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Abstract. We prove the existence of infinitely-many globally defined singularity-
free solutions, to the EYM equations with SU(2) gauge group. The solutions are
indexed by a coupling constant, have distinct winding numbers, and their
corresponding Einstein metrics decay at infinity to the flat Minkowski metric.
Each solution has a finite (ADM) mass; these masses are derived from the
solutions, and are not arbitrary constants.

1. Introduction

The principal result in this paper is a proof of the existence of a countable set of
singularity-free solutions to the coupled Einstein/Yang-Mills (EYM) equations
with SU(2) gauge group. These solutions are indexed by a coupling constant, have
distinct winding numbers, and their corresponding Einstein metrics decay at
infinity to the flat Minkowski metric. Furthermore, we prove that each solution
has finite (ADM) mass (cf. [3]). These "masses" are derived from the solutions; they
are not arbitrary constants.

Our existence proof confirms numerical observations made by Bartnik and
McKinnon in [1]. It also extends the result in [2], where the existence of one such
solution was established.

The coupled EYM equations with gauge group G can be written in the form

Rtj-iRg^σTij, d*FtJ = 0.

Here Ttj is the stress-energy tensor associated to the ©-valued Yang-Mills
curvature 2-form Fij9 where (5 is the Lie-algebra of G, and Ru—iRgtj is the
Einstein tensor computed with respect to the sought-for metric gfj . If one considers
static solutions, i.e., solutions depending only on r, and G = Sl/(2), then (cf. [1]) we
may write the metric as

ds2= -T(r)-2dt2 + A{rYHr2 + r2{dθ2 + s in 2 0# 2 ) , (1.1)

Both authors supported in part by the NSF, Contract No. DMS 89-05205



304 J. A. Smoller and A. G. Wasserman

and the curvature 2-form as

F = w'τιdrΛdθ + w'τ2dr A (sinθdφ) - (1 - w2)τ3dθ A (sin θdφ).

Here (T, A) and w denote the unknown metric and connection coefficients,
respectively, and τl9τ29τ3 form a (suitably normalized) basis for the Lie algebra
su(2). As shown in [1, 2], the EYM equations in this set-up take the form of a
system of three ordinary differential equations for the three unknown functions
Γ, A and w,

(i-w2)2

rA' + (ί +2w / 2M = 1 - K- ΊΓL9 (1.2)

(1.3)[ Π — w 2 VΠ
r(\-A)--—γ±- w'

2rA Y = ( 1

 r Γ } +(1 ~2w' 2 μ-1, (1.4)

in the region r^O. Since (1.2) and (1.3) do not involve T, the problem reduces to
finding solutions of (1.2) and (1.3) with the property that lim (A(r),w{r),w'{r)) is

finite. The singularity at r = 0 requires A and w to satisfy the initial conditions
,4(0) = l, w(0) = 1, and w'(0) = 0.

We recall from [2], that given any λ > 0, the above system has a unique solution
defined on an interval 0<r<R(λ), satisfying the initial conditions v4(0) = l,
w(0) = l, w'(0) = 0, w"(0)=— λ. This gives us a one-parameter family of local
solutions which are non-singular at r = 0, and depend continuously on λ. The
problem is then to find λ for which

lim (A(r, λ\ w(r, λ)9 w'(r, λ)) is finite. (1.5)
r—• oo

We define the region Γ c R 4 by

Γ = {(A9w,W,r): A>0, w 2 ^ l , (w,W) + (0,0), r > 0 } ;

our interest in this paper is in orbits which lie in Γ. We define re(λ) to be the first
value of r for which the i-orbit exits Γ; re(λ)= + oo if the i-orbit stays in Γ for all
r > 0. If the 2-orbit exits Γ through A = 0, we say that the A-orbit crashes. For any
/l-orbit, define θ(r, λ) by

0(0, λ) = 0, 0(r, A) = Tan " x (w'(r, A)/w(r, λ)), r > 0.

The rotation number, Ω(λ), of the A-orbit is given by

In this paper we shall prove that there are points {λn} in the interval (0,2),
λί<λ2<..., for which the corresponding set of solutions {(A(r,λn), w(r,λn),
w'(r> K))} have finite limits as r-> oo, and Ω(AJ = n for n = 1,2,... that is, they are
"connecting orbits." Thus if n is odd, the solution (w(r, λn), w(r, λn)) is a "heteroclinic
orbit" in the (w, w')-plane connecting the rest point (1,0) to (—1,0), and w(r, λn) has
n-zeros, while if n is even, (w(r, λn\ w'(r, λn)) describes a "homoclinic" orbit in the
(w, wr)-plane connecting (1,0) to itself, and w(r, λn) has n-zeros. (The existence of λx

was proved in [2].)
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We show in Proposition 2.11, that for each λn, the total mass, 2μπ, is finite; i.e.
lim r(ί —A(r,λn))=μn is finite, and that the metric (1.1) is Minkowski asymptoti-

cally flat; i.e., (A(r, λn), T{r, λn))-+(l, 1) as r-»oo (see [2, Sect. 6]).
The crucial result is Proposition 3.1 which states that a limit of non-crashing

orbits with bounded rotation is again a non-crashing orbit of bounded rotation.
This result is interesting since there do exist crashing orbits which are limits of non-
crashing orbits; of course, these non-crashing orbits have unbounded rotation.

The plan of the paper is as follows. In the next section we review and extend
some results obtained in [2]. In Sect. 3 we shall state the crucial technical
propositions, and we shall show how they are used to obtain our main results. In
Sect. 4 we provide proofs of the technical propositions.

2. Remembrance of Things Past

In this section, we shall formulate the problem and we shall recall and extend
certain results from [2]. Furthermore, we shall prove some estimates which will be
needed in Sect. 4.

We begin by writing the equations for A and w,

i μ = l - ( 1 ~ W ) , (2.1)

[ ίΊ-w2VΠ
r(ί~A)-- w'[ ίΊ-w2VΠ
r(ί~A)-- w' + w(l-w2) = 0, (2.2)

together with the initial conditions

w(0) = l , w'(0) = 0, w"(0)=-λ<0, A(0) = l. (2.3)

We now make the following general definition.

Definition. A one-parameter family (w(r, <5), w'(r, δ\ A(r, δ), r), of solutions of (2.1),
(2.2), defined for ρ < r < ρ + s(δ), is called continuous, provided that it satisfies the
following. If Δ1<Δ2, then there exists a number S{Δ1,Δ2)>Q such that for all

(i) s(δ)^S(Δ 1,Δ2)>0, and
(ii) (w(r, <5), w(r, δ\ A(r, δ\ r) depends continuously on (r, δ) for ρ < r < ρ + S(Δ l9 Δ2).

In the appendix to [2], we proved that if we consider λ as our parameter, and
ρ = 0, then the solutions (w(r, λ\ w'(r, λ\ A(r, λ\ r), of (2.1)-(2.3) form a continuous
one-parameter family.

Note in this paper we shall always assume that

for some ε > 0, and we shall denote the quantity S(0,2 + ε) (in the above definition)
byR.

If we define the functions Q and P by β(0) = 0 = P(0), and
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then (2.1) and (2.2) can be written in "self-adjoint" form as

(2.4)

^ = - ^ = 0 . (2.5)
r2A κ }

(The functions P and Q can be used to express the metric coefficients A and T via
the formulas ep = AeQ, and eQT]/A = ί.) Defining the function Φ by

^ Λ , tA .x (1-w 2 ) 2

Φ(r, A,w) = r(l -A)- —, (2.6)

then (2.1) and (2.2) become

rA' + 2w'2A = Φ/r, (2.1)r

r2Aw" + Φw' + w(l - w2) = 0, (2.2)'

and (see [2]) Φ satisfies the equation

-1—. (2-7)

We now consider the continuous one-parameter family of orbits

(A(r,λ)Mr,λ)Mr,λ),r), (2.8)

defined in 4-space, parameterized by λ. We define the region ΓcJR4 by

Γ = {A,w,w\r): w2< 1, A>09 (w,w') * (0,0), r > 0 } .

Our concern is only with those orbit segments which lie in Γ. (It turns out that
orbits which exit Γ cannot be connecting orbits.) Since we proved in [2] that w' is
bounded on [0, f) if lim A(r) > 0, we see that an orbit can leave Γ only if lim A(r) = 0

rsr rsr

or w2 > 1 or (w, w') = (0,0). Orbits for which lim A(r) = 0 are called "crashing orbits."
rs r

We shall often have occasion to use the following notation; namely, we define
rJLλ) by

w{rσ{λ\λ) = σ. (2.10)

[More precise notation would be rσk(λ) to indicate the kth value of r for which
w(r, λ) = σ. However, we will use (2.10) since in each instance, the appropriate k will
be unambiguous.]

The following "compactness result" is very important; see [2, Theorem 4.1].

Proposition 2.1. If λ>2, the solution of (2.1)-(2.3) cannot exist up to w = 0.

Thus, if λ > 2, there is an f = fλ > 0 such that the orbit (2.8) lies in Γ for r < f, but
linii4(r,/l) = 0. Hence A-orbits for λ > 2 are crashing orbits. Since /L-orbits for λ

small, say §<λ^η, exit Γ through w= — 1, with θ(re(λ))> —π (see [2]), in the
remainder of this paper (unless otherwise stated), we consider only those orbits for
which η^λ^2 + ε.

Next, from [2, Proposition 5.1], we have
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Proposition 2.2. There is an L>0 such that (Aw/2)(r,λ)^L in Γ.

Now we define the function v by

v(r,λ) = (Aw')(r,λ), (2.11)

and recall from [2], that v satisfies the equation

, 2w'2 w(l-w2)
--2—-=0, (2.12)

or equivalently,

By defining v to be zero at a crash, and using the continuity of A [2, Proposition
5.2], we have

Proposition 2.3. In the region Γ, v is continuous in r and λ and bounded. Furthermore,

lim v(r, λ) = 0 if A(f, X) = 0.

Next we define the function μ by

Note that μ' has physical significance; it is \ the ADM mass density (cf. [3]). We
recall from [2], that μ satisfies the equation

fl-w 2ϊ 2

μ' = 2,4w/2+- j - 1 - , (2.13)

and μ(0) = 0. Thus μ'(r) > 0 and μ(r) > 0 for r > 0. Since A(r) = 1 — μ{r)/r, this implies
that A^\. From (2.6), we can write Φ as

Now if [0, K] is the interval of local existence discussed above, we set

μ = mϊ{μ(R,λ):η^λ^

μ>0. Then for η^λ^2 + ε, and r>R, we have
2 ) 2

so that if w2 is sufficiently near 1, Φ(r, A) is uniformly bounded away from zero for
Ά ύ λ ̂  2 + ε. On the other hand, if η ̂  A ̂  2 + ε, then for orbits in Γ, we have

Φ(r,λ)^μ--, if r>K.

Thus for sufficiently large r, Φ(r, λ) is also uniformly bounded away from zero for
Ά ύ λ ύ 2 + ε. We thus have the following result.
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Proposition 2.4. There exist positive constants σ, Rί, and w0, w o < l , such that

Φ(r,λ)^σ (2.15)

if either r^Rx or if w^w(r,/ί) 2^l.

The positivity of Φ enables us now to bound |w'|, and to keep A positive.

Proposition 2.5. Suppose that (w{r,λ\ w'(r,λ\ A(r,λ),r) is in Γ for a^r^b. Assume
that there is a constant <5>0 such that Φ(r,λ)^.δ for a^r^b and that w'(r,λ)^.O
[resp. w'(r, λ) ̂  0] on this interval Then there exists a constant τ > 0, independent of
λ such that \w'(b,λ)\^τ.

Proof We give the details only for the case w'(r,/l)2;0 o n α ^ r ^ l ) , and since λ is
fixed, we shall suppress the dependence on λ.

From (2.2)', we have _ φ w / _ w ( 1 _ w 2 )

Now suppose that there is an r0, a^ro^b such that w'(ro)<2/<5. We claim that
W{b) ̂  2/δ. Indeed, if there were a first point r x > r0 such that w/fa) = 2/δ, then at r x,
(2.16) gives

w ( r i ) 7 ; < 0 .

r A

Thus no such rt can exist, and our claim holds. It follows that we may assume that
w'M^; - on a^r^b. In this case, again from (2.16), if α ^ r ^ b ,

δ

( ^ 1

r2A

Thus from Proposition 2.2,

Ί V -w" 1

Integrating from r = a to r=ί) gives

>
W{b) W{a) = fe2L '

so that W{b) <* . Thus the result holds with τ = max ( 2/δ, ). •
b — a \ b — aj

We shall need a similar result if Φ^δ on a w-interval; namely, we have

Proposition 2.6. Assume that w'(r,Λ)^0 (resp. w'(r,λ)^0) on α^w(r,/l)^/?, and
that (w{r, λ), w'(r, λ), A(r, λ), r) is in Γ on this interval. Assume, too, that there are
constants <5>0, m > 0 such that Φ(r,λ)^.δ if cc^w(r,λ)^β, and rβ(λ)^m (resp.
ra(λ)^m); cf. (2.10). Then there exists a constant τ > 0 , independent of λ such that

\ ^ τ (resp. \W{rJ

Proof. We shall give the details only for the case W{r, λ) ̂  0 on α g w(r, λ) S β, and
again since λ is fixed, we shall suppress the A-dependence.
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As in the proof of the last result, we may assume that w'(r) ̂ 2/<5 if ra^r^rβ.
w(l-w2) δ .

Then Φ + ——-—- > - since
w ~ 2

Proposition 2.2,

w(ί-w2)
w

£ - . Thus from (2.16) and

1
~W) "W2" r2AW2 -2Lrjrv ~2Lm2

Integrating from rα to rβ gives

1
2

w'(rβ) ILm

and so w'(r̂ ) ̂  -=—z—-. Thus the proposition holds with
f2 2Lm2 .

We now show how to obtain uniform lower bounds on A.

Proposition 2.7. Suppose that (w(r, A), W(r,λ), A(r,λ\r) is in Γ for a^r^b, and that
w'(r,λ)^0 (resp. w'(r,λ)^0) on this interval. Assume that there is a constant δ>0
such that Φ(r,λ)^δ on this interval. Then there exists anη>0 independent of λ such
that A(b,λ)^η.

Proof. We again give the details only for the case w'(r, λ) ̂  0 on a ̂  r ̂  b, and since λ
is fixed, we suppress the dependence on λ.

Choose c such that a<c<b. Then Proposition 2.5 implies that if c^r^b,

J < β<maxβ, — J =τ. (2.17)
~ \δ c a]r—aj \δ c — a

We have

A(b) = A(c)+jA'(s)ds,
c

so from (2.1)' and (2.17),
b 1YΦ Ί b 1 Γ<5 1

A(b)> f - - -2W2A \ds> f - - -2τ2A Ids.
I sis J -3csls J

Now if l̂(s)Sδ/4τ2b onc^r^ft, then

If, on the other hand, A(r1)>δ/4τ2b for some rl9 where c^rγ<b, then we claim
that A(r)^δ/4τ2b iΐr^r^b. For if not, there would be a smallest r2, rί<r2^b
satisfying A(r2) = δ/4τ2b. Then using (2.1)', we would have
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and this is impossible. Thus no such r2 can exist and Λ(b) ̂  δ/4τ2b. Hence A(b)

Corollary 2.8. Assume that w'(r,λ)^0 (resp. w'(r,λ)S0) on α ^ w(r,λ)^β, and that
(w(r, λ), w'(r, λ), A(r, λ\ r) is in Γ on this interval. Assume that there are constants δ > 0
and τ > 0 such that Φ(r, λ)^.δ and \ w'(r, λ)\ ̂  τ on α ̂  w(r, 2) ̂  /?. 77zen ί/zβr̂  βx/sίs an
η>0 independent of λ such that A(rβ(λ\λ)^η (resp. A(ra(λ),λ)^.η).

Proof. Again we assume w'(r,/l)^0 on α^w(r,/l)^jS, and we suppress the
/l-dependence. Now since |w'(r)|<ίτ, on α^w(r)^j?,

,.so
Thus the hypotheses of the last proposition hold, and the result follows. •

The next result shows that orbits which have bounded rotation and stay in Γ for
all r>0, are connecting orbits.

Proposition 2.10. Suppose that for some λ and some integer k, {k — 1) < Ω(λ) ̂  fc, the
λ-orbit doesn't crash, and w2(r, λ)< 1 for all r>0. Then the λ-orbit is a connecting
orbit and Ω(λ) = k.

Proof. Choose r' > 0 such that θ(r\ λ)<—(k — l)π. For r > r\ W(r, λ) is of one sign
and we may apply Proposition 6.1 of [2]. •

We shall now prove that μ(r) = r(\—A(r)) is uniformly bounded on orbit
segments of (2.1)-(2.3) which have bounded rotation.

Proposition 2.11. Let keZ; then there exists a number m(k) such that if θ(r,λ)
^ — kπ, then μ(r, λ) ̂  m(k).

Proof If r^Rί-\-l (cf. Proposition 2.4), then μ(r)^r^R1 + ί. Thus we may
assume r>Rx + ί. Now from Proposition 2.4, Φ^σ for r^.Rί9 and from
Proposition 2.5 (with a = R1 and b = Rί + ί)we get a τ1 > 0 (independent of A), such
that |wXR! + 1 , λ)| ̂  τ^ Now consider max |w'(r, λ)|. This max can occur at Kt -h 1

Γ = x / — w(l — w
[where \w'(r1 +1, A)| ̂  τ j , or it can occur when w" = 01 so that |w'| ̂

1\ V 0
^— or a priori at re(λ). But as w'(re)w"(re)<0, this final possibility cannot occur.

0/

Thus W is uniformly bounded for r^Rί + l; i.e., |wr(r,/l)|^τ if r^i^i + 1. Then
from (2.13),

r Γ

= J 2 ^

ύ f h y l w ^ + ^ r f r ^ - - + J 2Aw'2dr. (2.17)

Λi + lL r J Λi + 1 Λi + 1

Since θ(r)^ —kπ, we may write

J 2AW2dr= f 2̂ 1 w/2dr+ 'f2^4w/2rfr + ... + f.Z4W2dr,
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where Rt + 1 ^ r# < . . . < rj

N ^ Rx, j ' ^ k, the rjy satisfy w^r^) = 0, and w' is of fixed sign
on each subinterval. Consider now the interval (Rt + 1 , r#); if w' ^ 0 on this interval,
then

j f2drS f 2τ(-wf)dr ί N

Λi+l Rι+1

the same estimate is easily seen to hold if w' ^ 0 on this interval. Similarly, the same
estimate holds for each of the remaining integrals on the right-hand side of (2.18).
It follows that

Ri + 1

and thus from (2.17),

and this proves the proposition with m(k) = Ri + 1 + — T +4(fc + l)τ.
&ι -r 1

3. The Main Results

In this section, we shall prove the existence of infinitely-many distinct bounded
non-singular solutions of (2.1)-(2.3). The proof will be based on three important
general technical propositions, which are interesting in their own right; the proofs
of these will be given in the next section.

Recall that we only consider those A's in the closed interval 0^/1^2 +ε. A
A-orbit of (2.1}-{2.3), lying in Γ [cf. (2.9)], is called a connecting orbit, if its
projection in the (w, w;)-plane tends to (— 1,0) or (1,0) as r-> oo in this case we shall
say that "the /l-orbit connects."

We define the set Ck by

Ck = {λ: the A-orbit connects and Ω(λ) ̂  k). (3.1)

Our main objective is to show that there are connecting orbits in each rotation
class; that is, the sets Ck\Ck^1 are non-empty for each positive integer k (see
Theorem 3.7, below). The crucial step in proving the existence of connecting orbits
in each nodal class is the following result, the "no-crash" proposition.

Before stating it, we need some notation. Thus, if Λ = {(w(r),w'(r),A(r),r):
a^r^b] is an orbit segment of (2.1), (2.2), we define the right-hand endpoint e(Λ)
of A by

) = (w(b),w'(b),A(b%b).

Proposition 3.1. Suppose yn->y, and that

An = {(w(r, yn), w'(r, yn), A(r, yn\ r): ρ ̂  r ^ rn), n = 1,2,...,

is a family of orbit segments satisfying the following hypotheses:
i) The yn- and the y-orbits are contained in a continuous one parameter family.
ii) For each n, An C Γ.
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iii) For each n, - π/2 < θ(ρ, γn) <; 0, and - π/2 < 0(ρ, y)^0. Nπ

iv) The set2 {θ(rn,yn)}?= ± is uniformly bounded; say θ(rn,γn)^ - — (NeZ+).

v) e{Λn)^P = {w>w\A?)eΓ.
Then the γ-orbit segment lies in Γ for ρ ^ r ^ r ,

Nπ
P = (w(r,y)Mr,y%A(r,y),r), and 0 ( r , y ) ^ - — .

Remarks. 1. If we are considering orbit segments on an r-interval for which the
equations are non-singular (r > 0 and A > 0), then condition i) is not needed.
2. In this paper, ρ = 0 and 0(ρ, γ) = 0(ρ, γn) = 0 for each n; the case ρ > 0 occurs when
one considers "black-hole" solutions.
3. The hypothesis iii), while not strictly necessary, simplifies the proof consider-
ably, and is satisfied in all envisioned applications.

4. A point P=(w, w', λ9 f), with A > 0, f > 0, and (w, w') e {(± 1,0), (0,0)}, cannot be
reached in finite r by any orbit (w(r), w'(r), A(r\ r) in Γ for which w(r) Φ 0. This is true

because the unique orbit through P is either of the form w = 0, As = 1 H h - j , or
c r r

w2 = 1, As = 1 + - . In either case lim \As(r)\ = 0. On the other hand, if we choose a
r r-*o

compact contour ^ in the complex plane going from r to some r x > 0 with
\A(rx)\ > 3, which avoids the two zeros of A in Case 1, or the one zero of A in Case 2,
then by "continuous dependence on initial conditions," applied along #, we have
there exists an ε > 0 such that if dist(^(ylΛ),P)<ε, then the distance from the orbit
through e(An) to the orbit through P is less than one for all r on ^ . But at ru

0 < A(ru λn) < 1 and {AJίrJl > 3. This proves the assertion. Thus we may assume in
v) above that (w, w') φ{{± 1,0),(0,0)}.
5. In Proposition 3.1 we allow rn = oo or r = o o .

We shall now specialize Proposition 3.1 to the case considered in this paper,
namely ρ = 0 , and (w(0, λ), w'(0, λ)) = (1,0) [cf. (2.3)]. In this case, as we have noted in
Sect. 2, we have a continuous one parameter family (w(r, λ\ w'(r, λ\ A(r, λ), λ),
starting at ρ = 0. Thus hypotheses i) and iii) above are always satisfied.

The next result shows that for the cases considered in this paper, hypothesis v)
of Proposition 3.1 is always satisfied. First choose w l 5 w o < w 1 < l , and set
R2 = Ri + l, where w0 and Rt are defined as in Theorem 2.4.

Proposition 3.2. Suppose that

Λn = {Mr, λn\ w'(r, λn), A(r, λn\ r):0£r£rH}

is a sequence of orbit segments in Γ.
A) // l imr n = + oo, then by passing to a subsequence if necessary, and considering
the sub-orbit segments

Λ'n = {Mr, λn\ W(r, λn), A(r, λn\ r):0^r^R2}

we have_e{Af

n)-^P £ Γ.
B) // limrΠ<oo and if limw2(rΠ,/ln)>Wi, then by passing to a subsequence if
necessary, and considering the sub-orbit segments

Λ'n = {(wl5 W{r, λn\ A(r, λn\ r): 0 ^ r ^ rWί(λn)}

we have e(A'n)^>PeΓ.

2 For r>ρ, 0(r,yn) is defined by Θ(r,yn) = τ^n-1(wf(r,yn)/w(r,yn))
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Putting together Propositions 3.1 and 3.2, we have the following useful
corollary.

Corollary 3.3. Suppose that λn-+X, and that

Λn = {Mr, λn), w'(r, λn\ A(r, λn\ r): 0 £ r £ r , }

is a sequence of orbit segments in Γ, where rn = re(λn\ and Ω(λn) ̂  N. Then the X-orbit
lies in Γ for 0^r^re(X) and Ω{X)g>N.

The proofs of Propositions 3.1, 3.2, and Corollary 3.3 will be given in Sect. 4.
Before applying them to our problem, we shall state one more result whose proof
we shall also defer until the next section.

Proposition 3.4. Suppose that λn->X, and Ω(X) = k,keZ+. Then for sufficiently large
n,Ω(λn)<k + l.

Our first consequence of these propositions is

Corollary 3.5. Each Ck is a closed set.

Proof First recall that Ck is defined in (3.1). Let λneCk, λn-+X. With rn and Λn

defined as in Corollary 3.3, we see that all of the hypotheses of that corollary hold,
and we conclude that the X-orbit lies in Γ, and Ω(X) ̂  k. Thus Xe Ck by Proposition
2.10; hence Ck is closed. •

We next have

Corollary 3.6. Let k be any non-negative integer. If λx and λ2 are such that the
λx-orbit is in Γ, and Ω(21)<fe<ί2(/l2), then there exists a λ between λ1 and λ2 such
thatΩ(λ) = k.

Note that Ω(λ) is not a continuous function of λ; hence this corollary is not a
trivial consequence of the intermediate-value theorem.

Proof of Corollary 3.6. Define the set X by

X = {λe\_λι,λ2\: the Λ-orbit is in Γ, and Ω(λ)<Lk).

Let X= supX; then λ^λ2. However, X= λ2 is not possible for if so, Ω(I)> k and so
for λ near X, Ω(λ)>k; this is impossible.

Now choose λn e X, λn-+λ, and define rn = re(λn). Then Corollary 3.3 implies that
the X-orbit lies in Γ for 0^r^r e (I) . If re(X)< oo, then the X-orbit exits Γ through
w2 = 1, and this is impossible [because otherwise for λ near λ, w2(re(λ), λ) = ί and
Ω(λ)Sk~]. Thus/e(X)= oo, and so the X-orbit is a connecting orbit by Proposition
2.10. Thus Ω(λ) is an integer. Now Ω(λ) cannot satisfy Ω(λ)=j^k—\ because
otherwise Proposition 3.4 would imply that we can find λeX, λ>X, λ<λ2 such
that Ω(λ)<j + l^k. But this implies λ^X, which is a contradiction. Thus
Ω(X) = k. •

Finally, we can prove the main result of this paper.

Theorem 3.7. There exist connecting orbits in each rotation class; i.e., Ck\Ck_ x + φ,
fork = l,2,....

Proof. Let k be any positive integer. By Proposition 2.1, the λ = 2 + ε orbit crashes.
If Ω(λ) ̂  k for all λ < 2 + β, then as before, Proposition 3.2 implies that the λ = 2 + ε
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orbit lies in Γ. It follows that there must be some λ2<2 + ε with Ω(λ2)>k. Set
λί = 0; then Ω{λ^) = 0 < k < Ω(λ2). By Corollary 3.6, we conclude that there is some
Λ with Ω(Λ) = /c. •

4. Proofs of the Technical Propositions

In this section, we shall give the details of the proofs of Propositions 3.1 through
3.4. We begin with the

Proof of Proposition 3.ί. Since θ(rn,γn)^—-—, for n = l,2,..., it follows, by

passing to a subsequence, if necessary, that there exists both a non-negative integer
fc<;iV, and a $, -π/2<U<^0 satisfying

kπ
limθ(rn,γn) = $-Ύ. (4.1)

Note that the point P is a point where the y-orbit would be if it didn't crash. We
thus consider the backwards orbit through P defined for r<r. We show that this
backwards orbit doesn't crash, and must thus be the y-orbit. The proof of these
statements is by induction on k. Thus, if k is odd, we show that the backwards orbit
through P reaches the hyperplane w = 0 at a point P = (0,b,a,rί)eΓ (see Lemma
4.1). Define r'n by θ(r'n,λn)= — (k — l)π/2, and consider the orbit subsegments Λ'n
obtained from Λn by restricting r to the interval ρfίr^rr

n. Then e(Λ'n)^>P, and (of
course) lim θ(r'n,λn)= — (k — l)π/2. Proposition 3.1 now applies to the orbit

n-*co

segments Λ'n and completes the induction step in the k odd case. If k is even, and
k> 0, we similarly follow P backwards, now to w' = 0, to do the induction step (see
Lemma 4.2). The case k = 0 is a "fusing" lemma (Lemma 4.7) which patches the
backwards orbit to the y-orbit. It is in the proof of this lemma that we use the
assumption that our solutions are contained in a continuous one-parameter
family. We now proceed with the details.

Lemma 4.1. // (4.1) holds fork odd, then the backwards orbit through P reaches the
hyperplane w = 0 at a point PeΓ, and this orbit segment lies in Γ.

Proof. We introduce the following notation. If A — {(w(r), W{r\ A{r\ r): a ̂  r ̂  b] is
an orbit segment of (2.1), (2.2), we define the left-hand endpoint l(A) of A by

Next, we say that the orbit segment A lies in Qt if (w(r),w'(r)) is in Qt for a^r^
where Qx is the 1st quadrant in the w — W plane, etc.

Now by hypothesis, we have a sequence

Λn = {(w(r,λn),W(r,λn\ A(r,λn\r): an^r^bn] (4.2)

of orbit segments of (2.1), (2.2) lying in QiΠΓ (resp^Q3nΓ), with the w-coordinate
of each l(An) equal to zero, and e(An) ̂ P = (w, w', Ά, f) e Γ, where w2 <J. We shall
sjiow that there is an orbit segment A of (2.1)-(2.2) through P, lying in QxnΓ (resp.
(73nΓ), where the w-coordinate of l(A) is zero (cf. Fig. 4.1). We shall give the details
only in the case AncQ3nΓ; the proof in the other case is similar. Consider the
backwards orbit through P, (w(r),w'(r),,4(r),r); i.e., the solution of (2.1), (2.2)
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Fig. 4.1 w=1

defined for r < r which passes through P. If this orbit were to crash in the region Q3

at some rx < r /that is lim Λ(r) = 0], then v(rx) = 0 (Proposition 2.3). But v' > 0 in Q3

[see (2.12)], and as v(f) ̂  0, we get a contradiction. Therefore, this backwards orbit
cannot crash in Q3; i.e., A(r)>0 in Q3. It follows that A(r)^η>0 in β 3 , for some
η > 0. Now sinceyl w'2 is bounded (as follows from Lemma 2.2), we conclude that w'
is bounded in β 3 . The orbit cannot stay in Q3nΓ for all r satisfying R<*r^r,
because nearby Vorbits do not have this property; indeed, the Aπ-orbits are in Q4

at r = R. Thus the backwards orbit through P exits Q3nΓ at a point PeΓ, with
w = 0. •

We turn now to the far more difficult case, when k is an even integer.

Lemma 4.2. // (4.1) holds and k is even, k>0, then the backwards orbit through P
reaches the hyperplane w'=0 at a point PeΓ, and this orbit segment lies in Γ.

Proof. By hypothesis, we have a sequence (4.2) of orbit segments of (2.1), (2.2) lying
in Q2(^Γ (resp. Q^r\Γ\ with the w'-coordinate of each l(Λn) equal to zero, and
e(Λn)^>P = (w,w',A,r)eΓ, where w2<\. We shall show that there is an orbit
segment A of (2.1), (2.2) through P, lying in Q2nΓ (resp. Q4nΓ\ where 1{A) = PeΓ
(cf. Fig. 4.2).

We shall assume that

w r >0, (4.3)

Fig. 4.2

- • w

w = 1
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so that each Λn lies in Q2. (The case w'<0 is treated in a completely similar
manner.) Now if w = 0, then since Λ>0, the backwards orbit through P,
(w{r),w'{r\A{r\r), defined for r<r, arrives at some hyperplane w=— ε (ε>0)
without crashing by the usual local existence theorem. Thus there is no loss in
generality if we assume that

- l ^ w < 0 . (4.4)

Next, if this backwards orbit through P continues to a point Q = (w,0,A,r)eΓ
lying on the hyperplane W=0, then clearly w < 0. Moreover, w > — 1, by Remark 4
following the statement of Theorem 3.1. Thus we may assume that the backwards
orbit through P, (w(r\w;(r),Λ(r),r) crashes in Q2 for some r<f; i.e., in Q2 we have

A(f)=limA(r) = 0, (4.5)
r\ f

and

w = lim w(r) < w < 0. (4.6)

We shall show that the assumption that the backwards orbit through P in Q2

crashes [i.e., (4.5) and (4.6) hold] leads to a contradiction.
Interestingly enough, the case where w\r) is unbounded for r near r does not

occur.
For notational convenience, we shall write

(w(r, yn\ w'(r, yn\ Λ(r, yn)) = {wn{r\ w'n{r\ An(r)). (4.7)

Lemma 4.3. // Λn = {(wn(r),w'n(r),An(r),r): snSrSrn} is a sequence of orbit
segments in Q2^Γ with e(Λn)^(w,wf,A,r)eΓ9 where — 1 <w<0 and wr

n(sn) = 0 for
each n, then there exists an M > 0 such that \wf

n(r)\^M for sn^r^rn.

Proof Choose wu such that
w0, (4.8)

where w0 is as in Proposition 2.4. Now from Proposition 2.6 (with α = — 1 ,
β= — wl9 and m = r + l), there is a τ>0 such that

K(r)|:gτ, if - 1 ^w w (r)^-w x , (4.9)

Note that since w'n(rn)-^w', it follows that the sequence {w'n(rn)} is bounded; say

KWKMp (4.10)

Thus we need only consider those wn(r) in the interval

-w^wj^^w. (4.11)

Choose α > 0 such that

α^-w(l-w 2 ) , if -w^w^w. (4.12)

Next, we claim that we can find an Nx >0 such that in Q2,

Φ'n(r)<-2 if w'n(r)>Nί and - w ^ w ^ ^ w . (4.13)

Indeed, we have
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Thus since r>R, the first two terms on the right-hand side of (4.14) are bounded
(Proposition 2.2), and (4.12) implies that 4w(l — w2)/r is bounded away from zero,
so our claim holds.

Now suppose that the set

K ( r ) : n e Z , - w ^ w Λ r ^ w } (4.15)

were unbounded. Then we could find r1 and m such that WJr1)>N = max(Nl9τ),
and w^I(r1)<0. Now were there a (first) point r2<r1 with w^(r2) = 0 (r2 being
minimum), and — w1^ww(r2)^w, then w'm(r2)>N, and differentiating (2.2)' and
evaluating at r2 gives

r\AW'\r2) = - Wm[_Φ'm + (1 - 3κ£)] > 0,

in view of (4.13). Thus no such r2 can exist, so w'Jr)<0 if — w^wJίή^w, and
Wm(r)>N on this interval. It follows that the orbit {wjr), w'Jr)) meets the line
w= — wx at some finite r<ru with wfJr)>N^τ, and this contradicts (4.9). Thus
the set (4.15) is bounded. This completes the proof of Lemma 4.3. Π

Now in view of this last lemma, we may suppose that the backwards orbit
through P crashes in Q2 with A(r) = 0, and w'(r) bounded for r>r. We will now
show that w' is actually continuous at f, and

= lim Φ(r) = lim|r(l -A(r))- ( 1 w ( r ) ) 1 (4.16)

is positive. Note that this limit exists since both A and w have limits at f (see [2,
Proposition 5.2]). We now have

Lemma 4.4. lim w'(r) = w'{f) exists, and is positive, and Φ(f) > 0.

Proof. Note that as follows from Proposition 2.4 and Corollary 2.8, together with
the last lemma, the crash cannot occur in the region — 1 ̂  w ̂  — w1. Thus we may
assume that

— wx<w<w. (4.17)

Now for r near r, 0 ̂  w'(r) = v(r)/A(r% and v(f) = A(r) = 0. Thus we may use
LΉospitaΓs rule to obtain

0< limw'(r)= lim -^/- = lim ' f2 Λ = —-—

Φ/r2

Since - w(r)(l - w2(r))>0, we conclude that Φ(r)^0, and by Lemma 4.3, Φ(r)>0.
Furthermore, the last equation shows that W has a finite limit at r i.e.,

lim w'(r) = w'(r) = w\ • (4.18)

We return now to the proof of Lemma 4.2. In view of the last lemma, we may
assume that the backwards orbit (w(r), W{r\ A(r\ r) from P crashes in Q2 in the
region (4.17) at r<r, where (4.18) holds and

A(r) = 0 and Φ(r) = c2>0. (4.19)
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Fig. 4.3 w = 1

We will show that this is impossible. To this end, we define fn by (cf. Fig. 4.3)

θn(fn)=-(k-\)π/2;

note that w'n(rn) = 0.
Since wr(?) > 0, it follows that Wn(f) > 0 for large n. Thus since w'n(rn) — 0, we have

rn < r for large n. We now consider two cases; namely (by passing to a subsequence,
if necessary), either

(4.20)

(4.21)

(4.22)

limtn<r

or

lim fn = r.
n

We define w by (passing to a subsequence, if necessary),

We shall show that neither (4.20) nor (4.21) can occur. We first have

Lemma 4.5. Inequality (4.20) cannot hold.

Proof. For any n, (2.11) implies that

f __
)ds.

From (4.16), we see that (4.10) gives — wn(s)(l — wπ(s)2) ^ α if fn^s^r. Furthermore,
tn ^ R, where R is the interval of local existence discussed in Sect. 2, and as w'n(r) is
uniformly bounded in n on fn ^ s ^ f, it follows easily that the same is true for eQn{s)

on this interval. Thus if (4.20) were to hold, we could find a constant <5>0
independent of n such that

-ds>δ. (4.23)

But since vn(r) = v(r, yn) is a continuous function of both r and y on any compact
interval of y3, and vn(F) = v(r,yn)^v(f) = 0, we see that (4.23) is violated for large n.
This contradiction finishes the proof of Lemma 4.5. •

Now the proof of Lemma 4.2 will be completed if we rule out the possibility
(4.21); this is much more difficult.

3 The proof is based on the fact that Aw'2 is bounded (see [2, Proposition 2.2])
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Lemma 4.6. The equality (4.21) cannot hold.

Proof. Assume that (4.21) holds; that is fn-+r. Note also that

lim w(fn, γn) = w = w = lim w(r). (4.24)

We define the point Q by

lim (wn(fn),0, An{rn\ fn) = βE(Λ,0, A, f). (4.25)
n —*• o o

We claim that the proof of the lemma will be complete if A > 0. To see this, suppose
that Ά>0, and let (wQ(r), WQ{r\ AQ(r%r) be the solution of (2.1), (2.2) through β,
defined for r > f=r. We have w'Q(r) = 0, so [cf. (4.18)] w'(r) < w'/2 if r is near f (since
A > 0). Thus w'n(r) is near w'/2 if n is sufficiently large and r is near r. But this
contradicts the fact that w'n(r) is near wf for large n. Therefore, our claim is valid.

Thus to complete the proof of Lemma 4.6, we shall show that

Ά>0. (4.26)

Let w = w(r) and μ = μ(r) = f; we have

Now μ' is uniformly bounded [as follows from (2.13) and Proposition 2.2], and μ is
(I_vv2( r))2

a continuous function of w and r. Thus, since Φ(r) = μ(r) , we see that
there is an ε, l / 2 > ε > 0 such that r

c2

Φ{r)^—> if | w - w | < 3 ε and \r-r\<3ε. (4.27)

In order to obtain the desired contradiction, we shall consider two cases: for n so
large that r—3ε<rn<r + 3ε either
a) wn(r—3ε)^w + 3ε, for infinitely-many n,
or
b) wn(f— 3ε)>w + 3ε, for all but finitely-many n.

Suppose that case a) holds. By passing to a subsequence if necessary, we have
that wjr - 3ε) ̂  w + 3ε for each n. Thus [cf. (2.10)], r - 3ε ̂  r^ + 3 ε (γ k \ and for r - 3ε

c2

< r < rn, \r—r\ < 3ε, |wn(r) — w\ < 3ε so (4.27) gives Φn(r) ̂  —. Since wn(rn)^>w, we see

that for large n, each such orbit crosses the line w = vv + ε, and wf

n(r^+ε(y„)) < 0. Thus
since all r's in question here satisfy r ^ r x + 1 (for large ri), we may apply Proposition
2.6 to conclude that there exists τ > 0 such that for n large,

|wj,(r)|^τ if wM(rπ) ̂  vvπ(r) ̂  w H- 2ε. (4.28)

Now define 4̂C by

Ac=-
8 τ 2 ( r + l ) 2 '

We claim that on the interval wn(rn)^wn(r)^w + 2ε,

if An(r) = Ac, then A'n(r)>0. (4.29)
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Indeed, if An(r)=Ac, then from (2.1)' (suppressing the n, for convenience)

Φ 2w'2A c2 2w'2 ch
A{r>~r2 r = 2 r 2 r 8τ2(r

Thus (4.29) holds. Note that if ^4(ro)>^c for some r0, then A(r)>Ac for r>r0

[provided that wn(rn)^wn(r), wπ(r0)^w + 2ε].
We claim now that

An{r^ε{ynJ)>Ac. (4.31)

Notice that if this holds, then An(rn) ̂  Ac for large n, and hence (4.26) follows. Thus
if (4.31) holds, the proof of Lemma 4.6 will hold in Case a).

To show (4.31), note that by our above remark, if An{r)^Ac for any r, r^+2ε(yn)
(4.31) holds. Thus, we may assume that

An(r)<Ac if r»+2ε(yn)^r^+ε(yn). (4.32)

Now as in (4.30), since ε<^, we have

7c2

A'n(ή^jjrμ, if r^+2ε(yn)^r^r^+ε(yn).

Thus (again suppressing the n's),

r^ + ε

)= J A\r)dr

^ + 2 e 7c2

= J+. 16(r+l)2τ W

7c2

> c ί~16(r + l)2τ

thus (4.31) holds.
We assume now that we are in Case b):

wn(r—3ε) < vv + 3ε for all but finitely many n. (4.33)

We can find an integer N such that iϊn^N, then wn(r—3ε)> vv + 3β; thus f+3ε>rn

>r#+3ε>r—3ε. Hence for rn^r^r^+3ε, we have w — 3ε^wn(rn)^wn(r)^w + 3ε.
2

Thus (4.27) implies that Φn(r) ̂  —. Proposition 2.5 implies that there is a τ > 1 such
that for large n,

if r-2ε<r<rn. (4.28)'

If Ac is defined as in Case a), we have as before, on r—2ε^r^rn,

if An(ή = Ac, then A'n(r)>0. (4.34)

We claim that for large n

(4.35)
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As in Case a), this will finish the proof of Case b). To prove (4.35), we have as
before, for large n,

Thus

r-2ε
F " ε lc2 f~ε lc2 lc2

= L d L d

because τ > l . Thus (4.35) holds and the proof of Caseb) is completed. This
completes the proof of Lemma 4.6. •

Notice that Lemma 4.6 completes the proof of Lemma 4.2. The following result
yields the fc = 0 case of the induction.

Lemma 4.7 (Fusing Lemma). Suppose that (4.1) holds with fc = 0. Then the
backwards orbit through P lies in Γ for Q^r^r and is the y-orbit.

Proof. Since yn->γ and our solutions lie in a continuous one-parameter family, we
can find an s > 0, and ζ > 0 such that w(s, yn) ̂  ζ for each n, and w(s, y) ̂  ζ. Recall that

2w'2 _
v = Aw', and β'(r) = thus (2.11)' implies that {eQv)' < 0 in β 4 . Furthermore, as
we have shown in Lemma 4.3, each w'(r, yn), and hence w'(r, y) is uniformly bounded
in Q4 [cf. (4.15)]. Since (eQv){ρ + s,γn)<0, it follows that (eQv)(r9yn)φ0_in Q4;
similarly, {eQv)(r, y) + 0 in Q4. That is, no crash can occur for the y-orbit in ζ)4. Now
by "continuous dependence" (since the y-orbit is non-singular),

lim (w(rn, yn\ w'(rn, yn\ A(rm yn\ rn) = (w(f, y\ w'(r, y), A(f, % r).
n~* oo

On the other hand, by the definition of P,

lim (w(rn, yn), w'(rn, yn), A(rn, yn), rn) = P.
π-*oo

It follows that P = (w(r,y),w'(r,y),A(r,y),r), and this completes the proof of
Lemma 4.7. •

With the proof of this last lemma, we see that the proof of Proposition 3.1 is
complete.

We turn now to the

Proof of Proposition 3.2. Suppose that we are in Case a), limrπ = oo. Then by
passing to a subsequence, if necessary, we may assume rn^R2 = Ri + l {Rί is
defined in Proposition 2.4). Define the sub-orbit segment A'ncΛn by

r, ynl w'(r, yn\ A(r, yn), r):0Sr^R2}

then

e{Λ'n) = (w(R2, yn\ w'(R2, yn\ A(R2, yn\ R2).
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Now from Propositions 2.4,2.5, and 2.7, we have \w'(R2, λn)\ < τ, and A(R2, λn) ^ η,
for each n. Since w2(R2,λn)S 1> it follows that we can find a subsequence nk such
that e(Ani)-^PeΓ.

Suppose now that we are in Case b), lim w2(rn,λn)>w2. Then for large n, by
passing to a subsequence if necessary, w2(rn, An)>w2. For concreteness, we may
assume w(rn,λn)>w1. Define the sub-orbit segment Λ'ncΛn by

Λ'n = {(w(r, yn\ w'(r, yn\ A(r, yn\ r): 0 S r ^ rWχ(λn)}
then

e{Λ'n) = (w1? w'(rw iμn), Λw), ̂ (rWl(AJ, Λw), rWl(AM)).

From Case a), we may assume that rWί(λn)^M, for each n. Furthermore,
Propositions 2.4, 2.6, and Corollary 2.8 imply that |w'(rWl(Λπ),iπ)|^τ, and
A(rWί(λn),λn)^η for each n. The proof is now completed as in Case a). •

We turn now to the

Proof of Corollary 3.3. We consider two cases; namely, a) {re(λn)} is bounded, or
b) {re{λn)} is unbounded. In Case a), let

rw = max{r: w

2(r,λn) = w2

ί},
and

Λn = {(w(r, λn), w'(r, λn\ A(r, λn\ r): 0 ^ r ^ rn}.

By Proposition 3.2b) e(Λn)-+P = (w, w', Z, r) e Γ, so we may apply Proposition 3.1 to
conclude that the backwards orbit through P lies in Γ, gets back to r = 0, and is the
A-orbit; moreover, Ω(X) ̂  iV. If we consider the /l-orbit for r > r, then Propositions
2.4, 2.5, and 2.7 show that the A-orbit lies in Γ for f ^r^re(λ). This completes the
proof in Case a).

If {re(λn)} is unbounded, then we may assume that {re(λn)} has no bounded
subsequence, so that hmre(λn) = co. With rn = R2, we may employ an argument
similar to that in Case a) to complete the proof. •

Finally, Proposition 3.4 will follow from a more general result (which we shall
find useful in a future publication). This result states that if an orbit comes close to
one of the "rest points," (w, w') = ( ± 1,0) with sufficiently large r, then it must exit
the region w 2 < l , before it rotates another π radians. This latter result is a
consequence of the following observation: namely, even though the system (2.1),
(2.2) is non-autonomous, and highly non-linear, it turns out that for orbits which
come sufficiently close to one of the above "rest points", we can find a weak sub-
stitute for a Hamiltonian function, namely,

H(w, w', r) = P(w) + r V 2 / 2 , (4.36)

where P(w) = w2/2 — w4/4; see Fig. 4.4. [Before stating the next result, recall that if
{w(r),A(r)) is a solution of (2.1), (2.2), then θ = ΘJr) is defined by 0(0) = 0 and θ(r)

1

P(w)

h 1/4

Fig. 4.4
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Proposition 4.8. Let Pn = (wπ, w'n, An9 rn) be a sequence of points in Γ such that

wj->l, r π ^ o o , and rn(l-An)<M', (4.37)

for some M' > 0. Let Pn(r) = (wn(r\ Wn(r\ An(r\ r) be the orbit through Pn, defined for
r>rn, and suppose that

0^w'n(rn)/wn(rn)^l. (4.38)

Then for sufficiently large n, Pn(r) exits Γ through w2 = l, say at r = rn

e9 and
(θ(Pn)-θ{PM)<5π/4.

To understand what this says, we consider Fig. 4.5. Thus if say ww-> — 1, then
the orbit through Pn must exit Γ through the line w = l, with w'>0.

The function H, defined by (4.36) consists of two parts, the "potential energy"
P(w) and the "kinetic energy" r2w'2/2. Notice that if an orbit has "total energy"
larger than the maximal potential energy, then the kinetic energy cannot be zero
(i.e., w' Φ 0). Define rN and rD by w'(rN(λ\ λ) = 0 and w(rD(λ\ λ) — 0. Then, if we insist
that H(rN(λ)) is near i , the maximum potential energy (cf. Fig. 4.4), then we shall
show that H{rD(λ))> J and for r>rD(λ\ that H'(r)>0. Then the orbit cannot cross
the hyperplane w' = 0 because H>P.

Proof of Proposition 4.8. Without any loss of generality, we may assume that
wn -»— 1. As long as the orbit for r>rn has not crossed the line w' = 0 with w > 0, we
have that μ is uniformly bounded (for all orbits) by Proposition 2.11 say μn(r) ^ M.

With H defined by (4.7), we have

— w(l — w2)μ
+ (rA-Φ)wΊ. (4.39)

We claim that H'>0 if r > 3 M , and (w,W) lies in Q2. Indeed, for r > 3 M , A(r)
= 1 - μ(r)/r > 1 -1/3 = 2/3. Thus

2)2
(ί-w2)

>rβ, (4.40)

so our claim follows from (4.39) since — ww'^0 in Q2.
Define rN = rN(wn) to be the smallest r>rn for which w'n(rN)=0. From now on, we

only consider those orbits for which rnΞϊ3M and r n > R 2 ; this latter condition
guarantees that all such orbits are non-crashing (cf. Propositions 2.4,2.5, and 2.7).
Then for r^rn, it follows from (4.39) that in Q2

H'{r)>r-w'2 if r^ (4.41)

w=1
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Furthermore, in Q2, if r>rn, H'>0 implies that
2 // \2 ιΊ

0<H(r)-H(rn) = P(wn(r)) + "^ψ- - i W " \r2

n.

It follows that in Q2

rw'n(r)>]/2(P(wn))-P(wn(ή), if r>rn. (4.42)

Thus [cf. (2.10)], if we define rj by w(rJ) = 0 [and rS = min{r>rB:wll(r) = O}], then
using (4.41) and (4.42), we find [using the notation Hn{r) = H{wniWn,r)~\

Hn(rn

0)-Hn(rn)= lnH'n{r)dr>- \rwt2(r)dr

1 o i o

J wo -3 wn

Now for n large, say n>Nl9 — 1 <wn< — | . For such n,

Hn(rn)> Y J γP(wn)-P(w)dw

where /ct = min{— w(l — w2): — f ^ w^ — 7} here ε>0 is independent of n>Nί.
Now choose iV ĴVΊ such that π>JV implies

0 < i - P ( w n ) < ε . (4.43)

If r^rS>r π ^3M, then from (4.39) and (4.40),

in particular, H'n(rn

0)>Q.
If we define r by

(4.44)

( 4 4 5 )

then we shall show that if n>N, there is an r( = r(ή))>r such that wn(r) = ί and
Θ(PΠ) — θ(Pn(r)) < 5π/4. To this end, we first show that in Q x, we have, for sufficiently
large n,

H'n(r)>0 if r>rg. (4.46)

Choose N'>Nso large that rΠ > r, if n > N'. Then for n > N' suppose that there were
a smallest rί>rtί

0 for which H/

n(r1) = 0. Then since r 1>r5>r J I, we have r1>r.
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Also, as

HJtrJ - Hn(rn

0) = (r, - i»0)H'(η) (

we have

r2wΊr )2

^ψ1- = HJLrJ > Hn(r»0)

But since {^P(w) if w2g 1 (cf. Fig. 4.3), it follows that

r 1 w;(r 1 )>l/2i. (4.47)

Thus from (4.44)

since rί>r. This is a contradiction, so no such rx exists and (4.46) holds.

In particular, if r > r j, we have [as in (4.47)] rw'n(r) > \/ϊε. Thus for such r, and
n>N\

^ / i ί / ^ l , i f /^

This completes the proof of Proposition 4.8. •

Remark. The proof of Proposition 3.4 follows easily from this last result. Indeed,
take rn = rn(λn), where θ(rN(λn), λn) = — feπ. With this choice of rn, we have (4.37) and
(4.38) holding. Thus for sufficiently large n, the orbit exits Γ through w2 = 1 and
θ(Pn(re(λn)))>θ(Fn)-5π/4. But this, in fact, shows that θ(re(λn))< -(Jfc + l)π,
because no orbit crosses the hyperplane w = l with w'<0. Π
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