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Abstract. We construct multiparameter compact matrix pseudogroups of all types
and show their representation theories are the same as their classical analogs.

Introduction

This paper is concerned with the problem of constructing families of multiparameter
quantum groups. This problem was first raised in [Ml] and subsequently treated in
[T, Rel, OY, H, LS].

In [Dr3], Drinfeld gave a method to "twist" quasi-Hopf algebra structures. This
idea was used by Reshetikhin to give multiparameter examples of quasi-triangular
Hopf algebras, at the formal level. He also constructed the corresponding bialgebras
(over C) of rational functions on the quantum group (cf. [Rel]). He works with a
complex simple Lie algebra with fixed Cartan decomposition; the parameter space for
these deformations is the second exterior power of the Cartan subalgebra.

The first purpose of this work is to give complex versions of these Hopf algebras,
the parameter q being positive =j= 1 (Sect. 4). We also construct the Hopf algebras of
rational functions (Sect. 5), using the results of [A].

We then find out the conditions for these algebras to yield compact matrix
pseudogroups in the sense of [Wl] (CMP) (Sect. 5). The test for that is clear from
the Tannakian viewpoint: some representation of the quantized enveloping algebra
should bear an invariant inner product. The existence of this product in the twisted
case follows from the results of Rosso (in the classical case), the first author (in the
classical and E6, EΊ cases) and Tiraboschi (in the G2, F4, and Es ones). We thus obtain
non-simply connected versions of the quantum groups considered by Levendorskii and
Soibelman. (Note that the existence of an invariant inner product remains implicit in
[LS]).

* Work partially supported by CONICET and FAMAF (Argentina). Current Address: Max-Planck-
Institut fur Mathematik, Gottfried-Claren-Strasse 26, W-5300 Bonn 3, FRG
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We study the representation theory of the CMP's, using general arguments within
the framework of [A] and the main result of [L2] (Sect. 10).

We would like to thank P. Cartier for interesting discussions.

0. Conventions

Let ^ be a Hopf algebra over C, with comultiplication Δ, bijective antipode S

and counit ε. Let ρ:^β —> EndF be a finite dimensional representation of A,

ρd:^β —> E n d F * be given by ρd — ρtS. If W is a vector space, we shall denote

by ^(W) the tensor algebra of W. Let φρ:^(V <8> V*) -> ^ * be induced by

(φρ(υ®μ\x) = (μ,ρ(x)v);theimagεofφρ®φρd:^((V®V*)®(V®V*))^^*

will be denoted Coeff(£>).
Let 38 be another Hopf algebra. A Hopf algebra pairing between ^ and 38 is a

bilinear form (,}: Λ> x 38 —» C which transforms operations into co-operations. That
is, for example, (Δ(a), b®b'} = (α, 66'), (5(α), 6) = (α, 5(6)), etc. If in addition the
pairing induces a monomorphism 3S —» ^ * , then we shall say that ^ is dual to ̂ .

Let T be an antilinear multiplicative involution of J&. Let α \-+ α* be the

automoφhism of ̂ * given by (α*,x) = (α,T(x)).

We shall fix a Cartan matrix A = (α^ ) G Z n x n and a diagonal matrix

D = (d1? . . . , d n), df G Z, such that DA = AD; i.e. d^- — d^a^ for all i,j.

1. The Twisted Compact Matrix Pseudogroups

1. A General Construction ofCMVs

We recall from [A] how to construct CMP's from Hopf-algebraic data (r will denote
the transposition of the tensor product of two vector spaces):

Proposition, i) Let us assume that there exists an isomorphism of vector spaces
M:V -> V such that M(av) = S2(a)M(v)for allae^,υ G V. Then Coeff(ρ) is
a Hopf algebra dual to j& and (V, ρ) is an Coeff\ρ)-comodule.
ii) Let us assume that

ΔoT = (T®T)oτoΔ. (1)

Then (y&*) *) is a *-algebra. Moreover, let J$ <Z Λ?* be a ^-stable Hopf algebra dual
to J& and suppose that

STS = T. (2)

Then J$ is a *-Hopf algebra.
iii) Assume that in addition there exists an antilinear isomorphism J: V —> F * such
that

J(xυ) = T(x)J(υ) x G ̂ , v G V. (3)

Let (u^ ) = (φβ{vά 0 μj) G C o e f f ( ^ ) d i m y χ d i m y . Then Coeff(ρ) w α *-Hopf algebra

generated by the entries ofu.
iv) Lei £, T, J satisfy the hypothesis above. Let (\) :V x V ^> C be the sesquilinear
form given by (υ\w) = J(w)(v). Assume that

(I) is an inner product, and M is symmetric positive for it. (4)
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Then Coeiϊ(ρ) admits a norm \\ \\ such that \\xx*\\ = \\x\\ ||aj*||. Let us denote C*(ρ)

the completion of CθQff(ρ) with respect to \\ \\. Then (C*(#), u) is a CMP.

Remarks, a) The condition (3) is equivalent to (xυ\w) = (υ\TS~ι(x)w), for all
x e ^&, v,w G V. Let * : ^ -> *A be the application x ι-> TS~ι(x). Then ( ^ , *)
is a *-algebra and (3) means the classical definition of a unitary representation of

a *-algebra. Moreover, the *-operation in ^ * is given by (α*,#) = (α, (5(3;))*),
compare with [So].
b) If ^β is quasitriangular, then the hypothesis of Proposition 1 i) is fulfilled, see
[Dr2]. ^
c) As J ^ denotes the set of classes of irreducible representations of ^ , the set of

classes of irreducible finite dimensional corepresentations of C*(ρ) will be denoted

C*(ρ)v.
d) Examples of this construction with the help of quantized enveloping algebras are
now well-known.
e) P. Cartier pointed out that the proof in [A] was not complete: there the continuity
of A is not checked. This is easily cured using [W2], Theorem 1.3. Let us note that
one advantage of [A] is that it gives a formula for the Haar measure.

2. The Twisting Operation

Now we shall recall how to twist the coalgebra structure, see [Rel, Dr3]:

Proposition. Let (^4, Δ, S, ε) be a Hopf algebra. Let F = £) /• ® /* e *A <g> ^
invertible satisfying

F23(l®Δ)F = Fl2(Δ®l)F, (5)

(ε (8) 1)F = (1 ® ε)F = 1. (6)

Let u - Σ fiSifl Then u is invertible. Put ΔF(a) = FΔ(a)F~\ SF(a) =

uS(a)u~ι.
Then (<sS, ΔF, SF,ε) is a Hopf algebra, denoted ^/&F. (Note that the algebra

structure does not change.)

A similar statement holds in the case of topological Hopf algebras. We briefly
recall Reshetikhin's construction. Let g be a simple complex Lie algebra with fixed
Cartan decomposition; let <A — Uhgbe the Drinfeld quantized enveloping algebra
[over C((/ι))] associated to it. Let / be an antisymmetric tensor in h ® h, where h
denotes the Cartan algebra of g. Then F — exp(hf) satisfies (5), (6).

Let us now shortly discuss how the twisting of the Hopf algebra alters the
construction of the coefficient algebra and the related CMP. Let us, however, remark
that the following is mostly useful at the formal level, and that our argument doesn't
repose on it. It were, however, these conditions (with φ — I) that led us to the
restrictions on the parameters we needed (Corollary 5).

First, if M intertwines ρ and ρS2, then ρ(u)M intertwines ρ and ρ(SF)2.

Lemma, i) Assume that T satisfies (1), with respect to A. Let ψ be an invertible
element of^β.If

(<ψ ®ψ)(T® T)τ(F) = FΔ(ψ), (1)

then T^: = ψTψ~ι satisfies (1), with respect to ΔF, and ^ * (with the twisted
multiplication) is a *-algebra.
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Moreover, if J8 C ^ * is a *-stable Hopf algebra dual to ^& and T satisfies (2),
then Jβ is a *-Hopf algebra.

ii) Assume that in addition there exists an antilinear isomorphism J: V —• V * such

that J(xv) = T{x)J(v), x G ̂ , v G V. Then jΨ = ψj = JT(ψ):V -* V* is an

antilinear isomorphism and satisfies J^(xv) = T^(x)J^(v), for all x G *sβ, υ G V.

In particular, Coeff(^)F is a *-Hopf algebra.

iii) Let ρ,T, J satisfy the hypothesis above. Let (\):V x V -+ C be the sesquilinear

form given by (υ\w) = J(w)(v). Assume that ( | ) is an inner product. Let (| )^ be

defined by {v\wγ = J^(w)(υ). Assume that TS~ιφ = ψ and (T(φ)v\v) > 0.

Then the completion ofCotϊϊ(ρ)F with respect to a suitable norm is a compact matrix

pseudogroup.

Remarks. 1) If F satisfies (6) but not (5), then the above construction gives a quasi-
Hopf algebra, see [Dr3]. Equation (5) is a cocycle condition on F.
2) The non-triviality of the twisting (that is, the fact it is not the result of an inner
automorphism) is ensured when F is not a coboundary, i.e. of the form (u®u)Δu~ι.
This can be checked in the case of [Rel] (at the formal level) developing u in
powers of h and checking that no u{ £ Ug can verify Δux — ( I 0 u 1 + u 1 0 l ) =
fap(Ha (8) H& — H@ 0 Ha) (because the coproduct in Ug is cocommutative).

3. Twisting an Action on an Algebra

Now let 3£ be an associative algebra, with multiplication m^ and unit 1 ̂ , provided
with an action σ of j& such that

σ(α) (xy) = m^((σ 0 σ)Δ(a) (x 0 y)),
(8)

σ(α)( l^) = ε(a)(\%>), a G ̂ , , x,y G J Γ .

Let mF%\x 0 y ) = m ^ j F " 1 ^ 0 y)).

Proposition. (JΓ,ra^) zs αrc associative h-algebra with unit \$>, denoted 3&F, and

σ defines an action of ^&F on &F.

Proof. This follows from (5), (6). D

Remark. Theorem 2 in [Rel] follows from this; we shall use a rational version of this
"formal" result in Sect. 12.

4. Definition of a Complex Version of the Twisted Quantum Enveloping Algebra

Let F = (/^) G C n X n be antisymmetric, let q be a positive real number, q φ 1.

UqF(A) is the associative unital C-algebra defined by generators Ei9 F^ Kf,

1 <i <n, s G C (K\ will be denoted ϋQ, and relations

A ^ A ^ — J\i , A ^ A ^ — J\J A ^ , Λ — i , ^y;

A hi = g ι ^ xί/•,A , A rA = q J Γ A , (1U;

^i*'i ~ ^i^i = *i? TT _._w. > vll/
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and if i φ'j

= 0, Σ i-^fF^F^ = 0. (12)
h+l=\-aij h+l=\-a,ij

Let us introduce ΔF, S, and ε by

TΛ τfdiaiβfotβ\ ^ π n ^

I I Ka \ 09 £/• , (1J)
aβ J

Π ^ ^ F 4 , (14)
aβ J \ aβ

ΔFKf = If? ® K^ , (15)
ι -FiKi, S(K°) = K-S, (16)

i) = 0, ε(F^) = 0, ε(K?) = 1. (17)

Note that

^ 1 1 ~KiF{ S~\K\) = K " s . (18)

Lemma. ΔF (respectively S,ε) extend on UqF(A) to an algebra morphism to

UqF(A) <g>c UqF(A) (respectively to UqF(A)op, C). These operations make UqF(A)

into a Hopf algebra.

Proof. It can be deduced from the considerations in the preceding section; but it is
straightforward to check directly all the axioms. The necessity of the antisymmetry
of F appears when checking the axiom of the antipode. D

Remark. This algebra is slightly different from that presented in [OY]; in that work,
the parameter q may be a complex number, different from a root of unity.

5. Construction of the CM?

In what follows, we shall fix q, A, F and write U instead of UqF(A).

Let Uάisc be the subalgebra of U spanned by E^ Fi, Kfι\ it is clearly isomor-
phic to the quantized universal enveloping algebra considered in [LI]. Let m =
(πiγ, . . . , mn) G Z n . For any C/disc-module V, let Vm be the weight space correspond-
ing to m; i.e. Vm = {v e V\Kμ = q^^v Vi}, see [LI]. Let ^ d i s c :C/ d i s c -+ End(F)
be a finite dimensional representation such that V = 0 Vm; it extends to a repre-

sentation ρ of U by setting ρ(Kf)υ = qsd^miv, for any υ G Vm. The algebra Coeff(^)
is a Hopf algebra after [A] and can be interpreted as the ring of rational functions on
a multiparameter quantum group (see also [H]).

Let us consider the antilinear multiplicative involution T of U given by

= -F,, TOP.) = -Et, T(Kt) = K~

Clearly T satisfies (2).
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Proposition. // the entries of F belong to Λ/^TR, then T satisfies (1) and any
sesquilinear Uάisc-invariant form on V is U-invariant.

Proof Let us check (1) for E{. On the one hand,

Kadiaίβfβa

On the other hand,

(Γ ® T) (TΔpiEi)) = (T ® Γ) (Y Π Kd

a

iaiβfβa

as claimed. The proof for Fi is similar and for Ki is trivial. (2) is easy and the first
statement is proved. Now let ( | ) be a sesquilinear Uάisc -invariant form on V. Let
υ,w e Vm, s e C. Then (ρ(Kf)v\w) = qadimi(υ\w) = (υ,ρ(Krs)w) and we are
done. D

Corollary. Let A be α Cαrtαn matrix and n be its rank. Then to any real positive
parameter q =(= 1, to any m G Z n and to any n x n antisymmetric matrix F
with purely imaginary entries, it is possible to associate a CMP, by the procedure
described in Proposition 1, considering the representation of UqF(A) induced from

the representation ofUάisc of highest weight (qdιmi, . . . , g d * m * ) .

Proof Any finite dimensional representation of a simple Lie algebra of classical, E6

or EΊ type is contained in a tensor product of minuscule representations, and thus
has an [/g(A)-invariant inner product ([A], see also [Ro2] for the classical cases).
The existence of an invariant inner product in a quasi-minuscule representation was
established by Tiraboschi; this is the case for the 7-dimensional representation of the
quantized enveloping algebra of G2, the Jordan algebra representation of F4 and the
adjoint representation of E% (see [Ti]).

Hence, under the restriction of the proposition above on F9 the extensions to
UqF(A) of these finite dimensional representations admit an invariant inner product,
thus fulfilling the hypotheses in Proposition 1. D

6. The Real Forms

One needs no extra effort to construct, at the *-Hopf algebraic level, real forms of
the algebras UqF{A) and Coeff(£>). Let us introduce (cf. [A, 2.4] and [FRT]), the
following antilinear multiplicative involutions of U:Tj (I < j <n) given by
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Tθ (where θ is a diagram automorphism of order two) given by

Tθ(Ei) = ~Fθ{i)»

T0 = T^Γ , if 0 is as above and j is fixed by θ. (Recall that a diagram automorphism

is an application θ: {1, . . . , n} —• {1, . . . , n} such that α^ = ciθ(i)θ(jy for all z, j . It

extends to a linear automoφhism of C n x n , also called 0.)

It is easy to see that Proposition5 holds for T-\ and if F is in addition ^-invariant,

also for Tθ and Tθ .

2. The Representation Theory

Let ^ , £>, T, be as in Sect. 0 and assume that they satisfy the hypothesis in Propo-
sition 1. The purpose of the following sections is to deduce the (finite dimensional)
representation theory of the CMP C*(ρ) from (part of) the representation theory of
J&. This completes the study of [A]. Then we will specialize to the example presented
above.

7. The Peter-Weyl Theorem

First we shall recall some facts from [Wl]. Let V be a finite dimensional complex

vector space. A corepresentation of C*(ρ) on V is an element υ = Σ ^% ® xi £

End(V) ® C*(ρ) such that υ θυ: = Σ titj ® ^ ® x j i s e ^i u a l t 0 (id®^)v. Let

C*(ρ)υ be the subspace of C*(ρ) spanned by the a?i such that ti φ 0 (it is the space

of the matrix coefficients of this corepresentation).
Fix an inner product on V. A corepresentation is called unitary (respectively

smooth) if v is unitary [respectively v G End(T^) <g> Coeff(ρ)]. A moφhism between
two corepresentations (V,υ) and (V',υf) is an application t:V —> V such that
(ί Θ id)υ = v;(ί 0 id). A subspace of F is invariant when it admits a corepresentation
such that the inclusion is a morphism. It is clear what Coeff(^)v means for a smooth
v.

A corepresentation is called irreducible (respectively completely reducible) if it
has no proper invariant subspace (equivalently, the only morphisms from V to V
are the multiples of the identity) (respectively is a direct sum of irreducible invariant
subspaces).

The category of corepresentations is closed by (finite) direct sums, (finite) tensor
products [because the comultiplication is defined on C*(ρ)]; the subcategory of
smooth corepresentations is in addition closed by the contragredient operation [recall
that the antipode is defined only on Coeff(ρ)]. Let JB be the smallest full subcategory
of the category of smooth corepresentations containing u, u* and closed by direct
sums, tensor products and taking the contragredient. Let C*(ρ) v be the set of
isomorphy classes of irreducible corepresentations occurring in J%. We shall often
identify a G C*(£>)v with a representant. We close this section recalling the following
fundamental facts:

Theorem (see [Wl, 4.5, 4.7]). i) Any smooth corepresentation is completely reducible.
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(ϋ)

Coeff(β)= ffi Coeff(β)α. (19)

iii) More precisely, let (Va,υa) be an irreducible corepresentation of type a, {u^}

a basis of Va, {w1} C V* its dual basis, u{ά)1- e Coeff(^) such that υ =

wι 0 Wj 0 u(a)ly Then {u(α)* } is a basis of Coeff(ρ).Σ

8. From Comodules to Modules

In this paragraph, ^S and 3B are arbitrary Hopf algebras, 3B dual to J&. Recall that a
J^-comodule is a pair (M, μ), where M is a complex vector space and μ is a linear
application M —• M ^ J 1 such that (id (g>Λ)μ = (μ(g>id)μ and (id <g>ε)μ = id. There is a
well-known equivalence between finite dimensional comodules and corepresentations;
namely, if υ = ^2,ti®xi 6 End(F) 0 B is a corepresentation, then we define
μ(m) = X) ^(m) 0 x{. A moφhism of comodules is an application L:M —> M'
such that μ'L = (L 0 id)μ. It is clear how to define direct sums and (thanks to the
multiplication) finite tensor products of comodules. Moreover, the antipode enables
to consider the contragredient comodule of a finite dimensional one. The following
may be found e.g. in [Sw]:

Lemma. Let (M, μ) be any J$-comodule. The application J& (8) M —» M given by
the following commutative diagram

i 0 M > M

defines a (left) y&-module structure on M.It gives rise to a functor ifrom the category
of right-Jff-comodules to the category of left-^-modules which preserves direct sums,
tensor products and (for finite dimensional objects) passing to the contragredient. A
comodule M is irreducible if and only if L(M) is.

9. The Representation Theory of CMP's: General Facts

Now let us recall some facts from [A]. We come back to the notation in Sect. 0. Let
us consider JΓ((V 0 V*) Θ (V* 0 V)) (respectively ^ * ) as a ^-module via the
representation induced by ρ 0 i d θ £ * 0 id (respectively the transpose of the right
representation, i.e. (xa, y) — (α, yx)). Then φρ 0 φρd is a morphism of ^-modules
and hence Coeff(#) is a ^-module.

Moreover, the hypothesis (4) implies that Coeff(ρ) is completely reducible as an
^-module. That is,

Coeffte) = 0 Coeff(e)π , (20)
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where J ^ is the set of isomorphy classes of irreducible finite dimensional representa-

tions of <A and for % an ^-module and π G J&, %π denotes the isotypic component

of 96 of type π.

On the other hand, it is always true that ^ * = ^ ( T Γ ^ T Γ * ) . (Here we are confusing

π with one representant.) In particular, we have Coeff(ρ)π C φπ(π ® π*).

Lemma, i) The comultiplication A: Coeff(^) —> Coeff(£>) ® Coeff(£>) gives rise to
a Coεff(ρ)-comodule structure in Coeff(^). The ^-module structure in L(Cotff(ρ))
coincides with the transpose of the right representation.
ii) For any irreducible smooth corepresentation a, Coeff(^)α is a subcomodule of

Coeff(ρ).
iii) Let, as in ii), a G C*(£>)v. Then Coeff(^)α C Cozϊϊ(ρ)L{θί).

Proof, i) The first statement follows from the axioms of the comultiplication. Let

x,y G ̂ , / G Coeff(p). Let us write Δ(f) = Σ / t ®/*. The action of ^ on Coeff(£>)

induced by duality is xf = Σ(f\x)U a n d h e n c e (xfiV) = Σ(f\x) (fi,y) =
(Δ(f),y<g> x) — (f,yx), i.e. the transposed right action, which is the claim,
ii) follows from the definition of corepresentation.

iii) Let (V,v) be an irreducible smooth corepresentation of type a, {w^ a basis of

V, {w1} C y * its dual basis, u) e Coeff(ρ) such that υ = Σ wi ® wj ® u<j- W e

claim that
^ i . (21)

That is, we need to check that (u^y) = (w\yWj), for all y G J&. But let us recall

what the action in the second equality means: ywj = Σ{u)^v)wj' (Here we are
i

passing from the corepresentation to the comodule and then to the module.) This
proves (21) and that

Thus Coeff(£)α C ^*(a) Π Coeff(ρ) = Coeff(ρ),(α) and we are done. D

Let J%[ρ, ρd] denote the Grothendieck ring of the representations of ^ generated
by ρ and ρd. Now, combining Theorem 7, Lemma 8, and Lemma 9 we obtain the
following result:

Theorem, i gives rise to a ring isomorphism between the Grothendieck ring of the

smooth corepresentations ofC*(ρ) and JS[ρ, ρd]. Furthermore,

Coeff(ρ)= £ft Coeff^Γ (22)

is the decomposition of Coeff(ρ) in isotypic components with respect to the J&-
module structure, obtained transposing the right multiplication. In particular, for any
irreducible π in S&[ρ, ρd], Coeff(ρ)π = φn(π (g) π*), and dim Coeff(£>)π = dim(π)2.

Proof Lemma 8 shows that the ring homomorphism is well defined. The injectivity

is checked as follows: let λ and μ be two smooth corepresentations of C*(ρ), such

that ^(λ) is isomorphic to i{μ) as ^-module. Fix a vector space V carrying both

representations and a basis (e^) of V. Express each coaction by 5λ(e f) = ΣK ® ej
3
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and δμ(e^ = Σ V{®e^ Then (α, b{) = (α, b'{) for each α in <A and λ = μ by duality.

Now comparing the decompositions of Theorem 7 and of (20), using the inclusion of
Lemma 9 and the injectivity of i we get Coeff(^)α = Coeff(£)^α) and (22). Once one
has shown the surjectivity of i, the following statements are obvious. Let π be an
irreducible subrepresentation of Jf((V 0 F * ) θ ( V * 0 V)), then TΓ is included in some
homogeneous component ̂ ((V0 V*) θ (V* 0 V)). Now, ^((V0 V*) θ (V* 0 F))
is a Coeff(^)-comodule, that is made into a ^-module; but, as we are in the case of
finite dimensions, any submodule comes from a subcomodule. Irreducibilities in both
cases are equivalent, and we are done. D

10. The Corepresentation Theory ofC*(ρ)

In this paragraph, we shall use the notation of Sect. 5. The last point of this section
is to relate the representation theories of U and Udisc. Let Rep(C/disc) [respectively
Rep(C/)] be the category of finite dimensional Uάisc (respectively [/^-representations
such that the action of Ki (respectively Kf) is diagonalizable for all i (respectively
for all i and s) with eigenvalues qdίΊΎl (respectively qdims) for some m G Z. We
already constructed a functor £d i s c κ-> ρ which is clearly an isomorphism and preserves
direct sums, subrepresentations, quotients. Now let us consider in Udisc the coalgebra
structure given in Sect. 2. Then the above functor also preserves the passage to the
contragredient. The only non-trivial point to investigate is the tensor product.

Let (V, ρ), (W, σ) be two such finite dimensional modules, V = 0 Vm,

W = 0 Wp the respective weight decompositions. V 0 W has two [/-module
pez™

structures: first, the structure induced from (£d i s c 0 σάisc)Δ; second, (ρ 0 σ)ΔF. We
need to relate them. This is clear at the formal level, cf. Sect. 1; it is only necessary to
intertwine by the image of the element defining the twisting. This element, however,
does not exist at the "rational" level, i.e. in U 0 U. But its image in End(V 0 W)
does make sense.

This motivates the following lemma:

Lemma. Let ^:V 0 W —> V 0 W the application which restricted to Vm 0 Wp is
Σ) foLβdocrrioίdβPβ

multiplication by </α >/3 . Then & intertwines the representations described

above.

Proof. Let us show that

aβ

It suffices to prove it for u G Vm, w £ Wv. But in this case, the left-hand side is

E{u^w

_ _.,_ ^ ,_ _ θLmOίdiaiβfOίβ

• qaβ a β Kτu 0 E{w
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and the right one is

Σ faβda(™>at+a>

The proof for Fi is similar and for Kf it is obvious. D

We can summarize the results of this paragraph:

Proposition. The Grothendieck rings of the categories Rep(C/disc) and Rep(C/) are
isomorphic.

Combining with Theorem 9 and [L2, Theorem 4.13], we deduce

Theorem. The Grothendieck rings of the categories of smooth representations of the
CMP constructed in the Corollary 6 and its classical analog are isomorphic, at least
if q is transcendental over Q.

Remark. We are grateful to P. Polo for pointing out to us that in fact Lusztig's
argument applies to any q which is not a root of 1.

11. Link with Quadratic Algebras and a Computation for sl(3)

In this section, we want to discuss the relation between our construction (when the
Cartan matrix is of type An), quadratic algebras [M2] and a general theorem of
Woronowicz.

To begin with, let us recall [W2, Theorem 1.4]. Let N be a natural number. Let

We refer to [W2] for the definition of the non-degeneracy condition. Let A be the

universal (7*-algebra generated by the N2 elements u^ , subject to the relations

u®NE = E, u*u = uu* = id . (23)

[Here u = (u^).] The above mentioned theorem of Woronowicz says that (A, u) is a

CMP, provided that E satisfies the non-degeneracy condition.

Now let us recall some facts about quadratic algebras. Let q{- e CNxN. Let us

assume that q^q^ = q^ = 1. Let JΓ be the quotient of C(xli . . . , xN) (the free

associative algebra in variables x^ by the relations

xjxi ~

Clearly, JΓ = 0 J ^ is a quadratic algebra. Let JΓ ! be its quadratic dual (cf. [M2]).
m

Let ξi be defined by (ξ^Xj) = δ^. Then it is easy to see that

This implies in particular that JΓ ! is a quantum grassmanian algebra [M2]; i.e.,

^ = 1 and the multiplication induces a non-singular pairing (&ι)j <8>

-> ^ ' ) N f o r a 1 1 3- I n particular, {^[)j = 0 if j > N. This enables

us to define E e C(N } by the equality in &ι
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It is easy to see that the non-degeneracy condition of [W2] follows from the non-
singularity of the pairings between J ^ ! and $D^_V

Now let Λ>,J1B be Hopf algebras, JB dual to ^ , and let μ: JΓ -> 3£ ® JB
define a (right) comodule structure. Let us assume that μ is a moφhism of algebras.
[Equivalently, the ^-module structure explained in Sect. 8 satisfies (7)]. Let us
assume in addition that μ is graded, i.e. that each J$Γm is a subcomodule and
(&)j ® (&X -+ (&)i+j i s a morphism of comodules. (Conversely, if 3£x is a finite
dimensional ^-comodule and 3% is a subcomodule of .Sj ® J?J then the quadratic
algebra generated by J&J with relations ^ has a ̂ -comodule structure given by
a morphism of algebras.) From this, it follows easily that JΓ ! is a graded left J?-
comodule whose structure morphism is a morphism of algebras. In particular, as
remarked in [M2], there exists D G i 1 such that

Now we shall specialize the preceding general remarks to the case we are interested
in. Let Λ = Uq F(AN_γ). Let V b e a complex vector space with basis (X^K^N-
Let c- = δij — δi j _ ι . The application q\y& —> End(F) given by

Ei(χj) = δi,j-ixj-i' Fi(xj) = δijxj+ι Kϊ(χjϊ = QCijSχj

defines the "natural" representation of ^S, see [Re2] and Sect. 4. Let

q.. = q-lqXfij-fi-i,j-h,j-i+fi-i,j-0 if i> 3,

and put q^ = 1, q^ = g~Λ It is easy to see that the subspace of V <S> V generated by

xi 0 Xj — q^Xj 0 Xi is actually a Coeff(ρ)-subcomodule. (Compare with [Re2] and

Proposition 2.) Let JΓ be the corresponding quadratic algebra. Let u{j = φρ(Xj ΘCi)

As ($tf)®N —> {^ ) N is a moφhism of comodules, we have

Eiu-,iND= Σ Uiuh-"UiNJNEiu^ND

J1, ~,3N

Now from the representation theory of ~4 developed in the preceding sections and
[L2] it follows that D = 1. That is, we have the first part of (23). The second follows
from [A, Lemma 1.4 and Proposition 2.5], for example. Thus we have an epimorphism
from the CMP presented by (23) to C*(ρ). We think that it is an isomorphism. In the
case F = 0, this was proved in [Ro2, Theorem 7].

Remark. So, the fundamental representation of the CMP attached by Woronowicz's
theorem to the datum E is irreducible. In the case N = 3, this can be checked
directly along the lines of [W2]: indeed, the self intertwiners of it belong to the
algebra generated by T,T*, where T{j = Σ E*iiuir But in the case N = 3, the

computation gives

Γ # = Q~

Now, the non-diagonal terms of (X^ vanish and we get

τn = q-\\ + \q~
2+4H, τ22 = < r V

T3 3 = <Γ2(1

and with our assumptions on q and / 1 2, T is scalar.
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