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Abstract. We prove the existence of front solutions for the Ginzburg-Landau
equation

dtu(x, t) = d2

xu(x, t) + (1 - \u(x, t)\2)u{x, t),

interpolating between two stationary solutions of the form u(x) = ^/l — q2eiqx

with different values of q at x = ± oo. Such fronts are shown to exist when at least
one of the q is in the Eckhaus-unstable domain.

1. Introduction

We consider the Ginzburg-Landau equation (GL)

dtu(x, t) = d2

xu(x, t) + (1 - \u(x, t)\2)u(x, t) , (1.1)

where u is a complex-valued function of x e R and ί e R + . This equation has
time-independent periodic solutions of the form

uq(x) = J\ - <? W** , (1.2)

where q e [ — 1,1] and φ e R. These stationary solutions are known to be un-
stable for small amplitudes (q2 > 1/3) and marginally stable for large amplitudes
(q2 < 1/3) (Eckhaus stability, cf. [CE]).

Our aim is to show the existence of front solutions of Eq. (1.1) interpolating
between two stationary solutions (1.2). By this, we mean solutions of the form
u(x91) = U(x,x — ct), where U(x, ξ) is a complex function which converges to one
of the stationary solutions (1.2), say uqo(x)9 as ξ -> — oo and to another one, say
uqi(x), as ξ -> + oo . Such solutions typically look like a fixed envelope moving to
the right with constant velocity c > 0, while leaving a periodic pattern (the function
uqo) behind and destroying another one (uqι) in front, as shown in Fig. 1.

In the case where uqι = 0 (qγ = ± 1), solutions of this form are easily shown
to exist, see e.g., [CE, B]. Indeed, inserting in Eq. (1.1) the ansatz u(x9t)
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= 0

Fig. 1. The real part of a typical front solution of the GL-equation (1.1) is plotted at three different
values of t. The parameters are q0 = — 0.3, qί = 0.9 and c = 5

= v(x — ct)eίqox, where v is a complex-valued function, q0 e ( — 1,1) and c > 0, we
obtain an ordinary differential equation for v:

υ"{ξ) + (c + 2iί0)ι/({) = 0 .

Now, defining

1 1
-(l-q2)\υ\2--\v

(1.3)

(1.4)

we can write Eq. (1.3) as a one-dimensional complex Hamiltonian system
with Hamiltonian H and (complex) dissipation coefficient c + 2ίq0; the fixed
points are thus given by the local extrema of the "potential" term in Eq. (1.4).
It follows that Eq. (1.3) has a stable fixed point F x at υ = 0, and a circle F 2 of
unstable ones (v = ^/l — q%eiφ) which corresponds to the stationary solutions
(1.2). In view of the "dissipation law" dH/dξ= — c | t / | 2 ^ O , any trajectory
entering the region \v\2 < 1 — go, H < J(l — go)2> will stay there and converge
to the origin. In particular, F 2 is on the boundary of this region, and its unstable
manifold intersects this region. Therefore, we can conclude the existence of
fronts for Eq. (1.1) connecting any solution (1.2) — no matter whether stable
or n o t - t o the origin.

The case where both stationary solutions uqo9 uqi are non-zero is harder.
As a matter of fact, we cannot make the ansatz w(x, t) = vo(x — ct)eiqox

+ v1(x — ct)eιqix, for as soon as u contains a superposition of any two different
wave-numbers q0, qu the non-linear term \u\2u in Eq. (1.1) produces all the
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"harmonics" qn = q0 + n(q1 — q0), n ε Z. So, the simplest expression we can hope
for is

u(x, ί) = Σ C»(x ~ ΦknX (1-5)

Inserting in Eq. (1.1), we obtain the following system for the Cn:

D'n= - (c + 2iqn)Dn + Cn(q2

n - 1) + F n ( C ) , (1.6)

where F = (Fn)neZ is the non-linear term

Fn(C)= Σ CpCsC*r, (1.7)
p+s+r=n

and the symbol' means the derivative with respect to -ξ = x — ct.
We are thus looking for solutions C(ξ) = (Cn(ξ))neZ of Eq. (1.6) subject to the

boundary conditions

lim C(ξ)eF29 lim C(ξ)eF3, (1.8)
ξ-* — oo ξ-* + oo

where

F 2 = {(Cn)n€Z\ I CJ = y/ί-qiδΛt0} ,

are the circles of fixed points of Eq. (1.6) corresponding to the stationary solutions
uqo, uqi respectively. More precisely, the question we are interested in is the
following: for which q0, q1 e [ - 1,1] do solutions of Eqs. (1.6), (1.8) exist? A partial
answer is given by the two theorems below, which constitute the main result of this
paper.

Theorem 1.1. (Unstable-Unstable case) Let 0 < α < 1/2, c > 0. There exists an
εx = ε1(c) > 0 such that, for every ε ^ εu there is a solution of Eqs. (1.6), (1.8) with
q0 = — 1 + ε and q1 = 1 — αε. Moreover, ε^c) has a (strictly) positive limit as
c —• o o .

Theorem 1.2. (Stable-Unstable case) Let — 1/^/3 < q0 ^ 0. There exist an ε1 > 0
and a cγ > 0 such that, for all ε S ^i and all c^.cγ, Eqs. (1.6), (1.8) have a solution
with qγ = sjl — ε2.

Remark. The problem of constructing front solutions is phase covariant in the
following sense. The system Eq. (1.6) has two continuous symmetries, which reflect
the phase and translation invariance of the GL-equation Eq. (1.1). Indeed, defining
the transformation Rφ by (RφC)n = eiφCn, we see from Eq. (1.7) that FoRφ = RφF
for all <pe[0,2π]. Similarly, F commutes with Tδ, where (TδC)n = einδCn. As
a consequence, as soon as any pair of points of F 2 and F 3 are connected by an orbit
of Eq. (1.6), the same is true for any other pair, since the two operations R and
T allow to rotate the circles F 2 , F 3 independently.

We shall briefly comment on the range of validity of the theorems (in q0, q^).
First of all, a nice application of the Maximum Principle for parabolic equations
shows that, if u(x, t) is any solution of Eq. (1.1), the number of zeros of RQ(U(X, t)) is
(locally in x) non-increasing in time [A]. This means that front solutions can only
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- 1 -E

Fig. 2. The shaded region shows the values of qo,q1 for which we expect front solutions
generically to occur. The black regions are the domains of validity of Theorem 1.1 and Theorem
1.2. The constant E = 1/̂ /3 is the threshold of the Eckhaus instability

exist for | qγ \ > \ q01, if c > 0, as is easily seen from Fig. 1. Moreover, since Eq. (1.1)
is invariant under the complex conjugation u -> w*, there is no loss in generality in
assuming that q1 > \qo\. Finally, some genericity considerations which will be
explained at the end of Sect. 4.2 lead us to suppose that (q0 — qι)2 < 6q2 — 2.
Combining these conditions we obtain the shaded region in Fig. 2.

Now, let us choose qo,qi in this shaded region and consider the sequence
of wave-numbers qn = q0 + n(qi - q0). If the difference qί — q0 is sufficiently
small, many qn lie in the interval [ — 1, 1] and, by Eq. (1.2), there corresponds
to each of them a stationary solution uqn. Thus, as well as between uqo and uqi,
one can imagine fronts between uq_ι and uqi9 uq_2 and uqί, . . . , all of them being
solutions of the same system Eq. (1.6) with different boundary conditions (1.8).
So, to avoid inessential complications, we restrict ourselves to the case q0 ^ 0
in which there is only one possibility of constructing a front solution, namely
between uqo and uqι. In this situation, we expect this solution to exist for all q0> qx

in the shaded region, and this is well confirmed by numerical simulations.
However, the domain in which we prove it (Theorem 1.1, Theorem 1.2) is much
smaller: it is the black region in Fig. 2.

2. Preliminaries

We begin our analysis of the dynamical system Eq. (1.6) by diagonalizing the linear
part of the right-hand side. The corresponding operator is already block diagonal
with 2 x 2 blocks labelled by neZ; the nth block is just the linear part of the
equation for (CM, Dn\ and its eigenvalues are given by

1
± Λ / C 2 - 4 + Mcqn) . (2.1)

So, defining the new variables

Cn 1 1
(2.2)
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we obtain the following system:

Ά'Λ fλn+ 0 \(An( ( 1 / FU(Λ + B)\

where (A + B)n = An + Bn = Cn by Eq. (2.2). In these variables, the circles of fixed
points F 2 , F 3 become

(2.4)

all the other An, Bn being equal to zero.

2.1. The Function Space. Let (jf, ( , )) be the Hubert space

and denote by Jf 2 the direct sum Jf7 © J«f. From now on, we mean by a solution of
the system a # x curve ξ -• (A{ξ), B{ξ)) in ̂ f2, such that Eq. (2.3) is satisfied. If this
is the case, then (by construction) Cn(ξ) = An(ξ) + Bn(ξ) is of class c€1 for all n, and
Eq. (1.6) is verified. Moreover, since

/ i \ l / 2

Σ(l + \n\)2\Cn(ξ)\S( Σ 7 7 - 7 - ^ 2 \\C(ξ)\\,

it is easy to see that w(x, t) defined by the sum (1.5) is c€1 in x and ί, and verifies the
GL-equation Eq. (1.1).

The space ffl is mapped into itself by the non-linear term (1.7). Indeed,
a standard result in Sobolev space theory (see e.g., [CE]) says that convolution is
a continuous bilinear map from ^f x $? into 2tf. This means that there exists
a K > 0 such that \\A*B\\ ^ K\\A\\ \\B\\ for all A, B e tf. Now, F(C) is nothing
but the double convolution C*C*C, where ~\ #P -> ffl is the antilinear isometry
defined by (C)π = (C_π)*. So, F: Jf -• ̂ f is ̂ °° and

||F(C)-F(C)||^3KV||C-C|| , (2.5)

for all C,C E J f such that || C ||, || C \\ ^ r. In the sequel, if g is some normed space
and fig -* g some Lipschitz map, we shall denote by J> cz g the ball of radius
r around the origin in g and by Lip(/) the Lipschitz constant of/ With these
notations, Eq. (2.5) simply means that Lip(F) < 3K2r2 in J*r c jff.

2.2. Spectral Properties and Invariant Manifolds. Figures 3 and 4 show the real
part of the spectrum (2.1), plotted as a function of the wave-number q. The points
where q = qn = q0 + n(q1 — q0) for some neZ correspond to the eigenvalues of
the system. The two branches ( + and — ) cross at q = 0 if c < 2; otherwise, they
are separated by a distance growing like c as c -• oo . In all cases, eigenvalues with
zero real part only occur if qn = ± 1 for some neZ.



226 J.-P. Eckmann and Th. Gallay

Reλ

Fig. 3. The real part of the spectrum (2.1), in the case c < 2

Reλ

Fig. 4. The real part of the spectrum (2.1), in the case c > 2

In view of these spectral properties, our strategies for the proofs of Theorem 1.1
and Theorem 1.2 are very natural. In the "unstable-unstable case" (Sect. 3), we fix
α G (0,1/2), c > 0, and define qo= — 1 + ε, qγ = 1 — αε for some (small) ε > 0. The
spectrum (2.1) thus contains two "central" eigenvalues (that is, ReA0+ and ReA1 +

are Θ(ε))9 while the real parts of all the other ones are bounded away from zero as
ε -• 0. Using this information, we consider the evolution of the system (2.3) on the
local invariant manifold corresponding to these two central directions. Applying
the general theory reported in Appendix A, we shall prove the existence of such
a center manifold in a neighborhood of the origin whose size does not depend on ε.
Since the circles F 2 , F 3 shrink to zero as ε -• 0, all these fixed points will belong to
the center manifold if ε is sufficiently small. As a consequence, we shall prove the
existence of front solutions connecting F 2 to F 3 by simply studying the resulting
flow on the center manifold.

In the "stable-unstable case" (Sect. 4), we choose qo,qi such that q\ < 1/3,
ί/y/3 < <h < 1. We do not follow the same procedure as above, because the fixed
point F 2 corresponding to q0 is no longer close to zero, so that we have no
guarantee that it would lie on the local center manifold which we would construct.
We rather consider the evolution of the system (2.3) on the (infinite-dimensional)
invariant manifold corresponding to the upper branch (labelled " + ") of the
spectrum. Using c as a parameter, we shall prove the existence of such a center-
unstable manifold in a neighborhood of size Θ(c) of the origin, thus containing the



Front Solutions for the Ginzburg-Landau Equation 227

fixed points F 2 , F 3 if c is sufficiently large. We shall then study the resulting
semiflow on the manifold, and prove the existence of front solutions.

3. Proof of the Unstable-Unstable Case

As indicated, we fix α e (0,1/2), c > 0, and define q0 = — 1 + ε, qγ = 1 — αε for some
small ε > 0. To avoid complications, we assume from the outset that ε ^ 1/10.

3.1. Spectral Properties. We first describe in detail the spectrum (2.1) by perform-
ing perturbation theory in ε. All calculations are omitted, being straightforward.
We find for the two central directions

and for the other eigenvalues

Reλn+ > +

C n φ θ , 1; Re/lπ_ = - c - Reλn+, n e Z . (3.2)

Moreover, using the identity λn+ — λn- = -Jc2 — 4 + 4icqn, we obtain

1 2
-, n e Z . (3.3)

Finally, for n = 0,1, we also have

1 1 / cs \ 1 1 / cε

20 +-V c-2i

(3.4)

5.2. Reduction to the Center Manifold. Using the estimates above, we now reduce
the system (2.3) to a center manifold corresponding to the eigenvalues Ao + , A1 + .
The first main result of this subsection is:

Proposition 3.1. There is aKo>0 such that, for all ε < Koc/(c + 2), the system (2.3)
defines a flow on a two-dimensional local center manifold of radius Θ(ε1/2), which
contains the fixed points F 2 , F 3 .

Definition. We define εc = Koc/(c + 2).

Proof. In a first stage, we show the existence of a center-unstable manifold asso-
ciated with the branch {λn+ }neZ of the spectrum, by applying Theorem A.I to the
system obained from Eq. (2.3) by reversing the sign of the "time" ξ. Using the
notations of Appendix A, we set Scs = {{An)neZ} ^j^,^u = {{Bn)n£Z} ^ Jf, and
we define the linear operators Ac\ Au by (AcsA)n = - λn+An, (AuB)n = - λn-Bn.
According to Eqs. (3.1), (3.2), we have Re( - λn +) ^ Re( - λ0 +) ^ c/(c2 + 4) ̂  c/4
for all neZ, and Re( — λn-) ^ 3c/4. Thus, the assumption HI of Theorem A.I is
satisfied with λcs = c/4, λu = 3c/4 and D = 1 (since Ac\ Au are diagonal). On the
other hand, the non-linear terms in Eq. (2.3) are #°°, phase covariant, and vanish at
the origin together with their derivatives, so that H2 is satisfied. Moreover, if
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Γs(r), ίu(r) denote their Lipschitz constants in Stτ a SCS@SU, it follows from Eqs.
(2.5), (3.3) that rs(r), ίu(r) ^ Cr2/(c + 2) for some C > 0. So, choosing β = cβ and
defining r\ = Kxc(c + 2) for some sufficiently small Kx > 0, we can bound σ(r, β)
in Eq. (A.2) by ^(r/r^2, which is smaller than 1/2 if r < r^ Applying Theorem A.I,
we thus obtain:

Lemma 3.2. There is a Kλ > 0 swc/z that, for all r <rχ = yJK1c(c + 2), ί/zere exists
a phase covarίant <β1Λ function h\ics -> Su with ft(0) = 0, Dh(0) = 0, whose graph
(restricted to &r) is a local center-unstable manifold for the system (2.3). Moreover,

± 2

Thus, the system (2.3) defines on the center-unstable manifold B = h(A) a semi-
flow (for ξ ^ 0) whose projection onto <fcs verifies the differential equation

l Ae@r^3<P. (3.5)

In a second stage, we reduce the system (3.5) to the two-dimensional center-
stable manifold associated with the eigenvalues λ0 +, λί +. Let now Scs = f̂0 = C 2

be the subspace of J f spanned by the two central directions Aθ9Aί9 and <f" its
orthogonal complement in 3tf. Proceeding as above, we define the linear operators
Ac\ AubyAcs(A0, A,) = (λ0 + A0, λ1 + A1)and(AuA)H = λn+An, n Φ 0,1. In view of
Eqs. (3.1), (3.2), the assumption HI of Theorem A.I is verified if we take
χ™ = 0,λu = c/(c + 2)2, and D = 1. On the other hand, denoting by Λs(r), Γ{r) the
Lipschitz constants in &r c j f of the non-linear terms in Eq. (3.5), we see from Eqs.
(2.5), (3.3) and Lemma 3.2 that H2 is satisfied, and that Λs(r), Γ(r) ^ Cr2/(c + 2)
for some C > 0. So, choosing β = λu/3 and defining r\ — K2c/(c + 2) for some
sufficiently small K2ί^K1, we have σ(r, Ŝ) ̂  ^(r/r 2 ) 2 in Eq. (A.2). Applying
Theorem A.I, we obtain:

Lemma 3.3. There is α K2 > 0 such that,for all r <r2 = ^/K2c/(c + 2), there exists
a phase covariant C€1Λ function g: Scs -» Su with g(0) = 0, Dg(0) = 0, whose graph
(restricted to 0βr) is a local center-stable manifold for the system (3.5). Moreover,

i
Combining the two lemmas we obtain the existence, if r < r2, of the local center

manifold Γr = {(A, B)eM?2\A = (a, g(a)), B = h(A), a e 0&r <= Jfo} Furthermore,
the projection onto Jfo of the flow defined on Γr by Eq. (2.3) verifies the differential
equation

A'o = λo + Ao + - — F 0 ( a + k(a)) ,

ί (3.6)

where a = (Ao, Aγ)e^r c j ^ 0 and k: Jf0 ^ ^ is defined by the identity
(a, g(a)) + ft(α, g(a)) = a + k(α). So, k is phase covariant, k(0) = 0, Dk(0) = 0, and
Lip(k) ^ /(r/r 2 ) 2 for some / > 0.

We now complete the proof of Proposition 3.1. Consider the fixed points (2.4).
Using Eqs. (3.1), (3.3) and recalling that J\ - q{, J\ - q2

0 are Θ(ε112), we see that
there exists an R > 0 such that F 2 , F 3 e &Rεu2 cz j f2 for all ε > 0. Thus, if
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Rε1/2 < 7*2, these fixed points will lie on the center manifold ΓRευi (see Remark 3
after Theorem A.I). Thus, defining εc = (r2/R)2 = Koc/(c + 2) and noting that
(Rεί/2/r2)

2 = ε/εc, the proof of Proposition 3.1 is complete. D

The proof gives us the further result:

Corollary 3.4. The projection onto J^o = C 2 of the flow defined on the center
manifold by Eq. (2.3) verifies the differential equation Eq. (3.6) with k: 3Ί?0 -> J-f
a phase covariant %>1Λ function verifying fc(0) = 0, Dk(Q) = 0, Lip(fc) ^ ίεjεc.

This result reduces the proof of Theorem 1.1 to the study of the system (3.6) in
the ball &Rεm <= ̂ o In order to extract the relevant terms as ε -» 0, we rescale the
amplitudes Aθ9 Ai and the parameter ξ, by defining η = — εξ and setting

A0(ξ) = y/~εX0(η), A,{ξ) = yfεXM, k(J~εx) = ^εl(x) for all x e MT0. We thus
obtain the new system

χ>0= -h±χQ-
Fo{x +

ί-y- Ft(x + /(x)), (3.7)

where x = (Xo, Xx) e MR c j-f0 and ' denotes the derivative with respect to η. By
construction, the function /: Jf0 -• ^ has the same properties as k in Corollary
3.4. In view of Eqs. (1.7), (3.1), (3.4) and Corollary 3.4, the formal limit ε -> 0 in
Eq. (3.7) yields the simple equations

X'o =^TJiXo(2 ~ \χo\2 ~ 2 | * i I2) ,

^ j 2 ) . (3.8)

We shall study these equations in the next subsection, and come back to the case
ε > 0 in Sect. 3.4.

3.3. The Limiting Case ε = 0. We now study the reduced system (3.8) and show
that it has front solutions. This system has two circles of fixed points corresponding
to Eq. (2.4):

F°2 = {\X0\ = ^2, X, = 0}, F§ = {Xo = 0,1

Lemma 3.5. Every point 0/F3 is connected by an orbit to F§.

Proof We begin by setting Xo = poe
iψo

9 Xί=p1e
iφ\ with po,p1eR+ and

ψo, I/Ί G R. Inserting in Eq. (3.8), we obtain the following equations for the ampli-
tudes po,Pi'.

(c + 4/c)p'0 = p0(2-p2-2p2l {c + Alc)p\=Pι{2a-pl-2pl). (3.9)

The equations for the phases ψ0, \jjx can be explicitly integrated and yield the
relations p0 = Coe

c^o/2, pγ = C1e~cxltι12, where Co, Cx are positive constants deter-
mined by the initial conditions. We next eliminate the parameter c from Eq. (3.9) by
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the transformation ro(η) = ρo((c + 4/c)η), r1(η) = pί((c + 4/c)η), leading to the
system

- r f - 2 r § ) . (3.10)

Since 0 < α < 1/2 and r0 ^ 0, rί ^ 0, it is straightforward to verify that Eq. (3.10)

has exactly three fixed points: F1 = (0,0) (a source), F 2 = 0^/2,0) (a sink), and

F 3 = (0, Jϊa) (a saddle).
We now prove the existence of a trajectory (r0, r^iη) of Eq. (3.10) leaving F 3 at

η = - oo and reaching F 2 at η = + oo. We will do this by showing that the
(one-dimensional) unstable manifold IV of F 3 lies in the basin of attraction of F 2 .
In order to do that, we consider the (closed) domain D in R+ x R+ bounded by the
two curves

E+ = {(r0, 2r\ = 2}, £_ = {(r0, 2r2

0 = 2 α } ,

as shown in Fig. 5.
Elementary calculations show that, on both £ + , £ _ , the vector field (3.10)

points toward the interior of D, whereas it is parallel to the boundary on the two
remaining segments of dD; this means that the interior D of D is invariant under the
flow of Eq. (3.10). Moreover, it is easy to verify that r'o > 0 and r\ < 0 everywhere
in D. As a consequence, since D is compact, any trajectory in D necessarily
converges to some (fixed) point in D as η -> oo , and by elimination this fixed point
must be F 2 . So, it remains to show that the unstable manifold Ψ* of F 3 intersects D.
Writing iV = {(roj(ro))\ro > 0} and £_ = {(ro,/(ro))|ro > 0} near r0 = 0, we
easily find

V 2α

Since 1 — α > α, we have/(r0) >/(r0) if r0 is sufficiently small, so that IV lies in D in
a neighborhood of F 3 . •

ri/\

Fig. 5. The domain D of R + x R + bounded by the two ellipses E + ,E_ (shaded region) is
attracted to F 2 by the flow of (3.10). In particular, the unstable manifold of F 3 intersects F 2
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Remark. The condition α < 1/2 is essential in this argument: if 1/2 < α < 2, both
fixed points F 2 , F 3 are stable, so that no connection can occur between them. Note
that the slope of the tangent to the curve (q0 — qγ)

2 = 6q2 — 2 at q0 = — 1, qγ = 1
is exactly i , see Fig. 2.

3.4. The Case ε > 0. We now come back to the full equations (3.7) and prove, by
a perturbation argument, the existence of front solutions for sufficiently small ε, i.e.,
Theorem 1.1. Although this could be done by direct estimates in this simple
finite-dimensional case, we shall use the general methods of Appendix A, as
a preparation for the infinite-dimensional situation of Sect. 4.

The perturbation argument is a comparison of the flows Φε

η, Φ® defined by the
vector fields χ\ χ° of Eqs. (3.7), (3.8) respectively. By construction, the flow Φε

n has
two circles of fixed points:

F ε

2) Xo= . ~ λ ° : ^2^~se1^ X,=0, φeR,

Using Eqs. (3.1) and (3.3) it is easy to see that dist(Fε

2, F§) and dist(F|, F§) are Θ{ε)
as ε -• 0.

The main steps of the proof are:

i) The flows depend continuously on ε at ε = 0.
ii) The stable and unstable manifolds of F | , F | are continuous in ε at ε = 0.

We begin by comparing the flows.

Proposition 3.6. There exists a K3 > 0 such that

Φε

η(x) - Φ°η(y) || g exp (f^) (II * - )ΊI + K3(ε/εc)), (3.11)

for all x9y e 0$R a j f 0 and all η e R + .

Proof. We first note that χε, χ° are close to each other in the Lipschitz norm:

Lemma 3.7. Let Δχ(x) = χε(x) — χ°{x), x e Jfo Then, there exists a K 4 > 0 such
that Lip(zlχ) ^ (ε/εc)K4/(c + 2) in @2R

 C «*O

The proof is a calculation which can be found in Appendix B.
We next write Eq. (3.7) in the form x' = χ°(x) + Δχ(x\ regarding Δχ as an

additional non-linear term. From this point of view, the systems (3.7), (3.8) have the
same linear part, with spectrum contained in the half-plane Re(z) ^ 2c/(c2 + 4).
The non-linear part of χ° has (in &2R) a Lipschitz constant bounded by C/(c + 2),
for some C > 0, and by Lemma 3.7 the same is true for χε = χ° + Δχ, with
C replaced by C + K4(ε/εc). So, setting Scs = 3JTθ9 S

u = {0}, λcs = 2c/(c2 + 4),
D = ί9 and ίcs{2R) = (C + X4)/(c + 2), we can apply Theorem A.I to both systems
simultaneously, the condition (A.4) being fulfilled with β = K3/(c + 2) for some
sufficiently large K3 > 0. It follows that Φε, Φ° e Jfβ, and in particular we have
|| Φε

η(x) - Φε

η(y) || ^eβη\\x-y || for all x,yε@R and all η e R+. Now, we apply



232 J.-P. Eckmann and Th. Gallay

Theorem A.2 to compare Φε with Φ°, the condition (A.5) being fulfilled with
Af = Ac

2\ f\s -βs = Aχ, (5 = 0 and ε -• ε/εc. By Eq. (A.6), we thus have
\\Φe

η(y) - Φη(y)\\ ^ (1 - 2σ)~1R(ε/εc)eβη for all ye @R and all ηeR+. Combin-
ing these results, we obtain Eq. (3.11). D

We now study the stable and unstable manifolds of F | , F | .

Lemma 3.8. There is a K5 > 0 such that, for ε/εc ^ K5c/(c + 2), ίfe annulus of
radius p2 = K5c/(c + 2) around the circle F | is attracted to F | by the flow Φε

η.
Proof We first study the geometry in the case ε = 0. Let x° = ( v/2, 0) G F° and set
x = x° + z, with z = (Z o , Zλ)e $2p ^ ^ 0 for sufficiently small p > 0. Inserting in
Eq. (3.8), we obtain

zί ^ l ( Z + z*)+/() z / : Z + / ( ) (312)

where/: Jf0 -> Jf0 is ^ ' * and Lip(/) ^ Cp/(c + 2) in ^ 2 p for some C > 0. As is
easily verified, the linear part of Eq. (3.12) (regarded as an operator in R 4) has one
zero and three stable eigenvalues. The gap between the stable and the central part
of the spectrum is equal to 2c/(c2 + 4), and if VS9 Vc denote the corresponding
eigenspaces, then x° + Vc is just the tangent to the circle F§ at x°, and Vs is the
normal hyperplane. This situation prevails for small ε. To see this, denote by xε the
unique point of F | for which I o e R + . Setting now x = xε + z and inserting in Eq.
(3.7), we obtain Eq. (3.12), with fε(z) =f(z) + δχ(z) replacing f(z\ where
δχ(z) = χε(xε + z) — χ°(x° + z). In Appendix B, we prove:

Lemma 3.9. There exists a K6 > 0 such that Lip((5χ) ^ (ε/εc)K6/(c + 2) in
y&R cz JΓ0.

Using this bound, we can compare the two systems (i.e., Eq. (3.12) with/or fε

in the right-hand side) in the ball &p c Jfo. Setting £cs = VS9 Su = Vc, λcs =
- 2c/(c2 + 4\λu = 0,D = l and Λs(2p), /M(2p) = (Cp + K6ε/εc)/(c + 2), the con-

dition (A.3) can be fulfilled if ε/εc ^ p and p ^ p2 = K5c/(c + 2) for some (suffi-
ciently small) K5 > 0. Thus, by Theorem A.I, there exist h°,hε:&P2 c F s -• Vc

whose graphs i r 0

J i r ε are (except for a translation) the local stable manifolds of
x°, xε for the flows Φ°, Φε

η respectively. Moreover, applying Theorem A.2 with
Ax = Λ2ifi ~f2 = δχ,δ = 0 and ε -> ε/εc, we easily see that || hε — h° \]

lo0 = Θ(εjεc)
in J*P2 c Vs.

Note that, in view of the phase covariance of the system, we can obtain from Vε

the corresponding stable manifold of any point of F | by simply applying the
transformation Xo -> Xoe

ιφ, φ e R. The union over φ e [0, 2π] of these manifolds
is the annulus of radius p2 around the circle F | . This completes the proof of
Lemma 3.8. D

These considerations about the behavior of Φ°, Φε

η near F°, F | can be repeated
in an analogous manner for F§, F | . Choosing y 0 = (0, ̂ /loc) sF^ and setting
x = y° -h z, we obtain instead of Eq. (3.12),

z ί ) = T^fi z ° + ^ o ( 4 z ; = TTJi(Zl + z n + gΛz)' (3>13)

where again Lip(#) ^ Cp/(c + 2) in J* 2 p

 c ^ o Recalling that α < 1/2, one verifies
that the linear part has one stable, one zero and two unstable eigenvalues. The gap
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between the center-stable and the unstable part of the spectrum is equal to
(2 — 4α)c/(c2 + 4), and if Wcs, Wu denote the corresponding eigenspaces, then Wu is
just the complex line {Zx = 0}. In the same way, choosing yε e F | as above and
setting x = yε + z, we obtain Eq. (3.13) with g replaced by some gε such that
Lip(gε — g) ^ K6(ε/εc)/(c + 2). So, reversing the sign of the "time" η and setting
gc* = wu9 Su = Wcs, λcs = - (2 - 4α)c/(c2 + 4), λu = 0, D = 1, and ίcs(lp\
r{2p) = (Cp + K6ε/εc)/(c + 2), the condition (A.3) can be fulfilled if ε/εc ^ p and
p ^ Ps = K5{1 - 2α)c/(c + 2). Thus, there exist fc°, fcε: J>P3 c FTM -• Wcs whose

°p P 3

graphs τ<Γ °, W are (except for a translation) the local unstable manifolds of y°,
moreover || kε~k0\\O0 = Θ(ε/εc) in ^ P 3 c W/u.

Having gained control near the circle of fixed points, we can conclude the proof
of Theorem 1.1 by following the flow in the space in between, using Proposition 3.6.
Assuming that ε/εc ^ p3, we choose two points in the unstable manifolds of F | and
F§, defined by

P ε = / + ( p 3 , f c ε ( p 3 ) ) e / + ^ ε , p° =y° + (p3>kθ(p3))ey° + ^ 0

By construction, dist(P ε , P°)^\\f- y° \\ + \kε(p3) - ko(p3)\ = Θ{ε/εc) as

ε -> 0. On the other hand, since P° lies in the unstable manifold of F3, we have
seen in Sect. 3.3 that Φη(P°) converges to F^ as η -• 00. Thus, there exists an
η>0 such that dist(Φj(P°), F§) ^ p 2 /3, and it follows from Eq. (3.9) that
^ = (c + 4/c)Γ, where Γ = Γ(p 2 ? P3) does not depend explicitly on c. Finally, we
know from Eq. (3.11) that

dist(Φε(Pε), Φ°η(P0)) S e x p f κ 3 ^ ~ r\dist(Pε,P°) + K3(ε/εc)) .

Now, let us choose ε so small that dist(Φ ε(P ε), Φ?(P 0)) and dist(F f i

2,F§) are
smaller than p 2 /3. Then, by the triangle inequality

dist(Φ ε(P ε), Fε

2) S dist(Φ ε(P ε), Φ°η(P0)) + dist(Φ,°(P°), F§) + dist(F§, FJ)

In view of Lemma 3.8, this means that Φε

η(Pε) -> F | as ?/->oo, while
Φ ε (P ε ) -• j ε G F | as ?y -> — 00 since P ε e j ; ε + Ί ^ ε . Thus, we have shown the
existence of a solution of Eq. (3.7) connecting y ε e F ε

3 to some point of F 2 . The
various assumptions on ε can be summarized by the single condition ε ^ ε^c), where

e x p ( " κ" C~~T~ τ { p 2 > p

for some KΊ > 0. Since p 2 ? Pz have positive limits as c -• 00, so does ε1(c). This
concludes the proof of Theorem 1.1. D

4. The Stable-Unstable Case

We now study the more interesting case where one of the stationary solutions
is (Eckhaus) stable and the other unstable, i.e., we choose two wave-numbers
q0, qι such that q% < 1/3, 1/^/3 < qx<\. We follow the procedure announced
in Sect. 2.2.
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4.1. Reduction to the Center-Unstable Manifold. We first investigate the behavior
of the spectrum (2.1) as c -• oo . If n e Z is fixed and if c ^ 8(1 + | qn |), we find by
straightforward calculations

c c2

where \&(c, qn)\ :g 5(1 + \qn\Ϋ On the other hand, if c ^ 2, it is easy to see that

Re λn+ ^ — λ for all n e Z, where

, 1 / 1 \

(4.2)

Since λn+ + λn- = — (c + 2iqn\ it follows that Re λn- ^ — c + 2, so that the gap
between the two branches of the spectrum is greater than c — 2λ = yjc2 — 4. As
a consequence, we have for all n e Z,

1 /1 \

(4.3)

(4.4)

l Γ l

2V v

1
' - 4 ) = - H

c

/
VΘ\

\

( 1

. c 3

Finally, if n is fixed and c ^ 8(1 + |<jfπ|), we find

1 _1 κ4_

We now follow exactly the same procedure as in Sect. 3.2: reversing the sign of the
time ξ in (2.3), we apply Theorem A.I to show the existence of a center-stable manifold
corresponding to the branch { — λn+ }neZ of the spectrum. Using the same notation, we
take <ΓS = <T = JUT, λcs = X, λu = c - X, D = 1, and β = c/3. Moreover, if c is suffi-
ciently large, we see from Eqs. (2.5), (4.3) that /cs(r) = ίu{r) ^ Cr2/c for some C > 0. So,
defining rx = K1c for some (sufficiently small) Kλ > 0, we have σ(r, β) ^ i ( r / r i ) 2 m

Eq. (A.2), and Lemma 3.2 still holds for r < rx. This shows the existence of the local
center-unstable manifold Γ r = {(A, B) e Jf2 |B = /i(A), ^ e J> cz j f } for the system
(2.3). Now, as is easily seen from Eqs. (4.1), (4.3), the fixed points (2.4) have a finite limit
as c -• oo so, we can find an R > 0 such that F 2 , F 3 e &R cz 34?2 for all sufficiently
large c. Defining thus c0 = #/Xi and noting that ^(R/r^2 = i(co/c)2, we obtain:

Proposition 4.1. 77zere exists a c0 > 0 swc/i ί/i«ί3 /or α// c ^ c 0 , the system (2.3)
defines a semίflow (for ξ ^ 0) on ίfte /oca/ center-unstable manifold ΓR, which
contains the fixed points (2.4). The projection onto J f of this semiflow verifies the
differential equation (3.5), with h:J4? -» J f a phase covarίant C1'1 function verifying
h(0) = 0, Dh(0) = 0, Lip(Λ) g i(c o /c) 2 .

This proposition reduces the proof of Theorem 1.2 to the study of the system
(3.5) in the ball &R c j«f. In order to extract the leading terms as c -• 00, we rescale
the time ξ by setting ξ = — cη. We thus obtain

A'n = an(cMn - vM(c)Fnμ + ftμ)), A 6 ^ κ cz j f , (4.5)

where aπ(c) = — cλn+, vπ(c) = c/(An+ — λπ_), and' denotes the derivative with respect
to η. In view of Eqs. (4.1), (4.4), the formal limit c -• 00 in Eq. (4.5) yields the simpler
equations

A'n = oLnAn-Fn{A\ Ae@Ra^, (4.6)

where αM = 1 — q2.
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4.2. The Limiting Case c = oo. We now study the reduced equations (4.6)
and show that they have front solutions. Of course, this system is still infinite-
dimensional, so that we cannot hope to show the existence of front solutions
just by a simple argument as in Sect. 3.3. For convenience, we suppose from
now on that —1/^/3 < q0 ^ 0 and that qx = ^/l — ε2 for some ε ^ ε0 = 1/10
(Fig. 2, black region). Then, recalling that qn = q0 + n(q1 — q0) and an = 1 — g2,
we see that α 0, OLX (and perhaps α _ J are positive, whereas ocn < 0 for all \n\ > 1.
This means that most of the variables An are exponentially damped by Eq. (4.6),
so that only a few modes (A-u Ao, Ax) will be relevant in our analysis.

We first consider the behavior of the system in a neighborhood of the two
circles of fixed points F 2 , F 3 corresponding to Eq. (2.4):

F 2 ) \A0\ = v ^ o , An = 0 for all n * 0,

F3) \Aγ\ = -v/όci, An = 0 for all n + 1.

The following results will be proven in Sect. 4.3:

i) The circle F 2 has an annular neighborhood si which is attracted to F 2 by Eq.
(4.6) and whose size does not depend on ε.

ii) Any point P e F 3 has a local unstable manifold iKP of (complex) dimension 1,
which is nearly parallel to the 0-direction (i.e., the direction defined by Ao = 1,
An = 0 for all n Φ 0), and whose size does not depend on ε.

To prove that front solutions exist for c = 00 we now show that the continuation
of the local unstable manifold WF under the semiflow defined by Eq. (4.6) intersects
the attractive annular neighborhood J / , if ε is sufficiently small. This has to be done
by direct estimates; for the sake of clarity, we just explain here the main steps of the
calculation, and defer the proofs to Appendix C.

First of all, we write any A e 2tf as A\\ + Al9 where A\\ = {A-u Ao, Ax) and
A± = (An)\n\>1; the corresponding decomposition of Jf will be denoted by
Jtrn®Jtr±. We also define the domain Dε = {An\\A0\ ^ 1,1^1 ^2ε9\A-x\ ^ 2ε}
c jfj|, and note that the fixed points F 2 , F 3 lie in Dε, see Fig. 6.

Now, if A(η) is a solution of Eq. (4.6) and if ε is sufficiently small, we have the
following results:

Lemma 4.2. There exists a K2 > 0 such that, if A\\ e Dε and \\ AL || = K2ε
2, then

^-\\A±\\<0.
dη

In other words, as long as A\\ stays in Dε, the other components A± of A remain
bounded by X 2 ε 2 if they were initially. Since we are interested in a trajectory
starting from F 3 (where A± = 0), we can henceforth assume that || AL || ^ K2ε

2, as
long as ^ | | G D £ .

L e m m a 4.3. // || A ± \\ ̂  X 2 ε 2 , A u eDε and \AX\ = 2ε, then — \AX\ < 0.

A similar result holds for A-γ replacing Aγ. Together with Lemma 4.2,
this means that a trajectory of the system cannot leave the region Dε =
{A\\ e D ε , \\A±\\ ^ K2ε

2} unless \A0\ > 1. In particular, we can assume in our
case that A e Dε, as long as | Ao \ ̂  1.
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Fig. 6. The parallelepiped Dε contains the fixed points F 2 , F 3 .
The unstable manifold of F 3 remains in this domain and goes
along the ̂ 0-axis until it intersects the basin of attraction of F 2

Lemma 4.4. If Ae Dε and ε3 ^ \A0 ^
bounded away from zero.

Now, the main result of this subsection is:

— ε), then — \A0\ is positive and

Proposition 4.5. There is an εx ^ ε0 such that, for all ε ^ ε1 ? every point o / F 3 is
connected to F 2 by an orbit of the system (4.6).

Proof If iΓP is the local unstable manifold of P e F 3 , we can choose A e ^ P n Dε

such that I Ao \ ̂  ε3. This is always possible if ε is sufficiently small, because ΊVF is
nearly tangent to the O-direction and its size does not depend on ε. So, denoting by
A(η) (η ^ 0) the evolution of A under Eq. (4.6), we know from the preceding lemmas
that A(η) remains in Dε and is driven along the O-direction with non-vanishing
velocity until |40(*?)l = v α o ( l — ε). But, as is easily verified, this last point lies in

Dthe annular neighborhood si of the circle F 2 , if ε is sufficiently small.

Remarks.
1) If A(η) is a solution of Eq. (4.6) and if

u(x, t)=Σ An(t)e*»x ,

then it is easy to see that w(x, t) verifies the GL-equation (1.1). So, Proposition
4.5 shows the existence of solutions of Eq. (1.1) satisfying

lim u{x, ί) = uqι{x), lim u(x, t) = uqo(x),
t-> — oo t-> + oo

uniformly in x (unlike the front solutions).
2) Let n be the (real) dimension of the unstable manifold of any point of F 3 , and let

m be the (real) codimension of the stable manifold of the circle F 2 . For qo,qί in
the range of Theorem 1.2, we have seen that n = 2 and m = 0, so that the
intersection of the two manifolds is generic in the sense that n> m. For other
values of q0, q_γ, it is not difficult to show that this genericity condition is fulfilled
if and only if (q0 — qγ)

2 < 6q\ — 2. This is the shaded region in Fig. 2.
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4.3. The Full Case c < oo. We now come back to the full equations (4.5) and show,
by the same perturbation argument as in Sect. 3.4, the existence of front solutions
for sufficiently large c ^ c0. To simplify the forthcoming expressions, we rewrite
Eqs. (4.5), (4.6) in the form

A' = ACA-FC{A\ Ae®Ra3tf, (4.5')

A' = AA - F(A\ A e 08R a tf9 (4.60

where A\ A are the linear operators in Jf defined by (ΛcA)n = <x,n(c)An,
(AA)n = (xnAn, and Fc: jf -+ 2tf is the «7 l 1 function defined by (Fc{A))n

= vn(c)Fn(A + h(A)).
We begin by comparing the semiflows Φc

η, Φη of Eq. (4.5'), (4.6') respectively.

Proposition 4.6. There exists a K3 > 0 such that,

|| Φe

η(A) - Φη(B) || ^ exp(K3η) ί\\A-B\\+^λ, (4.7)

for all i , 5 e ^ c / and all η ^ c~1/4.

Proof Since (by Eqs. (4.1), (4.2)) αM ^ 1 and Reαn(c) ^ cλfor all n e Z , there exists
a /I > 1 such that || eAH ||, || βylί || ^ e λ ί for all ί e R+ and all c^c0. On the other
hand, using Eqs. (2.5), (4.3) and Proposition 4.1, it is easy to see that Lip(Fc),
Lip(F) ^ K4 in @2R <= ̂ , for some K4 > 0. So, setting Scs = 2tf, ^" = {0},
λcs = A, D = 1, and *fcs (2Λ) = K 4, we can apply Theorem A.I to both systems (4.5'),
(4.60, the condition (A.3) being fulfilled if β > λ + 10 K4. It follows that Φ\ Φ G Jfβ

for all c ^ c 0.
Now, we want to use Theorem A.2 to compare the semiflows Φc, Φin&R a jήf.

Before doing this, let us remark that, although (by Eq. (4.1)) txn(c) = — cλn +

converges to otn = 1 — ql for all n as c -> oo, the convergence is not uniform in n: in
fact, |απ(c)| grows like y/n as n -> oo and | α n | like n2, so that || Ac - A \\ = oo for
all c. On the other hand, the conditions (A.5) do not involve the operators
themselves, but the associated semigroups eΛC\ eΛ\ in which the large n components
are exponentially small if t > 0. So, we can hope that eAC\ eΛt are close to each other
if c is sufficiently large and t strictly positive. Indeed, we find:

Lemma 4.7.

s u p ( e~λt \\eΛct - eΛt\\ 1 = ^ 1 -jπ 1, as c

(See Appendix C for the proofs of the lemmas in this section.) The same phenom-
enon occurs when comparing the non-linear terms F\ F, for the convergence of the
factor vn(c) = c/(λn+ - λn-) to 1 as c -+ oo is not uniform in n, cf. Eq. (4.4). As
a consequence, the difference Fc — F does not become small, but nevertheless
eΛt(Fc - F) docs, if ί > 0:

Lemma 4.8.

/ _λt\\eΛt(Fc{A)-F(A))\\\ ( 1 \
sup sup [e — \ = φl \ asc^ co.

t^c-1'2 AeB2R\ WΛ\\ J \C J
AΦ 0
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Accordingly, setting Λ\s = Ac, Ac{ = A,ff = - Fc, fc

2

s = - F, we see that the
assumption (A.5) of Theorem A.2 is fulfilled with δ = c~ 1 / 4 and ε = Cc~ll4r for
some C > 0. In view of Eq. (A.6), it follows that || Φc

η-Φη\\(X) = eβη 0(c~ 1 / 4) in
Λκ <= jf, for all η ^ c~ 1 / 4. Combining this with the fact that Φc,ΦeJΓβ and
choosing K3 ^ β sufficiently large, we obtain Eq. (4.7). D

We next study the behavior of the semiflow Φc

η around the circles of fixed points
corresponding to Eq. (2.4):

Fc

2) Λo= ~λ°~

Fc

3) A,= ~ A l Γ yfiΊe**, 4 , = 0 for all n Φ 1, φeΈL.
Λ 1 + — λγ-

Using Eqs. (4.1), (4.3), it is easy to see that F 2 , Fc

3 are close to F 2 , F 3 (Sect. 4.2), in
the sense that dist(Fc

2, F 2 ) and dist(Fc

3, F 3 ) are Θ(l/c2) as c -• 00. Now, let Ac

be the point of F 2 corresponding to φ = 0 in the expression above, and let
A = Ac + X, with X e Mlp a j f for some small p > 0. In order to study the
evolution of X, we introduce the (real) subspaces Vs = {X GJ^\ImXo = 0}9

Vc = {X e Jf I Re X o = 0, Xn = 0 \fn + 0} and we write X as a pair (XS9 Xc) with
Xse Vs,Xce Vc. With these notations, we have the following result:

Lemma 4.9. If A = Ac + X is a solution o/(4.5') and if c is sufficiently large, then
X = (XS9 Xc) verifies the differential equation

X'S = MC

SXS + RC

S(X), X'C = MC

CXC + RC

C(X), (4.8)

where Mc

c = 0, Mc

s: Vs -• F s is a linear operator satisfying || e M ^ | | ^ De~^aot

(t e R+ ) for some D^ I, and Rc = (Rc

s, Rc

c): Jf -• 34? is a W1*1 function, vanishing at
the origin, such that Lip(i^ c) ^ iC 5 (p + co/c) in J * 2 p cz jf,for some K5 > 0.

It is clear from the proof (see Appendix C) that Lemma 4.9 remains true if
c = 00, that is, for the system (4.6r). Indeed, if A e F 2 verifies ,40 = v ^ o and if
yl = A + X, then Eq. (4.6') for X is simply

X'n = (αn - 2αo)Xn - α 0 X* „ + Rn(X)9 (4.9)

which can be rewritten as

X'C = MCXC + RC(X), (4.10)

with Ms, Mc and i^s, Rc as in Lemma 4.9.
So, setting Scs = Vs, Su = VC9 λcs = - i α 0 , λu = 0, D = D, ίcs(2p) = ίu(2p)

^ K5(ρ + co/c), and β = — $α 0 , we can apply Theorem A.I to both systems (4.8),
(4.10), the condition (A.3) being fulfilled if p is sufficiently small and if co/c ^ p.
Thus, there exist c€1'x maps hc, h: &p a Vs -• Vc, whose graphs f"c,γ~ are (except
for a translation) the local stable manifolds of Ac, A for the semiflows Φc

η, Φη

respectively. In particular, using the phase covariance of the system, we easily
obtain the analogue of Lemma 3.8:

Lemma 4.10. There exists a p2 > 0 such that, for all sufficiently large c (including
c = GO), the annulus srfc of radius p2 around the circle F 2 is attracted to F 2 by the
semiflow Φc

η.
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Moreover, in the same way as Lemma 4.7 and Lemma 4.8, one can prove the
following continuity result for MC

S9 M
c

c and Rc

s, Rc

c:

Lemma 4.11. As c —• oo,

ϋ)

iii)

sup

sup

Lip(R

sup (e**

x + 6

C

c-Rc) = i

\t _ eMst ||

ot\\eMst(R

Θ(l/c) .

|| X || / V c 1 / 2

So, setting Λ ? = Ml A? = M89 A\ =Mc

c = 0, A\ = MC = OJf = RC

SJ
C

2

S = R89

f\ = RC

CJ
U2 = Rc and using Lemma 4.11, we see that the assumption (A.5) of

Theorem A.2 is fulfilled with δ = c " 1 / 4 and ε = Cc~ 1 / 4 for some C > 0. Thus, it
follows from Eq. (A. 6) that the unstable manifold i^c is continuous in c at c = oo
in the sense that \\hc -h\\o0 = 0(c~ 1 / 4) in ^ P 2 c F s .

These considerations about the behavior of Φc

η near F2 can be repeated in an
analogous way for F3; for brevity, we only point out the main differences, and leave
the details to the reader. For example, we have instead of Eq. (4.9),

X'n = (ocn - 2α1)XΛ - atXt-n + Sn(X), (4.11)

where S: Jf -• ffl has the same properties as Rc in Lemma 4.9. The spectrum
of the linear operator in Eq. (4.11) is contained in the half-plane Re(z] ^ 0, except
for a single positive eigenvalue μ ^ α0 — 2ε2, whose eigenvector X is "nearly
tangent to the 0-direction" (cf. Sect. 4.2) in the sense that Xo = 1, Xx = Θ(ε2)
and Xn = 0 for all n φ θ , 2 . So, defining the subspaces Wu = CX, Wcs = W^,
we can apply Theorem A.I and obtain the existence of a local one-dimensional
unstable manifold Ψ* as the graph of a <^ 1 > 1 map g: 0$P3 c Wu -> PFCS, for some
(sufficiently small) p 3 > 0. The same is true for the full system (c < 00), and the
manifold iVc depends continuously on c in the sense that dist(Ί^c, iΓ) = Θ(c~1/4)
as c -• 00.

Now, let us summarize our results. The semiflow Φc

η corresponding to (4.5') is
continuous in c at c = 00 (in the sense of Proposition 4.6), and so are the fixed
points F2, F3. Moreover, the circle F2 has an attractive annular neighborhood s#\
of radius p2 independent of c (Lemma 4.10), and at each point of F3 one can attach
a local one-dimensional unstable manifold 1Vc which depends continuously on c at
c = 00. Combining these facts with Proposition 4.5 in the same way as in Sect. 3.4,
we see that there exists a cλ ^ c0 such that, for all c ^ cί and all ε ^ εu the
continuation of the local unstable manifold iΓc intersects the attractive neighbor-
hood s/c of F2. This concludes the proof of Theorem 1.2. D

Appendix A. The Center-Stable Manifold Theorem

In this appendix, we recall (for easy reference) some results of center manifold
theory in infinite-dimensional Banach spaces. Proofs of these statements can be
found in the companion paper by one of us [G]. They are an extension of results of
[EW], Appendix A.
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Let (<ΓS, || | | c s), (δu, || ||M) be two Banach spaces, and denote by δ the direct sum
δcs@δu equipped with the norm || z || = max( || zcs | |cs, || z

u | | J , for z = (zcs, zu) e δ.
We consider the differential equation in δ9

dzcs

at

and make the following hypotheses:

HI) The linear operators Acs: Scs -> δcs and - Au: δu -* Su define strongly
continuous semigroups eACS\ e~AH for t ^ 0. Moreover, there exist real con-
stants λc\ λu, D such that λu ^ 0, λu > max (A*, 2λs), and

for all t ^ 0.

H2) fcs: δ -> i c s and fu\£ -+ £u are if1'1 functions vanishing at the origin
together with their first derivatives.

H3) The norm || | |cs is a <g1Λ function on δm

cs.

Under these hypotheses, the center-stable manifold theorem asserts the exist-
ence, in a small neighborhood of the fixed point 0, of a Ή1* * manifold Γ which is
tangent to the subspace Scs at the origin, is left invariant by Eq. (A.I) and contains
all the trajectories which stay near 0 for all t e R +. We shall give here an explicit
formulation of this theorem, because in our applications to the system (2.3), we
need to know exactly how the manifold depends on the parameters ε and c.

In order to do that, we introduce some more notations. For all r > 0, we denote
by 38c

r

s

9 38u

r9 08r the balls of radius r around the origin in <ίcs, Su, $ respectively, and
we set

r°{r) = sup || Dfcs(z) ||, r{r) = sup || Dfu(z) \\ ,

where Dfcs, Dfu are the derivatives of/cs, /". In view of H2, Λs(r), £\r) -> 0 as
r -> 0. Next, for all σ e [0, 1], β e {λc\ λu\ we define the function spaces

Hσ = {h: Scs - Su I Λ(0) = 0; || h(ξ) - h(ξ) \\u^σ\\ξ- ξ\\cs Mξ9 ξe Scs} ,

JtTβ = {Φ: R + x i c s -> i c s I Φ?(ξ) = ξVξe £cs\
Φt(0) = OVί e j^ + ; Φ is continuous in t;

Finally, defining β = max(β, 2β), we know from HI that there exists a β e (λcs, λ")
such that βe (λcs, λ"). For such a β, we set

With these notations, we have the following result:
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Theorem A.I. [G] . Assume that the hypotheses HI, H2, H3, are fulfilled, and choose
r so small that, in Eq. (A.2),

σ < ^ - (A.3)

Then there exist a map he Hσ and a semiflow Φ e Jfβ with the following properties:

i) h is of class <βXΛ, Dh(0) = 0, and h maps @(ACS) (the domain of Acs) into
(the domain of Au).

ii) For all ξ e 0 ? n @(ACS), the curve z(t) = (Φt(ξ), h(Φt(ξ))\ teR + ,isa solution
of Eq. (A.I) as long as it remains in έ$r.

iii) If z(t) is any solution of Eq. (A.I) such that z(t)eMr for all £ e R + , then
z(t) = (Φt(ξ), h(Φt(ξ)))for some ξ e Λ «

Thus, denoting by Γr the restriction of the graph of h to Mr, we see that Eq. (A.I)
defines a local semiflow on Γr (in the sense of ii). We shall always refer to Γr as the
(local) center-stable manifold, although in the case λcs < 0 one rather speaks of
a stable manifold.

Remarks.
1) In the proof of Theorem A.I, one has to "cut off" the non-linear terms/",/"

outside the ball Λf. Since (by H3) the norm || ||cs is if1*: on Scs, this is simply
done by writing f(zcs, zu)χ( \\ zcs \\Jr), where χ:R+ -^ [0,1] is some «'1 1

function equal to 1 on [0, 1], vanishing on [2, oo), and satisfying | χf(x) | ^ 2 for
all x G R+. This is how the expressions 5Λs(2r), 5/"(2r) arise in Eq. (A.2). For
more details, see [G], Sect. 3.2.

2) Except for the assertion Dh(0) = 0, Theorem A.I remains true if Dfc\ Dfu are
not assumed to vanish at origin, provided that Eq. (A. 3) can be satisfied for
r sufficiently small.

3) As a consequence of iii), all fixed points of the system (A.I) in J*r must lie on the
center-stable manifold Γr.

4) If the non-linear t e r m / = (fcs,fu) commutes with a linear isometry of $, then
h can be chosen to commute with the same isometry.

5) Theorem A.I also makes sense if Scs = $ and Su = {0}. In this case, it only
asserts that the solutions of the system

dzcs

= Acszcs+fcs(zcs),
dt

define a local semiflow ΦG Jfβ in the ball &γ around the origin. Setting
χu = + oo, Su(2r) = 0, the condition (A.2), (A.3) reduces to

which is always satisfied if β > λcs is sufficiently large.

It is well-known that the center-stable manifold, although generally not unique,
can be chosen to depend continuously (for suitable topologies) on the operators
Acs, Au and the functions/",/" in Eq. (A.I). We shall give here a formulation of this
result which is sufficient for our applications in Sect. 3 and Sect. 4. Suppose that we
are given two pairs of linear operators Acf, A\ and A™, A\ satisfying HI with the
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same constants λc\ λu, D. Assume also that we have two couples of functions/",/"
and ff, f2 verifying H2, and that the condition (A.3) is fulfilled for both systems
1 and 2. Denoting thus by hu h2 and Φί9 Φ2 the maps and semiflows whose
existence is asserted by Theorem A.I, we have the following result:

Theorem A.2. Assume that there exist an ε > 0 and a δ ^ 0 such that

sup(e-λcst || eA^ - eA^ \\cs) ^ Dε ,

sup (eλut || e~A^ - e~A^ \\u) ^ Dε ,

sup sup

(A.5)

Z φ θ

Then hu h2 and Φ 1 ? Φ2 can be chosen so that

1 - 2σ

sup sup (e-***1'*®*^™-) SΓ^Γ(Ds + W - n) . (A.6)
ί^ δ ξΦ o IK li / 1 2σ

For a proof in the case δ = 0, see [G], Sect. 2.3. The general case is easily
proved along the same lines.

Appendix B. Some Proofs (Unstable-Unstable case)

Proof of Lemma 3.7. We first write the vector field Λχ(x) in the form

_ Λ o ( x W - 1

2 \ λ λε c-2ιj c-2ι \λ0+- λ0- c-2ι

\ ε c + 2ιj c + 2ι \ λ 1 + j

where A: @2R a jtf0 -> tf is defined by zl(x) = F(x + /(*)) - F(x). Next, we use
the identity

F(A + B) = F(A) + G{A, B) + G(J5, A) + F(B\ A, B e 3>? , (B.I)

where G: j f x Jf -• jf is the Frechet derivative of F:

Gn(A, B)= Σ (ApAsBtr + 2ApBsAtr) . ( B 2 )

p+s+r=n
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As is easily seen,
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(B.3)

with K as in (2.5). Now, using (B.I) with A = x and B = l(x), we can write
A(x) = G(x, /(*)) + G(l(x), x) + F(l(x)). Using (B.3) and recalling that
Lip(/) ^ /ε/εc, we thus obtain

Lip(J) ^ Lip(G( , /(•))) + Lip(G(J( ), •)) + Lip(F(/( )))

^ Cε/εc + C{ε/εc)
2 + C(ε/εc)

3 ^ 3Cε/εc,

in 31 2R > f° r some C > 0. In the same way, it follows from (2.5) that
Lip(F( + /(•))) ύ 1K(2R)2{\ + O 2 in @2R. Finally, in view of (3.1), (3.4), we have

- 1
+ •

1

λ Q + — λ Q - c — 2ί (c + 2)2c-2i ~\c + 2j'

and similarly for λ1 + ,λ1-. Combining these estimates, we easily find

Lψ(Aχ) ^ K4(ε/εc)/(c + 2)

in ^ 2 R , for some K4 > 0. D

Proof of Lemma 3.9. Using the definitions of δχ and zlχ, we easily obtain the
identity

δχ(z) - δχ(z) = Aχ(xε + z) - Aχ(xε + z) z, z) ,

where zlε(z, z) = (χ°(xε + z) - χ°(x° + z)) - (χ°(xε + z) - χ°(x° + z)). Since xε e ^ Λ

c J^o, it follows from Lemma 3.7 that

z) - z) || ^ j \\ z - z\

for all z, z e J*R; so, it remains to bound the function Aε(z, z). First, if Dχ° denotes
the derivative of χ°9 it is easy to see that Lip(Dχ°) ^ C1/(c + 2) in &2R

 C ^ O » f° r

some Ci > 0. Next, since λ0 + and «J2 — ε are smooth functions of ε, the curve
ε -• xε is ( ^ 1 and || (dxε/dε) \\ ^ C2 for some C 2 > 0. So, Aε(z9 z) is differentiable in
ε and

dAε(z, z)

δε

Since ^ 0 ( z

? z) = 0, we find

\Aε(z,z)\\ ^ εsup
dAe(z,z)

dε c + 2

dxε

—

z-n <•

c + 2
|z-z|| C,

0CιC2 ε

c + 2 ε(

- z-z

This concludes the proof of Lemma 3.9, with K6 = K4 + K0C1C2. D
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Appendix C. Some Proofs (Stable-Unstable Case)

Proof of Lemma 4.2. To simplify the notation, we set A^ = a and A± = X. Inserting
A = a + X in (4.6), we obtain for | n | ^ 2:

X'n = - Fn(a) + oinXn - Gn(a,X) - Gn(X9 a) - Fn{X), (C.1)

where G is the derivative of F (cf. (B.I), (B.2)). We want to obtain an upper bound

on the quantity - — || X \\2 = Re(X, X'). First of all, using the definition (1.7), we
2dη

find F2(a) = a\a% + 2aίaoat1, ^3( β ) = ^ i ^ - i ? ^ ( β ) = 0 for all n > 3, and sym-
metric expressions hold for n < 0. If a e D ε , we thus have

I R e ^ F ^ I ^ U Λ Ί I d ε 2 , (C.2)

for some Cx > 0. Let us now consider the linear terms in (C.I). Since
α« ύ y<2 g - 3 + 4ε2 < 0 for all |n\ ^ 2, we have Re(Z, aX) ^
|| X II2( - 3 + Θ(ε2)). On the other ^ hand, a direct calculation yields
Gn(a9 X) = 2Xn\a0\

2 + Gn(a, X), where Gn(a9 X) is some complicated expression
satisfying || G(α, X)\\ ^ | |X || ( |a 0 1 2 + Θ(ε)) if α e Z)ε. As a consequence,
Re(Z, -G(a9X))^ | | Z | | 2 ^ ( ε ) . Combining these estimates, we obtain for the
linear terms

Re(X, ocX - G(a9 X)) ^ || X \\ 2 ( - 3 + 0(ε)) . (C.3)

Finally, we just bound the two remaining terms in (C.I) by using (2.5), (B.3); we find

|Re(X,G(X,α))| ^ | | X | | 3 C 2 , |Re(X,F(X))| ^ | | X | | 4 X 2 , (C.4)

for some C2 > 0. Now, we summarize (C.2)-(C4)

^ | | X | | 2 ^ | | X | | C 1 ε 2 + | | X | | 2 ( - 3 + ^ ( ε ) ) + | | X | | 3 C 2 + | | X | | 4 X 2 , (C.5)

and choose a K2 > 0 such that 3K2 > Cγ. Then, assuming that ε is sufficiently
small, it is easy to verify that the right-hand side of (C.5) is negative if
\\X\\=K2ε

2. D

Proof of L e m m a 4.3. L e t A = a + X w i t h \\X\\ ^ K 2 ε 2 , a e D ε , \ a ί \ = 2ε. I n s e r t i n g
in (4.6), we obtain for n = 1:

a\ = α l f l l - FM - Gx(α, X) - GX(X, α) - F t ( X ) . (C.6)

Again, we want an upper bound on - — \aί \2 = Re(α*a\). First of all, F^a) =
2 dη

* 1 , and since Re( - | α i | 2 | α 0 | 2 + aUU*-1)
^ 0, we have

Λ 2 - a t F M ) ύ l^l2^ - \a,\2 - \ao\
2) . (C.7)

On the other hand, a direct calculation yields G1(a, X) = a2-ιXt3 + 2α o f l - i I- 2

+ 2a0afX2 + 2αgα_1X2 + 2afa-ίX3, so that

^(ε 2)), (C.8)
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for some C3 > 0. Finally, the two remaining terms in (C.6) are simply bounded by

2 laΛWXfK2. (C.9)

Now, recalling that a1 =ε2,\a1\= 2ε, \\X\\ S K2ε
2, we can summarize (C.7)-(G9)

as follows:

~ \a,\2 ^ 4ε 2( - 3ε2 - | α o | 2 ) + 2 C 3 K 2 | α 0 | ε 4 + Θ(ε5) . (CIO)

The maximum over \ao\ of the right-hand side (reached for | α01 = iC3K2ε
2) is of

the form — 12ε4 + 0(ε 5 ) , and thus is negative if ε is sufficiently small. D

Proof of Lemma 4.4. As before, let A = a + X with a e Dε and || X || ^ K2ε
2.

Inserting in (4.6), we obtain for n = 0:

α'o = α o α o - F0(a) - G0(α, X) - G0(X, a) - F0(X) . (C.ll)

We now want to find a lower bound on the quantity - — | a0 \2 = Re(αgαo) First

2 dη

of all, we have F0(a) = ao(\ao\
2 -\- 2\ax\

2 -\- 2\a-1\
2) + 2aξa1a-ί, and since

I flx I ̂  2ε, I α _ ! I ̂  2ε, we can write

R e ( α o | α o | 2 - atF0(a)) ^ | α o | 2 ( α o - | α o | 2 - 24ε 2). (C.12)

On the other hand, we have G0(a, X) = a\X\ + a2-1Xt2 + 2ai«* χX_ 2

1 X 2 5 and thus

for some C 4 > 0. Finally, we find as above

- R e ( α § G 0 ( Z , α ) ) ^ - \ao\ \\ X | | 2 C 2 , - Re(α§, F 0 ( X ) ) ^ - | α o | I I * II3 K2 .

(C.14)

Recalling that \\X\\ ^ K 2 ε 2 , we thus obtain

~ \ao\
2 ^ | α o | 2 ( α o - | α o | 2 - 24ε 2) - | α o | ( K 2 C 4 ε 4 + ^ ( ε 5 ) ) . (C.15)

Assuming that ε is sufficiently small, it is easy to verify that the right-hand side is

positive and bounded away from zero if ε 3 ^ \ao\ ^ ^ A o ( l — ε). D

Proof of Lemma 4.7. We have to bound the difference ean{c)t — e*nt for sufficiently

large c ^ c0. In view of (4.1), αM(c) = — cλn+ is in fact a function of c and qn, and we

shall deal with the cases \qn\ ^ c 1 / 4 , \qn\ > c1/4 separately. First, if \qn\ ^ c 1 / 4 ,

we always have c ^ 8 ( l + |<?n|) if c is sufficiently large, so that |απ(c) — α n |

^ (5/c)(l + \qn\f g 40/c 1 / 4, by (4.1). Since απ ^ 1 and Reαπ(c) g cX = 1 + 2

for all n, it follows that

- α n | ^ ^Λ ί sup
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for all t ^ 0. Conversely, assume that \qn\> c1/4; then, since Reocn(c) is a decreasing
function of | qn | (as can be seen from Fig. 4), we have the bound

As a consequence, Reα n (c)^ — y/c/2 if c is sufficiently large, and since

αn ^ 1 — λ /c, the same is true for Reαπ. Thus, for all ί ^ c ~ 1 / 4 , we have

\e«n(c)t - e«nt\ S 2e~^ct/2 S 2e~^υ* g 4/c1 / 4. Combining the two cases \qn\ ^ c 1 / 4,

\qn\> c1/4, the assertion follows. D

Proof of Lemma 4.8. Using the definitions of Λ, F c , F9 we easily obtain for all

|| eΛt(Fc(A) - F(A)) \\ £ \\eΛt(F(A + h(A)) - F(A)) \\

+ sup{e*">\vn{c)-l\)\\F(A
neZ

In view of Proposition 4.1, we have || F{A + h(A)) - F(A) \\ <. K^(co/c)2 \\ A || and

|| F(A + h(A)) || S K4(l + i(c o/c) 2) || A \\ for all Ae<%2Ra jf. So, it remains to

bound the difference eant(vn(c) — 1), and this can be done as above, by dealing with

the cases \qn\ S \fc> \<ln\> \fc separately. First, if |qn\ ^ ^/c, we always have

c ^ 8(1 + \qn\) if c is sufficiently large, and thus \vn(c) - 1| g (4/c)(l + \qn\)

^ (8/c)(l + V^) ^ (8/V^X by (4.4). So, ^ | vn(c) - 11 ^ (S/y/c)e** in this case.

Conversely, if \qn\> y/c9 then αn = 1 - ^ ^ 1 - c, so that e"nt g ^A ίβ~ c ί ^

e λ ί e " ^ ^ e λ t /v^ for all ί ^ 1/^/c; on the other hand, \vn(c) - 1| ^ 1 + Θ(ί)

by (4.3). So, combining the results for \qn\ S y/c and \qn\> ΛJC, we obtain

sup sup

ί^c-1/2 neZ ^ /

for some C > 0. Combining this with (C.16), the assertion follows. D

Proof of Lemma 4.9. By definition of Ac and by construction of the center-unstable

manifold, we have Ac + h(Ac) = C e jf, where Cn = ^/α^A 0 Thus, if ^ = i c + X,
then ,4 + Λμ) = C + X + Δh{X\ where zl/z(X) = h(Ac + X) - h(Ac). As a con-
sequence, it follows from (B.I) that F(A + h(A)) = F(C) + G{C, X) + RC{X\
where ΛC(X) = F(X + zl/z(X)) + G(Z + Δh{X\ C) + G(C, Ah(X)). On the other
hand, using the definitions of F and G, we find ^ ( C ) = oco/2δn>0,
Gn(C9X) = 2a0Xn + a0X*-n. So, inserting A = Ac + X in (4.5) and noting that

( ) ^ o = oco/2

? we obtain the following equation for X:
X'n = an{c)Xn - vn(c)(2a0Xn + *0X*n + Rc

n(X)), n e Z . (C.17)
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Obviously, the linear operator in (C.I7) is block diagonal Choosing Xn, Xtn as
(complex) variables, the nth block (n φ 0) is given by the 2 x 2 matrix:

- vn(φ0

- v i M ( φ 0 α* n (c)-2v* π (c)α 0 ,

If n = 0, we use the identity

oc0(c)X0 - vo(c)(2αoXo •

-X*0)-v0{c)λ2

0 + X0

and include the quantity RC(X) in the non-linear term. Thus, choosing ReX0,
Im Xo as (real) variables, the 0 th block is given by

So, defining Rc

n(X) = - vn(c)Rc

n(X) + δn>0R
c(Xl we can rewrite (C.17) in the

form

Ren(X) \

(C.18)

which is nothing but (4.8).
Now, we bound the Lipschitz constant of the non-linear term RC(X) in the ball

J*2p
 c Jf. Since Lip(Ah) ^ ^{co/c)2 by Proposition 4.1, we see from (2.5), (4.3) that

Lip( i c ) S Lip(F( + JΛ( ))) + Lip(G( + JΛ( ), C)) + Lip(G(C, Ah( )))

g Cp 2 + Cp + C(co/c)2 ^ C(2p + (c o /c) 2 ),

for some C > 0, if p ^ 1. On the other hand, it follows from (4.1), (4.3), (4.4) that
|vπ(c)| = Θ(l) and Lip(.Rc) = Θ(\/c) as c -• oo. Thus, combining these results, we
conclude that Lip(i^c) ^ K5(ρ + (co/c)) in ^2p <= ̂  for some iC5 > 0.

To complete the proof of Lemma 4.9, it remains to show that || eM°nt \\ g De~^aot

for all t e R+ and all n e Z*, if c is sufficiently large. Let μc

n ± be the eigenvalues of
the matrix Mc

n; we claim that Re μc

n ± ^ — \α0 for all n, if c is sufficiently large. To
see this, we first study the limiting matrix

ΛΛ r ΛJC focn-2(x0 - α 0Mn = lim Mc

n = (

whose eigenvalues are

j α-« ~ 4 α o ± V4α§ + ( α π - α _ J 2 ) .

Obviously, Re μn ± ^ max(αM, α_π) — α0 ^ αx — α0 = ε2 — α0 for all \n\ > 1. On
the other hand, using (4.1), (4.4) and setting qn = max(| qn \,| q-n |), it is not difficult
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to show that ||MC

M - Mn\\ = Θ(ί/c){l + \qn\)3 if c ^ 8(1 + \qn\). It then follows
from perturbation theory [ K ] , that \μc

n+ - μn + \ S \\Mc

n - Mn ||, if || Mc

n - Mn \\

S α o /2.

Now, assume that \qn\ ^ c1'4. Then \\Mc

n - Mn\\ = Θ{c~11*) ^ α o /4 if c is

sufficiently large, and thus Re(μ£ ± ) ^ R e ( μ n ± ) + \μc

n± — μn± | ^ ε 2 — α 0 + α o /4

^ - α o /2. Conversely, if \qn\ > c 1 / 4 , we know from the proof of Lemma 4.7 that

Re α + n(c) ^ — s/c/2. Since the other matrix elements of Mc

n are ^(1) as c -• oo ,

the same perturbation argument shows that μc

n+ = απ(c) + 0(1) and μc

n- =

α*π(c) + 0(1). In particular, Re μ n ± (c) ^ — α o /2 if c is sufficiently large.

To bound the exponential of Mc

n, we let Sc

n be an invertible 2 x 2 matrix such

that (SMMDiSi)-1 is diagonal. Then \\eM^\\ ^ D ^ - ( α o / 2 ) ί for^all ί e R + , with

Dc

n = || Sc

n || || ( S ^ Γ 1 ||. It is not difficult to see that supnD£ ^ D < oo for some

D > 1, uniformly in c. The reason is that the quantities αn(c), α* w(c) in M^ grow at

least like ^/n as n -» oo , whereas the other matrix elements remain bounded; thus,

Mc

n is nearly diagonal if n is large, and then Sc

n -> 1 as rc -• oo. The details of this

argument are completed by separating the cases \qn\ ^ c 1 / 4 , |^«l > cll4 Π
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