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Abstract. We generalize the resolvent approach of Gelfand and Dikii to the KdV
equation to study the N = 2 supersymmetric KdV equations of Laberge and
Mathieu. For the associated Lax operators, we study the coincidence limits of the
resolvent kernel and its derivatives, and obtain differential equations which they
satisfy. These allow us to obtain recursion relations for the analogues of the
Gelfand-Dikii polynomials and to obtain a proof of Hamiltonian integrability of
the supersymmetric KdV equations. We are also able to write the Lax equations for
the corresponding hierarchies in terms of these polynomials.

1. Introduction

The theory of the Korteweg de Vries (KdV) equation is by now very well under-
stood. It is one of the simplest completely integrable systems available, and plays
a role in many areas of physics and mathematical physics. Recently, the importance
of KdV equation in the context of conformal field theory and 2D quantum gravity
has been recognized [1]. In the matrix model approach to 2D quantum gravity the
Gelfand-Dikii polynomials and the recursion relations they obey play a parti-
cularly important role.

Supersymmetric generalizations of the KdV equation have also been of interest
recently [2, 3], One might expect that they will be relevant to the study of
superconformal field theory and 2D supergravity. In a recent paper [5], the
Gelfand-Dikii polynomials and their recursion relations for the N = 1 supersym-
metric KdV equation have been worked out. In this paper, we consider the
extension of this analysis to JV = 2 supersymmetric KdV equations.

We will first briefly review the situation of the ordinary KdV equation. Our
treatment follows that of Gelfand and Dikii [6] and is centred around the resolvent
for the Lax operator. The resolvent is an important object because the KdV
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equation is intimately related to the isospectral deformation of the Lax operator.
The Lax operator in question is given by

L = d2-u, (1)

where u = u(x) and d = — and the resolvent (of — L) is given by
ox

R = ( — L + ζ) ~λ. The resolvent kernel, given by R(x, x'\ ζ) = Rδ(x — x'\ is inter-
esting in the coincidence limit x' -+x and admits an asymptotic expansion

R(x ζ)^ lim R(χ, x'; ζ) = E ^ M Γ " ^ 2 (2)
x' -> x n

The Gelfand-Dikii polynomials R Π [ M ] are differential polynomials of M (i.e. poly-
nomials of u and its derivatives) and are important for the following reason: Let
L"~1 / 2 be a fractional power of the Lax operator (which is a pseudodifferential
operator). Then its residue (or coefficient of d ~ι) is given by

resL"" 1 / 2 = 2jRn. (3)

The Lax equation

[ L , L « +

+ 1 / 2 ] = ^ - L (4)

is then equivalent to the non-linear pde — = 4dRn + 1. In particular, for n = 1 with
utn

t = tι we have the KdV equation

^ . (5)

The kernel i^(x; ζ) obeys the important partial differential equation

- d3R + 4(u + C)3JR + 2(5w)K = 0 . (6)

From this equation, one obtains the recursion relation

dRn + ι = l-92Rn (7)

for the Gelfand-Dikii polynomials, with the operator ^ 2 being defined as
Q)2 = d3 — Aud — 2{du\ This operator is a Hamiltonian operator (see, for example,
[9]), in that from it one can define a Poisson bracket

(x'KPB = @2δ(x-xf). (8)

This Poisson structure is commonly known as the second Hamiltonian structure of
the KdV equation (the KdV equation is biHamiltonian [7] and the first is defined
through the Hamiltonian operator d) and is in fact the classical version of the
Virasoro algebra [8]. With the recursion relation (7) and the functional relation

one can put the Lax equation (4) into Hamiltonian form:

dtn δu
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with the Hamiltonian functionals Hn = J Rn +1 dx. The Hamiltonians Hn are

in involution with respect to the Poisson bracket (8) and furnish an infinite number
of conserved quantities for the KdV equation, thus indicating complete Hamil-
tonian integrability.

In the rest of the paper, we will pursue the analogues of the above for N = 2
supersymmetric KdV equations. According to Laberge and Mathieu [3], there are
two integrable N = 2 supersymmetric analogues of the KdV equation, related to
the Lax operators

L ( 4 ) = d2 - 2ΦD1D2 + {D2Φ)Dί - (D^)D2 - (DιD2Φ) - Φ2 , (11)

L ( _ 2 ) = d2 + 2ΦD1D2 - (D2Φ)D1 + (D^)D2 . (12)

Here we work in (1|2) superspace with coordinates X = (x, θu θ2). Φ is an even

superfield and the superderivatives Df are defined as Dt = — -f θf —-. The equa-
te/; ox

tions are given by

^ = i g j _ d2Φ + 3ΦD1D2Φ + ^ (α - 1)DXD2Φ
2 + aΦ3 j , (13)

with a = 4 and a — — 2, respectively. They were obtained by starting with a gen-
eral N = 2 supersymmetric L, and determining the coefficients to make the Lax

equation [L, L+ / 2] = — consistent. They have in common the property that they
ot

can be put into Hamiltonian form, with the "second" Hamiltonian structure being
determined by the operator

^ 2 = dD1D2 + 2Φ<9 - (D1Φ)D1 - (D2Φ)D2 + 2{dΦ) . (14)

The Poisson bracket

IΦ(X)9 Φ ( X ' ) ] P B = @iδ(X, X') , (15)

where δ(X, X') is the N = 2 supersymmetric delta function, is the classical version
of the N = 2 superconformal algebra.

Our key result will be to obtain an analogue of the differential equation (6)
satisfied by the analogues of the coincidence limit of the resolvent kernel (2). We
will prove this result using heat kernel techniques. From these differential equa-
tions follow recursion relations for the analogues of the Gelfand-Dikii poly-
nomials. We also obtain functional relations which allow us to prove Hamiltonian
integrability of the N = 2 super KdV equations. We were led to the crucial
differential equations by noting relations amongst the first few Gelfand-Dikii
polynomials, which were analogous to the N = 0 [6] and N = 1 cases [5]. After we
completed our work, we became aware of the paper by Oevel and Popowicz [4]
who also obtained these recursion relations. They noted that the N = 2 super KdV
equations are bi-Hamiltonian (with the meaning of Hamiltonian structure suitably
generalized) and constructed the recursion relations from the Hamiltonian struc-
tures, which they obtained by a Dirac reduction of the Gelfand-Dikii brackets
defined on suitably extended Lax operators. We also describe the relation of the
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Gelfand-Dikii polynomials to the formulation of the super Kd V equations in terms
of Lax pairs.

2. Resolvent Expansion for the Lax operator

Assuming only that the Lax operator has the form L = d2 + . . . , we have,
following Gelfand and Dikii [6], the following expansion for the resolvent of — L:

(-L + ζ ) " 1 ^ Σ Σ BΪfίΦwMd'i-di + ζ)-1-^. (16)
a,beZ i,j = O

a + b even

The coefficients #!''& } [ Φ ] are to be determined, and will be found to be non-zero
only for a + b §: 0. Recursion relations for B^i]\_Φ~\ will be given later on. The
expansion is to be thought of as a formal one; the issue of convergence is not
important as only algebraic properties are relevant to its connection with integr-
able systems.

Associated with the expansion (16) for the resolvent is a corresponding asymp-
totic expansion for the resolvent kernel R(X,X';ζ), satisfying (— L + ζ)R(X, X'\
ζ) = δ(X9 X'). The relevant asymptotic expansion is

R(X9X';ζ) = Σ Σ BΪ?lΦlD[D{daR0(X9X';ζ)1+a-¥9 (17)
a,beZ i,j = 0

a + b even

where R0(X, X\ ζ) satisfies the equation ( - d2 + O # o ( ^ ? X'\ ζ) = δ(X, Xf).
Using the integral representation

δ(X,X')= f — e * < * - * ' - M ί - M i ) ^ - Θ ' J ^ - 0 ' 2 ) (18)
- o o ^

for the N = 2 supersymmetric delta function, we can explicitly evaluate
R0(X, X'\ C). A closely related object to R(X9 X'\ ζ) is the heat kernel K(X9 X

f; ξ)
defined by the heat equation

•^K{X9X';ξ) = LK(X9X';ξ) (19)

with the boundary condition limx>->xK(X, X'\ ξ) = δ(X, X'). The two are related
by the Laplace transformation

R{X9 X'; 0 = ί dξe-*K(X9 X'; ξ) . (20)
o

The relation of the generalized Gelfand-Dikii polynomials to the formulation of
the super KdV equations in terms of Lax pairs is most natural in terms of the
resolvent, but we find it more convenient to use the heat kernel in proving results.

Of special interest is the "diagonal" or the coincidence limit of the resolvent,

)= lim R(X9X';ξ). (21)
X'-+X
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In the limit X' -> X, only DίD2d
nR0(Xi X'\ ζ)m for even n survives. We eventually

find that

R(X;ζ) = l- Σ Bi

2

ί

mXlΦ^(nJ)ζ-n^. (22)
Z m,neZ \ m "+" Ά /

T h e G e l f a n d - D i k i i p o l y n o m i a l s R n { _ Φ \ d e f i n e d b y R { X ; ζ) = Σ n e Z R n ^
a r e t h e n g i v e n b y

Following the work of McArthur [5] on the N = 1 super KdV equation, we are
also interested in the following objects related to R(X; ζ):

R^iX Qz* lim DxR(X9X
f;ζ)9 (24)

X'-+X

RV'ViX ζ)^ lim D2R{X9X';ζ), (25)
X'-+X

R(1Λ)(X;ζ)= lim D1D2R(X, X'\ ζ\ etc. (26)
X' +X

Using the same arguments which led to Eq. (23), the corresponding generalized

Gelfand-Dikii polynomials defined by R{ίJ)(X; ζ) = Σn

R«J)^φ^"n~^ a r e o b "
tained explicitly as

Σ ^ a c Φ ] " a . (27)

,(o,o) ' * ' - 4

i +

3. Resolvent Analysis for the Equation Associated to L(_2)

In this section, we have L = L ( _ 2 ) for the Lax operator, and the relevant N = 2
super KdV equation is

dΦ 1

Έ = -d{-d2Φ-3(D1Φ)(D2Φ)-2Φ3}. (28)

It is easy to develop recursion relations for the coefficients B^β in the expansion
(16) of the resolvent of — L. These recursion relations are obtained by multiplying
Eq. (16) by (— L + ζ) on both sides. Although cumbersome they are sufficient for
our purposes. Later on, we will see that more elegant recursion relations for the
generalized Gelfand-Dikii polynomials are possible.
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The recursion relations for B(^b

] are given by

^ ?* ™b + 1 + V2ΦD2 + ( ™

iΆ+i-2ΦBiΆ+2, (29)

- [2ΦZ)2 + {D2Φ)']Bial\\b+ι

S^-IΦBΆ^, (30)

(l,0) , ΛΛR(1,0) Γ9^Π

H 2 o B l t b + 1 - 12ΦD2

2ΦB(

a°:\\b+1 , (31)

[2ΦD2 + (D

i? 0 ) (32)

with the starting conditions B^b

] = 0 for all a < 0 or b < — 2, for all ij9 and
JB(

0°'0

0) = i9 ^ ^ ' ^ = Ofor i = 1 or; = 1. Using these recursion relations it is straight-
forward but fairly tedious to obtain the first few generalized Gelfand-Dikii poly-
nomials:

κ 0 = υ, κ0 = - ,

lφ,

n ( l , O )

2

(0,1)
2

1
= Ϊ6

1
= Ϊ6

1

16

6(DίΦ)Φ2} ,

3(D2Φ)(D1D2Φ) + 6(Z)2Φ)Φ2} ,

2Φ32Φ + 3Φ4 + 6Φ(D1Φ)(D2Φ) + (D2Φ)(dD2Φ)

6Φ 5 + ίOΦ2δ2Φ + 10Φ(δΦ)2 + 30Φ2(D1Φ)(D2Φ)

- 10(D 1 Φ)(D 2 Φ)(ί) 1 ί) 2 Φ)

+ 5(D 1 Φ)(a 2 D 2 Φ)} . (33)

Alternatively, these can be obtained by evaluating the coincidence limits of the heat
kernel. Representing the heat kernel in the form K(X, X\ ξ) = eξLδ(X, X'\ using
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the representation (18) for the delta function and moving the exponential factor in
the delta function to the left through eξL, the B^ί a r e related to the coefficients of

the expansion of the resulting exponential in the powers -, r̂ — ξϊ(ίk)aD\Dj

2.

2
Relationships amongst the generalized Gelfand-Dikii polynomials can already

be discerned. In fact we have the following theorem:

Theorem 1. The coincidence limits of the resolvent kernel R(X', ζ) and its derivatives
R(iJ)(X; () defined in Eqs. (21) and (24)-(26) satisfy the following differential equa-
tions1:

DίR-2Ra0) = 0 ,

2dR(U1) - 2ΦδR - {D^D^R - (D2Φ)D2R = 0 , (34)

4ζdR - @2(2R{1Λ) - D1D2R) = 0 ,

and the following relation:

where Θ2 is the Hamiltonian operator (14).

(These differential equations are the analogues of Eqs. (6) and (9) respectively for
the ordinary KdV equation). The proof of the theorem is based on heat kernel
manipulations similar to those in [5] and is provided in the appendix. The
following recursion relations result from the previous theorem:

[1Λ) l + (D2Φ)D2)Rn , (35)

2 Λ I 1 ) . (36)

(zκn - Dίυ2κn). (of)

We also obtain the functional relation

&R«+i _(2n + 1
——— = — - —

The super KdV equation (28) is

and is the first equation of the super KdV hierarchy (see Sect. 5)

dΦ
=-2dRH+1. (38)

otn

is defined by δ J dX R(X; Q = J dX δΦ(X) ^ f f
oΦ(X)
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Using (37) and the Poisson bracket (8) these equations can be put into the
Hamiltonian form

dΦ

(39)

where Hn is given by

We have in fact the following theorem on the Hamiltonian integrability of the
N = 2 super KdV equation:

Theorem 2. The Hamiltonian functionals (40) are in involution with respect to the
Poisson bracket [ , ]PB ? and form an infinite number of conserved quantities for the
N = 2 super KdV equation (28).

To prove the theorem we note that

μ - DιD2Rn)dRm+ί . (41)

We also have

l ^ l (42)
using the anti-symmetry of the Poisson bracket. It is then easy to show, using the
recursion relations (35) and (36), that the difference between the integrands of (41)
and (42) is a total derivative, and hence (41) and (42) are equal. Iterating, we find

[Hn, H m ] P B = [Hn-U # m + 1 ] P B = * ' = [HQ, # m + M]pB = 0 . (43)

4. Resolvent Analysis for the Equation Associated to L^

In this section we have L = L ( 4 ) = — (D1D2 + Φ) 2, and the corresponding N = 2
super KdV equation is

ψ = ^d{- d2Φ + 6ΦD1D2Φ + 3{D1Φ)(D2Φ) + 4Φ3} . (44)

Recursion relations for the coefficients B^lί m the asymptotic expansion for the
resolvent can be developed as in the previous section. Using these recursion
relations it is easy to obtain the first few (generalised) Gelfand-Dikii polynomials.
They are given by

R2 = - {- d2Φ + 4Φ 3 + 6ΦDίD2Φ + 3(D1Φ){D2Φ)} ,
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R2

U0) = -L {_ d2D^+ 12Φ2D1Φ + 3(D1Φ)Z)12)2Φ
16

+ 6Φd£ 2Φ + 6(dΦ)Z)2Φ} ,

K (

2

0 1 ) = i - {_ 3 2 D 2 Φ + \2Φ2D2Φ + 3(D 2 Φ)D 1 D 2 Φ
16

K (

2

1 1 } = - 1 {_ d2DίD2Φ - 6Φd2Φ + 3(D!D 2 Φ) 2 - 3(δΦ)2 -
16

- 2(D2Φ)dD2Φ + 12Φ2DίD2Φ + 18Φ(Z)1Φ)(Z)2Φ)} . (45)

We have the following analogue of Theorem (1) for the present Lax operator L:

Theorem 3. The coincidence limits of the resolvent kernel and its derivatives satisfy
the following differential equations:

D2R-2R{01) = 0,
(46)

' 1 ) - dDxD2R + (D1Φ)DίR + {D2Φ)D2R = 0 ,

and the following relations:

where Θ2 is the Hamiltonίan operator (14).

The proof is analogous to that of Theorem (1) and is also provided in the appendix.
The following recursion relations for the Gelfand-Dikii polynomials follow from
Theorem (3):

' i ; + ΦKn) = ^ 2 Λ n , (47)

= - 22(
Rin' 1 } + Φ j Rn) > (48)

as well as the functional relations:

^ ± i = _ ( 2 n + l ) ^ 1 ' 1 } + ΦRn), (49)
oΦ

(50)

The analogue of Eq. (38) is

?)Φ
(51)
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and can be put into Hamiltonian form

^ = [ W n ] p B , (52)

dtn

where Hn for n = 1, 2, . . . are given by

J ϊ i (53)

In fact, for the N = 2 super KdV equation (44) there are twice as many symmetries
and conservation laws as for the equation in the previous section [3]. Defining

one can show, as in the proof of Theorem (2), that

[#n> #m]pB = [#n-l> #m+l]pB (55)

[ t f n ,H m _i] P B = [ # „ _ ! , tfm+i]PB (56)

[ H _ έ , ί ί m _ i ] p B = [i/M_3,/ίm + i ] P B , (57)

which on iteration establishes the following result:

Theorem 4. The Hamiltonian functionals (53) and (54) are in involution with respect
to the Poisson bracket [,]PB? and form an infinite number of conserved quantities for
the N = 2 super KdV equation (44).

It also follows from (55)—(57) that the flows defined by the equations

~ = [Φ, H n _ i ] P B = 2d{R[1Λ) + ΦRn) (58)

are integrable and commute with those of (51). Together they can be regarded as
forming the N = 2 super KdV hierarchy associated to L ( 4 ) , which thus contains
twice as many equations as the one associated to L (_2)

5. Relation to Lax Pairs

In this section, we relate the Gelfand-Dikii polynomials to the formulation of the

super KdV hierarchy in the form of Lax equations — L = [L, L+ + 1 / 2 ] The

particular form of the expansion (16) chosen allows easy determination of frac-
tional powers of L. In particular, for n e Z+ we have

n —
Ln~ll2 =

a,beZ
a + b even

(59)
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Equation (59) is obtained by multiplying Eq. (16) by ζ"1'1'2 and integrating with
respect to ζ over a contour enclosing the entire spectrum of — L and — d2. It was
in this context that fractional powers of operators first entered the theory of
integrable systems [6]. Note that fractional powers need not be unique; recall that
L ( 4 ) has the alternative "square root" of ί(DίD2 + Φ). However, Eq. (59) picks out
the square root of the form d 4- . . . , analogous to the ordinary (non-super) case.

The generalized Gelfand-Dikii polynomials are related to the fractional powers

of L in the following way: Let B = Ln 2 = β+ + B- be the split into differential
operator and "integral operator" parts. Let the first few terms in B _ be

B- = b^d-1 + b2D2δ-1 + b3D1D2d~1 + M " 1 + ' ' ' (60)

Then from Eqs. (59), (23) and (27) we have

b2 = 2(D1Rn-Ri

n

1>0)),

b3 = 2Rn,

b4 = 2(R[U1) + D1D2Rn - D 1 ^ Γ 1 ) + D2R?'0)) . (61)

Note that b 3 is the N = 2 super residue [3] of B. The relation between the super

residue and Rn straightforwardly generalizes Eq. (3) for the ordinary KdV equation.
Since [L, 5 + ] is a differential operator and [L, B+ + B-~] = 0 , [L, 5 + ] is

determined by the first few terms of B-. The following lemma is readily established:

Lemma 1. Let B = Ln 2 and let its integral operator part be given by
B_ = b1D1d~i + b2D2d~ί + b3D1D2d~1 + ί^d" 1 + . Then the Lax equa-
tion [L, B + ] = — is consistent if and only if the following systems of equations are

dt
consistent:

For L = L(_2),

dφ

db

z - 2b2) = - 2Φ(2bx + D2b3),

δb± + ΦD2b1 - ΦD1b2 + (D2Φ)b1 - (D^)b2 = 0 .

For L ( 4 ) ,

2δb4 + dD1bι + dD2b2 + {D^D^ + (D2Φ)D2b3 = 0 .
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Letting B = L"~ 1 / 2, with the identifications of the coefficients bt with the general-
ized Gelfand-Dikii polynomials as in Eq. (61), and using the relations of Theorems
(1) and (3), one readily verifies the following result:

Theorem 5. The Lax equation [L, L + + 1 / 2 ] = —- L, for n = 1, 2, . . . , is equivalent
otn

dΦ _
to the equation — = + 2dRn + l9 where Rn is the Gelfand-Dikii polynomial asso-

dtn

dated to the Lax operator L and the signs + apply to L = L ( _ 2 ) and L = L ( 4 )

respectively.

For L(_2), the above Lax equations constitute the equations of the hierarchy
corresponding to the N = 2 super KdV equation. For L ( 4 ), there is more.

Since — L ( 4 ) is a perfect square, we can in fact use its square root
A = DXD2 + Φ as the Lax operator and thus obtain a "minimal" description of the
corresponding Lax hierarchy. Analogous to Lemma (1) is:

Lemma 2. Let C be a power of A and let its integral operator part be given by
C- = CiDid'1 + c2D2d'1 + c3D1D2d~1 + . Then the Lax equation

[A, C + ] = — is consistent if and only if the following system of equations is
dt

consistent:

— = dc3, D1c3 = 2c2, D 2 c 3 = - 2 c 1 . (62)

Equivalent to Theorem (5) for L ( 4 ) is the following:

Theorem 6. The Lax equation [A, Lf4")i / 2] = — A for n = 1, 2, . . . is equivalent to

otn
dΦ

the equation — = 2dRn + 1, where Rn is the Gelfand-Dikii polynomial associated
dtn

to L ( 4 ).
As has already been noted, for this N = 2 super KdV equation, there are twice as
many symmetries and conservation laws[3] as for that associated with L{-2). The
extra flows are given by the following:

Theorem 7. The Lax equation [A, {L"4^
1/2/l} + ] = - A is equivalent to the

dΦ
equation = 2d(R(

n

ul) + ΦRn).
at i

Theorem (7) is proved by applying Lemma (2) and noting that

(Ln~1/2A)+ = - D 2 (R!i l f l ) + ΦRn)D1d~1 + DΛR^" + ΦRn)D2d'1

which can be established using Eqs. (59), (27) and (v) in the appendix.
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6. Conclusion

In this paper, we have developed the Gelfand-Dikii formalism for the N = 2
supersymmetric KdV hierarchies for which Lax operators are known [3]. The
recursion relations and functional relations satisfied by the generalized
Gelfand-Dikii polynomials have been established, and the relationship between
the Gelfand-Dikii polynomials and the Lax pair formulation of the hierarchies has
been analyzed. Given the importance of the ordinary Gelfand-Dikii polynomials in
the matrix model and topological approaches to two-dimensional quantum gravity
[1], these results could be useful should a super-analogue of matrix models ever be
found.

Appendix

Here, Theorems (1) and (3) are proved. L will denote either L (_2 ) or L(4). In both
cases, L is self-adjoint, in that $dXψ(X)Lχ(X) = $dX(Lψ(X))χ(X) for scalar
superfields ψ(X) and χ(X). We choose to work with the heat kernel K(X, X'\ ξ)
defined by the heat equations

0 = ( γξ - L\K(X, X';ξ) = (^- LΛX(X, X'\ ξ)

with the boundary condition limX' _* XK(X, X'\ ξ) = δ(X9 X'\ where a prime on an
operator denotes that it acts on the argument X' rather than on X. As already
noted, the heat kernel is related to the resolvent kernel by a Laplace transform. We
adopt the notation (23)-(26) with R replaced by K for the corresponding coincid-
ence limits of the heat kernel.

Identities Common to L{-2)
 and L{Ar). The following identities rely on the self-

adjointness of L(_2) and L ( 4 ) but not on their specific form:

(i)

(ii) Kmx.-.xdK{X9 X'\ ξ) = ̂ dK(X; ξ),

(iii) for an arbitrary operator O acting on the argument X

lim (d + d')OK{X,X';ξ) = d lim OK(X,X';ξ),

lim (Di + D'ύOK{X9X'\ξ) = Di lim OK{X,X'\ξ),
X'->X X'^X

lim (d-d')K(X,X';ξ) = 0,
X' ^X

lim (D, - D\)K{X, X'; ξ) = 0,
X' ^X
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lim (D, + D\)(D2 + D'2)K{X, X'; ξ) = D.D.KiX; ξ),
X'-*X

lim {Dy + D\)(D2 - D'2)K(X, X'; ζ) = Q,

lim (£>! - D\)(D2 + D'2)K(X, X'; ξ) = 0 ,
X' -*X

lim (£>! - D\)(D2 - D'2)K(X, X'; ξ) = 4K(l<ι\X; ξ) - D,D2K{X- ξ),
X' -+X

lim (Dί - DOCDf - D'0K(X, X;; ί) = δK(X; ξ) (no sum on i),

lim (δ-δ / )(D ι -i);)X(X,X / ;ξ) = 4 lim dDMX, X'\ ξ) - dDtK{X; ξ)

lim (Di-DΊHDi +D' 1)(Z) 2-D' 2)K(X,Z /;ξ) = 8 lim aD2K(X, X'\ ξ)

Proof of (i) αrcd (ii). We use the formal expression K(X9 X'\ ξ) = eξLδ(X, X')
valid in the limit X'-+X. Writing ]ϊmx.-+xDieξLδ{X,X') in the form j
dXδ(X, X')DieξLδ{X, X'\ integrating by parts and using the self-adjointness of L,
one can show

lim Die
ξLδ(X,X')=- lim eξLDiδ(X9 X') .

X'^X X'^X

Thus K{U0)(X; ξ) = ̂ \imx^x[Due
ξL~]δ(X, X') (and similarly for K{0Λ) (X; ξ)).

This latter quantity is jD1K
{1'0)(X; ξ) as Dλ acts only on the coefficients in the

expansion of the exponential and not on the delta function. The proof of (iϊ) is the
same with Dt replaced by d. D

Proof of (iii). All but the last of these identities are proved by integrating the
left-hand side over X against a scalar superfield φ{X), writing \imx>^xF(X, X') as
\dX'F(X, X')δ{X, Xr) and using repeated integration by parts. The last identity
follows using (Dί - D'1){Dι + D'J = 2(3 - 3') - (D1 + D\){D1 - D\). D

Operator-Dependent Identities

(iv) For L(_2), \imx^xdDiK{X, X'\ ξ) = i8DtK(X; ξ) - ^tjDjK^^X; ξ).

(v) For L ( 4 ) ; ]imx^xdDtK(X9 Xf; ξ) = - i ε^DjK^^iX; ξ) + ̂ {D^)K{X; ξ).

Proof of (iv). D2K
iιΛ)(X;ξ) = limx^xtD2,D1D2e

ξL^~]δ(X,X/). Using the
result D1e

ξL(~2)D2 = — D2e
ξL{ 2)D1 to be proved below,

D2K
{1Λ)(X;ξ)= lim (- idD^-* + [D l 5 deξL^)δ(X, Xf)

X' ^X

= - 2 lim dDxK{X, X'\ ζ) + D1 lim 3K(X, X'\ ξ) .

A similar result holds with 1 <-»2. To prove D1e
ξL{2)D2 = - D2e

ξL(-2)D1,it suffices
to prove (σl)ijDiL

n

i-2)Dj = 0, where σx is the usual Pauli matrix. Writing
Li-2) = (iσ2)

iiDi{2^D1D2 + Φ)Dj and using DiDj = δi}d + (ϊσ2)/ jD1D2, then
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(σί)
ijDiL

n

i-2)Dj involves two-dimensional traces of the form Tr(σ 1(iσ 2)m)) for
0 ^ m S (2n + 1). These vanish. D

Proof of (v). dD1K(X,X';ξ) = - D2{D1D2 + Φ)K(X, X'\ ξ) + D2ΦK(X, Xf; ξ).
Since (D1D2 + Φ)eξL(A) is self-adjoint, using the method of proof of (i) and (ii) it
follows that

lim

Thus

lim

lim (D1D2 + Φ)K(X9 X' ξ).
X'-*X

; ξ) + \(D2Φ(X))K(X; ξ),

where (i) has been used. D

The Recursion Relations.

(vi) For L ( _ 2 )

+ (D2Φ)D2)K(X;ξ).

(vii) For L (_ 2 ) > 4 ^ dK(X; ξ) =

(viii) For Lw,

1)(X; ξ) - DίD2K{X; ξ)) .

; ξ) + ΦK(X; ξ)) = ̂ 2 K ( X ; ξ).

"(X; ξ) + ΦK(X; ξ)) .(ix) For L ( 4 ), 2d ~ K(X; ξ) = - ^ 2 ( K ( 1 " ( X

Proof of (vi). From the definition of the heat kernel, L(-2)K{X, X' ξ) =
L\-2)K(X,X';ξ), soO = ]imx^x(D1-D'1)(Lι-2)-L'{-2))K{X,X';ξ). This is
equivalent to

0 = lim
X' ->X

D\){D2 - D'2) + (D1 - D\)iD2 + D'2)2

D'2) - D\)(D2 - D'2

Φ'))(D2 - Φ)-(D\ Φ'))(D2 + D'2)

-\((D2Φ) ~ {D'2Φ'))(D1 + D\)-]K{X,X'; ξ) ,

where Φ = Φ{X) and Φ' = Φ(X'). Using the identities (i)—(iv), one obtains the
desired result. D
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Proof of (vii). We use

4(δ + δ')-^K(X, X'; ξ) = 2(δ + <9')(L(_2) + L'{.2))K(X, X'; ξ).

Subtracting from this the identity

0 = (δ-d')(Li-2)-L'^2))K(X,X';ξ)

yields

4(δ + δ') ^ K(X, X'; ξ) = l(d + δ')3 + dDt ΦD2 + ?>dD\ Φ'D'2
8ξ

+ 3d'D^D2 + d'D\Φ'D2 - (1^2)]K(X, X'; ξ)

Using

+ (d'D\Φ')D'2 = ̂ ((dDjΦ) + {d'D\Φ)){D2 + D'2)

l«dD1Φ)-{d'D'1Φ'MD2-D'2)

and

2 + {d'Φ')D'1D'2

{{dΦ) + (dΦ^UD, + D\)(D2 + D'2) + (D, - D\){D2 - £»'2

- (d'Φ'M{D1 + D\){D2 - D>2) + (D1 - D\)(D2

and

(D^)dD2 + 3(DΊΦ')3D2 + 3(D^)d'D2 + {D\Φ')d'D'2

= ((D.Φ) + {D\Φ'))l{δ + d')(D2 + D'2) -\{d- δ')(D2 - D'2)-\

+ {{D,Φ) - (D\Φ'))ί(δ + δ')(D2 - D'2) -\id- d')(D2

and

Φ'δDxD2 + 2>Φ'δD\D'2 + lΦd'DiD2 + Φ'δ'D\D'2

= Γ\{Φ + ΦW + d')-^(Φ- Φ')(δ - d')\(D1 + D\)(D2 + D'2)

+ (D, - D\){D2 - D'2)] + Γ^(Φ - Φ'){δ + δ')-l-(Φ + Φ')(δ - d')~\

x [(Dx + D\){D2 - D'2) + (Dι - D\)(D2 + £>'2)] ,

taking the limit X' -* X and using (i)-(iv) and (vi) gives the required result. D
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Proof of (viii) and (ix). These results for L ( 4 ) are proved in the same manner as the
corresponding results (vi) and (vii) for L{-2); there are only minor modifications
due to the different forms of the operators. G

Functional Relations. With δf f̂' ^ denned by δ\dXK{X\ ξ) = \dXδΦ{X)
ϋΦyX )

δK(X; ξ)
x w

(x) For L(_2), ~ ^ ~ = ί(2X(1 1>(Λ"; ξ) - D1D2K(X; ξ)).

(xi) For L(4), — y y = - 2ζ{K{1Λ)(X; ξ) + Φ(X)K(X; ξ)) and

(5Φ(X) V δ W

Proof of (x). Writing \dXK(X\ ξ) = JdX jdX'<5(X, X')K(X, X'; £) and using the

representation K(X, X'\ ξ) = eξL<-»δ(X, X') yields

δ$dXK{X; ξ) = £ JdX jdXfδ(X, X')δL(-2)K(X, X'\ ξ) .

Integrating by parts gives the desired result. D

Proof of (xi). The first result is obtained using the method of proof for (x).

The second result follows similarly using KiU1)(X; ξ) + Φ(X)K(X; ξ)
= limx.^x(DίD2 + Φ)K(X9 X'\ ξ) and {D1D2 + Φ)eξL™ = eξL^(D1D2 + Φ)

since L ( 4 ) = - {DιD2 + Φ)2. D

Acknowledgements. C.M.Y. would like to thank P.D. Jarvis for useful conversations and support
and encouragement. I.N.M. is supported by an Australian Research Fellowship.

References

1. Gross, D., Migdal, A.B.: Nonperturbative solution of the Ising model on a random surface.
Phys. Rev. Lett. 64, 127 (1990); Brezin, E., Kazakov, V.A.: Exactly solvable field theories of
closed strings. Phys. Lett. 236B, 144-150 (1990); Douglas, M.R., Shenker, S.H.: Strings in less
than one dimension. Nucl. Phys. 335B, 635-654 (1990); Douglas, M.R.: Strings in less than one
dimension and the generalized KdV hierarchies. Phys. Lett. 238B, 176-180 (1990)

2. Manin, Yu. I., Radul, A.O.: A supersymmetric extension of the Kadomtsev Petviashvili
hierarchy. Commun. Math. Phys. 98, 65-77 (1985); Kuperschmidt, B.A.: Super Korteweg-de
Vries equations associated to super extensions of the Virasoro algebra. Phys. Lett. A109,
417-423 (1985); Mathieu, P.: Super symmetric extension of the Korteweg-de-Vries equation. J.
Math. Phys. 29, 2499-2506 (1988)

3. Laberge, C.A., Mathieu, P.: N = 2 superconformal algebra and integrable 0(2) fermionic
extensions of the Korteweg-de-Vries equation. Phys. Lett. 215B, 718-722 (1988)

4. Oevel, W., Popowicz, Z.: The biHamiltonian structure of fully supersymmetric Korteweg-
de-Vries systems. Commun. Math. Phys. 139, 441-460 (1991)

5. McArthur, I.N.: On the Integrability of the super-KdV equation, Commun. Math. Phys. 148,
177-188(1992).



18 I.N. McArthur and CM. Yung

6. Gelfand, I.M., Dikii, L.A.: Asymptotic behaviour of the resolvent of Sturm Liouville equations
and the algebra of the Korteweg-de-Vries equation. Russ. Math. Surv. 30:5, 77-113 (1975)

7. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19,
1156-1162(1978)

8. Gervais, J.-L., Neveu, A.: Dual string spectrum in Polyakov's quantization (II). Nucl. Phys.
209B, 125-145 (1982); Gervais, J.-L.: Infinite family of polynomial functions of the Virasoro
generators with vanishing Poisson brackets. Phys. Lett. 160B 277-278 (1985)

9. Olver, P.J.: Applications of Lie Groups to Differential Equations. Berlin Heidelberg New York:
Springer 1986

Communicated by K. Gawedzki




