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Abstract. We develop a class of examples in the form of tiling dynamical systems
for use as toy models in statistical mechanics, to analyze the possible existence of
disordered crystals. We give the first such models which are disordered in the sense
of having no discrete spectrum.

1. Introduction

Ten years ago, Ruelle published the paper “Do turbulent crystals exist?” [7], in
which he suggested the existence of real materials which in thermal equilibrium at
low temperature would be quite different microscopically from the usual periodic
crystals; the suggested difference would be demonstrated by a diffraction spectrum
which was absolutely continuous, even at zero temperature.

Ruelle’s argument was based on a comparison of the usual classical statistical
mechanical formalism with a typical dynamical system with R3 action (R repres-
enting spatial translations), but without any detailed consideration of the structural
role played by interacting particles in the former.

The present paper is motivated by the same problem, but with a different
premise. We have chosen to concentrate on the special features which may be due
to the role played by the interacting particles in statistical mechanics, with the aim
to determine the qualitative low temperature features of generic classical statistical
mechanical models with short range interactions. It is well known [7] that no such
model has ever been proven to exhibit an ordered (crystalline) phase; presumably
the reason is the difficulty in analyzing such models. To obtain results we first
restrict attention to zero temperature, and then we distort the models to that of
tiling dynamical systems (defined below), as is sometimes done in analyzing
quasicrystals [8]. (Roughly speaking, in a tiling dynamical system the phase space
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consists of the tilings of Euclidean n-space, E", by copies of some finite set of
shapes called tiles; intuitively, the way in which neighboring pairs of tiles need
to fit together in a tiling replaces the short range interaction of mechanics.) It
has been proven [4] that, generically, statistical mechanical models are
uniquely ergodic with respect to spatial translations at zero temperature, and so
we use this as an assumption in our models. In summary, the problem of
the qualitative behavior of low temperature matter is here translated into:
What is the range of qualitative behavior of uniquely ergodic tiling dynamical
systems; in particular, do there exist such systems with absolutely continuous
spectrum?

We introduce now some definitions. A tiling is a decomposition of E” into
a union of “tiles” where:

(a) there is a fixed finite set 2 of “prototiles”, which are homeomorphic images of
the closed n-ball;

(b) each tile is an isometric copy of some prototile,

(c) the interiors of the tiles do not overlap,

(d) the isometries in (b) are restricted to some fixed subgroup G of the full isometry
group of E™.

We endow the space V() (assumed nonempty) of all tilings by some given set
2 of prototiles with a topology. Intuitively, tilings should be close if they differ only
slightly inside some large bounded region. A finite set of nonoverlapping tiles will
be called a swatch. We define a countable base for the topology on V(£), using
some countable dense subset G’ of the topological subgroup G (usually Z" or R") of
the isometry group of E”, as follows. Given a positive integer k, a set of positive
rationals {r;}%, and a swatch of tiles {g(P}) }} (where g} € G', P} € 2), we define the
open set consisting of all tilings containing a swatch {g;(P;)}} such that h[ g;(P)),
gj(P})] < rjfor all j < k, where h is the Hausdorff metric on compact sets. We note
that the space V(Z2), of tilings from a given prototile set £, is compact and
metrizable, and G acts continuously on V(£) [6].

Now consider any (one-dimensional) subshift (X, T) over a finite alphabet
o/, with lattice translation denoted by 7. We will need to refer on occasion to
the cylinder sets €, ={xe X: xo =a}, ae /. Then, given a positive real-
valued function f on the alphabet .o/, we associate with this subshift (X, T'), which
is a discrete dynamical system, the continuous dynamical system (X, T,)
defined as follows. X, is the subset of all tilings of R by translations of closed
intervals [0, a], where a is in the range of f, and the sequence of intervals I, of
length |I|, is such that any corresponding sequence of letters f~*(|I|) € & is in
X. X, is easily seen to be a closed subset of the space of all tilings by such inter-
vals, and invariant under translations, which are denoted by {T}:t € R}. (We
use below the obvious equivalence of (X, T,) with the classical construct of a
flow under a function.)

We now specialize to the case where (X, T') is the substitution dynamical system
determined by the substitution &:

£0)=0101, ¢&(1)=1110. (1)

We note that (X, T) is uniquely ergodic [3], which easily implies that (X ;, T) is
also uniquely ergodic for any f.
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2. Results

Our first result is the following

Lemma. Let (X, T) be the substitution dynamical system defined by the substitution
& given by (1). If f(0) and f(1) are rationally independent, then the associated
continuous system (X s, T;) has no discrete spectrum.

Proof. Suppose we have an eigenfunction g of the family T'}:
2Hg(x, s) . @

Let u be the function on X defined as the restriction of g to some height s,
0 < so <min{f(0), f(1)} (where (2) holds for all ¢ almost everywhere):

Tig(x,s)=e

u(x) =g(x,s0) x€X.
In view of (2) we have:

o O y(x) | x e b,
u(x) = 2P W y(x) | xed, .

Defining a sequence of functions f,: X > R,,n = 1, by
4" -1
L) =3 f([T*x]o),
k=0

we have:
T* u = e2™Hny

As in the proof of Theorem 1 in [1], this implies that e>*4/» =, 1, or, equivalently,
L2
AM,—— 0 (mod 1) (3)

L2 . . .
(where —— denotes convergence in L? norm). Again as in [1] we can find sets
A, < X whose measures are bounded away from 0 such that

709 =251 0+ 25 ), xea,. @
From (3) and (4) it follows that:
OO SOI0 g 5

In particular, the right-hand side is invariant under multiplication by 4 modulo 1:

(0)—f(1)_/1f(0)—f(1)
3 B 3

Consequently, Af(1) = Af(0) + I for some [ € Z. Again by (5), 3Af(0) + 2l is a
(2-adic) rational, so both Af(0) and Af(1) are rationals. As f(0) and f(1) are
rationally independent, this implies A = 0. This means in turn that u is a 7-
invariant function. As T is ergodic, u is constant almost everywhere. Also, since
A =0 the function g is constant as a function of s for each fixed x. Thus, g is
constant in both variables. O

4/lf (mod 1) .
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We now need to make use of a technique of Mozes [2], who showed how, given
any two substitution dynamical systems (satisfying some mild conditions), one can
construct a (large) set of prototiles in E?2, each of which is a unit square with small
bumps and dents on its edges, all centered at the origin in the plane and with edges
aligned, such that the associated discrete dynamical system (with Z? action) is
uniquely ergodic, and is measure-theoretically isomorphic to the product of
the two given substitution dynamical systems. If the systems are (X, T;) and
(X,, T,), with alphabets «/; and /,, the product is (X; xX,,T), where
T = (T{x T5)Pz—w, T{xT5: (x1,x,) = (T{ x;, Tkx,). The isomorphism is
a simple one-to-one correspondence between the tilings and the elements of
X1 x X,; there is a many-to-one correspondence between the prototiles and pairs
(a,b) € o/ x o ,, and each tiling, which is a two-dimensional array of (essentially)
unit square tiles, is naturally identifiable with the corresponding element of
X X X,. (Just assume that each tile has inscribed on it a pair (a, b) € &7 X o, as
above, so that each tiling is associated in the obvious way with the unique element
of X 1 X X 2 .)

We now modify the above to adapt it to continuous tilings. We begin by using
the substitution dynamical system (X, T') defined by (1) for both factors in the
construction of Mozes. Next we modify the shapes of the “square” prototiles that
the construction produces, by stretching each one associated with the pair (a, b) €
{0,1} x {0, 1} to a “rectangle” with horizontal edges f'(a) and vertical edges f'(b),
where f(0) and f (1) are fixed and rationally independent. The lemma then implies
that the continuous tiling system thus produced is weakly mixing. Let (V' (%), R?) be
this tiling system.

Theorem. (V(2), R?) is a continuous, uniquely ergodic dynamical system which is
weakly mixing; that is, it has no discrete spectrum.

3. Closing Remarks

Note that we describe the disorder of our examples by means of invariant probabil-
ity measures. It is essential for our purposes that there is no choice involved with
these measures; they are uniquely defined by the prototile sets themselves. If one
could choose an invariant measure, there would be no depth to the subject: one
could very easily find a prototile set with associated dynamics which was very wild.
For example, the one-dimensional continuous tiling system, with prototile set
consisting of two intervals of incommensurate lengths, is strongly mixing if one
chooses an appropriate measure; just use the method of the introduction, applying
the flow under a function to the “Bernoulli” shift, namely X = {0, 1}%, equipped
with the product measure ug for which ug(%,) = ps(%;) = 1/2. (Physically, there is
no surprise that a noninteracting particle system was a unique zero temperature
Gibbs state which has absolutely continuous spectrum. The result is uninteresting
because it does not represent a single structure, but a highly degenerate average
over many structures.) On the other hand, it is a major unsolved problem to
determine whether or not there is a uniquely ergodic tiling dynamical system
(discrete or continuous) which has purely absolutely continuous spectrum [5],
which we would call “chaotic”, and which explains the title of this paper. The
method in [5] for producing a weakly mixing discrete tiling system, which uses
a tower over the substitution system (X, T') defined by (1) for each factor in the
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construction of Mozes, cannot produce a strongly mixing (discrete) system since
the factors, being themselves substitution systems, cannot be strongly mixing [1 3]
It is unclear to us whether or not this new method can produce a strongly mixing
(continuous) system.
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