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Abstract. The existing classification of homogeneous quaternionic spaces is not
complete. We study these spaces in the context of certain N = 2 supergravity
theories, where dimensional reduction induces a mapping between special real,
Kahler and quaternionic spaces. The geometry of the real spaces is encoded in
cubic polynomials, those of the Kahler and quaternionic manifolds in homogene-
ous holomorphic functions of second degree. We classify all cubic polynomials that
have an invariance group that acts transitively on the real manifold. The corres-
ponding Kahler and quaternionic manifolds are then homogeneous. We find that
they lead to a well-defined subset of the normal quaternionic spaces classified by
Alekseevskiϊ (and the corresponding special Kahler spaces given by Cecotti), but
there is a new class of rank-3 spaces of quaternionic dimension larger than 3. We
also point out that some of the rank-4 Alekseevskiϊ spaces were not fully specified
and correspond to a finite variety of inequivalent spaces. A simpler version of the
equation that underlies the classification of this paper also emerges in the context
of W3 algebras.

1. Introduction

Supersymmetric field theories in a variety of space-time dimensions give rise to
non-linear sigma models with a restricted target-space geometry. There are many
examples in the literature where this phenomenon led to surprising results, some-
times with interesting connections to mathematics. Furthermore, the fact that some
of these supersymmetric theories in different space-time dimensions are related by
(supersymmetric) dimensional reduction offers a way of connecting seemingly
unrelated geometries.

In the context of this paper N = 2 supergravity is relevant. In five space-time
dimensions, one may consider the coupling of a certain number (say n — 1) of
supersymmetric abelian vector multiplets. As was shown some time ago [1], these
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theories are characterized by a cubic polynomial in n (real) variables, which gives
rise to a non-linear sigma model corresponding to a real (n — l)-dimensional space.
Some of these polynomials correspond to symmetric spaces and are related to
Jordan algebras. After dimensional reduction of this theory, one finds N = 2
supergravity in four space-time dimensions, coupled to n abelian vector multiplets.
It is known that the non-linear sigma models in the four-dimensional theory
correspond to Kahler spaces of complex dimension n, characterized by a homo-
geneous holomorphic function of second degree, depending on n + 1 complex
variables [2]. Such Kahler manifolds are called special [3]. Special Kahler geo-
metry is relevant to string theory, where compactifications of type-II superstrings
on (2, 2) superconformal field theories with central charge c = 9 lead to TV = 2
supergravity coupled to vector multiplets. The massless scalars of these vector
multiplets play the role of coordinates of the moduli space of the conformal
theories, so that the study of supergravity may thus lead to interesting results for
the moduli geometry of certain superconformal theories [4]. Because certain
(tree-level) results for compactifications of the heterotic string on a (2, 2) supercon-
formal system depend only on the choice of the conformal theory, special geometry
plays a role for all string compactifications of this type, which include those on
Calabi-Yau spaces. Indeed, this fact has been verified in several studies where
various aspects of this intriguing connection have been explored [4-8].

After dimensional reduction of four-dimensional N = 2 supergravity coupled
to n vector supermultiplets to three space-time dimensions, one finds a non-linear
sigma model corresponding to a quaternionic manifold of quaternionic dimension
n + 1. In this way one thus obtains a class of quaternionic manifolds whose
structure is encoded in the homogeneous holomorphic function of the special
Kahler manifold. Hence there exists a map between special Kahler manifolds of
complex dimension n and certain quaternionic manifolds of quaternionic dimen-
sion n + 1, which in [5] was called the c map. It was also shown that the c map
plays an interesting role in string theory. When compactifying IIA and IIB strings
on the same conformal theory, the resulting non-linear sigma models consist of
a product space of a Kahler manifold and a quaternionic manifold. The latter is
also special, in the sense that it is characterized in terms of a homogeneous
holomorphic function. When comparing the result of the compactification of the
IIA to that of the IIB string, it turns out that the two manifolds are interchanged
according to the action of the c map [4, 5].

Likewise one can introduce the r map, which, for every real space that couples
to d = 5 supergravity, yields the corresponding Kahler space that one finds upon
reduction to four space-time dimensions. The r map thus assigns a Kahler space of
complex dimension n to a real space of dimension n — 1. Supersymmetry and
dimensional reduction, which preserves supersymmetry, are the essential ingredi-
ents in these two maps.

We shall use the term "special geometry" for both the real spaces originating
from five-dimensional supergravity, the Kahler spaces originating from four-
dimensional supergravity and the quaternionic spaces that are in the image of the
c map.1 It should be clear that the inverse r and c maps are not always defined, as
there are spaces that couple to supergravity, but the corresponding supergravity

1 In the literature, special Kahler spaces were sometimes called Kahler spaces of restricted type;
the special quaternionic spaces were also called dual-quaternionic spaces.
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theory does not necessarily originate from a higher-dimensional theory. When the
coupling of a certain space to supergravity is not unique, the result of the maps will
depend on the type of coupling as, for instance, characterized by the way in which
the subgroup of the sigma model isometries that can be extended to a symmetry of
the full supergravity action, is realized. In four space-time dimensions these invari-
ances usually act on the field strengths of the abelian vector fields, and not on the
fields themselves, so that they only leave the equations of motion and not the action
invariant. These transformations, called duality transformations, constitute a sub-
group of Sp(2n + 2, R). The complex nature of the Kahler manifolds is thus related
to the complex nature of the (anti-)self-dual Minkowskian field strengths [9, 2]. In
five space-time dimensions, we are dealing with a real manifold, so that the
transformations are realized directly on the vector fields, whereas in three dimen-
sions the vector fields are converted into scalar fields (the relation of all these
symmetries upon dimensional reduction will be discussed in [10]; see also [11]).
Under these maps the dimensionality of the manifold increases.

For homogeneous spaces the isometries act transitively on the manifold so that
every two points are related by an element of the isometry group. The orbit swept
out by the action of the isometry group G from any given point is (locally)
isomorphic to the coset space G/H, where H is the isotropy group of that point. For
non-compact homogeneous spaces where H is the maximal compact subgroup of
G, there exists a solvable subgroup that acts transitively, whose dimension is equal
to the dimension of the space. Such spaces are called normal. This implies that there
exists a solvable algebra s such that G/H = es. The construction of this algebra
follows from the Iwasawa decomposition of the algebra g = h + 5 (see e.g. [12]).
The dimension of the Cartan subalgebra of 5 equals the rank of the homogeneous
space. It will turn out that the rank of the symmetry algebra and of its solvable
subalgebra increase by one unit under the c and r maps. In the context of this paper
the following considerations are important. If the result of the c map is a homo-
geneous quaternionic space, then the duality invariance (the symmetry of the
scalar-vector sector of the theory) of the original theory must act transitively on the
corresponding manifold parametrized by the scalar fields. The proof of this result,
which applies also to the r map, is given in [10]. Also the converse is true: if the
vector-scalar symmetries act transitively on the manifold parametrized by the
scalars, then one can show that the symmetry group after dimensional reduction
gives rise to additional symmetries, which leave the original scalar fields invariant
but act transitively on the new scalar fields. In this respect it is important that the
process of dimensional reduction always entails new symmetries whose number is
larger than or equal to the number of new coordinates.

The above results show that homogeneous quaternionic spaces that are in the
image of the c map correspond to special homogeneous Kahler spaces. On the
other hand, the latter give rise to special homogeneous quaternionic spaces,
provided that the scalar-vector symmetry transformations act transitively on the
Kahler manifold. Likewise, such Kahler spaces that are themselves in the image of
the r map correspond to special homogeneous real spaces. Again, special homo-
geneous real spaces give rise to homogeneous Kahler spaces, provided that the
vector-scalar symmetries act transitively on the real manifold.

In this connection Alekseevskiϊ's classification of homogeneous quaternionic
spaces [13] is relevant, as was first pointed out in [5]. In [13] it was conjectured
that the homogeneous quaternionic spaces consist of compact symmetric quatern-
ionic spaces and (non-compact) normal quaternionic spaces. Normal quaternionic
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spaces are quaternionic spaces that admit a transitive completely solvable group of
motions. According to Alekseevskiϊ there are two different types of normal quater-
nionic spaces characterized by their so-called canonical quaternionic subalgebra.
The first type has as canonical subalgebra C\, the solvable algebra corresponding
to Sp(l, l)/(Sp(l) (x) Sp(l)), and corresponds to the quaternionic projective spaces
Sp(m, l)/(Sp(m) (x) Sp(l)). These spaces are not in the image of the c map. The
second type has a canonical subalgebra A{9 the solvable subalgebra of SU(2,1)/
(5(7(2) (x) (7(1)). Denoting the dimension of the normal quaternionic algebra as
A(n + 1), the structure of the solvable algebra is such that it always contains
a normal Kahler algebra iVs of dimension 2n, whose action on the remaining part
of the algebra naturally defines a (2n + 2)-dimensional representation correspond-
ing to a solvable subgroup of Sp(2n + 2, R). 2 Therefore each normal quaternionic
space of this type defines the basic ingredients of a special normal Kahler space,
encoded in its solvable transitive group of duality transformations. Alekseevskiϊ's
analysis thus strongly indicates that the corresponding N = 2 supergravity theory
should exist, so that under the c map one will recover the original normal
quaternionic space. To establish the existence of the supergravity theory, one must
prove that a corresponding holomorphic function F(X) exists that allows for these
duality transformations. This program was carried out by Cecotti [14], who
explicitly constructed the function F(X) corresponding to each of the normal
quaternionic spaces with canonical subalgebra A\ that appears in the classification
of Alekseevskiϊ. With the exception of the so-called minimal coupling, where F(X)
is a quadratic polynomial, all the Kahler spaces are in the image of the r map. The
corresponding special Kahler manifolds were denoted by H(p,q) and K(p,q).
Under the c map, they lead to the normal quaternionic manifolds V(p,q) and
W(p, q) defined in [13]. If Alekseevskiϊ's classification is complete, there can be no
other special Kahler spaces with solvable transitive duality transformations.

In this paper we start at the other end and derive a classification of all
homogeneous quaternionic spaces that are in the image of the c°r map. The
analysis can be performed completely at the level of the special real spaces, and
amounts to classifying all the cubic polynomials whose invariance group acts
transitively on the corresponding special real spaces. This invariance group leaves
the full d = 5 supergravity Lagrangian invariant. The corresponding real spaces are
obviously homogeneous, but because of the results quoted above, so are the
corresponding Kahler and quaternionic spaces that emerge under the action of the
r map and the c°r map. When comparing the result to the classification of
Alekseevskiϊ (and the corresponding one of Cecotti) we find that their classification
is incomplete!

The cubic functions that are classified in this paper, are parametrized by

C(Λ) = dABCh
AhBhc, (A, B, C = 1, . . . , n) . (1.1)

2 This representation thus acts on In + 2 of the generators. The two remaining generators of the
quaternionic algebra, e0 and e+, are inert under iVs. The sum of the Cartan subalgebra of Ψ"s and
e0 constitutes the Cartan subalgebra of the quaternionic algebra, whose rank is thus 1 higher than
that of the Kahler algebra. The weight of the Kahler algebra under e0 is thus zero, while the weight
of the generators that constitute the {In + 2)-dimensional representation is 1/2 times the weight
of e+.
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The corresponding sigma model, which is contained in the five-dimensional super-
gravity Lagrangian [1], is defined by the Lagrangian

<e=-\dABCh
Adμh

Bd'>hc

9 (1.2)

where the scalar fields hA are restricted by C(h) = 1, so that the sigma model
corresponds to an (n — l)-dimensional real space. Linear redefinitions of the fields
hA that leave C(h) invariant constitute invariances of the full N = 2 supergravity
Lagrangian. However, it is not excluded that the sigma model Lagrangian (1.2) has
additional symmetries, which cannot be extended to symmetries of the full super-
symmetric Lagrangian. The polynomial C(h) is left invariant by linear transforma-
tions of the fields hA, whose infinitesimal form is parametrized by matrices BA

B,

δhA = BA

Bh
B , (1.3)

restricted by the condition

B?AdBC)D = 0. (1.4)

As explained above, our aim is to determine all tensors dABC whose invariance
group acts transitively on the manifold defined by (1.2). To analyze this question we
first redefine the scalar fields in some reference point where the metric associated
with the sigma model has positive signature.3 One may choose this reference point
equal to hA = (1,0, . . . , 0). In that case the coefficients dABC can be redefined
according to the so-called canonical parametrization

dna = 09 dlab= --dmδat. {a,b = 2, . . . , n) (1.5)

with dm > 0. To preserve this parametrization only orthogonal redefinitions of
the fields ha are allowed.

The condition (1.4) that the C(h) be invariant is then analyzed in the canonical
parametrization. Putting d m = 1 for convenience, (1.4) implies that BA

B takes the
following form (see [15] where the corresponding Kahler spaces were analyzed)

B\=0, B\=Bi

a, B\ = B\dabc + Aab, (1.6)

where Aab is an antisymmetric matrix with α, b, . . . = 2, . . . , n. This matrix is
subject to the condition

ΓabcdBdi = dd{abΛc)d , (1.7)

where

Γabcd — de(ahdcd)e — — δ{abδcd) . (1.8)

Now we observe that transformations associated with the matrices Λab that are
independent of the parameters Ba

u leave the canonical reference point invariant

3 Positive signature is required to ensure a positive-definite Hubert space of physical states. The
necessary and sufficient condition for this is that the variables hA are restricted to a domain where

(3dACDdBEF - 2 d A B C d D E F ) h c h D h E h F

is a positive-definite matrix.
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and thus correspond to the isotropy group. Hence we are left with the requirement
that the symmetry group should contain n — ί independent parameters Ba

1.
Writing Λab = B\Aab.c, where Aab;c is antisymmetric in its first two indices, this
leads to the equation

Γabcd — Dabc;d , (1.9)

where Γahcd is as defined above and

Dabc;d = de(abΛc)e;d. (1.10)

From the above results, it is clear that the homogeneous real manifold correspond-
ing to (1.2) is locally isomorphic to G/H, where G is the invariance group of the
tensor dABC and H is the orthogonal invariance group of the tensor dabc.

From the arguments given earlier it follows that there is a corresponding
analysis for the special Kahler and quaternionic spaces that follow from the real
spaces that we introduced above. One may thus consider the Kahler spaces and
require that the symmetry group of the d = 4 supergravity Lagrangian acts transi-
tively on the space. The cubic polynomial C(h) is directly related to the holomor-
phic function F(X\ which encodes the information of the special Kahler manifolds
that follow from the real manifolds by the r map. It reads

yivBvC

F(X) = idABC χ 0 , (1.11)

where X° and XA are complex variables. The Kahler manifold is only π-dimen-
sional because two points (1°, XA) that are related by multiplication with an
arbitrary complex number are identified. The r map thus introduces n + 1 new
coordinates, but at the same time it leads to at least n + 1 additional symmetries
[10, 11] so that the analysis proceeds along the same steps. Similarly, for quatern-
ionic manifolds, the requirement of transitivity rests upon the same analysis as
presented for the real manifolds.4 Therefore there is no need for going into further
details.

A special case of (1.9) (namely Γabcd = 0) was analyzed in [1] in the context of
Jordan algebras and in [15] for the special Kahler spaces. The connection with
Jordan algebras arose because Γabcd = 0 is equivalent to the condition that the
torsion tensor associated with the special real space is covariantly constant. In that
case the real space is symmetric (but this does not exhaust the special symmetric
spaces). Likewise the corresponding Kahler and quaternionic spaces that one
obtains by means of the r map and the c ° r map are symmetric (and in this case
there are no other (special) symmetric spaces). Surprisingly, the equation Γabcd = 0
emerges also in a different context, namely that of W3 algebras [17], where it
corresponds to the condition that ensures that the higher-spin invariance of
a two-dimensional conformal field theory can be consistently truncated to the
energy-momentum tensor and a spin-3 charge [18].

In view of these and possible other applications of (1.9), we shall keep the
analysis of (1.9) self-contained without using the connection with the special
geometries. The central result of this paper, namely the classification of the tensors
dabc that satisfy (1.9), is presented in Sect. 2. The reader who is only interested in the
results can skip this section as well as Sect. 3, where we rewrite the results for d in

The isometries for the special quaternionic spaces were analyzed in [16].
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a simpler'form and present the solutions for the tensors A in (1.9). The final result
for the cubic polynomial C(h) is given in Sect. 4. It can be expressed as follows (not
in the canonical parametrization). First we decompose the coordinates hA into h1,
h2, hμ and hm, where the ranges of the indices μ and m are equal to q + 1 and r,
respectively. Hence we have

n = 3 + q + r, (1.12)

so that n ̂  2. Then C(h) can be written as

C(h) = 3{/z1(^2)2 - h1^)2 - h2(hm)2 + yμmnhμhmhn} , (1.13)

where the coefficients yμmn are the generators of a (q + l)-dimensional real Clifford
algebra with positive signature.

Further results and implications are given in Sect. 4.

2. Classification

In this section we study

Γabcd = Dabc d •> (2-1)

where the indices α, b, . . . take n — 1 values 2, . . . , n,

Γabcd = ^e(ab^cd)e ~~ ~^ ^(ab^cd) •> (2-2)

Dabc d — de(abAc)e;d, (2.3)

and Aab.c is a tensor that is antisymmetric in its first two indices. Observe that
Dabc d is only manifestly symmetric in three indices; full symmetry is only obtained
after imposing (2.1). The tensors dabc are symmetric and are concisely summarized
by the cubic polynomial,

&{x) = dabcxaxbxc . (2.4)

We will now give a complete classification of the tensors dabc that satisfy (2.1) up
to orthogonal redefinitions. Obviously, the tensors Aab;c can only be determined up
to the generators of orthogonal transformations that leave dabC9 and thus the
function ^(x), invariant. The analysis is done in two steps. First we show that after
a suitable O(n — 1) rotation, it is always possible to bring the tensors dabc into
a form such that

d = ~Ί= "a! •>

Γ222a = Λ a 2 ; 2 = 0 . (2.5)

The second step is then to bring the dabc coefficients in a form where d2ab is diagonal
for general a and b and examine the consequences of (2.1).

Let us start by using O(n — 1) transformations to define a "2" direction (which
will not necessarily coincide with the "2" direction chosen in (2.5)) such that

dabb = λδa2 . (2.6)
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A contraction of (2.1) over two indices then implies that the following three tensors
must be equal,

3Γabcc = 2dacddbcd + λd2ab ~ X (n + Wab >

3Dcca;b = λAa2;b •>

3Dabc;c = 2deφAb)e;c + dabcAdc;d . (2.7)

Now we distinguish between three different cases, denoted by I, II and III,
which will play a role throughout this analysis.

In case I we have

λ = 0 o dabb = 0 . (2.8)

According to (2.7) we then have

Γccab = Dcca;b = Dabc;c = 0 . (2.9)

Using a notation where da and Aa are (n — 1) x (n — 1) matrices defined by
(da)bc = dabc and (Aa)bc = Abc.a, the first equation (2.9) reads

<dadb>=\{n+\)δab, (2.10)

where {A} denotes the trace of a matrix A. Making use of this result we contract
the tensors appearing in (2.1) with dcdf, leading to

1
3Γabcddcdf = -(n — 3)dabf + 2{dadfdb) ,

2Dacd;bdcdf = ̂ (n+ l)Λaf;b + 2<dadfAby . (2.11)

According to (2.1) these two tensors should be equal. However, the first one is
symmetric and the second one antisymmetric in a and / Therefore they should
vanish separately. Combining the above results, we derive

ΓabcdΓabce ~ ΓabcdDabc;e = ~ — Daad; e = 0 . (2.12)

For case I we therefore obtain

Γabcd = Dabc d = dabb = 0 . (2.13)

These are the equations that were analyzed in the appendix of [15]. The first part of
this analysis coincides with the one that we are about to present for cases II and III
in the limit where the Aab;c tensors are put to zero or coincide with generators of the
O(n — 1) subgroup that is left invariant by dabc. A minor complication is that the
"2" direction is not yet defined for case I, in view of the fact that dabb = 0. However,
the analysis only requires that d222 + 0.

Hence we proceed to cases II and III where λ φ 0. Therefore we know from (2.7)
that A2a.b is symmetric in a and b. From this it follows that Aab;c = 0 whenever two
of its indices are equal to 2, which leads to D222;2 = 0. '
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In cafce II we assume that d2u = 0, where i = 3, . . . , n. Using Γ2222 =
D2222 = 0 one finds that

(d222)
2 = 1-. (2.14)

As we can choose the sign of d222 at will, we thus find that case II also leads to (2.5).
In case III we assume that not all d22i vanish. Diagonalizing the symmetric

matrix d2ij — A2i;j gives

A2i;j = d2iJ-λiδij. (2.15)

Then Γ222i = D222;i yields

d22iiμ + λt) = 0 , (2.16)

where we used the notation α = d222. For those values of i for which d22i Φ 0, we
have the same eigenvalue λt = — α. Hence, by means of a rotation, we can define
a " 3 " direction such that

d22i = βδi3, A 3 = - α , (2.17)

where jSφO (otherwise we would be dealing with case II). Using Γ222i = D 2 2 i ; 2

gives

^233 = - α , Λa3;2 = 3d23(X, (2.18)

with α = 4, . . . , n. Hence we also have

^23;3 = ̂ 2 3 3 - ^ 3 = 0 . (2.19)

Then from Γ2222 = ̂ 22252 = 0, one derives

a2 + β2 = 1-. (2.20)

Now we analyze (2.1) with indices (2233). First D332;2 = D223;3 takes the form

-2(d23a)
2 = \{d23af . (2.21)

Combining the above equations gives

^23α = A a 3 , 2 = A 2 3 ; o ί = A 2 a ; 3 = 0 . (2.22)

This implies that also D223.a = 0 and thus

3D22a;3 = βAa3;3 = 0. (2.23)

Hence the tensor Aab;c vanishes whenever two of its indices are equal to 2 or 3.
Moreover we have A2a.β = A2β.a.

Subsequently we deduce from ^33252 = ̂ 22353 = 0 that Γ223 3 = 0. Combining
this with (2.20) shows that

d33s=-β. (2.24)

Then Γ 2 2 3 α = 0 gives

3̂3α = 0 . (2.25)



316 B. de Wit and A. Van Proeyen

Hence our results for the d coefficients take the form

^222 = α, d223 = β, d233 = - α , d333 = - β ,

d22a = d23a = d33a = 0 ,

d2bb = d2ββ = H 0 ,

d3w, = d3ββ = 0, dαW, = rfα^ = 0 . (2.26)

Now we may perform an Oil) transformation in the (2,3) space such that the new
coefficient d223 vanishes. In terms of the cubic function Ή/(x) this transformation
corresponds to an orthogonal redefinition of x2 and x 3,

x'2 = χ2 cos φ ± x3 sin φ ,

x'3 = —x2sinφ± x3 cos φ . (2.27)

Using (2.20) and defining α = —^ cos θ and β = —^ sin θ, we obtain a one-para-
v V

meter family of coefficients

α' = - jp cos( ± θ - 30); j8' = -^= sin(± θ - 3φ). (2.28)

We can thus choose a parametrization such that

1 1
^222 = —7=j ^233 —

^223 = d22a = ^333 = ^23α = ^33α = daββ = 0 , (2.29)

so that case III also allows the parametrization (2.5). Observe that after this
redefinition dabb may only differ from zero for a = 2 or 3. Hence

dabb = λ2δa2 + λ3δa3. (2.30)

Case I is now characterized by λ2 — λ3 = 0, case II by λ2 Φ 0, λ3 = 0, and case III
by λ3 Φ 0.

Note, however, that the angle φ in (2.28) is not uniquely determined. There are
six solutions. This means that there is still the possibility of redefining x2 and x 3,
such that we remain within the parametrization (2.5). Those redefinitions consist of
products of reflections.

X3-+-X3, (2.31)

and 2π/3 rotations,

1 1
2~~* 2 2 2 '
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These replacements do not change the part of ®J that is quadratic or cubic in x2

and x3,

= _ L (xi - 3x2x§) + . (2.33)

Later we shall see that the above redefinitions allow one to rewrite some of the
solutions belonging to case II into those belonging to case III. •

This concludes the proof of (2.5). The second step in the classification starts by
diagonalizing d2ab for all a and b (this is consistent with (2.5)). Hence we adjust the
frame of reference, so that

d2ίj = μiδtj, (2.34)

where we recall that ij = 3, . . . , n.
Now we consider (2.1) with indices (22ij), according to which the following

three tensors should be equal,

1 • A 2i',j >

3Dij2i2 = (μj - /ΌAj;2 (2.35)

As the last tensor vanishes for ί = j9 while the first one takes its non-zero values in
that case, the three tensors should vanish separately. The vanishing of the first one

implies that μt can only take two possible values, γ= or — p . Therefore it is
/2 ? ι)v ^ Δ\ Δ

convenient to split the indices i according to these values into indices μ, v, . . . and
m, n, . . . such that

μμ = ~ - U tt» = -Λ= (236)
^ 2./2

Furthermore we obtain

Aμm-,2 = A2μ.v = A2μ;m = 0 . (2.37)

It is clear that the special index value i = 3 that occurred in the analysis of case III,
is contained in the index set labelled by μ, v, . . . .

The next step is the analysis of (2.1) with indices (2ίjk). The corresponding
tensors are

3Γ2ijk = dijk (μ f + μj + μk) ,

^ijk-,2 — 3di(ijAk)l;2 ,

3D2ij;k = dujAii k + (μ, - μj)Ajiik . (2.38)

Using (2.37) it follows that dμv/,Dμvp;2 = dμvmDμvm,2 = dmnpDmnp;2 = 0 by virtue of
the antisymmetry of the coefficients Aij;2. Therefore the tensor Γ2ijk should vanish
when contracted with these d coefficients. As Γ2ijk is itself proportional to the
d coefficients, it follows that certain components should vanish, i.e.

dμvp = dμvm = dmnp = 0 . (2.39)
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As Γ2μmn already vanishes by virtue of the fact that μμ + μm + μn = 0, we have thus
established that all components of the Γ tensor with one or more indices equal to
2 now vanish. Most of the components of Dijk;2 and D2ij;k

 n o w vanish identically.
The equation Dμmn. 2 = 0 implies that the d tensors should be left invariant by
orthogonal transformations characterized by the Aij;2. The latter can be put to
zero and do not restrict the d-coefficients. Furthermore, there is

D2μm;i = 0 o Amμ;i = -^2dμmnA2n;ί . (2.40)

The only components of Γίjkl that do not vanish identically at this point are

—- - δμvδmn , (2.41)

(2.42)

According to (2.1), they should satisfy

* μvmn. "μvm n -* μvmp** pn ?

2 1
* μvmn "mnμ v "^ ̂ μq(m-^ n)q; v ' "^ ̂ pmn^μp v -> \Z.*TT-J

Γ = D = Γ H
± mnpq •L^mnp;q •*• mnprxxrq ?

where we made use of (2.40) and defined Hmn = - <s/2A2min.

Contractions of the above equations will give useful information. Denoting the
range of the indices μ by q + 1, and the range of the indices m by r, so that

n = 3 + q + r , (2.46)

we have

Γμvmm = ̂  t r (d μ d v ) - - rδμv = -dβmmAμp;v , (2.47)

-7(<1+Wmn, (2-48)

-* ppmn

where (dd)mn = dμmpdμnp.
The remaining equations for which the corresponding Γ tensors vanish,

Dmμv p = Dmnpψ = Dμmn p = 0, are solved by A2m;μ = Amn;p = Aμv;p = 0. Other solu-
tions that satisfy these equations correspond to non-trivial invariances of the
dabc tensor.

Let us now turn again to the three cases discussed previously. The only
non-vanishing components of dabc are dμmn and

^222 = —7f 9 d2μv = τ= δμv9 d2mn = -^—^ δmn , (2.50)
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corresponding to

3 ' \ l ) ) ld (2.51)

The three cases are characterized by the possible non-vanishing values of dabb,
which are

d2bb = —γ (r - 2q)9 and dμbb = dμmm . (2.52)

In case I we have r = 2q9 so that n = 3(q + 1), and dμmm = 0. As we established
already, one must have

Γμvmn = Γmnpq = 0 . (2.53)

Hence the dμmn may be regarded as r x r matrices, which generate a (q + 1)-
dimensional Clifford algebra. In view of the second condition, the dimension of this
algebra is severely constrained. According to [15], only q = 1, 2, 4 and 8 are
possible, corresponding to n = 6,9,15 and 27, respectively. This conclusion follows
from the possible dimension of the reducible representations of the Clifford alge-
bra. This case is related to Jordan algebras and the magic square [1]. In addition
we have the trivial case with q = 0 and n = 3.

For case II we have dμmm = 0 and r — 2q φ 0. It turns out that it is sufficient to
restrict our analysis to the case q = — 1. Then there are no indices μ, so that the
non-vanishing coefficients dabc are

^222 = —τ=, d2mn = —•= δmn , (2.54)
12 2Λ/2

with r = n — 2 arbitrary. Obviously, we have

Γmnpq = ~77 <>(mn<>pq)> Hmn = δmn , (2.55)
o

while all other components of Γ vanish.
The reason why we do not have to consider q ^ 0 is that, after identifying one of

the indices μ with 3, we can always perform a redefinition (2.32). After this
redefinition we no longer have dμmm = 0, so that we can perform the same steps as
before, but now for case III. Nevertheless for clarity of the presentation we briefly
derive the consequences for case II with arbitrary q. We first use (2.45) to obtain

Γ% = Γ$Hpn, Wι\hΓ%^ΓmpqrΓmrn. (2.56)

Let us now decompose the space associated with the indices m, n, . . . into the null
space of Γ ( 2 ) and its orthogonal complement. The indices m, n, . . . are split
accordingly into indices A, B, . . . and M, N, . . . , so that Γ ^ = Γ^l = 0 and

) * 0. This implies that

ΓmnpA = 0 , (2.57)

while (2.56) restricts the matrix H according to HMA = 0 and HMN = δMN. Combin-
ing dμmm = 0 and (2.48), (2.49) and (2.57), we find

ΓμμAB = Q (Γ ~ 2<?)<W, ΓμμAM = ΓμμMA = 0 . (2.58)
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From (2.43) it then follows that the non-vanishing matrix elements of H are given
by HAB = -δAB and HMN = δMN, while

ΓμvMN = 0 . (2.59)

Therefore Γμμmn is now fully known and non-vanishing. On the other hand, Γμμmm is
restricted to vanish by (2.47). This implies that the null space of Γ ( 2 ) is in fact empty,
so that there are no indices A, B, . . . . Hence we find that Hmn = δmn. From (2.43) it
then follows that Γμvmn vanishes,

Γμvmn = 0 , (2.60)

while Γmnpq remains arbitrary. Hence the coefficients dμmn may again be regarded as
rxr matrices generating a (q + l)-dimensional Clifford algebra. This puts restric-
tions on r and q, but these are considerably weaker than in the previous case.

Let us now turn to case III, where dμmm Φ 0. By a suitable rotation of the
components labelled by μ, v, . . . , we choose the direction in which dμmm does not
vanish to be equal to μ = 3. The remaining indices μ will be denoted by μ.
Subsequently we diagonalize d3mn,

j\ (2.61)

We then obtain from (2.47) that A3μ.v is symmetric in μ and v (this conclusion
requires dμmm Φ 0), which implies that A3μ;3 = 0. Substituting this result into (2.44)
for μ = v = 3, we obtain

\{λ2

m-\)δmn = {λm-λn)Anm,3. (2.62)

As Anm. 3 is antisymmetric in n and m, it follows that both sides of the equation
should vanish separately, so that

λ2

m=h Γμvmn = 0 iorμ = v = 3. (2.63)

Splitting the range of indices m, n, . . . into indices x, y, . . . and x, j>, . . . such that

4=1, 4=-l, (2.64)

it follows from (2.62) that AXy. 3 = 0. Subsequently, consider again (2.44) but now
with μ = μ Φ 3, v = 3, m = x, n = y,

2dμxy = 2dμz(xAy)z.3 + dβxyAββ.3 . (2.65)

Multiplying the right-hand side with dfixy gives zero by virtue of the antisymmetry
of the A coefficients. This implies d^xy = 0. The same derivation can be repeated for
two dotted indices, so we are left with the coefficients dβxy with mixed indices. This
then yields Γ3μmn = 0.

In cases I and II we proved that Γμymn = 0 in general. Therefore, in all cases with
q ^ 0, one can identify a suitable index μ = 3 and bring d3mn in diagonal form as in
(2.61), so that one can employ the parametrization in terms of dotted and undotted
indices and derive the restrictions for dβmn as found above. The present formulation
is thus fully applicable to all three cases with q ̂  0 (for the moment we ignore the
results obtained above for the A tensors, which apply only to case III). Let us
therefore proceed and present the relevant equations in this formulation for the
general case.
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Fromi D3xy.μ = 0 it follows that

Axy;μ = dixyHiβ , (2.66)

where Hμv = %/ΐ/3A3μ;<i. In addition we have Dβxy;3 = 0, which can be solved by
AXy.3 = Axy.3 = Afi$;i = 0 and has no consequences for the d tensor. When non-
zero values are possible for the A tensors, they define non-trivial invariances of the
d coefficients.

Let us give the non-vanishing components of the Γ tensor in this notation (cf.
(2.41-42)),

•*• μvxy X ^zx(μ^v)yz ~7 ^μv^xy >

3 4

2 , , 1

4
-* μvxy -̂  zx(μ v)yz Λ ^μv^xy ?

Γ 2A A ! Λ * ΠfΠ\
l '' —— — a * i' &' \ Λ — — ό ό ' ' I / ΓΛ /1

j yμ ^ xy zw

We denote the range of indices μ, x and x by q, p and /), respectively, so that
r = p + p and n = 3 + q + p + p.

These equations have a remarkable symmetry under interchange of the indices
μ, x and x. This is not a coincidence and is related to the redefinitions that were
explained previously. To see this, consider the cubic polynomial ^ , which has
acquired the following form (for q ^ 0),

X) = j= -X2(*2

3

2

+ 6dμxiXίixxxx . (2.68)

The replacement (2.32) induces an interchange of the quantities x2 and
"2(^2 i v 3*3), which leaves the form of the function ^(x) unchanged, except

that the labels μ, x and x are interchanged. Similarly, the replacement (2.31)
corresponds to an interchange of labels x with x (of course, the range of the various
indices changes accordingly).

Case I is now characterized by q = p = p, case II by p = p φ q, and case III by
p φ p. Contraction of the above tensors leads to the following equations,

-= Γiixy + - (p - q)δxy ,

Γμμxy = ^zzxy + ^ (P ~

- (p - p ) ^ (2.69)
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In this notation, Eqs. (2.43-45) take the form

1 μvxy -* pvxy*1 pμ *-μvzynzx ?

-* μvxy * pvxy*1pμ -* μvzy**zx •>

•* xyxy *• zyxyΉzx * xyzy^zx ? \Δ. I\J)

where we suppressed the equations involving Hxy and Hxy, which have no conse-
quences for the ^-coefficients.

The symmetry noted above should be taken into account when identifying
inequivalent d tensors. However, its presence also facilitates our work, as it allows
us to apply the following lemma in three possible situations:

Lemma. Consider one of the three matrices H, say H^. Then, either the other two
matrices H are of equal dimension (p = p), in which case Γμ<)XX = Γμvxx = 0, or they
are not of equal dimension (p φ p), in which case Hμ<i is equal to plus or minus the
identity matrix, with Γμ^xy or Γ^xy vanishing, respectively.

To prove this lemma, multiply the third equation (2.69) with Hμp and apply (2.70).
When p = p the corresponding equations lead to Γμvxx = Γμvxx = 0, as claimed
above. On the other hand, when p + p, it follows that Hμ<i is a symmetric matrix
which can be diagonalized. Consider first the case where μ and v belong to an
eigenspace of H with eigenvalue different from ± 1. Then it follows from (2.70) that
Γμvxx = Γμtxx = 0, which leads to p = p and thus to a contradiction. Hence Hμ<, has
only eigenvalues equal to ± 1. Assume now that both eigenvalues occur. Consider
then indices μ and v corresponding to the subspace with eigenvalue + 1 , and an
index p belonging to the subspace with eigenvalue — 1. Then (2.70) implies that (no
sum over repeated p index)

r , _ Γ AA _ r A = Γ Λ Λ — Γ = r « * = 0 ΠlλΛ
1
 μvxy

 A
 ppxy -* μpxy

 λ
 μpxy vpxy

 λ
 vpxy

 w
 \^" '

 x
 /

According to the last four equations dβ anticommutes as a matrix with dμ and d^.
We thus perform the following calculation (no sum over repeated β index),

v upxx* μvxyupyy

= — (dβdφd^dβ)xy — — \dβdβ)xyo^

= = •* μvxzyβ-pβpjzy 77 ̂  μvxy \A ' AJ
O

Hence both Γμxxy and Γμ<!xy vanish, which requires that p = p, thus leading to
a contradiction. Hence the eigenvalues of H must all be equal, which completes the
proof of the lemma. •

With the help of this lemma it is straightforward to analyze the various
solutions of (2.67) and (2.70). First we assume that q, p and p are nonvanishing.
Application of the lemma then reveals that there are no solutions with different
values for q, p and p, simply because two Γ tensors must then vanish, which, by
(2.69) implies that at least two of the parameters q,povp should be equal. Because
of the symmetry we can choose either two of the parameters equal. Let us assume,
for instance, q φ p = p φ 0. Then, from the lemma applied to the three matrices
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H one finds four possibilities, two of which implying that two uncontracted
Γ tensors vanish, which is inconsistent with q Φ p or q Φ p. Then one has the third
possibility corresponding to

P === P * xyxy = *• μvxx = * μvxx = Λ̂ - " xy = &xy •> •" xy = Vχy> C^ ' •*)

On the other hand the first line of (2.69) implies that r^xx = i(p — q)p, which must
vanish according to the above equation. Hence p = 0; this is one of the cases to be
discussed below. The remaining possibility, which leaves q arbitrary corresponds to

p = p: Γμvxy = Γμvxy = 0, Hxy = δxy , Hxy = δxy . (2.74)

Clearly, this solution belongs to case II, while the equivalent solution with
q = p + poΐq = p=\=p belongs to case III.

The case q = p = p is case I, for which we already showed that all Γ symbols are

zero with traceless d coefficients.
What remains is to investigate the situation where at least one of the para-

meters q, p or p vanishes (this may occur in case I, II or III depending on the values
of the other two parameters). In that case only one of the tensors Γ remains (unless
one of the other parameters vanishes as well). Let us choose q = 0. There is only

1

4 '
q = 0: Γxyxy = — - δxyδxy, Hxy = δxy, Hxy = δ±y , (2.75)

This completes the classification of the coefficients dabc satisfying Eq. (2.1).

3. Results of the Classification

3.1. d-Coefficίents and Clifford Algebras. In the previous section we obtained the
possible tensors dabc that are solutions to (2.1), up to arbitrary O(n — 1) rotations.
The indices a, b, . . . , are decomposed into indices 2, μ and m, where μ and m take
q + 1 and r values, respectively. We thus have n = 3 + q + r.

The general results for the d tensors are summarized in (2.50) and (2.51), where,
as we shall see shortly, the coefficients dμmn satisfy the defining relation (up to
a proportionality factor) of the generators of a Clifford algebra and can thus be
expressed as (symmetric, real) gamma matrices according to

dμmn = Λh(yμ)mn (3.1)

Therefore the function ^(x) acquires the generic form

| (3.2)

where the gamma matrices generate a real representation of the Clifford algebra
%>(q + 1, 0) with positive metric. Let us now analyze the various solutions found in
the previous section.
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The first case is q = — 1 (i.e., indices μ are absent). As dμmn does not exist, the
d coefficients are completely given by (2.50), and the corresponding function
<3f reads

As shown previously, Γmnpq = — iδ(mnδpq), which vanishes only for r = 0. We denote
these solutions by L(— 1, r) with r ^ 0 and n = 2 + r.

For q ^ 0 there is one value of μ which we denote by " 3 " and we split indices
m into x or x, taking p and /? values, respectively. These indices are distinguished by

For q = 0 there is no further restriction; p and p are arbitrary and we denote the
solution as L(0, P, P) = L(0, P, P), where we replace p and p by P and P in order to
have a uniform notation for the reducible representations of the Clifford algebra (to
be discussed below). Whenever P or P is zero we write L(0, P) = L(0, P, 0). The
diagonal matrix

(y3)mn= l^d3mn, (3.5)

can be viewed as a gamma matrix that generates a one-dimensional Clifford
algebra ^(1,0). This algebra has two inequivalent irreducible representations
corresponding to + 1 and — 1. The numbers P and P specify the multiplicities of
these representations in y3. The corresponding function ®f follows directly from
(3.2),

<&{x) = •

(3.6)

The non-vanishing Γ tensor is

y y 4 y y

which vanishes whenever p or p vanishes. Note that we have n = 3 + p + p.
For p O we may restrict ourselves to r > 0, as the case q > 0, r = 0 is

equivalent to L(0, q, 0) by a rotation (2.32). Denoting the values of μ φ 3 by μ, the
tensors dμmn satisfy (2.74), which implies that we can define the following rxr
gamma matrices,

We have thus established (3.2). To classify all cases with q > 0 one must consider all
possible gamma matrices that generate a real Clifford algebra <β(q + 1,0). The
irreducible representations (with positive definite metric) are listed in Table 1 [19].
They are unique except when the Clifford module consists of a direct sum of two
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factors. As shown in Table 1 this is the case for q = 0 mod 4, where there exist two
inequivalent irreducible representations.5 This implies that for q Φ 0mod4, the
gamma matrices are unique once we specify the number of irreducible representa-
tions. The solution for the d coefficients is then denoted by L(q, P\ where P de-
notes the number of irreducible representations. We thus have r = P@q + l9 or,
equivalently, n = 3 + q + P@q+1. However, when q is a multiple of 4 (i.e., q = Am
with m integer), then there exist two inequivalent irreducible representations and
the solutions are characterized by specifying the multiplicities P and P of each of
the two representations. The solutions are therefore denoted by
L(4m, P, P) = L(4m, P, P) and we have n = 3 + 4m + (P + P ) ^ 4 m + 1 . Whenever
P or P vanishes, we denote the solutions by L(4m, P) = L(4m, P, 0).

This concludes the classification of the various solutions. The only components
of Γabcd that possibly differ from zero are

Γmnpq = 77 [(7μ)(mn(7μ)pq) ~~ δ(mt\δpq)\ (3.9)
O

As one easily verifies, this tensor vanishes only for L(— 1, 0), L(0, r), L(l, 1), L(2, 1),
L(4, 1) and L(8, 1), corresponding to n = 2, 3 + r, 6, 9,15 and 27, respectively. Note
that the contracted tensor

ΓmnPp = -(2q- r)δmn for q Φ 0
o

mn - ( y 3 U ) - I P(δmn + (y3)m π) for q = 0 (3.10)

Table 1. Real Clifford algebras <&{q+ 1, 0). Here F(n) stands for n x n matrices with entries over
the field F, while @q + x denotes the real dimension of an irreducible representation of the Clifford
algebra. We decompose the matrices I R ( ^ + 1 ) acting on the real irreducible representation space,
either as a direct product with the Clifford algebra representation as a factor, or in the form of
a higher-dimensional Clifford algebra. This decomposition is used to determine the centralizer
C of the Clifford algebra in this representation

q q+l ^{q+1,0) @q + i R ( ^ β + i ) C

- 1 0 IR 1 1R IR
0 1
1 2
2 3
3 4
4 5
5 6
6 7

16 R(16) IR
as for n

IR01R
R(2)
<C(2)
H(2)

H(2) Θ H(2)
H(4)
C(8)

1
2
4
8
8

16
16

]

%

M(
H<
H(

%

IR
R(2)
7(3, 1)
8)H(2)
g>H(2)
g>H(4)
'(8,0)

IR
IR
C
H
H
H
C

5 These are the only dimensions for which the product of all gamma matrices, Q = yi . . . yq + i,
commutes with every individual matrix and has square 1; the two inequivalent representations are
related by an overall sign change in the gamma matrices: γμ -> — γμi so that Q changes from +11 to
— 1, or vice versa.
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(q = 0 is special, because it represents the only case where a gamma matrix can
have a non-zero trace) has only zero eigenvalues in those cases where we already
know that Γmnpq = 0. This implies that the equation ΓmnpqZ

q = 0 has only non-
trivial solutions Zq when Γmnpq vanishes.

3.2. A-Coefficίents and Symmetry Groups. Now that we have found the non-
vanishing components of Γabcd we consider the solutions for the corresponding
tensors Aab;c as defined by (2.1). They are determined modulo solutions of the
homogeneous equation,

ddiabAe)d = 09 (3.11)

which define the invariances of the coefficients dabc. We recall that these symmetries
must preserve the metric δab, so that the matrices Aab are antisymmetric. There are
only two types of invariances. First there is

= -Aμm = [yμ)mnζn > (3.12)

where ζm must satisfy

Γmnpqζq = 0 . (3.13)

However, from the discussion at the end of the previous subsection it follows that
this equation has only non-trivial solutions for ζm when Γmnpq vanishes.

The second type of solutions of (3.11) corresponds to the invariance group of
the tensor dμmn oc yμmn associated with the matrices Aμv and Amn,

Aμv(yv)mn + yμP(mΛn)p = 0 . (3.14)

For any Aμv there is the solution

1

4mn = - Aμv(yμyv)mn . (3.15)

Obviously, the group associated with Aμv is the rotation group SO(q + 1), which
acts on the spinor coordinates labelled by m according to its cover group. Besides
there can be additional invariances that act exclusively in spinor space and
commute with the gamma matrices and thus with the corresponding representa-
tion of the Clifford algebra. Hence we are interested in the metric-preserving
elements of the centralizer of the Clifford algebra in the r-dimensional real repres-
entation (i.e., the antisymmetric matrices Amn belonging to R(r) that commute with
yμ). Let us first determine the centralizers for the irreducible representations.

According to Schur's lemma, matrices that commute with an irreducible repres-
entation of the Clifford algebra must form a division algebra. Table 1 lists the
centralizers of the real irreducible representations, which are thus equal to R, (C or
H. We briefly present the arguments leading to this result.6 First consider q + 1
even. The only commuting element in the Clifford algebra representation is 1, while
the centralizer is just the factor in R ( ^ + 1 ) that multiplies the Clifford algebra
representation (cf. Table 1). In this way we find that the centralizer is JR for
q + 1 = 0 or 2 mod 8, and H for q + 1 = 4 or 6 mod 8. Now take q + 1 odd. For

6 Many results on real irreducible representations of the Clifford algebras and their centralizers
have been explicitly worked out in [20]. Another useful reference is [21].
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q = Am the irreducible representation of the Clifford algebra corresponds to only
one of the terms of the direct sum in ^(4m + 1). Just as above, the only commuting
element in this representation is 1, and the centralizer is obtained as the factor that
multiplies the Clifford algebra representation in R ( ^ + 1 ) , i.e., 1R for
4 + 1 = 1 mod 8 and H for q + 1 = 5 mod 8. What remains is the case q = 2 + 4m.
Then, as indicated in Table 1, the representation space is isomorphic to a higher-
dimensional Clifford algebra, which makes it easy to verify that only 11 and
Q = yx . . . yq + 1 span the centralizer. (Note that for q = 2 + 4m, Q2 = — 1, while
for q = 4m, Q itself is represented by +1). We thus conclude that the centralizer is
equal to C for q + 1 = 3 or 7 mod 8.

To analyze the reducible representations, we first rewrite R(r) as
R(p)(χ) R ( ^ + 1 ) , where p is the number of irreducible representations, thus
p = P for q Φ 4m and p = P + P for q = 4m. Consider first q φ 4m such
that yμ = &P® yjΓ This shows that the centralizer is the direct product of R(P)
with the centralizer of yμ

rr, leading to R(P) for q = 1, 7 mod 8, to <E{P) for
q = 2, 6 mod 8, and to H(P) for q = 3, 5 mod 8. What remains are the cases
q = 0 mod 4, when we have yμ = η® yμ

r, where η = diag(l, . . . 1, — 1, . . . — 1).
Writing Amn as A = H®S, where H <= R(p) and S c WL{βq+1\ we have the
condition

[A, y,] = Hη® Syμ -ηH®yμS = 0. (3.16)

In the sector proportional to (H + η)H(t + η\ it follows that S anticommutes with
yμ

rτ; SST is then a symmetric matrix that commutes with y"\ so that it must be
proportional to t. Therefore S is orthogonal and Syj^S"1 = — yμ

rr. This leads to
a contradiction, as it implies that yμ

rr and — yμ

τr are equivalent representations.
Consequently the matrices H are restricted to the R(P) φ R(P) matrices commut-
ing with η. For these matrices the same considerations apply as for q Φ 4m. The
result is then that the centralizer is the direct product of R(P) Θ R(P) with the
centralizer of yμ

rr, which corresponds to R(P) © R(P) for g = 0mod8, and
H(P) ® H(P) for q = 4 mod 8.

Now we determine the antisymmetric matrices in these centralizers correspond-
ing to the generators of the metric-preserving subgroups. In each case these
centralizers can be written as the direct product of real matrices with a division
algebra (in the real representation, so that the imaginary units become antisymme-
tric matrices). Therefore in the complex or the quaternionic representation the
antisymmetry requirement takes the form of an antihermiticity requirement. The
metric-preserving groups are therefore

for q= 1,7 mod 8: SO(P),

for q = 0 mod 8: SO(P) ® SO(P) ,

for q - 2 , 6 mod 8: U(P),

for q = 3, 5 mod 8: U(P9 H) = USp(2P),

for q = 4 mod 8: USp(2P) ® USp(2P) . (3.17)
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In conclusion, we summarize the symmetries of the tensors dabc. First there are the
symmetries (3.12) for the cases L(-1, 0), L(0, r), L(l, 1), L(2, 1), L(4, 1) and L(8, 1).
Secondly there is the group SO(q + 1) and the group mentioned in (3.17) repres-
ented by matrices Smn. This gives

Λμv = arbitrary ,

^ = W™,C». (3.18)

Now that we have determined the solutions of the homogeneous equation
(3.11), we turn to the inhomogeneous equation (2.1). A particular solution is

^2m;« = ~Am2;n = T ^J2omn, Amμ;n = — Λμm.n = —Amμ;n = — Λμm.n = — ̂ /Ό(yμ)mn . (3.19)

When Γmnpq = 0 these solutions correspond to an invariance of the dabc coefficients
and are already contained in the previous transformations.

4. Implications for Homogeneous Special Spaces

Now we return to special geometry and the cubic polynomial C{h\ defined in (1.1).
Using the canonical parametrization, we first introduce an extra coordinate x 1 ?

and add the corresponding terms x\ — jxx x2

a to the polynomial (2.4). Giving up the
canonical parametrization, we no longer have to restrict ourselves to O(n — 1)
redefinitions, and we can make arbitrary linear redefinitions of the xu . . . , xn.
Using

% , (4.1)

the polynomial C(h) acquires the generic form given in Sect. 1 (cf. 1.13),

C(h) = 3{hHh2)2 - hι{hμf - h2(hm)2 + γμmnh
μhmhn} . (4.2)

We stress that this parametrization no longer coincides with the canonical one. The
possible realizations for the gamma matrices were discussed in the previous section.
Note that we have

n = 3 + q + r, with r = (P + P)@q+1 , (4.3)

where the integers P and P characterize the representations for the gamma
matrices, as discussed in the previous section.
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We now summarize the linear transformations of hA that leave (4.2) invariant.
They can either be determined directly from (4.2), or can be evaluated from
δχΛ = BA

Bx
B, using (1.6) with Aab = B\ Aab.c is taken from (3.19), plus a homogene-

ous solution as in (3.18),

+ 2ξμh
2 - ζnyμmnh

m + AμxK ,

+ ξmh2 - ζmhx + ξnΊμmJf + ξμγμnmh* + Amnh
n . (4.4)

The symmetries corresponding to the parameters ζm only exist when the tensor
Γmnpq vanishes. As before, Amn and Aμv are antisymmetric matrices that leave the
gamma matrices invariant (cf. (3.14)). As explained in the previous section, Aμv and
Amn generate the product of SO(q + 1) and the metric-preserving group in the
centralizer of the corresponding Clifford algebra representation given in (3.17). The
parameters are defined as follows:

B\ = J~2ξ2, Bi = y ? (ξm - ζm\ Bμ = ijl ξμ ,

Λ2m = -Am2 = - ^β{ξm + ζm\ Amμ = -Aμm = - γμmn(ξm + ζm) . (4.5)

It is illuminating to decompose the generators with respect to the abelian
generator e2 associated with the parameter ξ2. The algebra then decomposes
according to

^ = ^ _ 3 / 2 + ^ 0 + ^3/2, (4.6)

where ^ - 3 / 2 contains the generators associated with the parameters ζm (which is
thus only present when Γmnpq = 0), 3C0 consists of the generators associated with ξ2,
ξμ, Aμv and Amn, and ^ 3 / 2 contains the generators corresponding to the parameters
ξm. Obviously ^ 3 / 2 constitutes a solvable algebra of dimension r. Also 3C0 contains
a solvable algebra (of dimension q + 2). This follows directly from the observation
that the subalgebra consisting of the generators associated with the parameters ξμ

and Aμv constitute so(q + 1, 1), which, by its Iwasawa decomposition, contains
a solvable subalgebra of dimension q + 1 and rank 1 (for q ^ 0; for q = — 1 the
algebra is empty, so that the rank is 0).7 Indeed, the subspace of the special real
manifold corresponding to hm = 0 and h1 fixed and non-zero, corresponds precisely
to the coset space SO(q + 1, 1)1 SO(q + 1).

The complete solvable transitive group of motions thus consists of the trans-
formations (4.4) corresponding to the parameters ξa, combined with (for q^O)

Aμv = 4δ3[μξv}; Amn = (γ[3yμ])mnξμ , (4.7)

7 The action of SO(q + 1, 1) on the spinor coordinates follows from the explicit terms in (4.4)
proportional to ξμ and the generators (3.15) contained in Amn corresponding to the cover of
SO(q + 1). The additional generators in Amn corresponding to (3.17) are compact; they commute
with SO(q + 1, 1) and have no bearing on the solvable subalgebra of 5Γ0.
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where 3 denotes some arbitrary direction in the space of vectors labeled by
indices μ.

Let us now discuss the implications of our results for the homogeneous special
real spaces with a transitive isometry group that constitutes an invariance of the
polynomial C(h\ and thus of the corresponding N = 2 supergravity theory in five
space-time dimensions. These spaces are classified in terms of the polynomials C(h\
as given in (4.2). The rank of these spaces is equal to 1 or 2, because the Cartan
subalgebra of the solvable algebra consists of the generator associated with ξ2, and
the Cartan subalgebra of the solvable algebra corresponding to SO(q +1, l)/SO(q+1).
The rank-1 spaces have q = — 1 and the corresponding expression for C(h) is

L ( - l , r): C(h) = 3/*2(/z1/z2 - (hm)2) . (4.8)

Their solvable algebra is that of

and we therefore identify them with these spaces. They are thus symmetric and
were exhibited in the context of d = 5 supergravity in [22]. A simple counting
argument shows, however, that not all the \{r + l)(r + 2) symmetries of this space
correspond to invariances of the cubic polynomial C(/z), as there are only r in vari-
ances associated with &3/2 and ^r(r — 1) + 1 with &0 (corresponding to
Amn ~ SO(r) and ξ2, respectively). Indeed, explicit calculations [10] show that the
missing r isometries do not correspond to linear transformations of the coordinates
hA. The case r = 0 is an exception in this respect, as all isometries of the real
manifold coincide with the invariances of C(h). The non-linear transformations of
h are not full invariances of the full d = 5 supergravity action (only of the scalar
part (1.2)), and the lower dimensional actions do therefore not exhibit these
invariances. This is the reason why the Kahler and quaternionic spaces resulting
from the c map and the c ° r map applied to L(— 1, r) are in general not symmetric,
with the exception of the spaces corresponding to L(— 1, 0).8 Their quaternionic
counterparts are missing in the classification of homogeneous spaces in [13] and
the corresponding Kahler spaces are therefore also missing in [14].

The rank-2 spaces with q = 0 are special, because C(h) factqrizes in certain
cases (corresponding to the symmetric spaces where either P or P vanishes),

L(0,P,P): C(h) = -?>{hι{h2 + h3)(h2 - h3)

+ (h2 - h3)(hx)2 + (h2 + h3)(hή2} , (4.10)

where we have decomposed the indices m into P indices x and P indices x, as
explained in the preceding sections, with n = 3 + P + P. The quaternionic and
Kahler spaces corresponding to L(0, P, P) were called W(P, P) and K(P, P) in [13]
and [14], respectively. We shall denote the real spaces by 7(P, P).

The rank-2 spaces corresponding to L(q, P) with q > 0 have a rank-4 quatern-
ionic extension and a rank-3 Kahler extension, which were denoted by V(P, q) and
//(P, q) in [13] and [14], respectively. We shall denote the corresponding real
spaces by X(P, q).

8 In [22] it was assumed that the space remains symmetric after reduction; therefore the
corresponding Kahler spaces were incorrectly identified with the minimal couplings of d = 4,
N = 2 supergravity.
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According to the classification of [13] and [14], for q = 4m ^ 4 one has
precisely one quaternionic and one Kahler space of given (allowed) dimension.
However, the existence of inequivalent real representations of the Clifford algebra
for q = Am implies the existence of inequivalent real, Kahler and quaternionic
spaces corresponding to L(Am, P, P). We already encountered an example of the
same phenomenon for q = 0.

As follows from the above arguments quaternionic spaces originating from
special real spaces via special Kahler spaces have rank 3 or 4. But as also
mentioned before, these do not constitute all possible homogeneous quaternionic
spaces. In fact, we know rank-2 symmetric quaternionic spaces, which originate
from special Kahler spaces, but not from real spaces, and rank-1 symmetric
quaternionic spaces that also have no Kahler origin. We summarize these in
Table 2. The corresponding Kahler and real spaces have real and complex dimen-
sion n — 1 and n, and their rank is equal to R — 2 and R — 1, respectively. Because
of the low rank, only a real space with zero rank can occur (which necessarily has
zero dimension). This corresponds precisely to the pure N = 2 supergravity theory
in five space-time dimensions. In the table, this case is represented by "SG."
A similar situation occurs for R = 1 and R = 0, where the only possibility for
a special Kahler and quaternionic space corresponds to pure supergravity in four
and three dimensions, respectively. Hence none of the spaces discussed in the table
are related to the spaces classified in this paper. Observe that all spaces in Table
2 are symmetric. Together with the homogeneous spaces resulting from the analysis
of this paper, which are summarized in Table 3, they constitute all the homogene-
ous quaternionic and special Kahler spaces that are known. A proof that this list
contains all the symmetric special Kahler spaces is given in [23]. The symmetric
rank-4 quaternionic spaces and their related special real and Kahler spaces corres-
pond to L(0, P), L(l, 1), L(2, 1), L (4, 1), and L(8, 1).

These tables show a remarkable pattern. We have the pure N = 2 supergravity
theory in 3 dimensions ("the empty quaternionic space") and the minimal coup-
lings: the quaternionic projective spaces. Then the remaining rank-1 quaternionic
symmetric space is the one originating from pure d = 4 supergravity ("the empty
special Kahler space"). The minimal couplings of vector multiplets in d = 4, N = 2

Table 2. Normal quaternionic spaces with rank R ^ 2 and quatern-
ionic dimension n + 1 and the corresponding special real and Kahler
spaces (whenever they exist)

real

SG

Kahler

SG

U(n, 1)

l/(n)<8> U(l

C/(l)

quaternionic

SG

C/Sp(2n + 2, 2)

USp(2n + 2) (8) Si/(2)

1/(1,2)

ί/(l) (8)1/(2)

C/(n + 1, 2)

) ^ + « ® ^ )

51/(2) (x) SI/(2)

w + 1

0

1

«+ 1 >2

2

R

0

1

1

2

2
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Table 3. Homogeneous special real spaces with corresponding Kahler and
quaternionic spaces. Those that were discussed for the first time in this paper are
indicated by a •. R is the rank of the quaternionic space

C(h)

L(-1,O)

L(0, P, P)

L(4m, P, P)

real

50 (m, 1)

50(1,1)

J"(P, P)
X(P, g)

•

Kahler

|~SC/(1, 1)~|

L ^ ί 1 ) J
K(P, P)

quaternionic

2 50(3,4)
(5C/(2))3

ΪF(P, P)

R

3

4
4
4

p, g i l
m, P, P ^ 1

supergravity, the complex projective spaces, are the origin of an infinite series of
rank-2 quaternionic spaces. The remaining rank-2 quaternionic space originates
from pure d = 5 supergravity ("empty real space"), while the real projective spaces
are the origin of an infinite series of rank-3 homogeneous quaternionic spaces (as
discussed before, the reduction does not preserve the property that the space is
symmetric). Seeing the ensuing pattern, it looks as if the remaining rank-3
quaternionic space should arise from the reduction of pure d = 6 supergravity. The
rank-4 quaternionic spaces would then find their origin in matter coupled d = 6
supergravity. This is then also the last step, because d = 6 is the largest space-time
dimension in which a supergravity theory can exist with 8 independent supersym-
metries (corresponding to a d = 6 spinor). These d = 6 couplings would then be
characterized by the possible real realizations of positive-definite Clifford algebras
(while L(— 1, 0) corresponds to the "empty Clifford algebra"). This is in accord with
a conjecture in [24] (cf. Eq. (5.6)) where d = 6, N = 2 tensor and vector multiplets
are incorporated in the field strength

FStc = 3d[aA£c] + (A™)[a(yμ)mn(Fn)bc] , (4.11)

which leads to a coupling of q + 1 tensor multiplets (with tensor field Aμ

ah and field
strength F£bc) to r vector multiplets (with vectors A™ and field strengths A™b).

In this paper we presented a complete classification of the special real homo-
geneous spaces with a transitive group of motions that leaves the polynomial C(h\
and thus the corresponding d = 5 supergravity theory, invariant. Therefore we also
obtained the corresponding classification for the homogeneous special Kahler and
quaternionic spaces that are in the image of the c map and the c ° r map. However,
we expect that Tables 2 and 3 in fact comprise all possible homogeneous quatern-
ionic spaces. This result should still follow from the analysis of [13], and we believe
that the absence in [13] of the spaces indicated by a • in Table 3 is merely due to
a calculational error. The nice pattern described above lends support to our
conjecture that the classification of homogeneous quaternionic spaces is now
complete, as the new spaces exhibited above are precisely needed for completing
the overall picture.
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