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Abstract. We continue the model independent study of the Polyakov action on an
arbitrary compact surface without boundary of genus larger than 2 as the general
solution of the relevant conformal Ward identity. A general formula for the Polyakov
action and an explicit calculation of the energy-momentum tensor density is provided.
It is further shown how Polyakov's SL(2,C) symmetry emerges in a curved base
surface.

1. Introduction

Since the mid-eighties, a large body of theoretical and mathematical literature has been
devoted to the study of two-dimensional conformal field theories on Riemann surfaces
without boundary [1^2]. These models are relevant in string theory and in the analysis
of the 2-dimensional statistical system obeying certain periodic boundary conditions at
criticality. In more recent times, the dependence on the background geometry has been
exploited to obtain effective actions for two-dimensional quantum gravity. This has
led to exciting developments in non-critical string theory [3,4] and may conceivably
shed some light on the quantization programme of higher dimensional gravity.

Most of the studies on the subject are concerned with Lagrangian field theories
on a two-dimensional Riemannian manifold (Σ,g) which are both Weyl and diffeo-
morphism invariant at the classical level [5-7]. The quantization program is carried
out by means of a diffeomorphism invariant renormalization scheme, typically the ζ
function scheme. In general, however, a Weyl anomaly is produced in this way. Let
us see this in greater detail. Parametrize the metric g as usual as

g = exp(φ)ρo\dz + μdz\2 (1.1)

[8-10]. Here, z, z are the coordinates of a reference holomorphic coordinate covering.
φ is the Weyl phase, μ is the Beltrami differential characterizing the conformal class
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of g. ρ0 is a background metric and is needed to write g invariantly. The infinitesimal
action of the Weyl and diffeomorphism symmetry on the above fields is given by the
nilpotent Slavnov operator s and is expressed in terms of the respective ghost fields
F and c:

sφ = F + (cd + cd)φ + (Vo + μd)c + (Vo + μd)c, (1.2)

sμ = (d- μ<9 + (<9μ))C, C = c + μc, (1.3)

sF = (cd + cd)F, (1.4)

sc = (cd + cd)c, (1-5)

where Vo is the covariant derivative associated to the Riemann-Christoffel-Ricci-Levi
Civita connection 70 of ρ0

Ίo = d\nρo. (1.6)

The background ρ0 itself is invariant:

50O = O. (1.7)

The diffeomorphism invariant effective action ΓD is a functional of the metric g and
thus, by (1.1), of the fields φ, μ, μ, and the background ρ0. It obeys the Ward identity

sΓD(φ, μ, μ; ρ0) = k^4(F; φ, μ, μ; ρQ), (1.8)

where

, μ, μ;

I2πj
dz Adz f,

F<ddφ + ddϊnρQ

Σ

μ φ μ φ μ ) ) ^ )
1—μμ 1—μμ J

[5-7]. Here, a Weyl anomaly appears whose strength is measured by a real coefficient
k. The form of such anomaly is universal. With a conventional normalization, k
coincides with the central charge of the model under consideration. The Weyl anomaly
can be eliminated by either i) constraining the field content of the model so that the
total central charge vanishes, as in the case of string theory [5], or ii) subtracting
from the effective action a suitable local counterterm that absorbs the Weyl anomaly
at the cost of creating a diffeomorphism anomaly [11]. The form of such counterterm
is also universal. Up to a factor k, the counterterm is given by

,μ;ρ0,M0^0), (1.10a)

where

,μ,μ; ρ0) = ^L /*
12π J

(Q _ μd)ψφ - μd)φ
μ)2ι y 2(1 - μμ)

Σ

- φ\ddlnρ0 -φ-Jίd- Φμ))P~ - Φ - μd - (dμ))^-\ } , (1.10b)

Δ2Γ(φ,μ,μ; ρ o ,^ o 3 o ) = ^ J 2i

Σ

[ V V I \ ( V ) 2 ^ ( V ) 2 ] J (1.10c)
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and r 0 is the projective connection

MQ is a holomorphic projective connection in the conformal structure of the reference
coordinate covering z, ~z and satisfies

sM0 = 0. (1.11)

^ 0 ensures the correct conformal covariance of the integrand in the right hand side
of Eq. (1.10c). The Weyl invariant effective action Γw is obtained by adding the
counterterm to ΓD [11]:

Γ w ( μ , μ ; ^ 0 J 0 ) = Γ D ( ^ μ , μ ; ^ 0 ) + W Γ ( ^ / i , / i ; ^ J 0 , J 0 ) . (1.12)

Γw depends on the fields μ, μ and the background JB0 and JB0. Crucially, Weyl
invariance ensures that no dependence on ρ0 occurs. Γw obeys the Ward identity

w 0 0 0 ;Ή0), (1.13)

where

j&iP\ μ; Mo) = ^- J ^ ^ C(d3 + 2R0d + (dJB0))μ (1.14)

Σ

[12,13]. The Weyl anomaly has been traded for a diffeomorphism anomaly whose
strength is again measured by the central charge k. The salient feature of the
diffeomorphism anomaly is that it is chirally split: it is the sum of̂ two contributions
each of which depends on only one of the pairs (C, μ) and (C, μ). This fact is
intimately related to the holomorphic factorization property of Γw which reads

Γ ^ ( μ , μ ; ^ 0 , ^ 0 ) = Γ P ( μ ; ^ 0 ) + Γ P ( μ ; ^ 0 ) , (1.15)

[14,15]. The functional Γp is called the Polyakov action of the model under
consideration [16]. This is a most fundamental object. It depends holomorphically on
the Beltrami differential μ and the background JS0 and satisfies the chiral conformal
Ward identity

\ μ; ̂ 0). (1.16)

Combinations of Polyakov actions can be used to construct explicitly chiral conformal
field theories. Last, but not least, any Polyakov action may serve as a "classical" action
for ID quantum gravity in the so-called light cone gauge [16-20]. Such action being
non-local, the quantization programme is highly non-trivial.

The independence of ΓP(μ;M0) from φ and ρ0 entails that such functional
depends only on the background conformal geometry parametrized by the Beltrami
differential μ. This suggests that a natural scheme for the study of 2-dimensional
conformal field theory on Riemann surfaces should rely ab initio and exclusively
on conformal geometry [21,22]. It would also be preferable if such a scheme were
non-Lagrangian in nature, in order to allow for a wider range of applications and not
bias our understanding of the subject. For such reasons, I shall adopt a somewhat
axiomatic point of view and postulate a few general properties of ΓP[μ,^?0] which
have been shown in a number of examples but are expected to hold in general. Then,
I shall try to prove general theorems by relying exclusively on those properties. In
practice, this amounts to find the most general solution of the Ward identity (1.16) that
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depends holomorphically on μ. The advantage of this approach is that all kinematical
implications of the conformal symmetry are explicitly and fully worked out and neatly
separated from model dependent features.

It can be shown in the framework of renormalized field theory based on locality
and power counting that, in the infinite plane, the conformal Ward identity (1.16) has
a unique solution [23,24]. This has been found by Polyakov in ref. [16, Eq. (5)]. The
generalization of Polyakov's formula to a compact Riemann surface without boundary
has been worked out in ref. [25] (see also [26]). In this case, however, the solution is
non-unique since it is defined up to addition of an arbitrary local holomorphic function
on a non-trivial Teichmueller space. In this paper, I shall continue the study of the
Polyakov action on a compact Riemann surface without boundary begun in ref. [25].
Here, I have found an alternative but equivalent expression of the Polyakov action
which is more suitable for the study of its formal properties. I have also reached a
better understanding of the geometrical structure lying beneath the whole construction
and of the mechanism responsible for the appearance of the SL(2,C) symmetry in a
curved base surface.

The plan of this paper is as follows. In Sect. 2, I shall review the basic definitions
and results of conformal and projective geometry which will be used throughout.
These notions are already known to the scholars working in the field and have been
recalled for the purpose of setting the notation and for later reference. In Sect. 3,
the properties of the infinitesimal action of the diffeomorphism group on the relevant
fields are briefly expounded and the Slavnov operator is introduced. In Sect. 4, the
general formula of the Polyakov action is given and shown to solve the conformal
Ward identity (1.16) and the calculation of the energy-momentum tensor is illustrated.
Finally, in Sect. 5, I shall review the basic formal properties of the Polyakov action,
show how the SL(2,C) symmetry emerges in this context and review the problems
that are still open.

2. Higher Genus Surfaces and Their Conformal and Projective Geometry

Let Σ be a connected compact differentiable surface without boundary of genus g > 2.
Let

π'.Σ^^Σ (2.1)

be a universal covering of Σ and Deckπ its universal covering group. As is well-
known, Σπ is a connected simply connected differentiable surface and π is a local
diffeomorphism. For this reason, it is harmless and convenient not to distinguish
notationally between any sheaf theoretic structure on Σ (e.g. a coordinate structure,
a line bundle, a section of a line bundle, etc.) and its pull-back to Σn by π.

Let a be a reference conformal structure, i.e. a maximal atlas of local coordinates
with holomorphic coordinate changes. I shall denote a generic coordinate of a by z.
All relations of this paper will be written in terms of the coordinates of a, unless
otherwise stated.

Let k be the a-holomorphic cotangent line bundle of Σ and I an a-holomorphic
line bundle on Σ such that /®2 — k. Let O be a non-empty open subset of Σ and
p, q half-integer numbers. A conformal field ψ of weights p, q on O is a smooth

section of l®2p 0 I on π~ι(O). The infinite dimensional complex vector space of
all such fields will be denoted by Cζ>q(O). A (scalar) multiplier χ on O is a map that
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associates to any element 7 of Deckπ a nowhere vanishing element χ(j) of
such that

λ(7i ° 72) = X(7i) ° 72 '
1 ° 7a"1 ° 7i ° 72) = ! ( 2 3 )

for any two 7 1 ? 7 2 in Deck π . The map 7 —• ε(7) = 1 defines a multiplier called
the trivial multiplier. The multipliers clearly form a group Gπ(O) under pointwise
multiplication. A conformal field ψ of Cξ>q(O) has definite monodromy if there is a
multiplier χ such that

* ^ , (2.4)

for any 7 in Deckπ, where 7 * ^ denotes the pull-back action of 7 on τ/\ The
polydromic fields with multiplier χ form an infinite dimensional complex vector space
Cp'q(O,χ). The monodromic conformal fields are those polydromic fields whose
multiplier is the trivial multiplier. They form an infinite dimensional complex vector
space Cp>q(O).

A Beltrami differential μ on Σ is an element of C~ι'ι(Σ) satisfying the bounded-
ness condition sup^ \μ\ < 1. The set Beltr(i7) of all Beltrami differentials on Σ has
an obvious structure of topologically contractible complex Banach manifold.

Beltr(i7) parametrizes the set of all conformal structures on Σ. Indeed, to any
Beltrami differential μ in Beltr(Σ'), there is associated a conformal structure A(μ) on
Σ whose generic coordinate Z is a local solution of the Beltrami equation

Φ - μd)Z = 0 (2.5)

obeying the local invertibility condition

dZd~Z - dZdZ > 0. (2.6)

Conversely, A(μ) determines μ through the local relation

μ = ΘZ/dZ , (2.7)

where Z is a generic coordinate A(μ). In such parametrization, the following useful
identities hold:

dZ = dZ(dz + μdz), (2.8)

^ 0 - μ d ) . (2.9)
μ) μ

Z dZ(l-μμ)

In particular, A(0) = a: the reference conformal structure corresponds to the vanishing
Beltrami differential. For the proof of these statements and relations, see ref. [8].

A projective connection M on Σ is an assignment to any coordinate z of a of a
smooth function 3% defined in the domain of z with the following properties. On the
overlapping domains of z and z', one has

Mf = {drzf[M-{z',z}}, (2.10)

where {/, ζ} denotes the Schwarzian derivative

{/,C} = dζ

2\ndζf - hdζlnθζf)
2 = -2(dζf)

lίdζ\dζf)-lϊ. (2.11)
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Further, there exists a Beltrami differential μ in Beltr(Σ') such that 3% is μ-
holomorphic, that is

0-μd- 2{dμ))M = d3μ . (2.12)

I shall denote by ProjXΣ1, μ) the set of all projective connections M of such type. A
given projective connection M can be subordinated to several Beltrami differentials,
for the operator d3 + 2Md + (dM) appearing in (2.12) has zero modes. For such a
reason, it is convenient to introduce a fiber bundle Schw(Σ') with base BeltrΐΣ1) and
fiber ProjtΣ1, μ) at a point μ of Beltr(i7). This fiber bundle has a natural structure of
complex Banach manifold. For further details, see [8,27].

To any element M of Proj(Σ\μ), there is canonically associated a projective
structure P(μ, M) subordinated to A(μ). By definition, this is a maximal coordinate
covering contained in A(μ) whose transition functions are restrictions of elements of
the Moebius group PSL(2,C). A generic coordinate Z of P(μ,M) satisfies, besides
(2.5)-(2.6), the equation

(d2 + (l/2)38)(dZ)~ϊ = 0 (2.13)

[27], Conversely, P(μ,^?) determines μ and JB through (2.7) and the relation

3%={Z,z}, (2.14)

where Z is a generic coordinate of P(μ,J8). Thus, Schw(I7) parametrizes the set of
all projective structures on Σ [27].

Let μ be an element of Beltr(i7), O an open subset of Σ and j a half-integer
number. A μ-holomorphic j-differential φ on O is an element of C^'°(O) obeying the
Beltrami type equation

(d-μd-j(dμ))φ = 0 on O. (2.15)

Let # £ ( 0 , μ) be the infinite dimensional complex vector space of all such differentials.
A μ-holomorphic multiplier χ on O is an element of Gπ(O) such that

φ-μd)χ(j) = 0 on O (2.16)

for every 7 in Deckπ. Such multipliers form a subgroup Gπ(O, μ) of Gπ(O). Within
ϋf^(O,μ), the differentials with defined monodromy are particularly relevant. The
multipliers χ pertaining μ-holomorphic polydromic differentials must, for consistency,
be themselves μ-holomorphic. The μ-holomorphic polydromic differentials on O
with μ-holomorphic multiplier χ form a generally infinite dimensional complex
vector space Hj(O,χ,μ). The monodromic differentials form a generally infinite
dimensional complex vector space H^(O,μ). Any μ-holomorphic j -differential φ on
O represents a holomorphic j-differential θφ on O in the conformal structure A(μ)
and viceversa. Locally, θφ = (dZ)~iφ for a given coordinate Z of A(μ) [8].

Given an open subset (9 of Beltr(Σ') it is possible to choose for any μ in (9 a
coordinate Z(μ) of A(μ) depending holomorphically on μ, i.e. Z(μ) is a continuous
function of μ in & such that

^ = 0 . (2.17)
oμ

Such coordinates are often employed. Note that in general the domain of Z(μ) depends
on μ.
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One may also consider maps associating to any μ from an open subset @ of
Beltr(Σ') an element JB(μ) of Proj(Σ1, μ). If a map ,% of such type is continuous and

0, (2.18)0,
oμ

then M defines a local holomoφhic section M of Schw(Σ') on (9'.
If the Beltrami differential μ is varied, a differential φ of iί£(O(μ),μ) may be

thought of as a functional of μ. To emphasize this dependence, I shall write φ(μ).
In this paper, I shall consider only differentials depending holomoφhically on μ, i.e.
depending continuously on μ and such that

^ = 0 . (2.19)
oμ

Similarly, if μ is varied, a multiplier χ of Gπ(O(μ), μ) can be thought as a functional
of μ. As for holomoφhic differentials, I shall consider only multipliers χ(μ) depending
holomoφhically on μ, i.e. depending continuously on μ and such that

fry(7)=0, (2.20)
oμ

for any 7 in Deckπ. If φ(μ) has defined monodromy with multiplier χ(μ) and (2.19)
holds, then, for consistency, χ(μ) must satisfy (2.20).

One can define several vector bundles on BeltrίΣ1) whose fiber at a point μ in
Beltr(Σ') is a vector space of μ-holomoφhic j-differentials on Σ. In general, these
vector bundles carry a natural complex structure. A local holomoφhic section φ of
one of such bundles is defined as an assignment to any μ from an open subset &
of BeltrίΣ1) of a differential φ(μ) of HJ

π(Σ,μ) satisfying (2.19). For the following
treatment, it turns out to be useful to introduce a group bundle Sζ over Beltr(i7) whose
fiber at a point μ in Beltr(Σ') is Gπ(Σ l, μ). &π is called the multiplier bundle. Ŝ j. has
a natural complex structure. A local holomoφhic section χ of ^ . is an assignment to
any μ from an open subset @ of Beltr(i7) of a multiplier χ(μ) of Gπ(Σ, μ) satisfying
(2.20). Given a holomoφhic section χ of ^ . , let J ^ J ( £ \ χ) be the holomoφhic vector
bundle over Beltr(Σ') whose fiber at μ is the space Hj(Σ, χ(μ), μ). It is assumed that
the dimension of HJ(Σ,χ(μ), μ) is independent from the Beltrami differential μ.
When x is the trivial multiplier ε, I shall use the shorthand 3%i(Σ) to denote the
vector bundle defined above.

3. The Diffeomorphism Group and its Infinitesimal Action

Let Ό'ήίc{Σ) denote the group of homotopically trivial orientation preserving diffeo-
moφhisms of Σ. A given element / of Ό\ίίc{Σ) admits denumerably many lifts to
Σπ by π. However, there is a unique lift of /, which I shall denote by the same
symbol, such that

f°Ί = Ί°f (3-1)

for any 7 in Deckπ [27]. This choice of lifting will be assumed throughout when
considering the pullback action of the diffeomoφhism group Diffc(Σ') on polydromic
conformal fields.

The diffeomoφhism group Diffc(Σ1) acts on Beltr(Σ1), Schw(Σ') and the various
vector bundles on Beltr(i7) defined in the former section. The action of the diffeo-
moφhism group on a coordinate structure is defined standardly: for any element / of
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Diffc(i7) each coordinate Z of the structure is mapped into Z o f. Through (2.7) and
(2.14), this induces a free right holomoφhic action on Beltr(I7) and SchwίΣ1). The
holomorphic action of Diffc(I7) on Beltr(Σ') can be extended to all holomorphic fiber
bundles on it by making Diff^Σ1) act on the fibers by pull-back, the resulting ac-
tion being similarly right, free and holomoφhic. Among the holomoφhic sections of
these bundles, those which are invariant under the action of Diffc(i7) are particularly
relevant. For further details, see refs. [8,27].

In the following treatment, one is interested in the infinitesimal action of the
diffeomoφhism group Diff^Σ1) on the relevant field functionals. Let E be the space
of all such functionals. Diffc(Σ1) acts on E by a right action (e.g. pull back). To
express the infinitesimal action of Diffc(Σ1) on E, one introduces the space /\
Lie Diffc(Σ1)v (g> E, the tensor product of the exterior algebra of the dual of the Lie
algebra of Diff^Σ1) with E. E itself may be identified with Λ° Lie Diff c (r) v 0 E.
The infinitesimal action of Diffc(Σ') on E is given by the Slavnov operator s, which
is a coboundary operator on /\ Lie Diffc(i7)v 0 E. Thus, s satisfies the nilpotency
relation

52 = 0. (3.2)

The exterior algebra /\ Lie Diffc(Σ1)v is generated by the diffeomoφhism ghost
field c and its complex conjugate c: (c(P),ξ) = ξ(P) for ξ in C~1'°(ΣT) and P in Σ
and similarly for c. c belongs to /\ Lie Diffc(Σ1)v and behaves as an anticommuting
conformal field of weight —1,0. It further obeys the structure equation

sc = (cd + cd)c. (3.3)

Similar statements hold for c. See [8] for further details.
The action of s can be easily computed by linearizing the finite right action of

Diffc(i7) on fields at the identity. For a given Beltrami differential μ in Beltr(IT), the
relevant combination of ghost fields is

C(μ) = c + μc. (3.4)

C(μ) exhibits a distinguished complex structure of Lie Diffc(JC) [8]. The action of s
on μ is given by

φ (3.5)

By combining (3.3) and (3.5), one finds further that C(μ) obeys the structure equation

sC(μ) = C(μ)dC{μ). (3.6)

Equation (3.5) is one of the most important relations in the following analysis. By
using (3.5) and (3.6), it is straightforward to check that the nilpotency condition (3.2)
is fulfilled. See ref. [8] for further details.

As indicated above, the coordinates Z(μ) of the conformal structure A(μ) transform
by pull-back under Diff^Σ1). This fact is equivalent to the relation

= C(μ)dZ(μ). (3.7)

For any Diffc(Z')-invariant holomoφhic section ,98 of Schw(Σ'), one has

= (d3 + 2Mμ)d + (dMμ)))C(μ). (3.8)

Conversely, if a holomoφhic section J8 of Schw(i7) satisfies (3.8), then J8 is
Diffc(i7)-invariant.
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Next, let φ be a local Diffc(i7)-invariant holomorphic section of a vector bundle
on Beltr(I7) of holomorphic j-differentials. Then, the action of s on φ is given by

sφ(μ) = C(μ)dφ(μ) + jdC(μ)φ(μ). (3.9)

This action has the property that (sφ(μ),ξ) = <3?ξφ(μ), where ^ denotes the Lie
derivative with respect the vector field ζ of C~ι'°(Σ). The fact that sφ(μ) is expressed
in terms of C(μ) depends crucially on the μ-holomorphy condition (2.15). Further, if
a holomorphic section φ is such that (3.9) holds, then φ is Diffc(Z')-invariant. If χ a
Diffc(Σ>invariant holomorphic section of the multiplier bundle Sζ, then

sχ(μ) = C(μ)dχ(μ). (3.10)

Conversely, if (3.10) holds, the χ is Diffc (^-invariant.

4. The Polyakov Action on a Riemann Surface: Explicit Expression
and Properties

As explained in the introduction, a Polyakov action on Σ is any continuous functional
Γ(μ) defined for μ varying in some open subset (9 of Bertr(I7) and satisfying the
following requirements: i) holomorphy in μ:

ψ=°; (4.1)
oμ

ii) solution of the conformal Ward identity (1.16):
sΓ{μ) = ϊ k j d ± ^ r C{μ){d3+2M°d+(dM°))μ (4 2)

(cf. Sect. 3). Here, Mo is a 0-holomorphic projective connection on Σ (cf. Sect. 2). M§
renders the integrand in (4.2) a well-defined density and ensures that the nilpotency
condition (3.2) is satisfied. Γ(μ) depends on M$. Since M$ is fixed once for all, I
shall not indicate explicitly such dependence. Next, I shall give the general expression
of the Polyakov action and I shall try to motivate it.

Since Γ(μ) has well defined transformation properties under the action of the
diffeomorphism group Diff^Z1), as follows from the Ward identity (4.2), it should be
possible to define it in some open Diffc(Σ')-invariant subset (9 of Beltr(i7) (cf. Sect.
3).

The expression for Γ{μ) can be guessed to some extent through the following
heuristic arguments. The original expression proposed by Polyakov for the planar
topology is

Γ(μ) = - ^

where Z(μ) is a solution of the Beltrami equation (2.5) on C satisfying the asymptotic
condition Z(μ) — z —> 0 as \z\ —> oo [16]. On a Riemann surface Σ, one expects
the combination dZ to be replaced by a holomorphic Diffc(I7)-invariant section ω of
β$[(Σ) on (9] (cf. Sects. 2 and 3) which is not identically zero for any μ in (3\ This
would yield an integrand of the form
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This object, however, is not a conformal field of weights 1,1 and hence cannot be
integrated on Σ. To compensate for this shortcoming, one picks a non-identically
zero element ω0 of Hι(Σ, 0) (cf. Sect. 2) and replaces the above expression by the
following one

= ~^r^d ~ (dhιωo))dϊn(ω(μ)/ωo).
Z47Γ

This indeed is a conformal field of weights 1,1 but it is obviously not sufficient to
build the Polyakov action. To yield the anomaly (4.2), there must be an additional
contribution containing a term of the form ( l/24π)2μ^ 0 as readily appears from
(4.2) and (3.5). Such term is not in itself a conformal field of weights 1,1 and cannot
be integrated on Σ. To correct for this, one subtracts a similar term (1/24TΓ)2/I^Q,
where J8'o is some μ-independent projective connection. A natural choice is J8'o =

2

0 — ̂ (d\nω0)
2. This yields a further contribution to the integrand

On a general Riemann surface Σ, a third contribution of the form

S'"(μ) = - J - [ad(d + φ In ω(μ)))μ + βθφ + φ In ωo))μ]
Z47Γ

may be included, where a and β are arbitrary complex constants. 3S'\μ) is a total
derivative. However, because of its singularities at the zeros of ω(μ) and ω0, it gives
a non-zero contribution upon integration on Σ. As it turns out, the correct choice of
a and β is a = β = 1. Summing up all the above contributions and performing some
simple rearrangements, one obtains the first contribution to the Polyakov action:

Γ.iμ) =^J ^ - ^ [2M0μ + 2d2μ

Σ

+ d In ω(μ)dμ + d In ωod In ω(μ)μ] . (4.4)

For genus 1, this object would indeed be a continuous functional of μ satisfying
(4.1)-(4.2). Formal manipulations would seem to suggest that this is true also in
higher genera but a careful analysis shows that this cannot be so, as I shall now
explain. Recall that, for any Beltrami differential μ in Beltr(I7), every monodromic
μ-holomorphic 1-differential has precisely 2g — 2 zeros counting multiplicity [28].
For μ in θ\ denote by Pj(μ) the distinct zeros of ω(μ). Similarly, denote by POk the
distinct zeros of ω0. Finally, denote by &' the set of all μ's in & such that no one
of the P (μ)'s coincide with any of the POfc's & ^s a non-empty open subset of &1.
The integrand of (4.4) is clearly singular at the P3(μYs and Pok's. It is absolutely
integrable for any μ in ^ v , but only conditionally convergent for μ in &\(9'. It
follows from here that Γλ(μ) is continuous for μ varying in & while it is not at
the μ's lying in Θ\&. Further, when varying Γ{(μ) with respect to μ,μ, it is not
possible to straightforwardly interchange integration and variation, since the variation
of the integrand produces absolutely non-integrable singularities at the zeros Pj(μ)
of ω(μ). Upon employing a cut-off procedure, one verifies that Γx(μ) does not fulfill
(4.1M4.2).

One is thus forced to add to Γγ(μ) a term Γ2(μ) compensating for the above
diseases. The nature of Γ2(μ) is determined by the requirement that the combination
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Γx(μ) + Γ2(μ) is singlevalued and continuous and satisfies (4.1)-(4.2) on Θ\ A direct
analysis shows that Γ2(μ) is given by an expression of the form

. (4.5)

J

Here, Ω is a holomoφhic Diffc(i7)-invariant section of βί?ι(Σ,χ) on &\ where
X is a holomoφhic Diffc (^-invariant section of the multiplier bundle 5 .̂ on @
(cf. Sects. 2 and 3). It is further assumed that, for any μ in &, Ω(μ) is nowhere
vanishing. Similarly, Ωo is a nowhere vanishing element of f ί 1 (Σ',χ 0 ,0), where χ 0

is a 0-holomoφhic multiplier (cf. Sect. 2). ẑ  (μ) is the order of the zero Pj(μ) of

ω(μ). Similarly, vOk is the order of the zero POk of ω0. Pj(μ) is any chosen lift of
Pj(μ) to the universal covering surface Σπ of the universal covering π depending

continuously on μ (cf. Sect. 2). Likewise, POk is a fixed lift of POk to Σπ. The
appearance of polydromic fields may seem intriguing and requires an explanation.
If Ω(μ) had zeros, then Γx(μ) + Γ2(μ) would still define a local solution in & of
(4.1)-(4.2). But Γ2(μ) would be singular at those μ's for which some of the P (μ)'s
are zeros of Ω(μ). Further, it may happen that when μ is transported along a closed
loop, some of the P (μ)'s circle around some of the zeros of Ω(μ). This would render
Γ2(μ) multivalued in Θ\ a disease that one would like to avoid. If one assumes that
Ω(μ) is nowhere vanishing, then Ω is necessarily poίydromic. In fact, as noticed
earlier, monodromic μ-holomoφhic 1-differentials necessarily have zeros [28]. Only
polydromic μ-holomoφhic 1-differentials can be free of zeros. See Eq. (4.70) below
for a concrete example. The assumption that Ωo is free of zeros is, conversely, merely
simplifying. Γ2(μ) obviously depends on the choice of the lifts Pj(μ) and POk of the
Pj(μ)'s and the POfc's.

It will be shown below that the sum Γx{μ) + Γ2(μ) has the nice properties stated
above. One reaches the conclusion that the most general Polyakov action Γ(μ) on @
can be written as

Γ(μ) = Γ{(μ) + Γ2(μ) + Φ(μ), (4.6a)

where Γx(μ) and Γ2(μ) are given respectively by (4.4) and (4.5) and Φ(μ) is a
continuous functional of μ in @ such that

sΦ(μ) =0. (4.6c)

Unlike what happens for the planar geometry, the functional Φ(μ) cannot be
determined from first principles. Φ(μ) carries all the model dependent features of
conformal field theory on Σ.

In ref. [25], an alternative expression of Γ(μ) was provided. It can be shown that
that expression is indeed equivalent to (4.6). The proof is based on a simple algebraic
identity following from (2.15) and Stokes' theorem. Details are not provided for the
sake of brevity.

Let us now proceed to the demonstration of the above statements. For brevity,
I shall not indicate explicitly the dependence on μ of the various objects. Before
entering into the technical details of the proofs, a few preliminary results and remarks
are in order.
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i) The Generalized Cauchy Residue Formula. The following mathematical lemma
will be used repeatedly below. Let / be a function defined and smooth near a point
P of Σ and Z a coordinate of A(μ) defined at P. Then, for any integer m > 0, one
has

1 Γ r!7 1 / 1 rn

f f { d ) /(P) (4 7)

dB(P,ε)

where B(P, ε) is the disk {Pf \ P' e Σ, \z(P') - z(P)\ < ε}, z being any coordinate
of a defined at P. To prove this identity, one first computes the left-hand side of (4.7)
for f = (Z — Z(P))n with 0 < n < m. The calculation is carried out by expanding
Z in powers of z — z{P) and z — z(P) and keeping only the terms of order ε~k with
non-negative k. The contour integration and the limit can be performed by means of
standard techniques of complex calculus. At this stage, it is crucial to use the bound
|μ| < 1. In this way, one verifies (4.7) for the above special choice of /. The result
generalizes to an arbitrary function / by expanding / in powers of Z — Z(P) and
Z - Z(P) to order m.

ii) Choice of Local Coordinates at the P (μ)'s and the POk's. In the following
analysis, I shall employ a special set of coordinates. Such local parameters will be
used throughout, but the final result will be independent from their choice. Let Zj be
a coordinate of A(μ) defined near P and normalized so that Z (P ) = 0 identically in
μ. Similarly, let ZOk be a coordinate of A(0) defined near POk and normalized so that
ZOk(Pok) = 0. Since ω has a zero of order ZA at P^ , one has the singular expansion

In ω — Vj In Z^ + regular terms (4.8)

near P and, analogously,

In ω0 = vOk In ZOk + regular terms (4.9)

near POk.

iii) Local versus Global Properties. For small variations of μ, each Pj(μ) remains
inside a given fundamental domain D3 of π. An analogous statement holds also for

each POk trivially. Recall that, for any fundamental domain D of π, the restriction
π\D of π to D is a biholomorphism when Σ carries the reference conformal structure
a and Σπ the lift by TΓ of a (cf. Sect. 2). Hence, in the analysis of the local properties
of the relevant functionals in (9, one can act as if the polydromic fields Ω and Ωo

were defined in Σ and identify P and Pok with P J and Po f c, respectively. This will
no longer be possible when analyzing the global properties of those functionals in β;\

After the above preliminaries, one may proceed to the proof of the key properties
of Γ(μ).

i) Γ(μ) is well-defined for μ in &'.

Proof. The proof that the integrand in expression (4.4) is a well-defined density is
straightforward. From (4.8)-(4.9), it follows readily that, for μ in &\ the integrand
diverges as ~ \/Zj near P- and as ~ l/Zok near POk. Thus, it is absolutely integrable.
The well-definedness of the expression (4.5) for μ in & is manifest. QED

ii) By a suitable choice of the branch of the logarithms, it is possible to render Γ(μ)
continuous on any sufficiently small neighborhood in &'.

Proof Since the integrand density in the expression (4.4) of Γλ is absolutely integrable
for μ in Θ'1 and depends continuously on μ in that range and the integration domain
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is compact, Γ{ is continuous in &. By inspection, it is apparent that, by a suitable
choice of the branch of the logarithms in expression (4.5), Γ2 can be made continuous
on any sufficiently small open subset of &'. Clearly, this latter property holds also
for the sum Γ{ + Γ2. QED

iii) Calculation of the variations δΓ(μ) and δΓ(μ) in (9'. Here, δ(δ) denotes infinites-
imal variation with respect to μ(μ). The calculation is required for those of 6Γ(μ)/Sμ,
δΓ(μ)/δμ and sΓ(μ)9 which in turn are necessary for obtaining the expression of the
energy momentum tensor and for showing (4.1) and (4.2).

Proof. The derivation of the basic variational formulae for Γ invokes repeatedly the
following relations which follow from the definition of ω, Ω, ω0 and Ωo and from
(2.15) with j = 1 perhaps with μ = 0 and from (2.12) with μ = 0:

(4.10)

(4.11)

(4.12)

(4.13)

0 (4.14)

Then

Φ - μd)δ\nω - (d + (d\nω))δμ = 0, δkiω = 0, (4.15a,b)

Φ - μd)δ\n Ω - (d + (9In Ω))δμ = 0 , δln Ω = 0 , (4.16a,b)

(4.17a, b)

(4.18a, b)

= 0, δJB0 = 0. (4.19a, b)

Relations (4.15a) and (4.16a) follow readily from (4.10) and (4.11), respectively.
Equations (4.15b) and (4.16b) are a direct consequence of the holomoφhy in μ of ω
and J?, respectively. (4.17)-(4.19) follow trivially from the independence of ω0, Ωo

and MQ from μ.
Let us compute the variation δΓ. Suppose that μ lies in &, so that no one of

the / y s coincide with any of the PQ^'S. Consider first Γx. As already indicated
at the beginning of this section, in the computation of δΓλ, it is not possible to
straightforwardly interchange the order of integration and variation when applying
δ to the right-hand side of (4.4). Indeed, from (4.8)-(4.9), it is apparent that the
application of δ to the combination <91nu; produces an absolutely non-integrable
singularity ~ —u^dZ^Z^/Z2- near P-. This mandates the introduction of a cut-
off. Choose points Q- of Σ independent from μ and ε > 0 such that P- is
contained in B{QJ,εj) and BiQ^εj) and B(Qy,εjf) have empty intersection for
j φ j ' . In (4.4), the integral over Σ is the sum of an integral over Σ\ U3 B{Q-,ε )
and one over UjB(Q ,ε ). Upon applying the variation δ, one can interchange the
order of integration and variation in the first integral, since the integration domain
is independent from μ and the integration singularities produced by the action of δ
on the integrand are well outside of the integration domain. The action of δ on the
second integral can be dealt with by exploiting the fact that the integrand is near P
of the form (d + {d\r\ωQ))μu3dZ• /Z• + terms that are regular when acted upon by
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δ, by (4.8)-(4.9). Since the variation cannot depend on the choice of the ζ^'s and
ε̂  's one can set Q- = P- and take the limit βj —> 0+ at the very end to simplify the
resulting expression. Proceeding in this way, one obtains

δΓx=δaΓ + δR, (4.20)

where

δaΓ = ± £jlim+ J d^^δ[2MΦ + 2d2μ + d]nωodμ

Σ\UjB(P3,εj)

+ dlnuϋdμ + d\nωod\nωμ] , (4.21)

"-s V Ά Γ J z, ί < 4 2 2 »
B{Qάiε3)

The existence and finiteness of the limit as the ε^'s tend to 0 of the surface integral
in the right-hand side of (4.21) follow from standard analytic arguments from the
theory of Cauchy principal value and from the fact that \μ\ < 1 everywhere in Σ.
The existence and finiteness of the limit as the ε̂  's tend to 0 of the expression in the
right-hand side of (4.22) will be shown in a moment. Consider Γ2. The calculation
of δΓ2 is straightforward from (4.5), (4.11)—(4.12). The result has the following form

δΓ2 = δbΓ + δS, (4.23)

where

^ \ ^ fj ^]Έ^Ok\ (4-24)
k j L j J k )

δS = h Σ \ dbίWJωo> (

+ (6z(Pj) + μiPJδziPjVdZjiPj))] . (4.25)

Now, I shall show that δR = —δS. To this end, a few preliminary identities are
needed. By applying the variation δ to the identity Z (P ) = 0 and using (2.5), one
obtains

δZό(Pά) + (δz(P3) + μiP^δziP^dZ^) - 0 . (4.26)

Hence, the second term within square brackets in (4.25) vanishes identically. Next,
from (2.5), one has the variational identity (d - μd)δZ- = δμdZj. From this relation
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and (4.7), one finds that, for any function / defined and smooth at Py

1 /
j-if-v-i (J)1 1 1 1 1 . \L>

= 0.

Next, from (2.5) and (4.

(<9+(<91nu;(

= (5-

dzδμσZ

f 2πi J
dB(P0 ,ε

12), one has

-μd)ln(dZ

f

the identity

/ωo)dZj/ZJ

(4.27)

Zj]. (4.28)

From (4.28), Stokes' theorem, (2.8), (4.7), (4.26), (4.27) and the variational identity
δdZ3 = dZjdδZj/dZj + dzδμdZj9 which follows readily from (2.8), one gets

lim \δ [
2%

B(Qj,εj)

l r dz
2 J Z

( l r
εj->o+ [2πι J

dB{Q3,

l r dzi
-δ lim * —2-]n(dZJω0)

dB(Pji£j)

\nφZ- /ω^dδZ. Ί dzdZη δμ3 ° ^ I + JΊ dzdZη δμ Ί

I + Z

J ln(dZ3/ω0ή -QZ

= ~iτφ + (dlnω^μiP^δziPj). (4.29)

From (4.22), (4.25), (4.26), and (4.29), it follows immediately that δR + δS = 0, as
announced earlier. Then form (4.6a), (4.20), and (4.23), one finds the relation

$Γ = δaΓ + δbΓ + δΦ, (4.30)

where δaΓ and δbΓ are given by (4.21) and (4.24), respectively. Let us compute δaΓ.
Consider the integrand in the right-hand side of (4.21). By (4.17a) and (4.19a), one
finds

δ[2JB0μ + 2d2μ + d In ωodμ + d In ωdμ + d In ωod In ωμ]

= d[(d + Φ In ω))δμ + φ + φ In ωo))δμ + φ + φ In u;0))μ^ In ω]

φ\nωo))μδlnω

- 2d2 ln^ 0 + (91nίJ0)
2 - φ - φ\nωo))d\n(ω/ωo)]δμ. (4.31)



284 R. Zucchini

From (4.10), (4.12) and (4.15a), one has

— d{d + (d In cϋo))μδ In ω

= -φ - μd - (dμ))dln(ω/ωo)δ\nω

— d\_μd\Vi{ωIω^)b\nω\ — ~d\_d\xv{ω/'ω^δlnω] + d\n(ω/ωQ)(8 - μd)δ\nω

= d[d\n(ω/ωo)δμ + μdln(ω/ujo)δ\nω] - d[dln(ω/ωo)δ\nω]

- [(d - (dlnωo))dln(ω/ωo) - (dln(ω/ωo))2]δμ . (4.32)

From (4.10), (4.12), one has further

(d + (<9 In ω))μ = d \n(ω/ωQ). (4.33)

By introducing (4.32) into (4.31) and then by using (4.33), one obtains

δ[2J80μ + 2d2μ + d In ωodμ + d In ωdμ + d In α>0<9 In cjμ]

0 - 2d2 In CJ + (<9 Inc^)2](5μ. (4.34)

Next, one introduces (4.34) into (4.21). The total derivative terms yield, upon applying
Stokes' theorem, a set of line integrals on loops of infinitesimal size cut around the
singularities of those terms, that is the P^s and the POfc's. Let us compute those line
integrals. From the singular expansion (4.8) and from (4.27), one finds

1 / 1 / dzδμdZΊlim φ dz(d + (d\nω))δμ = lim φ — - v .
£j^o+2πi J ε^o+2τπ / Z- J

dB{P3,ε3) dB(Pjj£j)

= 0. (4.35)

Next, set

fj(Zj) = ω/(ΘZjZ?), (4.36)

locally in the domain of Z^. From (2.5) and (2.15) with j = 1, it follows readily that
fj(O is a holomoφhic function defined and non-vanishing at ζ = 0. From (4.36) and
(4.7), one obtains

1 r
lim φ dln(ω/ωn)δ\nω

:3 ̂ o+ 2πi J

. 3 * 5 5
dB(PJ,εj)

dδZή 2ΘJΛ0)

dln(dZJωo)δZ.
+ £ ° 3 (PM • (4.37)
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From the singular expansion (4.9) and from (4.7), one finds

1 r
lim φ d\n(ω/ωo)δlnω

ok->o+2πi /
εo/e-

ΘB(Pokiεok)

= lim
2πι J ZOk

dB(P0kiε0k)

=-vokδlnω(Pok) (4.38)

From (4.21), (4.34), Stokes' theorem, (4.35)-(4.38), one finds eventually

dδZ-

The computation of δbΓ is easier. To this end, define, locally in the domain of Z^

Fά{Zά) = Ω/dZj . (4.40)

From (2.5) and (2.15) with j = 1, it follows readily that the function Fj(ζ) is
holomorphic and non-vanishing at ζ = 0. By using (4.11), (4.12), (4.17a), (4.18a),
and (4.40), one finds readily

dcFA0) δFΛO)

d\τι(Ω/

k

From (4.30), (4.39) and (4.41), one can easily compute δΓ. The result is

δ Γ = ά e - ϊ o + / dZ2idZδμ ^-d2\nω+l-(d\nωf\

(442)
/.(0) F/0) J ^ΛL)

(cf. (4.36) and (4.40)).
Let us compute δΓ1. Assume as before that μ lies in &\ so that no one of P 's

coincide with any of the Pofc's. By a calculation completely analogous to that leading
to (4.30), one can show that formulae similar to_(4.21), (4.24) and (4.30) hold with the
variational operator 6 replaced everywhere by δ. To compute 6Γ, one needs to know
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δZj(Pj). It is not obvious that this vanishes, because the normalization condition

Z (Pj) = 0 may cause a non-holomorphic dependence on μ, but it is nevertheless

true. Since Pj is a zero of ω of order vy one has dv^~xω{Pj) = 0 but dv^(P.) φ 0.

By applying δ to the former relation and taking into account the latter and (4.15b),
one finds

δz(Pj) + μ(Pj)δz(Pj) = 0 (4.43)

Now, by applying the variation δ to the identity Z3(Pj) = 0, one obtains a relation

similar to (4.26) with δ replaced by δ. From such relation and (4.43), one obtains

δZJ(PJ) = 0, (4.44)

as announced. From (4.15b), (4.16b), (4.17b), (4.18b), (4.19b), (4.44), and the δ
analogs of (4.21), (4.24), and (4.30), one obtains immediately

δΓ = 0. (4.45)

This completes the calculation of the variations δΓ and δΓ. QED

iv) Γ(μ) is a continuous and singlevalued functional of μ in Θ\

Proof. It has been shown above that Γ can be made continuous on any sufficiently
small neighborhood in & by a suitable choice of the branch of the logarithms. This
is also true for @. I shall prove this by showing that, if μ(0) belongs to (9\Θ\ then
Γx + Γ2 has a finite limit as μ tends to μ^ in &'. Suppose that, for μ — μ^\ one
has Pj = POk for j varying in a subset J of indices. It is obvious, from (4.8)-
(4.9), that, in that instance, the integrand density in the expression (4.4) of Γx is no
longer absolutely integrable. For such a reason, it is not possible to straightforward
interchange the order of integration and limit as μ —> μ^ in the right-hand side
of (4.4). To cope with that problem, choose Sj small but finite, such that Pj is
contained in B(POk , ε̂  ) for any j in J and B(POk , Sj) and B(Pok /, ε •/) have empty

intersection for j φ j ' in J . In (4.4), the integral over Σ is the sum of an integral
over Σ\ U ^ j B(POk ,ε J) and one over UjeJB(Pok ,ε^). In the first integral, one

can interchange integration and limit as μ —• μ(0), since the integration domain is
independent from μ and the singularities of the integrand density are well outside the
integration domain. In the second integral, one can use the singular expansion of the
integrand near the P^'s and the POk's. The resulting expression combines with Γ2 in

such a way that the limit as μ —» μ^ exists finite. Let us illustrate this analysis in
greater detail. The absolutely non-integrable part of the integrand density in (4.4) is
given by

foZjdZok,
( 4 4 6 )

zz

up to a factor ϊ/ z/0fe./24τr, where the identity dZok. — 0 has been used (cf. Eq. (2.5)
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with μ = 0). By using (4.46), Stokes' theorem and (4.7), one finds

ί dzΛdz VdZjdZQ

J 2 i ZjZ0kj

h τr[ln Z O f c i (P^ ) - In z O f c j ( P )J
1

1 2Ϊ
as(Pofcj.,£j)\{p*}

1 f d z d z o k i l n Z j

- lim —2% J Z

/

Ok

dB(Pokj,ρj)
 J

dZnu.

- In Z0
kJ ofc,

dB(P0k.,εj)\{P*}

τr[ln ZOk. {Pj) - In Z3(POk])]. (4.47)

In applying Stokes' theorem, one has to take into account the fact that lnZ^ has a

branch cut emanating from P3 and intersecting dB(Pok ,ε3) at some point P * . The

second term in the middle member of (4.47) is the contribution of the branch cut of

lnZ^. The branch of \nZOk. is chosen so that its branch cut intersects

also at P* . From (4.46)-(4.47), it follows that

A. (e3) = lim J — - / Z ^ , [2^go/x + 2<92μ + 9 In cJ09μ + d In cj^μ
μ—>μ(0) ^ 247Γ J Zl

- - ^ - [ I n Z 0 / c (P.) - In Z,(P o f c .)] 1 (4.48a)
£ί\ ' J u u ' J I

exists finite in C with

dzdZnu

dB(Pok ε3)

(4.48b)

where Z ^ — Z-{μ{Ql)). The contribution of order ε- comes from the non-singular
part of the integrand density in the left-hand side. From (4.5) and the expansions
(4.8)-(4.9), it follows that

Λ0(ε3) = Λo = lim ίr2 + ̂  Σ ^ o ^ ^ o f c / ^ ) " ^Zj(pokj)Λ (4-49)
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exists finite in C. Finally, from (4.48) and (4.49), one obtains that

ί 1 f dzΛdz
lim (R + Γ7) = lim i /

[2JB0μ + 2d2μ + <9 In u;0<9μ + d In u dμ + <9 In cc;0<9 In ωμf]

(4.50)

jeJu{o}

exists finite in C. The existence and finiteness of the limit as the εJ 's tend to 0 of the
surface integral follow from standard analytic arguments from the theory of Cauchy
principal value and, crucially, from the fact that |μ ( 0 ) | < 1 everywhere in Σ. The
existence and finiteness of the limit as ε- tends to 0 of A ^ ) follow from (4.48b)
by inspection. From (4.50), it follows that the branches of the logarithms contained
in the expression (4.5) of Γ2 can be chosen so that the sum R1 + Γ2 is continuous
locally in (9.

Next let us show that Γλ + Γ2 is singlevalued. The map μ —> Pj(μ) is certainly
continuous. As (9 is simply connected by assumption, any loop in (9 is contractible
and so is the image of that loop by the map Pj( ) . So, if μ is carried around a closed

loop in (9\ Pj(μ) never winds around a non-trivial loop of Σ. Correspondingly, Pj(μ)
describes a closed loop in Σn. For such a reason, the only multivaluedness of Γγ -\-Γ2

can arise when μ is carried along a closed loop in (9 such that one or more of the
P3(μYs wind around one or more of the Pofc's. If such operation is performed, then

the P3(μYs with the same labels j as the Pj(μYs wind the same number of times

with the same orientation around certain points Ύk(POk) with the same labels k as the
Pofc's, where the 7fc's are elements of the universal covering group Deckπ of π (cf.
Sect. 2). Then, one has

ntjuOk , (4.51a)
k

ιsok ln(ω/Ωo)(Pok) -> ι/Ok ln(ω/Ωo)(Pok) + 2πii/0k ^ ni^3 > ( 4 5 1 b )

3

where the n^ 's are certain integers. From (4.51) and (4.5), it follows that Γλ + Γ2 is
left unchanged, i.e. it is singlevalued.

The continuity of Γx + Γ2 follows from its singlevaluedness and the fact that
Γx + Γ2 can be rendered continuous on any sufficiently small neighborhood in (9 by
a suitable choice of the branch of the logarithms. QED

v) Γ(μ) satisfies (4.1) in (9'.

Proof. The statement follows trivially from (4.45). Although (4.45) has been obtained
for μ in (9', it obviously extends by continuity to (9. QED

vi) Γ(μ) satisfies (4.2) in (9.

Proof. Equation (4.42) is the key identity. Although (4.42) has been obtained for μ
in (9', it clearly extends by continuity to (9 since all reference to ω0 has disappeared
in the right-hand side. To compute sΓ, one replaces the operator δ by the Slavnov
operator s in (4.42) and uses the relations (3.5), (3.7),and (3.9) with j' = 1 together
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with the relations (4.36), (4.40). From (3.7), one finds readily

sZ3 = CdZ-. (4.52)

Consistency of (3.9) and (4.52) requires that

5/^(0 = 0, (4.53)

siΛ(O = 0. (4.54)

Further, on has

φ-μd + Φμj)C \M, - d2 \nω + -φlnωf
I 2

μC(jE0 -d2 In CJ + ^
. V 2

+ Cφ - μd - 2(<9μ)) I - J^ o + 9 2 lnα; - -(dlnu;) 2 . (4.55)

L 2 J
From (4.10) and (4.14), one has also

Φ-μd- 2φμ)) \-t9B0 + d2\nω- -φλnωf = φ3 + 2̂ go<9 + (8JB0))μ . (4.56)
L 2 J

The next step consists in substituting the identities (4.55) and (4.56) into (4.42) and
eliminating the total derivative terms by means of Stokes' theorem. This yields a set
of line integrals which are computed by a procedure similar to that used earlier. From
(4.36), (2.5) and (4.7), one has

lim - ί- I (dz + μdz)C (J^o - d2 In ω + ^-φ In ωf

2

+2) d(CdZΛ dcfΛ0)

^ iP) + v -f^ CdZ{P3). (4.57)

From (4.42), (4.52)-(4.54), (4.6c), (4.55)-(4.56), Stokes' theorem and (4.57), one
verifies readily that sΓ is given by (4.2). QED

Having shown the basic properties of Γ(μ), let us move to the computation of
the derivative δΓ(μ)/δμ which is an object of considerable salience. Physically, it
represents the energy momentum tensor of the conformal field theory. Mathematically,
it admits an interpretation as a holomorphic section of a certain holomorphic fiber
bundle over Teichmueller space, as will be shown in the next section. δΓ(μ)/δμ
appears in the differential form of the Ward identity (4.2),

(d-μd- 2φμ))δ-^± = _l!(03 + 2Jgod + φ ^ ) ) μ ? ( 4 . 5 8 )

oμ lzπ
which follows readily from (4.2) and (3.5). This relation entails that

(4-59)
oμ

where MΓ(μ) is an element of ¥xo](Σ, μ) depending holomorphically on μ [8],
defining a holomorphic section of Schw(i7) (cf. Sect. 2). By using the expressions
(4.6) of Γ(μ), it is possible to compute ^BΓ(μ) explicitly. From (4.58), it is evident
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that JBΓ(μ) is determined up to the addition of an arbitrary holomorphic Diffc(Σ>
invariant section of M2(Σ) on (9. This indetermination reflects the non-uniqueness
of the functional Φ(μ) appearing in (4.6).

Before proceeding to the calculation of MΓ(μ), it is necessary to state some
rather general assumptions on the nature of the distributions that give the variations
δω(μ) and δΩ(μ) in terms of δμ. The treatment of both variations is essentially
identical. Let φ be either ω or Ω. The assumptions are the following, i) The
distributional kernel δφ{μ){P)/δμ{Pf) is an ordinary function outside the diagonal
{P,P0 : (P,P') e Σπ x Σ, π(P) = Pf). ii) For fixed P in Σπ, δφ(μ)(P)/δμ(Pf)
belongs to H2(Σ\{π(P)},μ). in) For fixed P' in Σ, δφ(μ)(P)/δμ(Pf) belongs to
Hl(Σ\{P'},μ). For P' approaching τr(P), one has the singular expansion

Here, Z is a coordinate of A(μ) defined near τr(P) and P'. (Recall that Z(π(P)) —
Z(P), where in the right-hand side Z is viewed as a coordinate of A(μ) in Σπ).
Further, θφ(μ) = φ(μ)/dZ. iv) δφ(μ) is given by

f dzΛdz δφ(μ)(P)
= lim / — — δμ. (4.61)

I could not prove that the above hypothesis on δφ(P)/δμ(Pf) are fulfilled by an
arbitrary φ but I have verified them in examples. Further, it should be noted that
δφ(P)/δμ(Pf) should have the same formal properties as the correlator of an energy-
momentum tensor operator and a [7(1) current density operator. So i-iii are expected to
hold on physical grounds, (4.60) representing the standard operator product expansion.
It is also possible to show that the properties i-iii follow from iv. However, since
this is not really pertinent with the topic of the paper, I shall omit the details of the
demonstration.

Now, one possesses all elements needed to write down the expression of the
projective connection MΓ(μ) appearing in (4.59). For μ in (9\ one has

^gΓ(μ) = d2lnω(μ) - l-(d\nω{μ))2 - Q(μ) - ^ y ^ , (4.62a)

where

Q(μ)(P) = Σ^(μ)(P, Pjiμ); Vj(μ)) , (4.62b)

Here, &Ω is the covariant derivative associated the polydromic μ-holomorphic affine
connection <91ni?(μ). 3%Γ(μ) is everywhere smooth in spite of the fact that the first
three contributions in the right-hand side of (4.62a) are singular at the zeros Pj(μ) of
ω(μ).
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Proof. The proof is based on the general variational formula (4.42). The strategy
consists in expressing the integrated contributions in the right-hand side of (4.42) in
terms of the variations δω and δΩ and then in expressing those variations in terms
of δμ by means of the integral formula (4.61) with φ — ω,Ω. From (4.36), it is not
difficult to obtain the following identities

^\f.{Z3) + O(Z3)], (4.63a)

(4.63b)

O(Z3)], (4.64a)

uη Θ2ZΊδZΊ

(4.64b)

From (4.36), (4.40) and (4.63)-(4.64), one finds that

In the very last step, I have exploited the fact dχω(Pj) = 0 for Λ < v3- and

dχδω(Pj) = 0 for λ < ZA: — 1, as noticed earlier.
Next, one has to substitute the integral formula (4.61) with φ — ω^Ω into the

right-hand side of (4.65) and express everything as a cut-off integral of a density. The
latter step is not trivial, since it involves the exchange of integration and differentiation
when dx acts on the right-hand side of (4.61). Let v < v . Choose ρ > 0 small but
finite. Then,

f dzΛdzδω(P)
dp lim / δμ

p ε^o+ J 2% δμ μ

f
/

J
Σ\B(Pjiβ)

dzΛdzδω(P)

2% δμ
Σ\B(P,ε) " " J

Λdzί^ δω(P)\
^ i Op— > δμ
2i \ p δμ jp=p

 μ

3
p

3

- \ dvp lim / — — δμ ) . (4.66)
I ε-+o+ J 2% δμ j p=PB(Pj,ρ)\B(P,ε)
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Now, I shall show that the second term in the right-hand side vanishes in the limit
ρ —> 0+. By using the expansion (4.60), the variational relation (d — μd — (dμ))δφ =
d(δμφ) with φ — ω and (2.5), one finds that

δω(P) -1 ( dZjiPtfZjωδμ

δμ I I (Zf(P) -
regular terms

near Pj. One needs further the expansion

From (4.36), the limit to be computed vanishes manifestly for all values of v except

for vλ — \ and z/ because of the suppressing factor Z3

 3 and Z3

 J appearing in ω and
δω, respectively. By using (4.67), Stokes' theorem, (2.8), (4.68), (4.7), and (4.27),
one obtains, for v — z^, v3 — 1,

lim <du p lim / — δμ
0+ { F e-0+ J 2l δμ

B{P3,ρ)\B{P,ε)

dB{PΓρ)

dB(P3,Q)

+ dζfj(ZJ)δZj + δfjizΛ I + d"δω{P0)

,, 1 /" dzδμdZ-

dB(Pj,ρ) J

= 0. (4.69)

In the very last step, I have used (4.64). It follows immediately from here that one can
interchange the order of differentiation at P3 and cut-off integration. From this remark,
(4.61) with φ = ω, Ω and (4.65), one obtains (4.62) immediately. The smoothness of
MΓ can be verified straightforwardly by plugging (4.36), (4.40) and the expansion
(4.60) with φ = α;, Ω into (4.62) and then by checking that all the singular terms
cancel out. QED
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To conclude this section, I shall provide am explicit construction of the polydromic
1-differential Ω. Ω(μ) may be expressed in terms of Fay's σ field [29] as follows:

Ω(μ)(P) = ( σ ( μ 2 ^ )^\μ)(P«\μ)), (4.70)

V ( ) ( P ω ( ) ) y
where CJ(1) and ωi2) are distinct Diffc(Σ>invariant sections of 3$1{Σ) and P ( 1 )(μ) is
a lift of a zero P^ι\μ) of ω^ι\μ) to 'Σ^ depending continuously on μ.

5. Discussion and Conclusion

It is interesting to study the Polyakov action in terms of Teichmueller space and of
holomorphic fiber bundles thereof. Recall that Teichmueller space TeichΐΣ1) is the
quotient Beltr(Σ)/ Diffc(i7) and is a complex manifold of complex dimension 3g — 3.
Beltr(i7) may thus be viewed as a Diffc(Στ) principal bundle on Teich(Z'). This bundle
is smoothly but not holomorphically trivial [8,27]. The following can be shown.

A Polyakov action Γ can be defined globally on Beltr(JC), the functional dependence
on the fibers of the latter being determined by the Ward identity (4.1). This property is
evident also from the fact that the diffeomorphism invariant effective action and the
local counterterm that subtract the Weyl anomaly are globally defined in Beltr(Σ').

Proof. Let Γa(μ) be a Polyakov action defined on a Diffc(i7)-invariant open simply
connected subset ^ of Belt^Z1). Set

ξaβ(μ) = exp(ΓJμ) - Γβ(μ)), on ^ α n ^ 0 " . (5.1)

From (4.1)-(4.2), it follows that

%^0, (5.2)

0. (5.3)

It is clear from (5.1)—(5.3) that ξaβ(μ) defines a holomorphic line bundle on
which is necessarily holomorphically trivial, since Teich(I7) is a contractible domain
of holomorphy [27]. Hence, for each patch α, there is a functional ηa(μ) such that

%^=0, (5.4)
oμ

sηa(μ) = 0, (5.5)

ξaβM = vjp)/ηβ(μ) • (5.6)

Now, redefine Γa(μ) as

Γa(μ)^Γa(μ)-lnηa(μ). (5.7)

This operation fixes the undetermined functional Φa(μ) which appears in the general
expression (4.6). Thus, Γa(μ) is the restriction to &a of a well-defined functional Γ{μ)
defined for every μ in Beltr(i7) and satisfying (4.1)-(4.2), that is Γ(μ) is a Polyakov
action on Beltr(r). QED

Hubbard space Hubb(Σ") is the quotient Schw(Σ')/ Diffc(I7) (cf. Sects. 2 and 3)
and is a holomoφhically trivial holomorphic fiber bundle over Teich(I7) [27]. Every
holomorphic Diffc(Σ')-invariant section of Schw(Σ') defines a holomorphic section of

). The following holds.



294 R. Zucchini

The section MΓ(μ) o/SchwίΣ1) associated to Γ(μ) via (4.59) is holomorphic and
Ό\ϊϊc(Σ)-invariant, hence it defines a holomorphic section of Hubb(Σ).

Proof. Holomorphy is obvious from (4.1) and (4.59). The proof of ΌΊίϊc(Σ)-
invariance requires some argument. Let us denote by δ the differentiation operator on
the manifold Beltr(I7). δ anticommutes with s, δs + sδ — 0. From (4.2), one has

_ / z A δμ(Qp _|_ 2M0d + (dM0))C(μ) 1 . (5.8)

J ^ J
z1

By using the identity
δsμ = -δμdC(μ) + dδμC(μ) + (d - μd + (dμ))δC(μ), (5.9)

which follows readily from (3.5), one obtains

dzΛdz δΓ(μ)
sδΓ(μ) = s

dzΛdz

^ + (dM0))μ\ . (5.10)

Σ

Now, from (5.8) and (5.10), one finds

Γ(μ)))C(μ)] = 0. (5.11)

Hence, ,%Γ satisfies (3.8), which is an equivalent statement of the Diffc(Σ')-invariance
oϊMΓ. QED

The origin and nature of the SL(2,C) symmetry.
For any Beltrami differential μ in Beltr(Σ1), one may consider the projective

structure P(μ,.^?Γ(μ)) associated to the element (μ,MΓ{μ)) of Schw(Σ') (cf. Sect.
2). In terms of the coordinates ZΓ(μ) of P(μ,,^?Γ(μ)), the relation

MΓ(μ) = {ZΓ(μ),z} (5.12)

holds (cf. Eq. (2.14)). MΓ(μ) is invariant under variations of ZΓ(μ) of the form

δZΓ(μ) = a + /?ZΓ(μ) + -fZΓ(μ)\ (5.13)

where α,/?,7 are arbitrary local a-antimeromorphic functions. This is the passive
form of the SL(2,C) symmetry in conformal field theory on higher genus Riemann
surfaces. The infinitesimal generators of all transformations of this type are given by

J-(μ) = I-®— l — d, (5.14a)
O/μ)

J°n(μ) = z'n ® -2ZΓ(μ)—^—- d , (5.14b)
σ/jΓ(μ)

J+iμ) = z~n ® ZΓ{μ)2-^-- d . (5.14c)
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and form a SL(2,C) loop algebra on the field C of complex numbers attached to each
point μ of the manifold Beltr(Σ').

The SL(2,C) symmetry has also an active form. To any projective structure P(μ, M)
(cf. Sect. 2) there is associated a flat PSL(2,C) vector bundle σ{μ,M) in canonical
fashion [28,30]. An endomorphism τ of σ{μ,M) is a triple of fields τ + , r° and τ~
forming a section of the adjoint representation adjσ(μ,^?) of σ(μ,M). It is possible
to check that if r is an endomorphism then

ξτ = (τ+ - 2r°Z + τ~Z2)/dZ (5.15)

is a well defined element of C~ι'°(Σ). To any such r there is associated an
infinitesimal action on the coordinates of P(μ, M) given by

δτZ = ξτdZ. (5.16)

Through (2.7) and (2.14), this action can be extended to the Beltrami differential μ
and to the projective connection JB by

(5.17)

M = (d3 + 2JBd + (dJB))ξτ . (5.18)

The action of an endomorphism r of σ(μ,JB) equals the diffeomorphism action of
the following element of

ητ = ̂ 4 (5.19)
1 - μμ

since ξτ = ητ + μητ. Using the identity d3 + iMd + (dig) = (dZ)2 ( — d

following from (2.14), it is immediate to see that, if r is a-antiholomorphic,
then δrM = 0. The active form of the SL(2,C) is given by a-antiholomorphic
endomorphisms of the flat PSL(2,C) vector bundle σΓ(μ) = σ{μ,MΓ(μ)). From
the above discussion and the Diffc(Σ>invariance of JBΓ(μ) as a section of Schw(Σ'),
it follows that

Meμ=6τμ=0. (5.20)

One concludes that: i) the active form of the SL(2,C) symmetry consists of the
a-antiholomorphic gauge transformations of the flat PSL(2,C) vector bundle σΓ(μ)
and is equivalent to a class of infinitesimal diffeomorphisms and ii) the invariance
of energy-momentum tensor TΓ(μ) under such symmetry is a consequence of the
vanishing of the diffeomorphism anomaly for infinitesimal diffeomorphisms of such
type. It should be noticed that there is no proof that the Polyakov action itself is
invariant under the SL(2,C) symmetry on a surface of high genus, unlike what happens
for the planar topology.

Several problems remain open and call for further investigation. First, one should
verify that the expression (4.6) of Γ(μ) resumes the perturbative series yielded by
renormalized field theory. Doing this is certainly going to be arduous. In fact, this
involves on one hand the expansion of Γ(μ), as given by (4.6), in a formal power
series in the Beltrami differential μ and the correct identification of the distributional
kernels (T Γ (1) . . . TΓ(n)) involved at n t h order in μ in the expansion and, on the other,
the elaboration of Feynman's algorithm for any given model and the calculation of
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the renormalized n point connected Green functions (T( l ) . . .T(ή)) of the energy-
momentum tensor operator T. One expects that (T Γ (1) . . . TΓ(n)) = ( T ( l ) . . . Γ(n))
up to renormalization ambiguities.

For conformal field theories on the infinite plane, this endeavor has been initiated in
[23,24] (see also [8]). In that case, one can show that there is a unique renormalization
satisfying the conformal Ward identity (4.58) and that, in fact, (T Γ (1). . .TΓ(ή)) =
( T ( l ) . . . T(n)) exactly. This uniqueness of the renormalization does not hold for
conformal models on a compact surface without boundary. The underlying reason for
this fact is that on the plane the operator d — μd — 2{dμ) appearing in the conformal
Ward identity has no zero modes while on a genus g > 1 Riemann surface it has 3g — 3
linearly independent zero modes. Such zero modes reflect indeed the renormalization
ambiguities mentioned above.

Not all solutions of the Ward identity are physical. It is thus important to
find constraints or conditions which select the admissible solutions. In this respect,
modular covariance should play a prominent role. Regrettably, at the present stage of
development of the subject, it is not clear how this could be carried out.
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