by induction. For j = 0, they are identical to the domain extension property. We
have B~ιN0 = B"ιΉ^ C Dτ\ therefore, M{ is well defined. (N{ is well defined
anyway.)

Let j be greater than or equal to zero; we assume that the claims have been proved
up to j and that M-+ι and NJ+ι are well defined. Then we have

TB~ιW~[ = TB~ιB-χW3 U TB-χB-χW3. c TB~lN3 = Mj+ι

by the definitions of Nj+1 and of M + 1 and by the inductive assumption. In the same
way we obtain

B~lMJ+l = B~ιTB-χN3 c B~XM3 C NJ+ι

and

= B~2M3 U B~2N3 c £ - 1 A ^ C NJ+ι .
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In particular, it follows that we have

B-lN^l C B~ιN3 C B~ιN0 = B~XDT C Dτ ,

which shows that Mj+2 is well defined.
[For this proof, the fixed point equation is not needed.]
We have shown that the sets M- and Nj form decreasing sequences of non-empty

compact sets. Next, we impose an additional assumption on the domains Du and Dτ,
namely

A3.

(Remember that U is defined on Dτ as well.) These assumptions will be called
connectedness assumptions.

Lemma 1.2. Under the assumptions A2 and A3, the following relations hold:

UN3 Π N3 φ 0 , UB-χN3 Π B~ιMJ φ 0

for all non-negative integers j .

Proof For j = 0, these claims correspond to the second and third connectedness
assumption. Proceeding by induction, we obtain

UNj+ι Π Nj+ι = U(B~ιMJ U B~XNO) Π (B~lM3 U B~ιN3)

D

Making use of the fixed point equation, we obtain furthermore

~2(MJ U N3) Π B-ιT

~2{M UiVpn B"ιBUTB-2

UB~ιNJ+ι Π B-χMJ+ι = UB~2(MJ U N3) Π

= UB~2{Mj UiVpn B"ιBUTB-2NJ

D U(B

~2= U(B~2M3 ΠB

= UB-\B-χMJ Π UB~XN3).

The last set on the right-hand side is not empty by the inductive assumption. D

Lemma 1.3. Under the assumptions A2 and A3, we have

Mά n Nj φ 0

for all non-negative integers j .

Proof For j = 0, the claim amounts to the relation Dv Π Dτ φ 0, which is true by
the first connectedness assumption.

We have M J + 1 = TB~xNj = B~XUN3 by the fixed point equation. (Remember

that we assume U to be defined on Dτ too, and that N C Dτ by Lemma 1.1.) Since

Nj+ι = B~XM. U B-ιNj9 we obtain

n M J + I D B~lNj π B~lUNά = B~X{N3 Π UN3)

by Lemma 1.2. ϋ
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Lemma 1.4. Under the assumptions A2 and A3, the sets MJ and NJ are connected
for all non-negative integers j .

Proof. Mo = DJJ and iV0 = Dτ are connected by assumption. Assuming that M
and Nj are connected, so is M J + 1 , because it is the continuous image of a connected
set, and so is Nj+ι, because it is the continuous image of an overlapping union of
two connected sets. D

Now, we define the sets Lj by L3 = M- U Ny

Lemma 1.5. The sets L3 satisfy the following recursion relation:

for all non-negative integers j.

Proof. By definition, we have

= TB-lNj+lUB~l(MJ+lUN]+l)

= TB~lB-\N3 U Mj) U B~ιLj+ι

= TB-2LJUB~ιLJJ U B L J + ι

for j > 0. D

Finally, we take the limit pair of the (M^N^:

(M,N)=(f)M3,f)N\.
J J

The union of M and TV will be denoted by L. We have

(Remember that the sequences (M3) and (Nj) are decreasing.)
We call a pair of sets non-empty, respectively compact, respectively connected, if

the union of its two sets is non-empty, respectively compact, respectively connected.

Lemma 1.6. Under the asumptions A2 and A3, the limit pair (M, N) thus defined is
non-empty, compact, and connected.

Proof. Since L J + 1 C L3 C Lj, it follows that we have

The assertions now follow from the fact that L is the intersection of a decreasing
family of non-empty compact connected sets. D
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2. Fibonacci Strings

We are going to show that the sets L3 that we constructed recursively in the previous
section are in a certain sense approximately invariant for the pair (£/, T). The principal
tool will be an explicit expression for these sets. This expression will involve the
notion of Fibonacci strings, which we are going to define first.

Consider the fixed point equation

U = BTB~[ , T = BUTB~ι .

Iterating it once yields

U = B2UTB~2 , T = B2TUTB~2 ,

and once more

U = B3TUTB~3, T = B3UTTUTB~3.

The sequences of the two symbols U and T arising like this on the right-hand sides
are called Fibonacci strings; we denote them by F-. Formally, they are defined as
follows:

F_γ=U, F0 = T,

Fj+2=FJFJ+1, j > - \ .

We shall sometimes interpret these strings as mappings, namely as the corresponding
compositions of the maps U and T. Note that the composition order FJFJ-+ι, rather
than Fj+ιFj, implies that the strings grow to the left: for any two Fibonacci strings
with j > 0, the snorter one is a tail of the longer one. (This property was the objective
for using the composition UT rather than TU in the fixed point equation; it is crucial
for the definition of the Fibonacci tails (see below).)

Lemma 2.1. The fixed point equation translates into

F3=BF}+ιB-\ j > - l .

Proof. For j = - 1 and j = 0, the assertions correspond to the fixed point equation.
Proceeding by induction, we obtain

for j > 0. D

Lemma 2.2.

U = F_X j \ j

Lemma 2.2 says that conjugating by B3 lowers the index of the strings by j .

Proof. The assertions follow by iterating Lemma 2.1. D

Let Σ act on symbol strings by means of the substitution C7 ι—> T and T H^ UT.
The operator Σ can be used to define the Fibonacci strings recursively:

Lemma 2.3.
F3+ι=Σ(F3), j > - l .

Prof For j = - 1, we have Fo = T = Σ(U) = Σ(F_γ). For j = 0, we have
Fι=UT = Σ(T) = Σ(F0).
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Proceeding by induction, we obtain

FJ+2 = F3FJ+ι = Σ{F3_γ)Σ{F3) = Σ{Fά_γFά) = Σ(FJ+ι)

for j>0. D

Lemma 2.4. For any string of the symbols U and T, we have

Lemma 2.4 says that Σ acts formally by conjugation by B~ι.

Proof. The claim follows immediately form the identities

and

which follow from the fixed point equation. D

We now introduce what we call Fibonacci tails; these are tails of Fibonacci strings.
We shall write {Fj} for the set of tails of the j t h Fibonacci string; this set is meant
to include the empty string but not the j t h Fibonacci string itself. Since the Fibonacci
strings grow to the left, there is exactly one Fibonacci tail of each length.

Now, we are ready for the explicit expression for the sets Ly.

Lemma 2.5.
L3 = {FJ}B~JDT U {Fj_ι}B~jDu , j > 0.

Lemma 2.5 say that L- is a union of two sets, each of which is a Fibonacci orbit,
excluding the last iteration, of a small open set.

Proof. Denoting the empty string by 0, we have {F_λ} = {Fo} — {0} and {Fx} =

{0,T}. Moreover, Lo = DUUDT and Lλ = MιUNι = TB~1DτUB~ι(DuUDτ).
For j = 0, the assertion therefore is M0U No = Dτ U Dv, which is true. For

j = 1, the assertion is MιUNι= B~ιDτ U TB~[DT U B~xDυ, which is true as
well.

Using Lemma 1.5, we obtain inductively

\jTB-2{Fj}B-jDτUTB-2{Fj_1}B-jDu

= B-ι{FJ+i}BB~ij+2)Dτl)TB-2{Fj}B2B-(:ι+2)Dτ

U B-^F^BB-^DJJ U TB-2{Fj_λ}B2B-{i+2)Du

= [Σ({Fj+ι}) U TΣ2({F3})]B-(i+2)Dτ

U[Σ({Fj})UTΣ2({FJ_ι})]B-{i+2)Du

for j > 0, (where we have used Lemma 2.4 in the last step), and the proof is reduced
to the combinatorial identity

{Fj+2} = Σ({Fj+ι}) U TΣ2^}), j > - 1,

which will be proved in Lemma 2.8. D
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Let us introduce a little bit more terminology. To each Fibonacci tail F, there
exists a unique successor G. We define the symbol valued function v(F) to be equal
to U or to T, according to whether G starts with U or T. The symbol v(F) will
be called the next symbol of the string F. Furthermore, let {FJ}U be the level set
of the function v on {Fj} corresponding to the level U, and {F3-}τ be the level set
corresponding to the level Γ; this simply means that for F G {FJ}U, the next symbol
is U, and for F G {F3}τ, the next symbol is T.

Lemma 2.6. Let F be any Fibonacci tail. Then we have the following equations:

v(Σ(F)) = T, v(TΣ2(F)) = U.

Proof. Since F is a Fibonacci tail, there exists a Fibonacci string F3 and a string Δ,
different from the empty string, such that F = ΔF. This implies F + 1 = Σ{F ) —
Σ(Δ)Σ(F). Because of Σ(U) = T and Σ(T) = UT, it follows that each string
(different from the empty string) in the image of Σ ends with the symbol T. In
particular, this holds for the string Σ(Δ), and we have shown that v(Σ(F)) = T.

For the proof of the second assertion, we observe that

Because of Σ2(U) = UT and Σ2(T) = TUT, it follows that each string in the image
of Σ2 ends with the symbols UT. In particular, this holds for the string Σ2(Δ), and
we have shown that u(TΣ2(F)) = U. Ώ

Lemma 2.7. For j > — 1, the following inclusions hold:

Σ({Fj+ι}) C {FJ+2} , TΣHiFj}) C {FJ+2} .

Proof In order to prove the first inclusion, we take F G {F J + 1} and let Δ be
the difference string to the Fibonacci string F-+x. Then we have FJ+ι = ΔF, and it
follows that FJ+2 = Σ{FJ+ι) = Σ(Δ)Σ(F); therefore, Σ(F) is a tail of the Fibonacci
string FJ+2.

For the proof of the second inclusion, we take F G {Fo} and let Δ be the

difference string to the Fibonacci string F-. Then we have F3 — ΔF, and it follows

that FJ+2 = Σ2(F3) = Σ2{Δ)Σ2(F). Therefore, Σ2(F) is a tail of the Fibonacci

string FJ+2. Furthermore, by the definition of Σ, the length of the string Σ2(Δ) is at

least 2; it follows that either UΣ2(F) or TΣ2(F) is a tail of FJ+2. Lemma 2.6 rules

out the first case, and we have shown that TΣ2(F) G {FJ+2}. D

Lemma 2.8. For j > - 1, the following identity holds:

{FJ+2} = Σ({F]+ι})UTΣ2({F}}).

Proof By the preceding lemma, we know that the right-hand side is contained

in the left-hand side. Since carά{Fj+2} = card{F J + 1} + cardfi7^} (observe that

cardf^} = length^)), it is sufficient to show that Σ({FJ+ι}) Π TΣ2({F3}) = 0.

Assume to the contrary that F G {^j+i} and G G {F3} and that

Σ(F) = TΣ2{G).

Lemma 2.6 implies that the next symbol of the left-hand side is T and the next symbol
of the right-hand side is U, which is a contradiction. D
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Finally, we formulate a sharper version of Lemma 2.5.

Lemma 2.9. We have

M3 = {F3}UB~WT U {FJ_ι}uB-Wu ,

Nj = {F3}TB-JDT U {FJ_ι}τB-jDu ,

forj> 1.

Lemma 2.9. says that M consists of the patches for which the next symbol is U,
and N3 of those for which it is T.

Proof. For j = 1, we have M{ = TB~lDu and Nx = B~ιDτ U B-{DU. Since the
next symbol of the string T is U and the next symbol of the empty string is T, the
claim is true.

Fix j > 1 and take any z G Mj+ι. We have

z G M j + 1 = TB~ιN3. = TB-2(M3_X U JV^) = TB~2L3_ι

by definition. It follows from Lemma 2.5 that

z G TB~2FB-(j-l)D = TB-2FB2B-^+l)D ,

where F is a Fibonacci tail, and where D is one of the two sets Dυ and ,DT. By
Lemma 2.4, we have TB~2FB2 = TΣ2{F). Lemma 2.6 tells us that the next symbol
of TΣ2(F) is U.

Now, take any z G NJ+ι. We have

z G NJ+ι = B~\M3 U iV ) = B~ιL3

by definition. It follows from Lemma 2.5 that

z G B~ιFB-JD = B-ιFBB~(j+[)D,

where again F is a Fibonacci tail and where D is one of the two sets Όυ and Dτ.
By Lemma 2.4, we have B~XFB = Σ(F). Lemma 2.6 tells us that the next symbol
of Σ(F) is T. D

3. Approximate Invariant Sets

It follows from the relation B~[DT c Dτ that the sets B~jDτ with j > 1 are
subsets of B~ιDτ. Since, by assumption Al, the diagonal elements of B are of
absolute value greater than one, these sets converge to the point (0,0), and it follows
that this point is contained in B~[DT C Dτ. Let {F} be the set of all Fibonacci tails.
The point set {F} (0,0) will be called the orbit of the point (0,0) under the pair (U, T).
Since Lemma 2.2 gives BjF3B~j = Fo = T, the image ^-(0,0) = B~jT(0,0) is
well defined for all j , and we see that the full orbit of (0,0) is well defined.

We should like to regard the orbit of (0,0) as an invariant set for the pair ([/, T).
But it is a priori not clear what invariant set means in this context. It turns out that
it is more natural work with invariant pairs of sets.

Definition 3.1. A pair (M, N) of sets is called invariant for a pair ([/, T) of maps if

UM CMUN and TN cMUN.
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Of course, the pairs (M , N ) defined in the first section are not invariant for ([/, T).
But they are approximately invariant in a sense given by the following definition:

Definition 3.2. A decreasing sequence {{MyN3)) of pairs of sets is called aprox-
imately invariant for a pair ([/, T) of maps if for each j , there is a k > j such
that

UMk ^M3ΌN3 and TNk c M,. U A^ .

(By the term "decreasing sequence ((M3,N3)) of pairs of sets," we mean that the
sequences (M ) and (TV ) decrease separately.)

Lemma 3.3. Under the assumptions Al, A2, α^d A3, the sequence of the domain
pairs is approximately invariant for the pair ([/, T).

Proof. Fix j and choose fc > j such that

B~k(TDτ U t/L^) C £~ j L> τ .

Since B~jDτ is an open neighborhood of the origin, and since the set TDT U UDV

is bounded, this is possible.
Take any point z G Mk. We are going to show that Uz C Ly

By Lemma 2.5, we have either z G FB~kDτ or z G GB~kΌυ, where F and G
are tails of the Fibonacci strings Fk or Fk_1 respectively. Assume for instance that
z G FB~kDτ. (For z G GB~kDu, the reasoning is completely analogous.)

Since z G Mk by assumption, the next symbol of F is U by Lemma 2.9. If F is
not maximal, i.e., if its successor is not the Fibonacci string Fk, then the string UF
is a tail of the Fibonacci string Fk, and therefore Uz is contained in Lk and a fortiori
in Ly

If, however, F is maximal, then we have UF = F fc, and if follows from Lemma
2.2 that Uz e FkB~kDτ = B-kBkFkB~kDτ = B~kF0Dτ = B~kTDτ. In
the case where z G GB~kDυ, it follows in the same way that Uz is contained in
B-kUΌυ.

By Lemma 2.5, the set B~jDτ belongs to Ly By the definition of k, we therefore
have Uz G Ly

We have shown: UMk C Zy The proof of TNk C L3 is completely analo-
gous. D

The justification of Definition 3.2 lies in the following result:

Lemma 3.4. The limit pair of an approximately invariant sequence is invariant.

Proof. Let {{MyN-)) be the approximately invariant sequence and let

be its limit pair. Fix z G M and take an arbitrary j . We show Uz G M3 U A^. There
exists &k> j such that if w G Mfc then [/w G M3U Ny Since z G M, it lies in Mfc

as well, and we have Uz e M3U N3.
Since j and z were arbitrary, we have proved that UM c M U N. The proof of

TN c M U i V i s entirely analogous. D

Theorem 3.5. Under the assumptions Al, A2, α/ίd A3, the self-similar pair (£/, T)
/zαs α connected compact invariant pair containing the orbit of the point (0,0).

Proof. Because of Lemma 3.3 and Lemma 3.4, the limit pair (M, N) is an invariant
pair for (U, T).
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In order to prove that the orbit of (0,0) is contained in L, we fix j and show that
{F3}(0,0) C L. Since (0,0) e B~kDτ, we have {Fj(0,0) c Lk for all k > j by
Lemma 2.5. We conclude that {i^} (0,0) C L, and since j was arbitrary, the claim
follows. D

4. Asymptotic Self-Similarity

The aim of this section is to show that the conclusions of Theorem 3.5 hold under
the weaker assumption of asymptotic self-similarity. The argumentation is exactly the
same as in the first three sections, and the proofs stay almost verbatim the same. We
include them nevertheless.

A pair (£/, T) is called self-similar if it is a fixed point of the renormalization
operator. A pair (U0,T0) is called asymptotically self-similar if its orbit under the
renormalization operator converges to a fixed point. This orbit looks as follows:

(Vk+ι,Tk+ι) = B^iT^U.T^B-^ , k > 0.

The index k denotes the iteration step number along the orbit; it will keep this meaning
in the whole section.

The maps Bk+ι are assumed to be linear-diagonal and the maps Uk and Tk to
be homeomorphisms on the domains Όυ and Dτ respectively. By convergence to a
fixed point we mean the following: the sequences (Uk) and (Tk) converge uniformly
on their domains, and the diagonal elements of the maps Bk+ι converge.

From these assumptions, it follows that the limit maps, denoted by £7, T, and B,
satisfy the fixed point equation from Sect. 1. Again, we shall assume that the diagonal
elements of the map B are of absolute value greater than one (Al) and that the
renormalization operator extends the domains (A2):

B'ιD^cDτ, r ^ C ί ) τ , TB~ιD^ C Du .

From this and from the convergence to the fixed point, it follows that analogous
assumptions hold for pairs (Uk,Tk) with k larger than a certain fc0; without loss of
generality, we take fc0 equal to zero. Specifically, we shall make use of the following
conditions:

Al'. The diagonal elements of the maps Bk+ι are of abolute value greater than and
bounded away from one for all non-negative integers k.

A2'.
B^Du C Dτ , B~lDT C Dτ , TkB~lχDτ c Όυ

for all non-negative integers k.
In particular, it follows from this that the sets Tk+ιDτ and Uk+ιDu are bounded

uniformly for k > 0. Moreover, it follows that the equation Uk+ι = Bk+ιTkBk^{

extends Uk+ι to a homeomorphism on Όυ U Dτ. From now on we take Uk+ι to be
this extension, i.e., we assume that Uk+ι is defined on Dτ as well.

We now consider a doubly infinite sequence of domains pairs (M^,Nk), defined

by MQ = Dυ, NQ = Dτ for all non-negative integers k and

i\/fk _ rp D - l 7\r/c+1 Nk — ~R~l (Mk+l I I /V^+h
Mj + ι — lktfk+ιl\J , l\j+{ - ΰk+ι{MJ UlVj )

for j > 0, so long as TkBk^χ is well defined on Nk+ι for all non-negative in-
tegers k.
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Lemma 4.1. Under the assumption A2', the pairs (M^N^) are well defined for all
non-negative integers j and k, and the following relations hold:

Afϊ+ι C Af * , N!f+ι C

for all pairs (j, k) of non-negative integers.

Proof We prove the claims

by induction on j . For j = 0, they are identical to the domain extension property.

We have B^N^1 = B'^D^ c Dτ; therefore, Mf is well defined for all k.
is well defined anyway.)

Let j be greater than or equal to zero; we assume that the claims have been proved
up to j and that M^+1 and N^+ι are well defined. Then we have

U

by the definitions of N^+ι and of M f c

+ 1 and by the inductive assumption. In the same
way, we obtain

= B-l{Tk+ιB~l2N^2 c B^Mf 1 C

and

In particular, it follows that

which shows that M^+2 is well defined for all k.
[For this proof, the definition of the pairs (Uk,Tk) is not needed.] D

We have shown that for each fixed k, the sets Mk and N^ form decreasing
sequences of non-empty compact sets. As in Sect. 1, we now impose a connectedness
condition on the fixed point ([/, T), namely (A3),

Again, from convergence to the fixed point, it follows that analogous relations hold
for pairs (Uk,Tk) with k larger than a certain fixed fc0, which is again taken to be
zero. Specifically, we shall make use of the following conditions:

A3;.

DUΠDT^(D, UkDτ ΠDT^®, UkBklχDτ Π B^DJJ φ 0

for all non-negative integers k. (Remember that Uk is defined on Dτ as well for
k > 1; without loss of generality, we assume that this is true for k = 0 too.) These
assumptions will be called connectedness assumptions.

Lemma 4.2. Under the assumptions A27 and A37, the following relations hold:

UkN* ΠN^ίD, UkB^N^+ι n B^M^ φ 0

for all pairs (j, k) of non-negative integers.



Renormalization for Golden Circles 391

Proof. For j = 0, these claims correspond to the second and third connectedness
assumption. Proceeding by induction on j , we obtain

Π JV*+1 = Uk(B-^M^1 U B-l.N^) n (Bk^M^ U

for arbitrary k. Making use of the defining equation Tk+ι = Bk+ιUkTkBk^v we
obtain furthermore

U B fc-_>f2

φ ^ U ^ U iV*+2) Π B

3 Uk(BklιBkl2M^ Π T.B^B

= U^B^B-^M^2 n B^λBk+ιTkB^B^2N^2)

= U.B^iB^M^2 n C / f c + 1 ^ 2 ^ f e + 2 ) .

The last set on the right-hand side is not empty by the inductive assumption. D

Lemma 4.3. Under the assumptions A2; and A3;, we have

M * Π 7VJ2 ^ 0

/or all pairs (j, /c) of non-negative integers.

Proof. For j = 0, the claim amounts to the relation Όυ ΓΊ Dτ φ 0, which is true by
the first connectedness assumption.

We have M*+ι = T.B^N^1 = B^U^N^1 by the definition of Uk+ι.

(Remember that we assume Uk+ι to be defined on Dτ too, and that TVĴ 1 C Dτ by

Lemma 4.1.) Since N£+l = B'^M^1 U B'^N^1, we obtain

by Lemma 4.2. D

Lemma 4.4. ί/^J^r ί/ẑ  assumptions A2X α/t<i A3r, ί/ẑ  ̂ ^ Mj° αn<i 7V̂  ̂ r^ connected
for all pairs (j, k) of non-negative integers.

Proof. The proof is exactly the same as the one of Lemma 1.4. D

Now, we define the sets Lk

3 by Lk- = Mk U 7VJ\

Lemma 4.5. The sets Lk satisfy the following recursion relation:

γk p —1 rfc+1 ι , Φ p —1 p —1 Γ/c+2
^j+2 - &k+\Lj+\ {J1kBk+\Bk+2Lj

for all pairs (j, k) of non-negative integers.

Proof By definition, we have

^ U ̂ "^(Mjϊi 1 U

l2{N^2 U M f 2 ) U

for all pairs (j, fc) of non-negative integers. D
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k):Finally, we take the limit pair of the (Mj% Nk):

3 3

The union of Mk and Nk will be denoted by Lk. We have

Lk = Mk U Nk = p | (Mk U Nk) = p | Lk .
3 3

(Remember that the sequences (Mk) and (Nk) are decreasing.)

Lemma 4.6. Under the assumptions A2' and A37, ί/ze limit pairs (Mk,Nk) thus
defined are non-empty, compact, and connected.

Proof. The proof is exactly the same as the one of Lemma 1.6. D

The Fibonacci strings from Sect. 2 now acquire a second index k\ formally, they
are defined as follows:

FΪι=Uk, Fo

k=Tk,

for all non-negative integers k.
Let us introduce the following shorthand notations:

Bkί\ = Bk+\Bk+2 ' ' Bk+j >

Bk+l = Bk+jBk+j-l ^fc+1

Lemma 4.7. The recursive definition of the pairs (Uk+ι,Tk+ι) translates into

for all non-negative integers k.

Proof For j = — 1 and j = 0, the assertions correspond to the definition of the pairs

Proceeding by induction on j , we obtain

τpk+l 77/e+l TTifc+l r> Tpk TD— 1 r> rpk ΊD — 1
^ J + l ~ ^ J - l *3 ~ Bk+\*3

 Bk+\Bk+\*3 + ^k+l

D TPk rpk D— 1 D 77"̂  D ~ l
- ^k+l^j fj+l&k+l - ^k+l^j+l^k+l

for j > 0. D

Lemma 4.8.

1 k t ^ ^ ^ J U

Lemma 4.8 says that conjugating by BJ

k+ι lowers the first index by j , but only at
the expense of raising the second index by the same amount.

Proof The assertions follow by iterating Lemma 4.7. D
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Let Σ act on symbol strings by means of the substitution Uk ι—> Tk and
Tk i—> UkTk. Since Σ does not affect the index &, Lemma 2.3 stays valid in the
following form:

for all non-negative integers k.

Lemma 4.9. Let Fk be any string of the symbols Uk and Tk, and let Fk+ι be the
same string of the symbols Uk+ι and Tk+ι. Then we have

Lemma 4.9 says that Σ acts formally by conjugation with Bk+λ and by an index
shift.

Proof. The claim immediately follows from the identities

and

Bk+\Tk+\Bk+\ = UkTk =

which follow from the definition of the pairs (Uk+ι,Tk+ι). D

Again, we introduce the Fibonacci tails as tails of Fibonacci strings. We shall write
for the set of tails the j t h Fibonacci string of the symbols Uk and Tk\ this set

is meant to include the empty string but not the j t h Fibonacci string itself.
Remember the shorthand notations introduced above:

•°fc+l ^k+j^k+j — l " ' ' -°/c+l '

Now we are ready for the explicit expression for the sets Lk:

Lemma 4.10.

for all non-negative integers k.

Proof Denoting the empty string by 0, we have {F^} = {FQ} = {0} and
= {0, Tk}. Moreover, Lk = DuΌ Dτ and L\ = M\ U Nλ

k = TkB~lχDτ U

For j = 0, the assertion therefore is MQ U NQ = Dτ U DU9 which is true. For
.7 = 1, the assertion is Mf U Nf = BklχDτ U TkB~lχDτ U BklιDu, which is true
as well.
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Using Lemma 4.5, we obtain inductively

k r>— 1 T k+1 . • rp r> — l r> — 1 j k+2
ΰ L U 1 ΰ ΰ k + 2 L

T U

U Tk

U ̂ ^ ^ ^ { F ^ ! 2 } Bk+2Bk+ιBk+\+ Du

[Σ{{Ff+ι}) U TkΣ\{F*})}Bk

{

+\+2)Dτ

u [Γ({ί; f c}) u Γfcj

for j > 0, (where we have used Lemma 4.9 in the last step), and the proof is reduced
to the combinatorial identity

{F3

k

+2} = Γ ( { F * + 1 } ) U T k Σ \ { F * } ) , j > - l ,

for all non-negative integers k, which has been proved in Lemma 2.8. D

Recall from Sect. 2 the definition of the next symbol: the next symbol v(F) of a
Fibonacci tail F is the first symbol of the Fibonacci tail of minimal length that strictly
contains F. We denote by {F*}JJ (respectively by {F*}τ) the set of the Fibonacci
tails in {F*} the next symbol of which is Uk (respectively Tk).

Lemma 4.11. We have

M] = {F]}υBHχΌτ U {F^υBHxΌυ ,

N] = {F*}TB-klxDT U {F^TB^DU

for j > 1 andk> 0.

Proof. Fix fc > 0. For j = 1, we have Mf = TkB~lχDu and JVf = B~lχDτ U

BklιDu. Since the next symbol of the string Tfc and Uk and the next symbol of the

empty string is Tk, the claim is true.
Fix j > 1 and take any z £ Mj+ι. We have

. ^ ^ i ^ U Λ

by definition. It follows from Lemma 4.10 that

where F f c + 2 is a Fibonacci tail in the symbols Uk+2 and T f c + 2, and where D is one
of the two sets Dv and Dτ. We have

TkBklχBkl2F
k^Bk+1Bk+ι =TkΣ\Fk)

by Lemma 4.9. Lemma 2.6 tells us that the next symbol of TkΣ
2(Fk) is Uk.

Now, take any z G NJVi We have

* G 7VJV! = Bk^(M^1 U
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by definition. It follows from Lemma 4.9 that

z € B^F^B^D = B^Fk+ιBk+ιB^D ,

where Fk+ι is a Fibonacci tail in the symbols Uk+ι and Tk+ι, and where D is one
of the two sets Du and Dτ. We have

by Lemma 4.9. Lemma 2.6 tells us that the next symbol of Σ(Fk) is Tk. Π

It follows from the relations Bk^Dτ c £>τ that the sets

B~jDτ = B-ιB~ι... B~ιDτ

with j > 1 are subsets of Bι~
ιDτ. Since, by assumption Al ;, the diagonal elements

of the maps Bk+ι are of absolute value greater than and bounded away from one,
these sets converge to the point (0,0), and it follows that this point is contained
in Bχ~

xΌΎ C Dτ. Let {F0} be the set of all Fibonacci tails of the symbols
UQ and To. The point set {F°}(0,0) will be called the orbit of the point (0,0)
under the pair (C/0,T0). Since Lemma 4.8 gives B\F®B^3 = Fj = Tj9 the image

F°(0,0) = B{jT3(0,0) is well defined for all j , and we see that the full orbit of
(0,0) is well defined.

Lemma 4.12. Under the assumptions Al', A2', and A37, the sequence of pairs
((M^, Nj)) is approximately invariant for the pair (f/0, To).

Proof Fix j and choose k > j such that

B~k(TkDτ U ί/fcDtf) C £ ; ~ j D τ .

Since B~[3 Dτ is an open neighborhood of the origin, and since the sets TkDτUUkDu

are bounded uniformly, this is possible.
Take any point z G Mk. We are going to show that UQz C L°y

By Lemma 4.10, we have either z G FB^kDτ or z G GB^kDu, where F and G

are tails of the Fibonacci strings Fk or Fk_x respectively. Assume for instance that

z G FB^kDτ. (For z G GB^kDυ, the reasoning is completely analogous.)
Since z G Mj? by assumption, the next symbol of F is Uo by Lemma 4.11. If F

is not maximal, i.e., if its successor is not the Fibonacci string Fk, then the string
UQF is a tail of the Fibonacci string Fk, and therefore Uoz is contained in L°k and a
fortiori in L°r

If, however, F is maximal, then we have U0F = i^?, and it follows from Lemma
4.8 that

Uoz G FlB~kDτ = B~kBkFlB~kDτ = B~kFkDτ = B~kTkDτ .

In the case where z G GB^kDυ, it follows in the same way that UQz is contained

in B-kUkΌ
^Dυ, it follows in the same way that UQz

υ .

By Lemma 4.10, the set Bx

 J Dτ belongs to L®. By the definition of fc, we therefore

have Uoz G L°.
We have shown: U0M% C L°. The proof of ToiV£ C L® is completely analo-

gous. D
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For convenience, we copy Lemma 3.4 from Sect. 3:

Lemma 3.4. The limit pair of an approximately invariant sequence is invariant.

Theorem 4.13. Under the assumptions Al/', A2', and A3', the asymptotically self-
similar pair (U0,T0) has a connected compact invariant pair containing the orbit of
the point (0,0).

Proof. Because of Lemma 4.12 and Lemma 3.4, the limit pair

is an invariant pair for ([/0, To).
In order to prove that the orbit of (0,0) is contained in L°, we fix j and show that

{F°}(0,0) C L°. Since (0,0) e B~kDτ, we have {F°}(0,0) c L°k for all k>j

by Lemma 4.10. We conclude that {F°}(0,0) C L°, and since j was arbitrary, the
claim follows. D

5. The Necklace

Let F be a homeomorphism of the cylinder. Its lift, which will be denoted by the
same letter, is a periodic map of the plane; we implement periodicity by requiring
that F commute with the backward rotation R:(x, y) \-» (x — 1, y). The direction of
the y-axis will be called the vertical direction.

Assume now that the pair (i2, F) is asymptotically self-similar in the sense of
Sect. 4 and that the corresponding fixed point satisfies the assumptions Al, A2, and
A3. Then, according to Theorem 4.13, there exists a compact connected invariant
set for a certain iterated image of this pair under the renormalization operator. The
question arises what this means for the homeomorphism F.

For a certain fixed m > 1, let (C/0,Γ0) denote the m t h iterated image of the pair
(Λ, F) under the renormalization operator. We then have

where Fm denotes the mth Fibonacci string of the symbols R and F9 and where
B is a linear-diagonal coordinate change, namely an ra-fold product of linear-
diagonal single-step rescalings. Let m be so large that the assumptions of Sect. 4
hold for the orbit of the pair (£70,T0). Then, Theorem 4.13 gives us a compact
connected pair (M°,N°) that is invariant for the pair (ί/0,Γ0). It follows that the
pair (M,N) = B~l(M°,N°) is invariant for the pair (Fm_ι,Fm).

We put

L = MUN.

The set L has two disadvantages: first, for large values of m, it will by very
tiny, since the inverse rescalings are contractions. Second, it is not invariant for the
map F.

The aim of this section is to extend L to a larger set that is invariant for F and that,
intuitively speaking, goes around the cylinder. This set will be called the necklace.

As a preparation, we derive two consequences of the results of Sect. 4:
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Lemma 5.1. Let (ί/0,T0) be the m t h iterated image of the pair (R,F) under the
renormalization operator, where m is defined as before. Let (M°, TV0) be the invariant
pair that Theorem 4.13 yields for (?70,T0). Then the following relations hold:

U0N° Π N°φ 0 , T0UQ1N° ΠM°φ0.

Proof. By definition, the maps Uo and To are rescaled compositions of homeomor-
phisms of the plane, and it follows that Uo and To are homeomorphisms of the plane.
Therefore, we no longer have to worry about domains of definition.

The first equation follows from the first equation of Lemma 4.2 by putting k = 0
and going to the limit, observing that the sequence (N°) is a decreasing sequence of
compact sets.

The second one is obtained formally by putting k — — 1 in the second equation of
Lemma 4.2; for this to be valid, we have to restate the basic assumptions of Sect. 4 so
that they hold for k > — 1, which can be done without loss of generality. By going
to the limit, we obtain the relation

U^B^^nB^M0 φψ.

Since we have Uo = BQT_XBQ1 and To = B0U_1T__1BQ1 by definition, we conclude

that BQU^B'1 = TQUQ-1. Since the relations U^B^N0 Π B^ιMQ φ 0 and
B0U_1BQ1N° Π M° φ 0 are equivalent, this proves the assertion. D

Now, we are ready to extend the invariant set. First, we make a slight change
of notation: in order to get rid of the rescaling B, for the rest of this section we
denote by U the map Frn__ι and by T the map Fm (remember that Fm is the m t h

Fibonacci string of the symbols R and F). It has already been observed that the pair
(M,N) = B~ι(M0,N0) is invariant for (ί/,Γ). By the above remark, the maps U
and T are well defined on the whole plane. Lemma 5.1 translates into

Lemma 5.2.
UN ON φQ, TU~ιN DM φψ.

We now define a finite sequence of pairs (U^T^JLQ by means of the following
recursion: we put Uo — U and To = T and

for 0 < j < m.

Lemma 5.3. We have
u j m—j — i ' ± j Γm—j

for 0 < j < m.

Proof. For j = 0, the assertion follows from the definition of U and T.
Proceeding by induction, we obtain

TT rp ττ—1 rp J7ι~^ T? T71 77I~^L 7?
j+l ~~ j j ~ Γm-jΓm-j-l — rm-j-2rm-j-\rm-j-l ~ Γm-j~2

by the definition of the Fibonacci strings. Moreover, we have

TJ+i = Uj = Fm_3_x . D

The preceding lemma implies that

Um = R, Tm = F;
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therefore, at the end of our recursively defined sequence stands the original pair

In addition, we define a finite sequence of pairs (MrNJ)Jl^0 of sets by means of
the following recursion: we put Mo = M and No = N and

Mi+x=U,N3, NJ+ι = MjyjN3

for 0 < j < m.

Lemma 5.4. We have the following relations:

UjNj ΠNj^Φ, TjUj~lN

3

 n Mj Φ 0

for 0 < j < m.

Proof. For j — 0, the claims are equivalent to the conclusions of Lemma 5.2.
Proceeding by induction, we obtain

Uj+ιNJ+ι Π Nj+ι = T3Ur\M} U N}.) Π (M, U N}.)

and

D UJT-\M3 n T3U-ιN3) ^ 0 . D

Lemma 5.5. We have
M3 ΠNj^iH

for 0 < j < m.

Proof. For j = 0, the claim follows from Lemma 4.3 by putting k = 0 and passing
to the limit. (The index j there has a different meaning.)

Proceeding by induction, we obtain

Mj+ι ΓΊ NJ+ι = U3N3 Π (M3 U N3) D U3N3 ΠN3^d}

by Lemma 5.4. D

Lemma 5.6. The sets M- and N3- are connected for 0 < j < m.

Proof For j = 0, we have M = B~ιM° and N = B~ιN°, where B is a
homeomorphism and M° and N° are connected. Assuming that M- and N- are
connected, so is M + 1 , because it is the continuous image of a connected set, and so
is Nj+ι, because it is an overlapping union of two connected sets. D

Lemma 5.7. The sets L3 — M- U TV are connected for 0 < j < m.

Proof The assertion follows from Lemma 5.5 and Lemma 5.6. D

Lemma 5.8. The sequence (L •) is increasing.

Proof. The assertion follows directly from the definitions of MJ+ι and Nj+ι. D

Lemma 5.9. The pairs (Mp N ) are invariant for (UJ^TJ)for 0 < j < m.

Proof For j = 0, the assertion is a consequence of the definition of (Mo, 7V0) and of
Theorem 4.13.
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Proceeding by induction, we obtain

and

Uj+iMj+i = TjU-1!;^ = TjN, C L, C L J + 1

TJ+ιNj+ι = UJMJ U U3N3 C L, U MJ+ι c Lj+ι. Π

Of course, we are especailly interested in the pair (Mm,7Vm). We have shown
that it is invariant for (R, F) and that its union Lm is connected. Moreover, being a
finite union of compact sets, Lrn is compact. We have RMm c L m by invariance; in
particular, we have

and it follows that the set

if = U RnL

is connected. Since Lm is compact, 2% is closed and bounded in the vertical direction
from above and from below.

Lemma 5.10. We have

Proof. Let z be in Sβ. Then there exists a number n G Z such that w = R nz £ Lm.
If u> is in not in 7Vm, it is in M m , and it follows that i?w; G L m . Since L m is
compact, there is a natural number I such that Rιw £ Lm but Rιw ^ Mm. In any
case, we have R~n+ιz £ Nm with a natural number I. Applying F to this point gives
FR~n+ιz £ Lm. Now, since F is a periodic map, it follows that R~n+ιFz £ Lm,
and we have proved that Fz £ Rn~lLm c J ^ . •

Definition 5.11. A set L is called invariant for a map F if

Now we are ready to define the necklace set L:

L =
n>0

Because of F5£ c =2ί, the necklace set thus defined is the limit set of a decreasing
family of sets.

Lemma 5.12. The necklace set is invariant for R.

Proof The set S£ is /^-invariant by construction. For arbitrary non-negative integers
n, we have

which shows that the sets FnJ& are J?-invariant. Therefore, the necklace set, being
the intersection of iί-invariant sets, is itself i^-invariant. D

Lemma 5.13. The necklace set is invariant for F.

Proof. Since F5% c J^, it follolws that F L c L. On the other hand we have

FL = p| Fn+ι^ = p| Fn^ D L. D
n>0 n>l
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Lemma 5.14. The necklace set is non-empty, closed, connected, and vertically
hounded.

Proof. Since the necklace set is i?-invariant, it can be regarded as a set on the cylinder.
Regarded as a set on the cylinder, it is the limit set of a decreasing family of non-empty
compact sets. Therefore, the necklace set is non-empty.

Regarded as a set in the plane, the necklace set is the limit set of a decreasing
family of closed, connected, and vertically bounded sets. Therefore it is itself closed,
connected, and vertically bounded. D

Definition 5.15. A subset of the plane is called separating if its complement has
two vertically unbounded connected components. A subset of the cylinder is called
separating if its complement has two unbounded connected components.

Lemma 5.16. Let L be a subset of the plane that is closed, connected, vertically
bounded, and R-invariant. Then L is separating. Moreover, L is the lift of a separating
set on the cylinder.

Proof. Since L is closed, the connected components of its complement are open.
Since L is confined in a horizontal strip, its complement has at least one

and at most two vertically unbounded components. Assume that there is just one
vertically unbounded component. Choose a point zx below and a point z2 above the
strip confining L. By assumption, these points belong to the same open connected
component of the complement of L. Therefore, there exists a path in the complement
of L, joining zx to z2. Now we add two unbounded vertical segments, one starting at
the point z2 and going upward, and the other one coming from below and ending at
zx. The resulting infinite path is contained in the complement of L, and, by Jordan's
theorem, divides the plane into exactly two regions, namely into a left one and a
right one. By i?-invariance, the set L intersects both regions. On the other hand, L is
contained in their union. This contradicts the connectedness of L.

The second claim follows from the first one. D

We say that a homeomorphism of the cylinder is attracted by a fixed point if the
pair (R, F) is asymptotically self-similar in the sense of Sect. 4. Summing up, we
haved proved the following result:

Theorem 5.17. If a homeomorphism of the cylinder is attracted by a fixed piont that
satisfies the assumptions Al, A2, and A3, then it has a compact, connected, separating
invariant set.

Proof. Theorem 4.13 yields a connected invariant pair for a certain iterated image
of the pair (R, F) under the renormalization operator. By means of the construction
presented in this section, we build a necklace set out of this invariant pair. This
necklace set, regarded as a subset of the cylinder, has the desired qualities. D

6. The Golden Curve

In this section, we consider area-preserving, orientation-preserving, end-preserving
C1 twist diffeomorphisms of the cylinder that are attracted by the critical fixed point
(or, for that matter, by any fixed point that satisfies the assumptions Al, A2, and A3.)
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For instance, the standard map, given by

x' — x + y', y' = y sin 2πx
2π

with K being equal to the critical value κc « 0.9716 satisfies these assumptions.
Applying Theorem 5.17 yields a compact, connected, separating invariant set. We

shall deduce from this the existence of an invariant golden circle, which is the graph
of a Lipschitz function. The principal tool we are going to use is Birkhoff's theory
on invariant curves for twist maps. Indeed, given Theorem 5.17, the existence of
an invariant curve is an easy consequence of this theory. But rather than giving an
abstract existence result, we shall show that the invariant curve is identical to the
necklace set constructed in the last section.

In order to prove that this curve has the golden rotation number, we need
some machinery that we are going to develop in Lemmas 6.3-6.8. These are not
illuminating; I suggest that they be skipped on first reading.

Definition 6.1. The positive root of the equation

x2 + x - l = 0

will be called the golden number and will be denoted by ω.

Definition 6.2. Let F be a periodic homeomorphism of the plane, i.e., a homeomor-
phism commuting with the backward rotation R:(x,y) ι-> (x — 1,2/). Let π{ denote
the projection onto the first coordinate direction. If for a point z of the plane the limit

lim —
π->oo n

exists, it is called its rotation number.

In the following, we always assume that F is an asymptotically self-similar
homeomorphism in the sense of Sect. 4 and that the corresponding fixed point satisfies
the assumptions Al, A2, and A3 stated in Sect. 1.

Of course, we should like the rotation number to be well defined on the set L and
to be equal to the golden number ω. But I was not able to prove this directly. Instead
of that, we shall show that under the above assumptions, for each point z G L, there

P
exist rational numbers - , arbitrarily close to the golden number ω, such that

\FqRpz\ < c

with a certain constant c. This implies that, if for a point z G L the rotation number
exists a priori, then it is equal to ω\ this will turn out to be enough for our purposes.

Lemma 6.3. Let Σ act on pairs of natural numbers by

and put (p\qf) = Σ((p,q)). Then for arbitrary positive, c, the following implication
holds:

P

q
— ω

c
< - =>

q

p'
—
q'

— ω
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Proof. By a straightforward computation, we obtain

— ω —
1

1 +

q

P

q 1

1

1

+

1

+ ω

q

1
<

C

q p

q

+ q
ω <

p + q
D

Lemma 6.4. For αw y string F of the symbols U and T, we denote by p the number
of occurrences of the symbol U within F, and by q the number of occurrences of T;
we then say that the string F is characterized by the pair (p, q).
a) Let F be a Fibonacci tail (see Sect. 2) different from the empty string. Then the
following inequality holds:

p

q

b) Let F be any head of a Fibonacci string different from the empty string and from
the string U. Then the same inequality holds.

Proof. We begin by proving the first statement. For the string T, we have p = 0 and
q = 1; for the string TU, we have p = 1 and q — 1. Since |0 —α;| < 1 and |1 —ω\ < 1
(observe that ω ~ 0.618), the claim is true.

Assume that the claim has been proved for strings of length up to I + 1 with I > 0.
Let F be the (unique) Fibonacci tail of length I + 2. According to Lemma 2.8, we
have either F = Σ(G) or F = TΣ2(G), where G is a Fibonacci tail shorter than F.
Our assumptions rule out the case that G is empty. Let G be characterized by the pair
(p, q). If F = Σ(G), then F is characterized by the pair Σ"((p, #)), and by Lemma 6.3
and the inductive assumption, we are done.

If F = TΣ2(G), then F is characterized by the numbers (p + q,p + 2<? + 1). Let
us perform a preliminary computation:

p + q 1 1

l +

ι +

p- 1
Putting β = -, we obtain

1

+ 2<? + 1
1 +

1

1

From the inductive assumption

1 +
ί + β

= \β — ω\ ω

1 + ω 1+β p + 2q-

= \β-ω ς f + i

+ 2g + 1

it follows that
ω < (q + l)ω - (p - 1) < 2 + α;,



Renormalization for Golden Circles 403

which implies that

1 ' ' q+l

Making use of the identity (2 + ω)ω2 = 1, we end up with

1

p + 2q+l'p + 2q+l
— ω

which terminates the proof of a).
The proof of the second statement is analogous. We give it only for the sake of

completeness.
Instead of Lemma 2.8 we use a direct consequence thereof, namely the formula

[FJ+2\ = Σ([Fj+ι]) U (Σ2([F3]) - T),

where [F3] denotes the set of heads of the j t h Fibonacci string, not including the
empty one, and where the formal subtraction of T means taking away the symbol T
from the end of the string. The heads of the Fibonacci strings will be called Fibonacci
heads.

Let us first deduce this formula from Lemma 2.8. To this end, we take any

Δ G [Fj+2\- By definition, we have F-+2 = ΔF with a string F G {Fj+2} According

to Lemma 2.8, we have either F = Σ(G) or F = TΣ2(G) with a string G in {Fj+ι},

respectively in {Fj}.
In the first case, we have

and from the formula Σ(Fj+ι - G) = Σ{FJ+λ) - Σ(G), it follows that Δ =
Σ(FJ+X - G). In this case, therefore, we have Δ G Σ([Fj+ι]).

In the second case, we have

and from the formula Σ2(FJ - G) = Σ2(Fj) - Σ2(G), it follows that ΔT =

Σ2(Fj - G). In this case, therefore, we have Δ e Σ2([Fά\) - T.
Now, we come back to the second half of Lemma 6.4. For the strings T, TU, and

UT, the claims are true. (Remember that the string U is ruled out by assumption.)
Assume that the claim has been proved for strings of length up to I + 1 with

I > 0. Let F be a Fibonacci head of length 1 + 2. According to the above formula,
we have either F = Σ(G) or F = Σ2(G) - T, where G is a Fibonacci head shorter
than F. Our assumptions rule out the case that G is empty. Since Σ(U) — T and
Σ2(U) -T = U, the case G = U is ruled out as well.

Let G be characterized by the pair (p,q). If F = Σ(G), then F is characterized
by the pair Σ((p, q)), and by Lemma 6.3 and the inductive assumption, we are done.

If F = Σ2(G) - T, then F is characterized by the numbers (p + q,p + 2q - 1).
Let us perform a preliminary computation:

p + q 1 1

q-ι
P + q { ( P + l

α - l
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The Fibonacci strings of length greater than 2 altematingly start with the sequences
TUT and UTT. Therefore, we have q > 1, and the last equation makes sense.

p-f 1
Putting β — , we obtain

q- 1

p + q

p + 2q-

1 1

1 +
1

1 +
1

= \β-ω

l+β ' ' l+ω

q-1 P+q

1 1

l+ω l+β

p + q

p + 2q - 1
- ω

ω
p + q p + 2q

ω = \β — ω\ ω1
q-l

p + 2q-l

From the inductive assumption

it follows that

which implies that

-2 - ω < (q - l)ω - (p + 1) < -ω ,

2 + ω
\ω-β\<

q-l

Making use of the identity (2 + ω) ωι = 1, we end up with

p + q

p + 2q-l
— ω

1

p + 2q - Γ

which terminates the proof of b). D
Lemma 6.5. Let (p^ , q^) and (p, q) be two pairs of natural numbers. If

j

— — ω
< — and either ω - o r g = 0 , g = l ,

it follows that

— ω

Proof. For q φ 0, making use of the identity

P + Pi V Q Pi
J -i i- _ι J

q + q3 ~ qq + q3 q3

we obtain
P + Pj

— ω
P

ω
Pj
— -ω q + q3 q3

For q = 0 and p = 1, we obtain

P3 + 1

H < — . D
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Lemma 6.6. (We are using the notations of Sect. 4.) Assume that the maps Uo and To

are globally defined and that they commute. Then there exists a constant c such that
for each point z £ L°, there exist arbitrarily high natural numbers p and q such that

V
ω

q
Proof For the notation, see the proof of Lemma 4.12. We define c to be a bound
for the sets B13T3DT. (Remember that the sets T-Dτ are uniformly bounded
and that inverse rescalings are contractions.) Fix j and choose k > j such that

B-k{UkDv u τkDτ) c B;JDT.

Let z be an arbitrary point of L°. In particular, z lies in L°k, and by Lemma 4.10,

we have either z G FB^kDτ or z e GB^kDu, where F and G are tails of the

Fibonacci strings Fk or Fk_{ respectively. Assume for instance that z G FB^kDτ.

(For z G GB^kDu, the reasoning is completely analogous.)

Let A be the difference string to the Fibonacci string F%. Then Δz G F%B~kDτ =

B-kBkF°B-kDτ = B~kFkDτ = B~kTkDτ by Lemma 4.8. By the definition of

k, it follows that Δz G B^3Dτ. Now, we apply Fj to this point, and by the same

reasoning as before, it follows that FjΔz G B~JT-DT. By the definition of c, it
follows that

\F$Δz\<c.

By commutativity, the map F®Δ can be written as UQTQ, where the numbers p

and q characterize the string F® (see Lemma 6.4). It follows that

If A φ £/Q, since Lemma 6.4 applies to both F® and Δ, we use Lemma 6.5 to

conclude that v 2
< - . For A = f/π, the second case of Lemma 6.5 gives the

q q
same answer.

Finally, by choosing j high enough, we can make q arbitrarily high. D

Lemma 6.7. (Now we are using the notations of Sect. 5.) Assume that the maps U and
T are globally defined and that they commute. Then there exists a constant c such that
for each point z G L m , there exist arbitrarily high natural numbers p and q such that

--ω < - , \UpTqz\ <c.
q q

Proof Recall the notations of Sect. 5: we have

(for the definition of L°, see Sect. 4), where B is an ra-fold product of linear-diagonal
single-step rescalings. Furthermore, we have

where F3 is the j t h Fibonacci string of the symbols R and F.

Therefore, Lemma 6.6 stays valid with L replacing L°, with (£/, T) replacing
(Ϊ7O,TO), and with H B " 1 ^ replacing c.
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Looking again at the construction of the set L m in Sect. 5, we see that Lrn is a
finite union of sets of the form AM and AL, where A is a homeomorphism of the
plane that commutes both with U and with T. We define c to be a simultaneous bound
for the (finitely many) maps A on the disk of radius c, where c is the constant from
Lemma 6.6.

Let z be an arbitrary point of Lm. Then we have z = Aw, where A is a
homeomorphism of the plane and where w is an element of L. For arbitrary natural
numbers p and q, we have

UqTpz = UpTqAw = AUvTqw ,

and the claim follows from Lemma 6.6 and the definition of c. D

Lemma 6.8. There exists a constant c such that for each point z G L and for each
positive ε, there exist natural numbers p and q such that

V
ω

\FqRpz\ <c.

Proof. We define c to be the constant given by Lemma 6.7.
Take any z G L. In particular, we have z G 5§. It follows that there exists an integer

n such that Rnz G Lm. Making use of Lemma 6.7, we choose natural numbers a and

b such that
n l + 2 2 Λ< 7 , and

b

\UaTbRnz\ <

We put (p7, q') = Σm(a, b). Remember that U = Fm_x and T = F m ; therefore, the
above inequality can be rewritten as

\RpFqz\ < c ,

where p = p' + n and q = q''. Moreover, Lemma 6.5 yields
this we obtain

ω
q'

P

q
— ω

t
qr — ω

n
-\- —

q'

2 +

< —, and from
qf

D

Theorem 6.9. Let F be an area-preserving, orientation-preserving, end-preserving Cι

twist diffeomorphism of the cylinder. If F is attracted by any fixed point that satisfies
the assumptions Al, A2, and A3, then F has an invariant golden circle that is the
graph of a Lipschitz function.

Proof. Theorem 5.17 yields a compact, connected, separating invariant set for F,
which we again denote by L.

We are going to apply Birkhoff's theorem (see [4, p. 303]). Let U denote the
connected component of the complement of L that contains the lower end of the
cylinder. Since F is a homeomorphism that preserves the ends of the cylinder, and
since L is invariant for F, it follows that U is invariant for F. Because L is separating
and bounded from above and from below, the set U satisfies the assumptions of
Birkoff's theorem, and it follows that its boundary is the graph of a Lipschitz curve.
This curve is, of course, invariant for F.

Moreover, this curve is contained in the set L. Since on an invariant curve, the
rotation number is well defined, it follows from Lemma 6.8 that the rotation number
on the invariant curve is equal to the golden number.
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Now, we turn the cylinder upside down and repeat these arguments. This gives a
second golden curve, corresponding to the boundary of the open connected component
sitting above L.

But there is at most one invariant circle with a given irrational rotation number
(see [1, Proposition 1.5.7.1.]), and it follows that the two curves coincide. Since L is
sandwiched between the two, L itself must be an invariant circle. D

Since, in particular, the critical fixed point satisfies the assumptions Al, A2, and
A3, Theorem 6.9 guarantees the existence of an invariant golden circle for any (area-
preserving, orientation-preserving, end-preserving C1) twist diffeomorphism in its
domain of attraction. This curve is called the critical golden curve.

7. Ordering the Patches

R e c a l l f r o m L e m m a 2.5 t h e f o l l o w i n g r e p r e s e n t a t i o n of t h e sets L-\

L3 = {Fj}B-Wτ U { ί \ _ j } B - W u , j > 0 .

The open sets appearing on the right-hand side are called Fibonacci patches or simply
patches. The patches with a certain fixed value of j are said to belong to the j t h

generation.
Now, we impose an additional assumption on the fixed point:

A4. The map TB~2 is a uniform contraction on Όυ U Dτ.

(Again, this assumption can be justified numerically for the critical fixed point.
For the simple fixed point, it is easy to verify by a direct calculation.) Looking at
Lemma 1.5, we see that the maximal diameter of the patches decreases exponentially
with increasing generation. It is a simple property of the Fibonacci patches that each
patch of the form FB~^ΌU intersects one of the form GB~jDτ. (We shall prove
stronger statements later on.) Since all the patches of the latter form contain a point
of the orbit of (0,0), it immediately follows that the orbit of (0,0) is dense in the limit
set. Therefore, the invariant circle constructed in the previous section is transitive.

But we can do better: by delving deeper into the combinatorics of the Fibonacci
patches, we shall define a strict order on the patches of the same generation such that
• only neighboring patches overlap, and that
• it is refined by successive generations.

Using this order as a tool, we shall be able to dispense with the Birkhoff
theory in the construction of an invariant curve. In addition, this approach yields
a homeomorphism that conjugates the induced map on the curve to a rigid rotation.
Moreover, the conjugator turns out to be Holder continuous with an exponent that is
determined by the rescaling B.

For clarity, we shall be working only with the fixed point. The difficulties in
carrying the argumentation over to the case of asymptotic self-similarity are merely
notational (see appendix). The presentation is largely independent from the first part
of this paper; in fact, only Lemma 1.5, Lemma 2.2, and Lemma 2.6 will be used.

The first aim of this section is to define two special relationships among the
Fibonacci patches: a descendence and a succession. (Figure 6 is a schematic picture
of (part of) the network that will arise. The horizontal arrows visualize the succession,
the vertical ones the descendence.) The idea is that descendence implies set inclusion,
and that successive patches overlap. More concretely: each patch with j > 1 will be
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Fig. 6. Descendence and succession

shown to descend from exactly one parent, to which it belongs as a subset. Moreover,
two patches of the same generation will be shown to overlap if and only if one is the
successor of the other.

These two relationships will turn out to be compatible with a certain strict order
on the patches of the same generation, that we are going to construct beforehand.

Let us start by defining an order on the Fibonacci tails. We do this by defining a
injective map ρ from the space of Fibonacci tails into the real axis.

Definition 7.1. Let ω be the golden number. For any Fibonacci tail F, we denote
by q the number of occurrences of the symbol T within F and by p the number of
occurrences of U. Then the map ρ is defined by

ρ(F) = ωq-p.

This map is injective, ω being an irrational number.

Definition 7.2. A Fibonacci tail F is said to be smaller than a Fibonacci tail G if
and only if ρ(F) < ρ(G). Formally:

F <G^ ρ(F) < ρ(G).

Having defined an order on the Fibonacci tails, we go on to define an order on
the patches of the same generation. A priori, this order will have nothing to do with
the geometric shapes and positions of the patches; it will take into account only
combinatorial properties of the patches. In order to emphasize this, let us introduce
the patch descriptors:

Definition 7.3. A patch descriptor is an object consisting of a non-negative integer
j , denoting what we call its generation, a Fibonacci tail F, and a tag that is either
the symbol U or the symbol Γ. F is required to be a member of {Fj_x} if the tag is
equal to U, and a member of {Fj} otherwise.

I am tempted to write down a C-style data structure for the patch descriptors:

enum symbol {u,τ};

typedef enum symbol Symbol;

typedef struct patch Patch;

struct patch{

int j; /* generation */

char* F; /* Fibonacci tail */

Symbol tag; /* either U or T */

Patch* successor;

Patch* parent;



Renormalization for Golden Circles 409

The variables s u c c e s s o r and p a r e n t are reserved for later use, namely for
defining the succession and the descendence.

The patch descriptors are in a one-to-one correspondence with the patches.
For simplicity, we no longer distinguish in language between patches and patch
descriptors. They will be denoted by FB~jDu and FB~jDτ respectively.

Definition 7.4. Let P and Q be two different patches of the same generation. If their
Fibonacci tails are different, P is said to be smaller than Q if and only if the Fibonacci
tail of P is smaller than the Fibonacci tail of Q. If their Fibonacci tails are identical,
then we distinguish between even and odd values of the generation j : for even j , the
patch labeled by T is smaller, for odd j , the patch labeled by U is smaller.

Having ordered the patches of the same generation, we are going to define
the succession among them. For this purpose, we need two elementary results on
Fibonacci strings. Let us denote by Fj the string of maximal length within {Fj}.

Lemma 7.5. Let the formal subtraction F — G denote the operation of removing the
string G from right end of the string F, provided of course that G is contained in F.
For j > 2, we have

/F -F = /
j j~2 [UTF, otherwise,

where F is a Fibonacci teil in {Fj_x} different from F-_x. (Indeed, it follows from a
simple consideration of string lengths that the length of F is one below the length of

Proof For j = 2, we have F2 - Fo = TUT - T = TU = TUO, which is OK,
since the empty string 0 is contained in {Fx}; for j = 3, we have F3 — Fx =
UTTUT -UT = UTT, which is OK, since the string T is contained in {F2}.

For any two strings A and B, the equation Σ(AB) = Σ(A)Σ(B) implies
Σ(AB) - Σ(B) = Σ(A) = Σ(AB - B). Making use of the latter formula, we
obtain inductively

= Σ(FJ_ι-FJ_3)

_ Γ Σ(UTF) = TUTΣ(F), for even j
~ \ Σ(TUF) = UTTΣ(F), otherwise,

with a string F G {Fό_2} different from F j _ 2 . Therefore, Σ(F) G { i ^ - J differs

from F-_x. Lemma 2.6 tells us that the next symbol of Σ(F) is T. It follows that

TΣ(F) G {Fj_λ}; again, a simple consideration of string lengths shows that TΣ(F)

is different from Fj_x. D

Lemma 7.6. We have

for j > 0.

Proof For j = 0, we obtain ρ(FQ) = ρ(T) = ω, which is OK.
The general claim follows inductively by making use of the identity
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which is verified by a direct calculation:

Lemma 7.7. The sequence (ρ(F2j)) decreases, and the sequence (ρ(F2j+ι)) increases,
and we have

lim ρ(F2j) = -ω and lim ρ{F2 +ι) = 1.

Proof. Since by Lemma 7.5, the even Fibonacci strings start with T and the odd ones
with U, the claim follows from Lemma 7.6 and from Definition 7.1. D

Lemma 7.5 implies: for any Fibonacci tail in {i^ }, except for the string of maximal
length, removing Fj_2 from its right end yields a Fibonacci tail in {Fj_ι}. Using this
property, we now define the succession σ among the patches of the same generation:

Definition 7.8. Each patch P of the j t h generation, except for the patch

P0B~3DT,

has a unique successor in the same generation, denoted by σ(P), that is defined by

σ{FB-iΌυ) = FB~jDτ

( FFΊ ιB~Wτ, if Fe{F- 2}
σ(FB~3Dτ) = I 3 . 3

\(F-FJ_2)B-WU) if Fe{F3}\{F3_2} and F φ F, .

(Do not confuse this succession with the succession given by increasing string
length, which was used in Sect. 2.)

Because of Lemma 7.5, the successor is well defined. Moreover, it follows that
Fj_ιB~jDu is not the successor of any patch, because F — F-_2 always differs from

The significance of the succession lies in the following two results:

Lemma 7.9. With respect to the above defined order on the patches, the map σ is
decreasing for even j and increasing for odd j .

Proof. By Definition 7.3, FB~JDu is smaller or greater than FB~3Dτ, according
to whether j is odd or even. Moreover, by Lemma 7.6, we have

ί > 0 , for odd j

^ J~ι) \ < 0 , otherwise.

Therefore, removing Fj_2 changes ρ into the same direction as adding Fj_l9 namely
into the positive one for odd values of j , and into the negative one for even values
ofj. D

The succession makes the patches of the same generation a collection of singly
linked lists. Since there is a numerical function, namely ρ, that either increases or
decreases along each list, there can be no loops, and it follows that there is just one
list.

As noted above, the patch F _xB~:jDu does not have a predecessor. Starting with

this patch, the succession exhausts the whole generation. The last patch is FjB~3 Dτ,
because it has no successor. The first and the last patch will be called boundary
patches.
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By Lemma 7.9, the order defined by the succession either coincides with the order
given by ρ or is opposite to it, depending on whether j is odd or even.

Two patches of the same generation are called neighbors if and only if one of
them is the successor of the other. The smaller neighbor will sometimes be called the
left neighbor, and the larger one the right neighbor.

For the following lemma, we need our standard connectedness assumptions from
Sect. 1.

Lemma 7.10 If two patches of the same generation are neighbors, then they overlap
as sets.

Proof. According to Definition 7.8 there are three possible cases, each of which is
reduced to one of the assumptions. Apart from Lemma 2.2, the reductions use the
fact that the maps U, T, and B are homeomorphisms.

First case:
FB~jDu Π FB~JDT φ0<^DuΠDτφΦ.

Second case:

FB~jDτ U FF._xB-iΌΎ ^ 0 ^> B~jDτ Π Fj_λB~jDτ φ 0

<̂> Dτ Π UDT φ 0 .

(Remember: U has been continued to Du U Dτ, see Sect. 1.)
Third case:

FF._2B-iDT Π FB-JDJJ φ 0 ^ Fj_2B~jDτ Π B~3Dv φ 0

^ UB~ιDτ ΓΊ B~ιDu φφ. D

Now we define the descendence of the patches:

Definition 7.11. Each patch P that does not belong to the zeroth generation has a
unique parent, denoted by ττ(P), that is defined by

= FB~jDτ

for Fe{FΛ

for Fe{FJ_ι}FJ.

The equation FJ+ι = F^Fj implies {Fj+ι} = {Fj_ι}Fj U {Fj}. Therefore, the
descendence is well defined.

Reading this definition backward, we see that each patch tagged by T gives
rise to exactly two children, whereas a patch tagged by U has exactly one child.
More precisely: the (direct) progeny of the patch FB~3Dτ consists of the two
patches FB-{j+l)Du and FB~V+l)DT. The unique child of the patch FB-^Όυ

is FF3B-^+ι)Dτ (note that F e {F^} implies FFj e {F^}).
The main significance of the descendence lies in the following result, the proof of

which requires our standard assumptions on domain extension:

Lemma 7.12 The closure of each patch with j > 1 is contained in its parent.

Proof. According to Definition 7.11, there are three cases to distinguish, each of
which is reduced to one of the assumptions. Apart from Lemma 2.2, the reductions
use the fact that the maps U, T, and B are homeomorphisms.

First case:
( 1 ) c FB~JDT <=> B~l^j c Dτ .
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Second case:

C FB~jDτ ^ B'ιDτ C Dτ .

Third case:

FF3B-(j+l)D^ c FB~JDU <^ TB~ιD^ c Όυ . D

Thus far, we have given an alternative proof for the facts that the sequence (LJ)
is decreasing and that the sets L3 are connected.

Now we show that the descendence refines the order of the patches:

Lemma 7.13. Let P and Q be two patches of the same generation. If P is smaller
than Q, then each descendent of P is smaller than each descendent of Q of the same
generation.

Proof It is enough to prove the claim in the case that P and Q are neighbors and
that the descendents are children. Assume that the generation of P and Q is odd.
Then the succession ties in with the order. (The proof for even values of j is entirely
analogous.) According to Definition 7.8, there are three cases to distinguish:

First case: P = FB~jDu < Q = FB~jDτ. Here, F is in {i^ . J . The unique
child of P is FF3B~{j+l)Dτ. The progeny of Q consists of two neighboring patches
that are ordered as follows:

FB~(j+l)Dτ < FB~{j+l)Du .

(In the generation j + 1, the succession is opposite to the order.) It is enough to show
that FFjB-^+l)Dτ < FB~^+l)Dτ. This in turn follows from the facts that the
successor of FB~(j+l)Dτ is FF3B-ij+l)Dτ (remember that F G { i ^ - J ) and that
the generation j + 1 is even.

Second case: P = FF3_2B-jDτ < Q = FB~jDu. (This case implies j > 1.)

Here, F is in {F3_ι} and FF3_2 is different from F . The progeny of P consists of
two neighboring patches that are ordered as follows:

FF3._2B-(j+l)Dτ < FFj_2B-(j+1)Du .

The unique child of Q is FF3B~{j+l)Dτ. It is enough to show that

FFj_2B-{j+l)Du < FF3B~ij+l)Dτ. Since F3 = Fj_2Fj_ι, it follows that the

successor of FF3B~(j+1)Dτ is FF3-_2B-^X)Όυ. Since in the generation j + 1, the

succession is opposite to the order, we are done. (Notice that FF3_2F-_X is not of

maximal length in {FJ+ι}, because otherwise FF _2 would be of maximal length in

Third case: P = FB~WT < Q = FF3_XB~^DT. (This case implies j > 0.)
Here, F is in {F-_2}. These two patches give rise to four children with the siblings
being neighbors. The progeny of P consists of two patches that are ordered as follows:

FB~{j+ι)Dτ v

The progeny of Q consists of two patches that are ordered as follows:

< FFj_lB~{j+l)D

It is enough to show that FB~{j+l)Du < FFJ_ιB~'{j+l)Dτ. This in turn follows

from the facts that the successor of FFJ_ιB~(j+l)Dτ is FB-{jJrl)Du and that the
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generation j + 1 is even. (Notice that FF-_X is not of maximal length in {Fj+ι},

because it is in {F3}.) D

Lemma 7.14. Let C, P, Q, and R be Fibonacci patches; denote their strings by Fc,
FP, Fa, and FR respectively; assume that Q and R are tagged by T, and that C
descends from P. Then the following implications hold:

Q<P^FQ<FC, P<R^FC<FR.

Proof. If Q is tagged by T, then the string FQ belongs to the family-heritage; more
precisely: in each generation, there is a descendent of Q that carries the string FQ.
The first claim now follows from Lemma 7.13 by noting that for any two patches A
and B the relation A < B implies FA< FB. The second claim is proved in the same
way. D

Now we are going to show that only neighboring patches overlap. For this purpose,
we have to impose four additional assumptions on the fixed point, namely:

A5.
UDT Γ)DU = 0 .

(Remember: U has been continued to Όυ U Dτ, see Sect. 1. In fact, it is continuous
up to the closure of this set, by the domain extension property.)

It is possible to find domains such that these hold in addition to our old
assumptions, both for an approximate critical fixed point and for the simple fixed
point. We call them disjointness assumptions.

Lemma 7.15. Fibonacci patches of the same generation overlap if and only if they
are neighbors. If they are not neighbors, then even their closures are disjoint.

Proof. Ther " i f part of the first assertion has already been proved in Lemma 7.10.
The "only i f part will follow from the second assertion.

For the zeroth generation, the claim is vacuously true, since Du and Dτ are
neighbors. Let j be greater than or equal to zero and assume that the claim has been
proved up to j . Assume that the closures of two patches of the generation j -f 1
overlap without the patches being neighbors. Since siblings are neighbors, it follows
that the parents of the patches are distinct. Since, by Lemma 7.12, children (including
their closure) are contained in their parents, it follows that the parents overlap too.
By the inductive assumption, it follows that the parents are neighbors. Let us denote
the parents by P and Q. We distinguish the same cases as in the proof of Lemma
7.13:

First case: P = FB~jDu and Q = FB~jDτ. The unique child of P is

The progeny of Q consists of two neighboring patches, namely

FB~{j+l)Dτ and FB-{jJrl)Du.

Since FFJB~ij+l)Dτ and FB~^+λ)Dτ are neighbors, our assumption implies that

Π FB~(j+ι)D^ φ
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Applying F~ι and making use of Lemma 2.2, we end up with the relation

UD^ n Z^/ 0,

which contradicts the first disjointness assumption.
Second case: P = FFj_2B~jDT and Q = FB~jDjj. The progeny of P consists

of two neighboring patches, namely

FF3_2B-(j+ι)Dτ and FFJ_2B-{j+l)Du.

The unique child of Q is FFόB-^+γ)Dτ. Since FFj_2B-^+l)Du and

FF3B~^+l)Dτ are neighbors, our assumption implies that

FFj_2B-(j+l)D^ Π FFjB-{3+l)'D^ φ 0 .

We have F- = F-_2FJ_l. Applying (FF3_2)~ι and making use of Lemma 2.2, we
end up with the relation

which contradicts the second disjointness assumption.
Third case: P = FB~jDτ and Q = FF-_λB~^Ότ. These two patches give rise

to four children with the siblings being neighbors. The progeny of P consists of two
patches, namely

{j+l) and

The progeny of Q consists of two patches, namely:

FF3._xB-{j+l)Dτ and FFj_ιB~{i+γ)Du.

Since FB~{j+X)Du and FFj_ιB~(j+l)Dτ are neighbors, our assumption leads to
three subcases:

First subcase:
( 1 ) Π FF3_xB-{j+X)Ή^ φ 0 .

This leads to the relation

which contradicts the second disjointness assumption.
Second subcase:

Π FFJ_lB~(j+l)D^ φ 0 .

This leads to the relation

which contradicts the third disjointness assumption.
Third subcase:

Π FFj^B-^^D^ φ 0 .

This leads to the relation

which contradicts the fourth disjointness assumption. D
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As in Sect. 1, let L be the limit set of the Ly We know that L is non-empty,
compact, and connected. We are going to show that L is homeomorphic to an interval.
For this purpose, we define a sequence of numerical functions φj as follows:

Definition 7.16. Let z be a point of Lj with j > 0. Then, z is contained in the
closure of at least one Fibonacci patch of the j t h generation. (In fact, it is contained in
the interior of at least one patch.) Let F be the corresponding Fibonacci tail. In case
of a tie, i.e., if z lies in the closure of exactly two Fibonacci patches with different
strings, we choose the left string, more precisely: the one for which ρ{z) is minimal.
Then, we put

(Notice that by Lemma 7.15, a point cannot be contained in the closure of more
than two patches.)

Lemma 7.17. lim φΛz) exists for each z £ L.
1 vrVΊ J0

Proof. For two neighboring patches P and Q of the same generation j > 1, with

corresponding Fibonacci tails Fp and FQ respectively, we have \g(FP) — Q(FQ)\ <

\ρ(FJ_2)\ by Definition 7.8. By Lemma 7.6, the latter number is equal to ωj~ι.
Take any z G L and fix j > 1. In particular, we have z £ L . Denote by P the

smallest (leftmost) patch of the j t h generation the closure of which contains z. If there
is a patch larger than P, tagged by T, and such that its closure does not contain z, we
denote the smallest one of these by R\ otherwise let R be the right boundary patch.
In the same way: if there is a patch smaller than P, tagged by T, and such that its
closure does not contain z, we denote the largest of these by Q\ otherwise let Q be
the left boundary patch. Then we have

Q<P <R.

We call the patches Q and R bracketing patches for the point z. (For later use, we note
that Q and R are bracketing patches for all points in a small open neighborhood of z
as well.) Because a point cannot belong to the closure of more than two patches (see
Lemma 7.15), and because patches tagged by U cannot be neighbors (see Definition
7.8), it follows that there are not more than four patches of the j t h generation strictly
between Q and R. By the above remark, this gives the estimate

\Q(FQ)-Q(FR)\<6(J-1.

For each fc > j , denote by Pk the smallest patch of the kth generation the closure
of which contains z.

Assume first that neither Q nor R are boundary patches. Then, by definition, z is
contained neither in the closure of Q nor in the closure of R. Moreover, it follows
from Lemma 7.15 that z is not contained in the closure of any patch (of generation
j) that is either smaller than Q or greater than R. Since by Lemma 7.12, patches
are contained in their ancestors, none of the Pk can descend from a patch (of the j t h

generation) less than or equal to Q, or from a patch (of the j t h generation) greater
than or equal to R. It follows that each Pk descends from a patch strictly between Q
and R. Since Q and R are tagged by T, Lemma 7.14 yields

FQ < FPk <FR, for fc > j ,
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and it follows that

ρ ( F Q ) < ψ k ( z ) < ρ ( F R ) , f o r k > j .

Assume now that R is the right boundary patch. In this case, we have the inequality

ρ ( F P k ) < l , f o r k > j ,

since the ̂ -values of the right boundary strings converge to 1 from below by Lemma
7.7.

In the same way, if Q is the left boundary patch, then we have the inequality

- ω < ρ ( F P k ) , f o r k > j ,

since the ̂ -values of the left boundary strings converge to — ω from above.
In any case, we end up with an interval [a,b] such that a < ψk(z) < b for

k > j . This interval is called a bracketing interval for the point z. (For later use,
note that the interval [α, b] is a bracketing interval for the points in a small open
neighborhood of z as well.) It follows that the numbers ψ~(z) = liminf ψk(z) and

k—*oo

ψ+(z) — limsup ψk(z) are both contained in the bracketing interval. By the above

estimate, the size of the bracketing interval is bounded by 6ω^~ι. Since j was arbitrary,
the numbers ψ~(z) and φ+(z) coincide, and the claim follows. D

Using the preceding lemma, we define

φ(z) = lim Ψ (z)

for z e L.

Lemma 7.18. The function ψ is continuous.

Proof. Fix z in L. For an arbitrary j , we construct the bracketing patches and the
bracketing interval as in the proof of Lemma 7.17.

If has already been observed that there is a small open neighborhood of z, such that
for each point of this neighborhood, the same bracketing patches are valid. Therefore,
the range of ψ on this small open set is contained in the bracketing interval; this one
can be made arbitrarily small by choosing j large enough. D

Lemma 7.19.
ψ(L) = l-ω, 1].

Proof. Lemma 7.18 implies that ψ(L) is a compact connected subset of the real axis,
i.e., a closed bounded interval. It follows from Lemma 7.7 that this interval is equal
to [-ω, 1]. D

Definition 7.20. Fix a non-negative integer j . Let z and w be elements of the set
Lj. Let P and Q be the smallest patches of the j t h generation the closure of which
contains z and w respectively. Without loss of generality, we assume that P < Q.
We say that z and w are separated by m patches of the j t h generation if there are m
patches Rλ, R2, ..., Rm of the j t h generation such that

P < R{ < R2 < ... < Rm < Q.
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Lemma 7.21. Let z and w be contained in the set L and assume that there exists a
non-negative integer j such that

\ψ(z) - ψ(w)\ < ωj .

Then z and w are not separated by more than seven patches of the j t h generation.

Proof. We prove that z and w cannot be separated by more than three patches of the
j t h generation that are tagged by T. The claim then follows by observing that patches
tagged by U cannot be neighbors (see Definition 7.11).

Assume to the contrary that z and w are separated by more than three patches of
the j t h generation that are tagged by T. Then there exist patches Rx, . . . , i?4 of the
jth g e n e r a t ion, tagged by T, such that

P < Rx < R2 < R3 < R4 < Q,

and (without loss of generality) z G P and w G Q. For all k > j , let Pk and Qk

be the smallest patches of the kth generation the closure of which contains z and w
respectively. By Lemma 7.15, z does not belong to the closure of R2, nor to the
closure of any patch (of generation j) that is greater than R2. In the same way, w
does not belong to the closure of R3, nor to the closure of any patch (of generation
j) that is smaller than R3. Since patches are contained in their ancestors (see Lemma
7.15), it follows that the Pk descend from patches (of the j t h generation) that are
strictly smaller than R2, and the Qk from patches (of the j t h generation) that are
strictly greater than R3.

Let F and G denote the strings corresponding to R2 and to R3 respectively. Since
R2 and R3 have the same tag, F is strictly smaller than G. Let Fk and Gk denote
the strings corresponding to Pk and Qk respectively. Since R2 and R3 are tagged by
T, it follows from Lemma 7.14 that we have

Fk<F <G<Gk, for k> j .

This implies

φ k ( z ) < ρ(F) < ρ(G) < ψk(w), f o r k>j.

By passing to the limit, we obtain

ψ(z) < ρ(F) < ρ(G) <

Since R2 and R3 are tagged by T, it follows from Definition 7.8 (and from the
monotonicity of ρ) that \ρ(F) — ρ(G)\ > \ρ(Fj_ι)\, and by Lemma 7.6, the latter
number is equal to ω3. It follows that \ψ(z) — ψ(w)\ > ωJ\ and we have reached the
desired contradiction. D

Lemma 7.22. The function ψ is one-to-one.

Proof. The claim follows from Lemma 7.21 by observing that the maximal diameter
of the patches of the j t h generation converges to zero with increasing j . D

Lemma 7.23. The function ψ is a homeomorphism. The set L is a continuous curve.

Proof The first claim follows from Lemma 7.18 and Lemma 7.22 by general
topology, by observing that R is a Hausdorff space.

It now follows from Lemma 7.19 that the set L is homeomorphic to a closed
bounded interval, i.e., that it is a continuous curve. D
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Recall from Sect. 2 the definition of the next symbol: the next symbol v(F) of a
Fibonacci tail F is the first symbol of the Fibonacci tail of minimal length that strictly
contains F. Let P be a Fibonacci patch and denote its string by F. Now, we define
the next symbol of the patch P by v(P) = v(F). Guided by Lemma 2.9, we define
the sets Mj and JV̂  as follows:

Definition 7.24. For any j > 1, the set M- (respectively TVp is defined to be the union
of the patches of generation j the next symbol of which is equal to U (respectively
Γ).

(We have to exclude the case j — 0, since Mo = Dυ, but V(DJJ) = T according
to our definition. Alternatively, we could simply define the next symbol of the patch
DJJ to be equal to [/, arguing that for the empty string in {F_ι}, the next symbol is
U.)

Lemma 7.25. Assume that F G {F-_x} with j > 1. Then we have

Proof. According to the assumption, there exists a string A different from the empty
string such that AF = FJ_ι; in particular, AF is a Fibonacci tail.

Because of the equation F-+ι — Fj_ιFJ, we have AFFj = FJ+ι; in particular,
ΔFFj is a Fibonacci tail.

We have shown that both AF and AFFj are Fibonacci tails. The claim now
follows by observing that A is not empty. D

Lemma 7.26. Let P be any patch with generation j > 2. Then we have

u(P) = u(π(P)).

Lemma 7.26 says that the next symbol is inherited.

Proof Looking at Definition 7.11, we see that we only have to prove that

v ( F ) = v { F - F-) f o r F e { F j _ ι } F j a n d j > l .

But this is just Lemma 7.25 in a different disguise. D

Lemma 7.27. Let P be any patch with generation j > 2 that has a successor, and let
F be its string. Then we have v(P) = ι/(σ(P)), unless P is tagged by T and

Γ TUF , for even j
j ~ \ UTF , otherwise .

Lemma 7.27 says that the next symbol jumps exactly once in a fixed generation.
The above patch, at which the jump occurs, will be called the pivotal patch.
(Incidentally, the string of the pivotal patch is palindromical. It is easy to prove
this by induction.)

Proof. According to Definition 7.8, the next symbol can change only in two cases,
namely
• between patches of the form FB~3Dτ and FFJ_ιB~JDτ, and

• between patches of the form FB~JDT and (F - Fj_2)B~jDu.

Lemma 7.25 excludes a change in the first case. (We have F G {F3_2}.) It remains
to discuss the second one.

Assume, therefore, that F G {^}\{i?

j_2}
 a n d t h a t F ^ Fj
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We only discuss the case of j being even. (For odd values of j , the argument is
completely analogous.) Since for even values of j (with j > 2), the Fibonacci string
F3 starts with TU (see Lemma 7.5), we can write

F3 = TUΔF,

with a string Δ that is possibly empty. By definition, ΔF is a Fibonacci tail.
By assumption, the string F is strictly longer than Fj_2. Therefore, we have

F3 = TUΔGFj_2,

and by Lemma 7.5, the string ΔG is a Fibonacci tail. (Indeed, ΔG G {Fj_{}.)
Therefore, both ΔF and ΔG are Fibonacci tails. If Δ is not the empty string, it

follows that v(F) = u(G) = u(F - F j _ 2 ) .
The only case, therefore, where a jump is not excluded, is the case of Δ being

the empty string. Since the next symbols of F3 and FJ_ι are always different (see
Lemma 7.5), it follows that a jump must occur. We conclude that it occurs exactly
for Δ being the empty string, and this was to be shown. D

Let us collect a few consequences of what we have proved so far. It follows from
the preceding lemma and from Lemma 7.10 that the sets M3 and Nj are connected
and that they overlap. Moreover, the sequences (Mj) and (Nj) decrease - this follows
from Lemma 7.12, by observing that the next symbol is inherited (see Lemma 7.26).
As in Sect. 1, we conclude that the limit sets M and N are non-empty, compact,
and connected, and that we have L = M U N. Furthermore, the sets M and TV
intersect. Since the maximal diameter of the patches converges to zero with increasing
generation, M and TV intersect in exactly one point.

Again, since ψ is continuous (see Lemma 7.18), it follows that ψ(M) and ψ(N)
are closed bounded intervals. Since ψ is injective (see Lemma 7.22) and since M and
TV intersect in exactly one point, the same is true for these intervals.

By the preceding lemma, the string FP of the pivotal patch is obtained by removing
the symbols UT or TU from the head of the string Fj. Since lim ρ(F3) = 0 by

Lemma 7.6, it follows that ρ(Fp) converges to 1 - ω with increasing generation. We
conclude that both ψ(M) and ψ(N) contain the point \—ω. Since for even values of
j , the next symbol of F3 is equal to T (see Lemma 7.5), it follows from Lemma 7.7
that — ω is contained in ψ(N). Summing up, we have proved the following result:

Lemma 7.28.
ψ(N) = [-ω, 1-ω], φ(M) = [1 - ω, 1].

We have ψ(0,0) = 0, since (0,0) is contained in all the patches of the form

Lemma 7.29.
ψ(Uz) = ψ(z) - 1 for z G M ,
ψ(Tz) = ψ(z) + ω for z G TV .

Proof. Take any z G L that is not a boundary point. It follows that for sufficiently
high values of j , the point z is not contained in the closure of a boundary patch of
generation j .

Assume that z G M. In particular, we have z G Mj. Since z is not contained in
the closure of a boundary patch, we have Uz G M , and it follows that

since adding a symbol U to a string changes its £-value by —1.
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Since j was arbitrary, it follows that ψ(Uz) = ψ(z) — 1. If z is a boundary point,
the claim follows by continuity.

The second claim is proved in the same way. D

We denote the inverse of ψ by φ.

Lemma 7.30. We have

φ(t - 1) = Uφ(t) for 1 - ω < t < 1 ,

φ(t + ω) = Tφ(t) for - ω < t < 1 - ω ,

which means that φ conjugates the induced pair to a rigid rotation.

Proof. The claim immediately follows from Lemma 7.28 and Lemma 7.29. D

The pair ([1 — CJ, 1], [—ω, 1 — ω]) is invariant, in the sense of Definition 3.1, for
the pair of maps (u, t) defined by

u(s) = s — 1 , t(s) = s + ω .

Since φ is a homeomoφhism, we conclude that (M, N) is invariant for the pair ([/, T).

Lemma 7.31. 77z<? cwrw £ —> φ(t) is Holder continuous.

Proof. By assumption A4, there is a number c with 0 < c < 1 such that

\TB-2z-TB~2w\ <c\z-w\

IN' I/3|'T

for arbitrary z and w in Όυ U Dτ.
We put

K = max

where a and β are the diagonal elements of the rescaling B. By assumption, we have
0 < K < 1. It follows from Lemma 1.5 that the maximal diameter of the patches of
the j t h generation is bounded by dκ3 with a positive constant d.

Finally, we put
_ log ft

logu;

The positive number μ is going to be the Holder exponent.
We fix j > 1 and choose any two different points s and t in the interval ψ(L)

withu; j + 1 < \s-t\ < ωj.
It follows from Lemma 7.21 that the points φ(s) and φ(t) cannot be separated by

more than seven patches of the j t h generation, and we obtain the estimate

\φ(s) - φ(t)\ < 9dn3 .

It follows that
' ~ Φ(t)\ 9d_ {j*_\j

 =9d

Since j was arbitrary, we are done. D

In the case of the simple fixed point, where B = diag(-l/ω, -1/ω2), and where
c = ω2, the number μ becomes equal to one, and it follows that the curve t H-> φ(t) is
Lipschitz continuous. In the case of the critical fixed point, the number μ is strictly
smaller than one. (We have 0.618 w ω < l / |α | w 0.71 and l / | α | < K < 1.)
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Lemma 7.32. Under the conditions A1-A5, the number

log|α

log -
ω

is an upper bound for the Holder exponent of the conjugator at the origin. Here, a is
the smaller (in absolute value) of the diagonal elements of the rescaling B.

Proof. For arbitrary j , let the j t h Fibonacci string F- be characterized by the pair
(p , q3). It follows from Lemma 7.30 that

In particular, this holds for t = 0, and by making use of Lemma 2.2, we obtain

where c{ and c2 are the coordinates of the point Γ(0,0) and where a and β are the
diagonal elements of the rescaling B. We still assume that a is the smaller one in
absolute value.

For the next step, we need c{ to be different from zero. Of course, we could
simply assume this and justify the assumption by numerics. But there is a simple a
priori argument proving it: we put z = (0,0) and w = Tz and assume that the first
coordinate of w is equal to zero. Then we have Sz = z and Sw = w; the equation
z = T~xw now implies Sz — T~ιSw, and by symmetry, it follows that z = Tw.
Combining this equation with z = T~ιw, it follows that z — T~2z, i.e., that z is a
fixed point of the map T 2 , and this contradicts the fact that the rotation number of z
is well defined and equal to ω. (The latter claim is a consequence of Lemma 7.30.)

Assume that the curve is Holder continuous at the origin with an exponent
0 < v < 1. There exists a positive constant c such that

\φ(Qjω ~Pj)\ < c\q3ω-p3\
v < cωω?" ,

where we have used Lemma 7.6. On the other hand, we obtain

\φ(q3ω-p3)\ =

Combining the last two inequalities gives

ω

cωωj

Since j was arbitrary, it follows that ωv > \a\ . (Remember that cx is different from
zero.) This, in turn, implies

log a
logo;

and we are down. D

For maps attracted by the critical fixed point, the numerical value of μ is 0.721. In
particular, the conjugator of the critical golden curve is not differentiable at the origin.
(It follows that it is not differentiable on the orbit of the origin, which is dense.)
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We are going to show that the Holder continuity holds with the above number μ
as exponent; it will follow that μ is the optimal Holder exponent. For this purpose,
let us impose an additional assumption on the fixed point, namely:

A6. The map TB~ι is a uniform contraction on Όυ U Dτ.

(A direct calculation shows that this condition is satisfied for the simple fixed
point. In the case of the critical fixed point, it looks as if it was satisfied too, but the
numerical evidence is not conclusive.)

Lemma 7.33. Under the conditions A1-A6, the Holder continuity holds with the
number μ from Lemma 7.32 as exponent.

Proof. Since TB~ι is a contraction, the number c in the proof of Lemma 7.31
becomes smaller than l/ |α | , and it follows that we have K = l/ |α | . The claim
now follows from the proof of Lemma 7.31. D

By Lemma 7.32, the Holder exponent given by Lemma 7.33 is optimal.
In the appendix, we prove that all these results hold for asymptotic self-similarity

as well. Applying the construction of Sect. 5 to the parametrization t ι—» φ(t) yields
a Holder continuous curve going around the cylinder; the induced mapping on the
curve is conjugate to a rigid rotation. Thus we obtain the following result:

Theorem 7.34. // a homeomorphism of the cylinder is attracted by a fixed point
that satisfies the assumptions A1-A5, then it has an invariant golden circle, and
the induced mapping on the curve is continuously conjugate to a rigid rotation. In
particular, the invariant curve is topologically transitive. Moreover, the conjugator is
Holder continuous. For maps attracted by the critical fixed point, the conjugator is
not differentiable on a dense set of points.

8. Appendix

For the sake of completeness, we give the proofs showing that the theory of Sect. 7
carries over to the case of asymptotic self-similarity. Moreover, we repeat the
procedure of Sect. 5 in order to obtain a parametrized necklace set.

The combinatorial part of Sect. 7 does not require any changes. We only have to
worry about the results that involve topological properties of the patches, namely
Lemma 7.10, Lemma 7.12, and Lemma 7.15.

(The proof of Lemma 7.31 requires a small change that we leave out. Furthermore,
in the proof of Lemma 7.33, the powers a~i and β~i must be replaced by
a^lct2l . . . ajι and by βx~

x β^X . . . β~ι respectively; apart from this modification,
the proof stays valid.)

Let us recall the terminology from Sect. 4. The asymptotically self-similar pair is
denoted by (C/0,T0). We consider the converging sequence

(Uk+ι,Tk+ί) = Bk+x{Tk,UkTk)Bklλ, k > 0

of iterated images of (£/0, To) under the renormalization operator. The index k denotes
the iteration step number along the orbit; it will keep this meaning in the whole section.

The following conditions are assumed to hold for all non-negative integers k:

B'l^ C Dτ , B~1XD^ C Dτ , TkB^xD^ C Du .
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(These follow from the domain extension property and from convergence to the fixed
point.)

(These follow from the connectedness assumptions and from convergence to the fixed
point.)

Recall from Lemma 4.10 the following representation of the sets Lky.

Lkί = {F3

k}B~^Dτ U {F^BUDv

for pairs (j, k) of non-negative integers.
Now, the patches obtain a second index k:

Definition 8.1. A patch descriptor is an object consisting of a non-negative integer
j , denoting what we call its generation, a non-negative integer fc, selecting the pair
(Uk,Tk) to be used, a Fibonacci tail F, and a tag that is either the symbol U or the
symbol T. F is required to be a member of {Fj_x} if the tag is equal to U, and a
member of {F-} otherwise.

Lemma 4.10 shows that the patch descriptors are in a one-to-one correspondence
with the patches.

Descendence and succession are now defined to relate only patches with the same
value of k. Apart from this, they are defined exactly as before. At last, we shall only
need the patches with k = 0, the set L° being invariant for the initial pair (U0,TQ).
But the intermediate steps involve all values of k. In particular, the domain extension
property and the connectedness assumptions will be used with higher and higher
values of k as we descend in the hierarchy of the patches.

Lemma 8.2. If two patches of the same generation are neighbors, then they overlap
as sets.

Proof. The condition of being neighbors implies that the patches have the same
index k.

According to Definition 7.8, there are three possible cases, each of which is reduced
to one of the connectedness assumptions. Apart from Lemma 4.8, the reductions use
the fact that the maps Ul9 Tx, and Bι+ι are homeomorphisms.

Recall Lemma 4.8:

where we again use the shorthand notations

In the following, any string with a raised index I > 0 denotes a string involving the
symbols Uι and Tz.

First case:

FkβkiιDu n FkBkUDτ ^%^DufλDτφ{D.

Second case:

FkBklχDτ n F'F^B^DT φ 0 o B-klxΌτ Π Fk_λB^xΌτ φ 0
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(Remember: the maps Uι have been continued to Du U Dτ, see Sect. 4.)
Third case:

FkFUBlUΌτ Π FkBϊUDυ φ 0 ̂  Ff_2BZUDτ Π B , ^ ψ 0

<* υk^_xB-kl.Dτ n B^iJy ^ 0. D

Lemma 8.3. The closure of each patch with j > 1 is contained in its parent.

Proof By definition, a child has the same index k as its parent.
According to Definition 7.11, there are three cases to distinguish, each of which

is reduced to the domain extension property. Apart from Lemma 4.8, the reductions
use the fact that the maps Όx, Tx, and Bι+λ are homeomorphisms.

As above, any string with a raised index I > 0 denotes a string involving the
symbols Uι and TL.

First case:

(— TP T-2 3 7~) / •• JD—•»• 7~) (— 7~)

Second case:

-D j . 1 LJrτ-\ K^_ Γ £j 7 , 1 LJ rjΛ V ^ ΰ l 1 1 1 LJ rn K_ J_J' rri .

AC+1 i K+l i /C+J + l i 1

Third case:

Now, we are going to show that only neighboring patches overlap. From the
disjointness assumptions (see Sect. 7) and from convergence to the fixed point, it
follows that the following relations hold for all k greater than a certain fc0, which we
take to be equal to zero without loss of generality.

(Remember: the maps Ux have been continued to Όυ U Dτ, see Sect. 4. In fact, they
are continuous up to the closure of this set.)

Lemma 8.4. Fibonacci patches of the same generation overlap if and only if they are
neighbors. If they are not neighbors, then even their closures are disjoint.

Proof. The " i f part of the first assertion has already been proved in Lemma 8.2. The
"only i f part will follow from the second assertion.

For the zeroth generation, the claim is vacuously true, since Όυ and Dτ are
neighbors. Let j be greater than or equal to zero and assume that the claim has been
proved up to j . Assume that the closures of two patches of the generation j" + 1
overlap without the patches being neighbors. Since siblings are neighbors, it follows
that the parents of the patches are distinct. Since, by Lemma 8.3, children (including
their closure) are contained in their parents, it follows that the parents overlap too.
By the inductive assumption, it follows that the parents are neighbors. Let us denote
the parents by P and Q.

As above, any string with a raised index I > 0 denotes a string involving the
symbols Uι and Tt.



Renormalization for Golden Circles 425

We distinguish the same cases as in the proof of Lemma 7.13:

First case: P = FkB~^ιDu and Q = FkB~lχDτ. The unique child of P is

The progeny of Q consists of two neighboring patches, namely

FkB~^Dτ and FkB^Du.

Since FkFkB^\+l)Dτ and FkB^\+l)Dτ are neighbors, our assumption implies
that

Applying (Fk)~ι and making use of Lemma 4.8, we end up with the relation

which contradicts the first disjointness assumption.

Second case: P = FkFk_2B~lχDτ and Q = FkB~lιDu. The progeny of P
consists of two neighboring patches, namely

The unique child of Q is FkFkB~l\+l)Dτ. Since the patches FkFk_2B~l\+l)Du

and FkFk B^\+ Dτ are neighbors, our assumption implies that

FkFk_2B-{

+{+l)aΓ n FkFkB-{

+\+l)ar φ 0.

We have Fk — Fk_2F
k_v Applying (FkFk_2)~ι and making use of Lemma 4.8, we

end up with the relation

Bll3+ιD^ Π Uk+jB-lJ+lD~T φ 0,

which contradicts the second disjointness assumption.

Third case: P = FkB~j_ιDrΓ and Q = FkFk_ιB~lχDτ. These two patches give
rise to four children with the siblings being neighbors. The progeny of P consists of
two patches, namely

FkB~i\+l)DT and F^B

The progeny of Q consists of two patches, namely:

and FkFk

Since FkB^^λ)Du and FkFk_ιB^\+l)Dτ are neighbors, our assumption leads to
three subcases:

First subcase:

FkB~l\+ι)D^ Π FkFk_ιB~{

+\+l)πr φ 0 .

This leads to the relation

Bfc+ί+iS; n Uk+jB~lj+ιD^ φ 0,

which contradicts the second disjointness assumption.
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Second subcase:

FkB

This leads to the relation

which contradicts the third disjointness assumption.
Third subcase:

This leads to the relation

which contradicts the fourth disjointness assumption. D

Apart from the above modifications, all the proofs of Sect. 7 are valid in the case
of asymptotic self-similarity.

Now we repeat the construction of the necklace set, using the natural parametriza-
tion t ι-> φ(t) instead of just working with point sets. The notation is the same as in
Sect. 5: we have

(U0,T0) = B(Fm_ι,Fm)B-1,

where FJ denotes the j t h Fibonacci string of the symbols (R, F), and where B is

an ?72-fold product of linear-diagonal single-step rescalings. Let φP denote the natural

parametrization of the invariant pair for (E/o, Γo):

Uoφ°(t) = φ°(t - 1) f o r l - ω < t < l ,

Ί

Again, we put

Toφ°(t) = φ°(t + ω) for -ω<t<\-ω.

(U,T) = B-[(U0,T0)B = ( . F ^ . F J .

The maps U and T are commuting homeomorphisms of the whole plane, which means
in particular that we do not have to worry about their domains of definition.

Putting φ = B~ιφ0, we obtain

Uφ(t) = φ(t-\) for l-ω < t < l ,

Tφ(t) = φ(t + ω) for - ω < t < 1 - ω .

With the definitions

N = φ([-ω, 1 - α;]), M = 0([1 - α;, 1]), L = 0([-w, 1]),

the pair (M, AT) is invariant for ([/, Γ), and φ is a homeomorphism from [—ω, 1] onto
L = M U iV.

Recall from Sect. 5 the recursive definition of the pairs (UJ, T3)JL0: we put Uo = U
and T0 = T and

for 0 < j < m. It follows that (U^Tj) = (Fm_J_ι,Fm_j) for 0 < j < m (see
Lemma 5.3). (UJ and Tj have a different meaning that in the first part of this section.)
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In addition to this, we consider the following recursion: we put φ0 = φ and define
the sequence (φj)™=0 by

— 1 , f o r — ω <t < I — ω
ω )

U φ, ( - - + 1 ) for 1 - ω < t < 1.

The following implications hold

-ω<t<l-ϋϋ=>-ω< < 1 ,
ω

t
\-ω<t<\^>-ω< h 1 < 1 - ω .

ϋϋ

We have 1 - ω — ω2 and — — + 1 = - ω by Definition 6.1. J. Therefore, φj+ι is

well defined.

Lemma 8.5. The functions </> are continuous, and we have

Ujφjd) = φo(t - 1) for 1 - ω < t < 1,

TJφJ(t) = φj(t + ω) for -ω<t<l-ω.

Proof. For j = 0, the claim is true by definition. Let j be greater than or equal to
zero and assume that the claims have been proved up to j .

We first prove that Φj+\ is continuous. By the inductive assumption, it is enough
to show that φj+ι is continuous at t = 1 - ω. For the limit from below, we obtain

For the limit from above, we obtain

\\m^ φJ+ι(t) = Ό3φ- ( - λ-^- + Λ = U3φ3(-ω + 1) = φ3(-ω),

where we have used the inductive assumption in the last step, and we see that these
limits are equal.

Now we are going to prove the relation UJ+ιφJ+ι(t) = Φj+\(t - 1). Assume that
1 — ω < t < 1. (Notice the strict inequality.) By definition, we have

uJ+ιφJ+ι(t) = T3U-'U^ ( - ί + ή = τjΦj ( - 1 +1

The assumption implies the following relations:

t
—ω < (- 1 < 1 — ω , —ω < t - 1 < 0 < 1 - ω .

ω

Using these and the inductive assumption, we obtain

) Φ j ( ) = φ j ( - - + -
ω I J \ ω ) J\ ω ω

t - 1

ω
i t f- l ) ,
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which proves Uj+xφJ+ι(t) = φj+x{t - 1) for 1 — ω < t < 1. By continuity, this holds
for t = 1 - ω as well.

For the proof of Tj+ιφJ+1(t) = φj+ϊ(t + ω), assume that — ω < t < 1 — ω. By
definition, we have

Here, we distinguish two cases:

First case: 1 —ω < < 1. In this case, we have the following relations:
ω

ω2 = 1 -ω < < 1, -ω < t < - ω3,
ω

-ω<<d<t + ω<-(j?-\-ω = ω(-ω2 + 1) = ω2 = 1 - ω .

Making use of the first one, we obtain

Making use of the last one, we obtain

by the definition of Φj+\-

Second case: —ω < < 1 — ω. Let us first rewrite UΊφA
ω J J \ ω

ω

In this case, we have the following relations:

—ω < < 1 — ω = ω2 , —ω3 < t < ω2 = I — ω ,
ω

—ω3 + α; = 1 — ω < t + ω < 1 .

Making use of the last one, we obtain

by the definition of φ-+x G.

For j = m, the preceding lemma yields a continuous function 0 m with

Rφm(f) = φm(t - 1 ) , for l - α ; < ί < l ,

Fφm(t) = φm(t + ω), for -ω<t<l-ω.

Now, we put

where the Gauss brackets are defined by [s] = max{n e Z | n < s}.
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Lemma 8.6. The function φ is continuous, and we have

φ(t -n) = Rnφ(t)

for allteR and n G Z.

Proof. It is enough to show that φ is continuous at the point — ω. For the limit from
below, we obtain

lim φ(t) = R lim φm(t + 1) = RφJ\ - ώ).

For the limit from above, we obtain

lim φ(t) = lim φm(t) = φm(-ω).
t[—ω t[—ω

Putting t = 1 — ω in the equation Rφm(t) — φm(t - 1), we see that these limits are
equal.

For the proof of the second claim, observe that we have

φ(t - 1) = R-[t-ι+ω]φm(t - 1 - [t - 1 + ω])

and
φ(t + 1) = R~[M+ω]φm(t + 1 - [t + 1 + ω])

= R~ιR-[t+ω]φm(t - [t + ω}) = R~ιφ(t)

by construction. D

Lemma 8.7.
Fφ(t) = φ(t + ώ), for all ί G R

Proof. Take any ί G l and put n = [ω +1], which implies — ω <t — n < \ — ω. We
then obtain

Fφ(t) = R-nFRnφ(t) = R~nFφ(t - n)

— R~nFφrn{t — n) = R~nφm(t + ω — n) .

Here, we have to distinguish two cases:
First case: 0 < t + co — n < 1 — ω. In this case, we have [ί + 2ω] = n. Continuing

the above equation, we obtain

ω -n) = R-[t+2ω]φm(t + ω - [t + 2ω]) = 0(t + ω)

by definition.
Second case: l~ω<t + ω — n < I. In this case, we have [t + 2α>] = n + 1.

Continuing the above equation, we obtain

-n) = R-{n+l)Rφm(t + CJ - (n + 1) + 1)

= R-(n+l)Φm(t + uj-(n+l))

= R-[t+2ω]φm(t + CJ - [t + 2ω]) = 0(t +

by definition. D

Now we are going to show that φ is actually a homeomorphism. As a preparation,
we prove the following two results:
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Lemma 8.8. Let a and s be arbitrary real numbers, and assume that

φ(s + α) = φ(s).

Then we have

φ(t + a) = φ(t).

Proof. The assumption implies Rpφ(s + a) = Rpφ(s) for all integers p, which is
equivalent to

φ(s - p + a) = φ(s - p)

by Lemma 8.6. In the same way, the assumption implies Fqφ(s + a) = Fqφ(s) for
all integers q, which is equivalent to

φ(s + qω + a) = φ(s + gu;)

by Lemma 8.7. Combining these two equations, we have

φ(s + qω-p + a) = φ(s + qω - p)

for all pairs (p, q) in Z 2 . Since the numbers of the form qω - p are dense in R, the
claim follows by observing that φ is continuous (see Lemma 8.6). D

Lemma 8.9. There exists a positive constant M such that the following implication
holds:

\s-t\> M => \φ(s)-φ(t)\ > 1.

Proof The claim follows from the definition of φ, by observing that φm is bounded
on [—ω, 1 — α;]. •

Lemma 8.10. The function φ is a homeomorphism.

Proof. Since φ is continuous by Lemma 8.6, it suffices to show that φ is injective.
Assume to the contrary that there exists a real number a different from zero and an
arbitrary real number s such that

φ(s + α) = φ(s).

By Lemma 8.8, we have φ(t + α) = φ(t), which implies that

φ(s + na) = φ(s)

for all integers n. Let M be the number defined in Lemma 8.9. We choose n such
that \na\ > M. Using Lemma 8.9, we obtain the contradiction

0 = \φ(s + na) - φ(s)\ > 1.

We conclude by observing that φ is piecewise Holder continuous by construction,
and therefore globally Holder continuous.

Note added in proof. The proof of Lemma 8.10 does not imply that the map φ, regarded as a map
of R/Z into the cylinder, is a homeomorphism into its image. The proof of this fact is left to the
reader.
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