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Abstract. It is shown that the scattering of spacetime axions with fivebrane solitons
of heterotic string theory at zero momentum is proportional to the Donaldson
polynomial.

1. Introduction

A p-brane (i.e. an extended object with a p +1-dimensional worldvolume) naturally
acts as a source of a p + 2 form field strength F via the relation

VMFMNi...Np+i = qANi...Np+ι, (1)

where A is the p-brane volume-form times a transverse (5-function on the p-brane.
In d dimensions they can therefore carry a charge

q= i *F, (2)
Σ4-p-2

where the integral is over a d — p — 2 dimensional hypersurface at spatial infinity.
The dual charge

9= J F (3)
Σ P + 2

can be carried by a d —p - 4 brane. A straightforward generalization [1] of Dirac's
original argument implies that quantum mechanically the charges must obey
a quantization condition of the form

qg = n, (4)

just as for the special case of electric and magnetic charges in d = 4. In particular,
strings in ten dimensions are dual, in the Dirac sense, to fivebranes. Thus fivebranes
are the magnetic monopoles of string theory.

In [2, 3] it was shown that heterotic string theory admits exact fivebrane
soliton solutions. The core of the fivebrane consists of an ordinary Yang-Mills
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instanton. Thus heterotic strings are dual, in the Dirac sense, to Yang-Mills
instantons.

This simple connection between Yang-Mills instantons and heterotic string
theory raises many possibilities. On the one hand, heterotic string theory might be
used as a tool to study the rich mathematical structure of Yang-Mills instantons,
or to suggest interesting generalizations. On the other hand, the mathematical
results of Donaldson [4] and others on the construction of new smooth invariants
for four-manifolds may have direct implications for non-perturbative semi-classical
heterotic string theory.

In this paper this connection is elucidated as follows. We consider JV parallel
fivebranes on the manifold M 6 x X, where M 6 is six-dimensional Minkowski space
and X is the four-manifold transverse to the fivebranes. (The consistency of string
theory places restrictions on the choice of X, as discussed in the next section.) The
quantum ground states of this system are found to be cohomology classes on the
JV-instanton moduli space JίN(X). Transitions among these ground states may be
induced by scattering with a zero-momentum axion. Such axions are characterized
by a harmonic two-form or an element of H2(X\ and the S-matrix then defines
a map H2(X) -• H2(JίN). This map turns out to be precisely the Donaldson map.
The fact that the scattering is a map between cohomology classes is ultimately
a consequence of zero-momentum spacetime supersymmetry. Multiple axion scat-
tering is given by the intersection numbers on JίN of these elements of H2(JίN\
which is the Donaldson polynomial.

This representation of the Donaldson map as a string S-matrix element leads to
an apparently new geometrical interpretation of Donaldson theory. For any
Kahler manifold X there is a Kahler geometry on H2(X, C) x JίN(X) with Kahler
potential defined by

Jf = i j £ Λ J - l n J j Λ J , (5)
2 x x

where J is the Kahler form on X and £ is a solution of

trF Λ F = ίddE . (6)

E is an analog of the Chern-Simons form for Kahler geometry. The Donaldson
map is then given by a mixed component of the Christoίfel connection, computed
as the third derivative of Jf*.

It is noteworthy that the final expressions we derive for the Donaldson map
and polynomial are similar to those given by Witten [5]. Indeed, the embedding
of four-dimensional Yang-Mills instantons into ten-dimensional string theory
given by fivebrane solitons seems to produce a structure of zero-momentum
fields and symmetries similar, if not identical, to that of Witten's topological
Yang-Mills theory. Though we have not done so, it is possible that the complete
structure of topological Yang-Mills theory can be derived from zero-momentum
string theory in the soliton sector. This is perhaps in contrast to the usual notion
[5] that topological field theory is relevant to a short-distance phase of string
theory.

We work only to leading order in oί in this paper. An interesting question,
which we do not address, is whether or not higher-order or non-perturbative
corrections provide a natural deformation of the Donaldson polynomial analogous
to the deformation of the cohomology ring provided by string theory.
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This paper is organized as follows. In Sect. II we establish our notation and
review some properties of instanton moduli space. The collective coordinate
expansion leading to the low-energy effective action is derived in some detail, and is
then used to characterize the ΛΓ-fivebrane ground states. In Sect. III.A the collective
coordinate expansion is continued to reveal the Donaldson map as a subleading
term in the low-energy effective action. Section IΠ.B gives an alternate derivation
of the Donaldson map using supersymmetry and Kahler geometry, and derives (5).
In Sect. IΠ.C we discuss the representation of the Donaldson map as a period of the
second Chern class which may be relevant in the present context. In Sect. IΠ.D the
string scattering amplitude which measures the Donaldson polynomial is de-
scribed. We conclude with discussion in Sect. IV.

II. Instanton Moduli Space and the Collective Coordinate Expansion

The derivation of the Donaldson map and polynomial from ten-dimensional string
theory is straightforward though somewhat involved. We begin with the action
describing the low-energy limit of heterotic string theory:

4VMφ Vφ - \HMNPH
M»P - α'trFM NFM N

-φMΓMNPVNφP + 2λΓMNVMφN + ΪΓMVMλ -2a'trχΓMDMχ

-<x'trχΓMΓNPFNP(φM + ±Γuλ\ + 2ψNΓMΓNλVMφ-2φMΓMφNVNφ

+ φsΓιsΓ
MNPΓT]φ

τ

+ 2φsΓ
SMNPλ) +•••), (7)

where " + •" indicates four-fermi as well as higher-order a' corrections,
H = dB + a'ω3L — a'ω3ϊ, ω3L and ω3Y are the Lorentz and Yang-Mills Chern
Simons three-forms respectively, and "tr" is 75 the trace in the adjoint representa-
tion of E8 x E8 or SO (32). A supersymmetric solution of the equations of motion
following from (7) is one for which there exists at least one Majorana-Weyl spinor
η obeying

δφM = VMη - ^HMNPΓ
NPη = 0 ,

lδλ = l-HMNPΓ
MNPη - VMφΓMη = 0 ,

o

(8)

The general solution of this form on X x M 6 , where X is a Kahler manifold with
c1 ^ 0 and M 6 is flat six dimensional Minkowski space, was found in [6]. The
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gauge field may be any self-dual connection on X:

F =-F
 pσF (9)

•*• μv Λ ° μ v •*• pσ > \y)

where μ, v are indices tangent to X. Let g be a Ricci flat Kahler metric on X. Then
the dilaton is the solution of

D e2φ = (x'(trRμvR
μv - trF μ v F

μ v ) (10)

and the metric and axion are

Qμv = e2φgμv, Hμvλ = -εμvλ

pVpφ, gab = ηab, (11)

where α, b are tangent to M 6 . Special cases of this general solution are discussed in
[2, 7, 3]. In [8] it was argued for X = R* that such solutions are in one to one
correspondence with exact solutions of heterotic string theory. For c2(F) = N, this
may be viewed as a configuration of N fivebranes transverse to X. (It may also be
viewed as a "compactification" to six dimensions, though X need not be compact.)
Since (given the metric on X) there is one unique solution for every self-dual
Yang-Mills connection (9), the space of static N fivebrane solutions is identical to
the moduli space JίN of ΛMnstanton configurations on X.

For c x(X) ^ 0 and c2(R) ^ c2(F\ the metrics g of (11) are geodesically com-
plete, but may be non-compact. If c^X) > 0, there are geodesically complete but
non-compact Ricci-flat metrics with bounded curvature [9]. This means we have
effectively removed the divisor D oϊc1 and are really studying string theory on the
non-compact manifold X minus D. There appears to be no special difficulty in
defining string propagation on such non-compact geometries (though they would
not be suitable for Kaluza-Klein compactification). Singularities at isolated points
may also arise in solving the dilaton equation (10). If c2(R) > c2(F\ the singular-
ities are of the type studied in [3]: the metric g is geodesically complete, but non-
compact. This again produces no difficulties.

On the other hand if c1 < 0 or c2(R) < c2(F\ the metric in (11) may have real
curvature singularities, which could potentially render string theory ill-defined.
More work must be done before our methods can be used to directly study these
cases, but the validity of our final formulae for all Kahler X suggests that it may be
possible to do so. Possible approaches would be to consider the more general case
of time-dependent metrics, or to consider the (eight-dimensional) cotangent bundle
of X which has c1 = 0.

The solutions of (9), (10) have bosonic zero modes tangent to JΐN. To leading
order in a' these zero modes involve only the gauge field and will be denoted
δiAμ(x)9 where i = 1,. . . , m, m = dim (JKN) and x is a coordinate on X. The zero
modes obey the linearized self-duality equation

D[μδtAv] = ^BμrDpδtA9 . (12)

For gauge groups larger than SU(2) or for metrics on X which are not "generic" the
gauge connection will in general be reducible (there exist non-trivial solutions of
Dφ = 0). This leads to orbifold singularities in MN. In what follows we will restrict
ourselves to irreducible connections and ignore such subtleties.
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If Z* is a coordinate on JίNi and Aμ(x, Z) a family of self-dual connections, the
zero modes are given by

δtAμ = dtA°μ - Dμεt , (13)

where e4(x, Z) are arbitrary gauge parameters and dt = d/dZ\lt is convenient to fix
εf by requiring

/ > " M μ = 0 (14)

so that the zero modes are orthogonal to fluctuations of the gauge field obtained by
gauge transformations. The gauge parameter εf then defines a natural gauge
connection on JίN with covariant derivative

Si = di + lεi, ] (15)

which has the property

[_siiDμ-] = δiAμ. (16)

The Jacobi identity for si9 Dμ and D v implies

SiFμv = 2D[μδiAv] . (17)

The Jacobi identity for si9 Sj and Dμ implies

DμφtJ= -2s[tδnAμ9 (18)

where

Φtj = lSi,Sj] (19)

is the curvature associated to s*. These relations will be useful shortly.
A natural metric <g on Jί^ is induced from the metric g i o n l :

ί ^ δ j A , ) . (20)

In addition there is a complex structure 3~ on «/## induced from the complex
structure J on X:

yft . (21)
It is easily seen that the zero modes are related by

^δjAμ= -j δiA,. (22)

In addition to bosonic zero modes, there are fermionic zero modes of the super-
partner χ of AM. These zero modes are paired with the bosonic zero modes by the
unbroken supersymmetry [10] and are given by

χt = δiA.Γ'ε' , (23)

where ε' is the four-dimensional chiral spinor obeying

Jμv = -iεf1[Γμvε\ J\Γεf = ίΓμε\ εh = 1 . (24)

It is easy to check, using (14) and (12), that ΓμDμXi = 0.
Equation (23) would appear to give m zero modes, where m is the dimension of

JfN9 but we know from the index theorem that these are not linearly independent.
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Using (24) and (22) one finds

&Xj = ίXi (25)

This gives m/2 independent zero modes, as implied by the index theorem.
The low-energy dynamics of N fivebranes i n l x M 6 is best described by an

effective action S e f f. This action can be derived by a (super) collective coordinate
expansion which begins

Aμ(x,σ) = A°μ(x9Z(σ))+ •••

χ(x, σ) = XfaMx, Z{σ)) + , (26)

where (x, σ) is a coordinate on X x M 6 and the bosonic (fermionic) collective
coordinates Zι (λι) are dynamical fields on the soliton worldbrane. λι = λ\ + λL is
a doublet of six-dimensional Weyl fermions obeying λj = — i^~k

jλk. Under SO(5,1)
worldbrane Lorentz transformations, the λhs transform into one another. It is
possible to assemble the λhs into m/2 six-dimensional symplectic Majorana-Weyl
spinors transforming covariantly under 50(5,1). However SO (5,1) covariance is
not necessary for our purposes, and the supersymmetric SO (5,1) covariant formu-
lation introduces a number of extraneous complications which obscure the connec-
tion with Donaldson theory. Our expressions will have manifest invariance under
two-dimensional super-Poincare transformations which we take to act in the σ°, σ1

plane. The subscripts on λ\ denote the corresponding two-dimensional chirality.
In accord with this and as a further simplification, we henceforth restrict λι and Z*
to depend only on σ° and σ1.

The effective action Se f f can be expanded in powers of inverse length. Taking Z*
to be dimensionless and λι to have dimensions of (length)"1 / 2 this is an expansion in
the parameter n = nd + nf/2 with nd the number of σ derivatives and nf the number
of fermion fields. The expansion (26) solves the spacetime equations of motion to
order n = 0, while the leading terms in Sef f are n = 2. To have a consistent action
we must still solve the spacetime equations to order n = 1. This requires that the
component of the gauge field tangent to the worldbrane acquires the term

Aa = VaZ% - ^φtJPΓaλ> (27)

with φij given by (19).
The leading order worldbrane action may now be derived by substitution of the

expansion (26), (27) of A and χ into the ten dimensional action (7) and integration
over X, the transverse space. Using

Faμ = VaZ%Aμ - s^A.λTa^ , (28)

one has the bosonic term

Seff = -^^d4xy/^e-2ηd6σtτ(δiAμδjAv)g^VaZ
iVaZj

(X

^ aZ>. (29)
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Including the fermionic terms gives the d = 6 supersymmetric sigma model with
target space JίN\

Sef f = -^\d6σ^ij{VaZiVaZ
j + 2PΓa(Vaλ

J + VaZ
kΓJ

klλ
1)) + (fermi)4 . (30)

Because we have maintained only an SΌ(1, 1) subgroup of 50(5,1) as a manifest
symmetry of (30), only two of the eight supersymmetries are manifest.

For values of Zι corresponding to N widely separated instantons, (30) is
approximated by N separate terms describing the dynamics of each of the N five-
branes. The full action (30) includes additional fivebrane interaction terms.

Classically, there is one static ground state for each point ZιeJίN. However
quantum mechanical groundstates involve a superposition over Zι eigenstates. As
explained by Witten [11] the supercharges of the supersymmetric sigma model (30)
act at zero momentum as the exterior derivative on the target space JίN, and the
general supersymmetric ground state can be written in the form

|0 S > = 0S|O>, 0s = Θs

ii...ip(Z)ψil ψ*' (31)

where Θs

h...ip is a harmonic form on JiN, φ1 = ReΛ,+ + ίRελ1- and the state |0> is
chosen so that

0/0*|0> = 0. (32)

In summary, the low-energy dynamics of iV-fivebranes is described by a super-
symmetric sigma-model with target space JίN and the ground states of this system
are cohomology classes on JίN.

III. The Donaldson Map and Polynomial

In addition to the leading term (30) in <Seff, there are a number of terms representing
interactions between spacetime fields which are not localized on the fivebrane and
the localized worldbrane fields appearing in S e f f. This corresponds to the fact that
the state of the fivebrane can be perturbed by scattering with spacetime fields. For
the special limiting case of zero-momentum spacetime fields, energy conservation
implies that scattering can only induce transitions among the groundstates. Zero
momentum spacetime axions are characterized by harmonic forms on X, so axion
scattering is a map involving H(X) and H(JίN(X)). This strongly suggests that the
scattering should be given by the Donaldson map. In the following two subsections
we demonstrate that this is indeed the case by two separate methods. Subsection
(A) contains a straightforward continuation of the collective coordinate expansion.
In subsection (B), it is observed that the Donaldson map has a geometric inter-
pretation as a certain connection coefficient derivable from a Kahler potential. Its
form is then deduced in a few lines using supersymmetry.

A. Derivation by Collective Coordinate Expansion. Consider the interaction of
a low-momentum spacetime axion with the worldbrane fermions. Other spacetime
fields can be treated in an analogous fashion. Spacetime axions are described by the
potential

Bμv=Y(σ)Tμv, (33)
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where T is a harmonic two form on X, and Y depends only on σ°, σ1. The
ten-dimensional coupling

^ίnt = ̂ 73 e~2φdMBNP tτχΓMNPχ (34)

appearing in (7) descends to a coupling in 5 e f f between one spacetime axion and
two worldbrane fermions. Substituting (33) and (26) into (34) and integrating out
the zero mode wave function one finds

1 1 A xj) Vn I

^ j , (35)

where

O'tJ(T) = ̂ d4x^e-2*χ}Γ^Tμvχj. (36)

The lambda bilinear appearing in (35) can be seen, using (32), to be equivalent to
φι\j/j when acting on a vacuum state. Substituting the formula (23) for χt one has,
after some algebra,

Θf

ij(T) = μτ(δiAAδjA)AT+ί (37)
x

where T+ is the self-dual part of T. It is easily checked that Θ'i} is not closed and so
does not represent a cohomology class on JίN.

This is remedied by the observation that (34) is not the only term in 5 1 0 which
gives rise to the coupling of a spacetime axion to worldbrane fermions. Because of
the bilinear term in the expansion (27) for Aa9 such couplings also arise from the
ten-dimensional term

^ ( 3 8 )

From the expansion for Aa9 the relevant term in ω3Y is

i P ) . (39)

This formula may then be used to reduce (38) to a coupling in Seff. The result may
be added to (35) to give the total coupling of a single spacetime axion of the form
(33) to two worldbrane fermions:

(40)

α ~

where

OiS{T) = $tr(δiA A δjA - φijF) A T+ . (41)
X
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(41) has several important properties. The first is that 0 is closed on JίN\

Λ < M + Φ[ijSk]F) A T+ = 0 , (42)

x
upon integration by parts on X. Secondly, if Γ+ is trivial in H2(X) so that T+ = dU
one has

Θij(dU) = J tr(DδuA A δnA + s{iδnA A F) A U
x

= -2du $ tr(δn A ΛF)ΛU, (43)
X

i.e. the image of an exact form on X is an exact form on Jί^. Thus (41) gives a map
from the cohomology of X into the cohomology of JίN. Using Poincare duality
(41) may be written:

Θij(Σ) = $tv(δiAAδjA-φijF), (44)
Σ

where Σ is the surface Poincare dual to T+. This is a standard expression [4] for
the Donaldson map from H2(X) -* H2(JίN(X)) in terms of differential forms, and
is identical to that derived in the context of topological quantum field theory by
Witten [5].

B. Derivation from Kάhler Geometry. In this subsection we will provide an alternate
derivation of (40) which is less direct, but shorter and provides some geometrical
insight. For these purposes it is convenient to view the solution (9)—(11) not as
N fivebranes on X, but as a "compactification" from ten to six dimensions. The
low-energy action then contains, in addition to Z f, complex massless moduli fields
7 α that parameterize the complexified Kahler cone (a subset of H2(X, C)). The
imaginary part of Ya is the axion associated to the harmonic two form Ta on X.
(The α index was suppressed in the previous subsection.) Six-dimensional super-
symmetry then implies that the metric appearing in the kinetic term for the moduli
fields is Kahler, or equivalently in complex coordinates,

JIf=idIdjJfr. (45)

To give an expression for Jf, we note that on a Kahler manifold a closed (p, p)
form Hpp is locally the curl of a 2p — 1 form:

Hp,p = dG2p-1 = (d + S X G ^ - i + G p _ l f J , ) . (46)

Since the left-hand side of (46) is of type (p, p),

dGp,p.1 = dGp.Up = 09 (47)

so that locally GPiP-x = dFp-ίfP-1. We conclude that locally a closed (p,p) form
can always be written in the form

Hp>p=iddFp.Up^. (48)

F is real if H is, and is determined up to a closed (p — 1, p — 1) form.
Jf is then given by

Jf = \\E A J-lnJjΛ J, (49)
2χ x
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where J is the Kahler form on X and E is a solution of

tτFΛF = ίddE. (50)

E is related to the two-dimensional WZW action and can not be simply expressed
as a function of A. A formula for Jf as a conformal field theory correlation function
is given in [12].

The second variation of X can be computed by noting that

δ/δjtrF Λ F = 2 5 3 t r ( M Λ δjA - φIfF) . (51)

This determines the second variation of £ up to a closed two-form on X times
a closed two-form on JίN. The ambiguity in the definition of £ may thus be fixed so
that

iΰjdj-JΓ = - Jtr(δjyl Λ δjA - φu-F) A J
x

(52)

where in the last line we have used J F = 0. The coupling of Y to two λns is then
determined by supersymmetry to be proportional to the mixed Christoffel connec-
tion (as in (30) with an index lowered) on H2(X9 C) x JίN\

^in. = - ^ V° Y*λ'JΓaλ"Γm . (53)

In Kahler geometry, the Christoffel connection is given by

(54)

Differentiating (52) one more time and using dxJ = Tx we easily recover the
formula (41) of the previous section

-tΓjta = ί tr(δjA Λ δjA - φu-F) Λ Ta = 0 Λ β (55)

except for the absence of a projection on to the self-dual part of Ta. This difference
can be accounted for if λ' is related to λ of the previous section by the field
redefinition

λ^e-^λ, (56)

where Xa = j Γα Λ J/JJ A J.

C. The Donaldson Map as the Second Chern Class. It is known [4, see also 13,14]
that Θ can be written as integrals of tr J^ 2 for a certain curvature # \ The fact that
0 couples to axions then strongly suggests that the observations in this paper are
connected with the structure of anomalies in string theory. While we do not
understand this connection, in the hope that it might be understood later we record
here this representation of Θ. Introduce a connection Q> (on the universal bundle
over JiN) by

2 = dZιSi + dxμDμ . (57)
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Then the associated curvature !F = 21 has components

^ i j = φiji ^ i μ = δiAμ, 3?μv = Fμv. (58)

Now consider the integral c2(Σ) of the second Chern class of ^ over a four surface
Σ in JίΉ x X,

Λίtr^ Λ#\ (59)
oπ z

If Σ is a product of a two surface 2 ^ in JίN with a two surface Σx in X one finds

L J tfy^dZ' Λ dZ>, (60)

i.e. the Donaldson map H2(X) -• H2(JίN) is a period of the second Chern class.
A similar result holds for the maps Ha(X) -» H 4

D. The Donaldson Polynomial. A physical realization of the Donaldson polynomial
may be obtained by considering multiple axion scattering. Let |m> be the ground
state corresponding to the top rank form on JίN\

|m> = ε i i . . . I m ^-^ |0>. (61)

The amplitude for scattering p axions associated to the classes T1. . . Tp off the
state |0> and winding up in the state |m> is proportional to

A(Tl9. . ,TP) = «n\Oτ> OT>\0} . (62)

It is easily seen that this reduces to

A(Tl9...9Tp)= j 0 ( 2 \ ) Λ ••• Λ Θ ( T P ) (63)

which is the Donaldson polynomial.
While our derivation from string theory of (41, 63) was only valid for c^ (X) ^ 0,

it is known [4] that (41) and (63) are representations of the Donaldson map and
polynomial for any algebraic X. It would be interesting to try to extend our
derivation to the more general case.

IV. Conclusion

We have shown that the Donaldson map appears explicitly as a coupling in the
low-energy action for heterotic string theory in the soliton sector. This implies the
Donaldson polynomial can be measured by scattering massless fields and solitons.
This realization leads to concrete formulae for the Donaldson map and polynomial
which are equivalent to, and provide a new perspective on, formulae derived by
Witten in the framework of topological Yang-Mills theory. It also led to an
interpretation of the Donaldson map as a Kahler-Christoffel connection on
H2(X, C)xJίN{X).

The fact that this scattering is a map between cohomology classes was insured
by zero-momentum worldbrane supersymmetry, which acts like the exterior deriv-
ative on JfN. This should be contrasted with topological Yang-Mills theory where
the exterior derivative on the instanton moduli space is constructed in terms of
a BRST operator.
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Our work suggests a number of generalizations and applications. Perhaps this
connection can provide new insights into, or stringy interpretations of, the various
theorems on the structure of four-manifolds which follow from Donaldson's work.
Alternately, the remarkable properties of the Donaldson polynomial may translate
into interesting properties of the fivebrane-axion S-matrix, or even have implica-
tions for the closely related problem of instanton-induced supersymmetry breaking
in string theory.
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