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Abstract. Let / be a set of invariants for a system of differential equations with an
order o(ε) vector field. When order ε perturbations of zero mean are added to the
system we show that, under suitable regularity and ergodicity conditions, / be-
comes an adiabatic invariant with maximal variations of order one on time scales
of order 1/ε2. In the stochastically perturbed case, / behaves asymptotically (for
small ε) like a diffusion process on 1/ε2 time scales. The results also apply to an
interesting class of deterministic perturbations. This study extends the results of
Khas'minskii on stochastically averaged systems, as well as some of the determinis-
tic methods of averaging, to such invariants.

0. Introduction

We consider the behavior of the stochastic differential equation in Rp,

x = εF(x,t,ε9ω)9 x(0) = x0 , (0.1)

where

F(x91, ε, ω) = / ( * , ί) + F(0\x, ί, ω) + εF ( 1 )(x, t, ω) + o(ε) (0.2)

as ε -> 0. We require that EF(0)(x, t) = 0 and that

f(x)=\im-]f(x,s)ds (0.3)
ί ^oo * 0

exists for all x. Khas'minskii [13] examined these systems at time scales of 0(l/ε)
and gave general conditions for the asymptotic approximation of solutions of (0.1)
by solutions of the deterministic equations

x = ε/M (0.4)
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as well as a Markov correction to this approximation. Then in [14] Khas'minskii
considers the same systems at time scales of 0(1 /ε2) when the averaged problem is
degenerate (i.e.,/(x) = 0). A diffusion process is obtained in the scaled limit to (0.1)
under suitable regularity conditions.

The unperturbed problem (0.4) is slowly varying. Knapp, Papanicolaou and
White [15] discuss the case of a perturbed Hamiltonian system, where the unper-
turbed problem, / = 0, φ = ω(/), is an 0(1) vector field in action angle-variables. It
should also be noted that the change of scale σ = εt transforms (0.1) into

F ( x , , ε , ω ) , x(0) = xo (0.5)

in which the perturbation appears as an 0(1) rapidly varying field.
In this paper, we will show that similar results can be obtained at 0(l/ε2)-times

even when/Φ 0 provided we consider a suitable collection of invariants / = /(x) of
the unperturbed problem (0.4). That is, we require

^ / M = 0 , (0.6)

which entails that I{x(t)) is constant along solutions of (0.4). If/= 0, then we can
take I(x) = x and we recover Khas'minskii's result at a certain stage of our analysis.
Our goal is to study the evolution of y(t, ε) = /(x(ί, ε)) under the flow defined by
(0.1) on 0(l/ε2) time intervals.

Clearly, the analog of (0.1) for y is

^ = I(x0) > (0.7)

where

G = g + G(0) + εG(1) + o(ε),

and

G{i)(x, t, ω) = yF{ί)(x, t, ω\ i = 1, 2 . (0.8)

Note that the time average g of g is zero, so the analog of (0.4) for y is y = 0, or
y = constant.

Equation (0.7) is similar to the equations treated in [14], except that G depends
on x, not y. Under conditions similar to those in [14] analogous estimates can be
obtained for increments of the solutions to (0.7). The ^-increments depend on x,
however under the assumption that the deterministic solutions to (0.4) behave
ergodically on the surfaces corresponding to I(x) = constant the increments are
shown, asymptotically as ε -• 0, to depend on x only through y. In the final step of
the analysis, convergence to a diffusion process in y is obtained.

In Sect. 1, we introduce our hypotheses, state the main theorem and discuss
some related points. In Sect. 2, we discuss several examples which illustrate the
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theorem. Preliminary estimates are presented in Sect. 3, and these are gathered
together in Sect. 4 to prove the theorem.

1. Formulation of the Main Results

We will consider the solution to the x-equation (0.1) in an (open, connected)
domain Z)o, possibly all of Rp. Let / = I(x): Rp -• Rq be a function satisfying (0.6),
and let Dx = I{D0). We require Do to be chosen so D1 is open in Rq. We assume
that the vector field F is bounded, continuous and locally Lipschitz in x for almost
every ω, and this implies ([11]) that the solution, x(f, ε), to (0.1) exists uniquely in
D o on a maximal right interval [0, Bε(ω)) and that either Bε= GO (i.e., the solution
stays in Do for all t ^ 0) or that x(ί, ε) -• xf e dD0 as t f Bε < oo. This allows us to
define the process on [0, oo) as

fx(ί,ε) 0^t<Bεx(t, ε) = < R

1-xf Bε^t< oo

and let j)(ί, ε) = /(x(ί, ε)).
In what follows, (Ω, #", P) is a probability space and for each x ε D o, ί ^ 0 and

ε > 0 the functions F, F{0) and F ( 1 ) are Rp valued random variables on Ω. In the
statement of the assumptions, we use the conventions that, for a function
h: Do x [0, oo) x Ω -> Rr or /z: D o x [0, oo) x Ω -• Cr (r-dimensional complex
space), letting IΛI = Σϊ= 11 * ( 0 U

|| h || = P — ess sup sup sup |/z(x, ί, ω) | ,

|| ft Hi = P — ess sup sup sup |ft(x i? ί, ω) — ft(x2, t9ω)\/\xx — x 2 | + ||ft || ,
ω xι,X2eDo f ̂  0

| | f t | | 2 = s u p l l δ h / δ ^ l U + H Λ I I ,
1 ^ i ύ P

and use the same conventions when ft depends on a subset of these arguments. Note
that

Now, consider the assumptions:

(Al) Relations (0.1) and (0.2) hold, where, in relation (0.2) and what follows, all
order statements for the limit as e -> 0 are to hold uniformly in x ε Do, t ^ 0 and
ωeΩε with PΩε = 1. Moreover, we assume that F, F{0) and F(1) are continuous
functions in x, ί, that F is bounded, locally x-Lipschitz and dF(0)/dx exists and

| | F ( 0 ) | | 2 < oo and | | F ( 1 ) | | i < oo .

(A2) We require/(x, ί) to be almost periodic ([9]) with the Fourier representation
/(x, t) = Yβk(x)eiλkt. Since/is real, we must have a-k = ag (where α* denotes the
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complex conjugate of a) and λ-k = — λk. Note that ao(x) =/(x) as defined by (0.3).
The derivatives dak/dx must exist and we require

and Σ l
fc*0

for some 0 < θ ^ 1.

(A3) Relations (0.6), (0.7) and (0.8) hold, the invariant / has first and second partial
derivatives with respect to x and

|| dl/dxj || < oo, || d2l/dxjdxk || i < oo for 1 g , /c ̂  p .

Λ/oίe. It follows that #(x, ί) = Σk ^ obk{x)eiλkt where fek = (dl/dx)ak. The assum-
ptions in (A3) imply that the three series in (A2) converge when ak is replaced by bk.

(A4) For 0 <Ξ 5 ^ t ^ oo let # ^ be sub-σ-fields of J^ such that for
Si ^ s2 ^ ί2 ^ ίi ^S2 c ^ s l a n d s u c h t h a t Fi0)(x, r) and F ( 1 )(x, r) are #"" measur-
able for all x e ΰ 0 . If the initial value x0 of (0.1) is random, then we also require
x0 to be J^o measurable. We require a φ-mixing condition: let

φ(t) = sup sup sup |P(B\A)-PB\.

We require f φ{t) ^ C < oo for all ί > 1 and some r > 4.

(A5) Let

and let

ΓaG Ί
, 5, r):= £ | - ^ - (x, 5)P(0)(x, r) I ,

, ί),

The assumptions (A2) and (A3) imply

/ϊi(x):= Σ μi,fc(x)
fcφO

exists and the series converges uniformly in x e Do. Moreover, assume the follow-
ing limits exist uniformly in x e Do and t:

i t + l s

μ2(x):= lim - J ds J drμ2(x, s, r)

1 ί + ί

μ3(x):= lim - j μ3(x,s)ds ,
/-oo * ί

i t + I t + I

ί : = lim - \ ds \ dr f{x, s, r).
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Finally, let μ = μ1 + μ2 + £3.
It is easy to see that

/ x ι dl(x)fdak(x) „, . datix
Λfc OX \ OX OX

Also, letting

K(x,s,r):=E
Ί

,r) ,\ —(x,s)

C(x, s, r):= £[F ( 0 ) (x , s)F ( 0 )(x, r ) Γ ] = C(x, r, s)Γ ,

and assuming that

1 ' s

K(x):= lim - j ds J drX(x, 5, r ) ,
z-+oo ' 0 0

1 ι ι

C(x):= lim - J ds J drC{x, 5, r) = C(x)Γ

exist, it follows that

1 p d2l ~ dl

where CjΛ is the j , fe entry of C.

(A6) Let x(ί, x 0) be the solution to the initial value problem

Assume there exist continuous functions μ(j ), ̂ (3;) of 3; on D1 such that the
following limits exist uniformly in x e Do:

μ(I(x)) = lim - J μ(x(s, x)) ds ,

£(/(*))= lim j j |Xx(s,x))dS. (1.1)

(A6') Assume

1. The limits in (1.1) exist for almost every x (they need not be uniform, but they
must be functions of y = I(x)).

2. Let Xε(τ) = x(τ/ε2, ε). For 0 g τ < τ + h, we assume the conditional distribu-
tion of Xε(τ + A) given tFψ2 has a conditional density pε{ω9 τ, τ + /z, x) on D o such
that for some ε0 > 0 and each compact subset K of D o ,

Pκ(τ, τ + h):= P — ess sup sup sup pε(ω9 τ, τ + h, x)
ω 0<ε<εo xeK
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satisfies
τ + ί

ί Pκ(τ, τ + h)dh < oo
τ + s

for each 0 < s < t < oo.

Note. The functions μ(/(x)) and £(/(x)) defined by (1.1) are necessarily continuous
functions of x. We require them to be continuous functions of y = I(x) as well.
Suppose the limits in (1.1) exist uniformly for all x, as in (A6). Then it is easy to see
that μ and % are continuous in y e D1 provided, when yn -• y in Dί9 the distance
d(I~ί{yn}i I~1{y}) -• 0. In other words, provided there exist x'n, x'ή in D o such
that yn = I(x'n\ y = I (x'ή) and x'n — x'ή -> 0. This condition is met in all the
examples we have considered. Under (A6') an application of Egoroff's theorem
shows that the limits coincide almost everywhere with continuous functions of
y under the above condition on 7 " 1 .

Results of the type considered here are best stated in terms of a scaled time. To
this purpose, we introduce the "slow time" τ = ε2t.

Theorem 1.1. Let assumptions (Λl) through (A5) and either (A6) or (A6r) hold. Let
y(t, ε) be the solution to (0.7) stopped on reaching I(dD0) with y(0, ε) = /(x0)

 e ^ i
Then the scaled processes

Yε(τ):= j>(τ/ε2, ε)

converge weakly to a Markov diffusion process Y0(τ) on D1 with infinitesimal
generator A defined on C ( 2 )(Di) by

and with I(dD0) an absorbing set.

Remarks.
1. In the deterministic case the weak convergence yields the following:
The functions Yε(τ) are equicontinuous and for each τ, Yε(τ) -> Γ0(τ) as ε -> 0. It
follows that Yε(τ) converges to Y0(τ) uniformly in τ e [0, τ 0) for any fixed τ 0 , where
in this case Γ0(τ) is the solution to the initial value problem

ά\ (0) / ( ) (1.3)

2. Note that i f/= 0 then we can take y = x, conditions (A3) and (A6) are automatic
and μ = μ, % = t I n this sense our result extends that of Khas'minskii [14],
though our regularity assumptions, and in particular (A2) and our treatment of/,
differ from his.

3. In all examples we have considered \I(x)\ -> oo as | x | -» oo. In such cases, since
/ is continuous^/ίi7) is closed for any closed set F. Thus for any choice of D o ,
I(dD0) and I(D0) are closed, and the Yo process can exit D1 only into the set
I(dD0). In any case Yε is confined to I(D0) for ε > 0 and Yo is confined to

4. Let Xε(τ):= x(τ/ε2, ε) and let βε = ε2Bε be the scaled hitting time of dD0. Since
/ is continuous, βε is also the hitting time of I(dD0) by Yε(τ% and the'process in
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£>! can exit only into the set I(dD0), which in general will be a subset of the
boundary of the set Dx. Since Xε is stopped on dD0, Yε is stopped on reaching
l(dD0\ both at the time βε.

Now let dε(τ) be the minimum distance of {Yε(s): 0 ^ s ^ τ} from δD1. Note
that this is a continuous functional of the Yε processes. Also let β0 be the hitting
time of dD1 by Yo. Then it is easy to see that [βε > τ] = \_dε(τ) > 0] for ε ^ 0. It
follows from the weak convergence of dε(τ) to do(τ) that

lim inf P[4(τ) > 0] ^ P[do(τ) > 0] ,

hence

liminf P[& > τ] ^ P [ β 0 > τ] . (1.4)

Thus, asymptotically the Yε processes stay in Dx at least as long (in terms of the
distribution of the hitting time of the boundary) as Yo does.

While Theorem 1 is typical of results in the literature on stochastic averaging,
the obvious problem with it is that often the domain Do is unbounded and the
regularity assumptions do not hold uniformly for x e Do as required, though they
may hold uniformly on suitable compact subsets of Do. The next result extends the
theorem to this situation. Let D%} be an increasing sequence of bounded subsets of
D o such that Do = (jDg0 and such that D^ = I(D^) is open, and let β(

ε

n) be the
hitting time of I(dD^) = dD{?] by Yε(τ) for ε ^ 0.

Corollary 1.1. Suppose that the assumptions (Al) through (AS) and (A6) or (A6f) hold
when Do is replaced by D^ for each n. Then (1.2) defines a diffusion on Dx such that,
for each n, the Yε process stopped upon reaching the set / (δD^) converges weakly to
Yo stopped on the same set.

Remarks.
1. Under the conditions of the theorem, the coefficients of the diffusion operator
A are bounded, so explosions will not occur. But in the more general setting of the
Corollary these coefficients may be unbounded and explosions may be possible for
the Yo process. Nevertheless, the Yo process will remain finite on the interval
[0, βo\ where β0 = limπ_00 jS^. Of course the process on Dx will not explode if Dλ is
bounded or if the coefficients of A have at most a linear growth rate.

2. The relation (1.4) holds for the β[n) and each n. Letting βε = limII-,Q0#'I), we have
βε

n) t βε, and it follows that (1.4) holds for the βε as well.

3. In the case of a one degree of freedom oscillator in phase space R2 = Rp, where
I(x) is the energy, we could take D^ = {x' 1/n < I(x) < n) so D± = (1/n, ή). Or
if we need to consider energy restricted to be at most some finite ec, take
Df) = (l/n,ec — 1/n). Then Dι = (0, ec). In this case 0 and ec will be reflecting or
absorbing boundaries for the diffusion Yo, depending on how the oscillator is
perturbed near these boundary energies.

Discussion of the Almost Periodic Assumption. Readers familiar with Khas'minskii's
approach will recall that he does not require the function/to be almost periodic.
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Instead there is a condition that there exist times Tn f oo increasing at most
geometrically fast such that

sup sup

t + τn

j (f(χ,s)-fix))ds 0 (1.5)
t>Tn x

as n -> oo for some r > 0 (in fact r = 6 in [14] and r = 3/2 in [2]). Now, suppose
this condition holds uniformly in t e K1. Instead of the convergence to 0, as in (1.5),
we will require only that

sup Z J (f(x,s)-f[x))ds < C < oo.

This condition, for any r > 0, actually implies that the function h(x,t): =
]"'(/(*, 5) —f(x))ds is uniformly almost periodic. To see this note that, choosing
a subsequence of the Tn if necessary, we can assume pTn^ Tn + ί < p2 Tn for each
n and some p > 1. Given integer m and (7 > 0 we will choose te(U9U + Tm~\
so supXjS II /i(x, 5 + t) — h(x, s) II is small. To do this, let n1 = max{n: Tn ^ U}
and for /c > 1 define nk inductively by nk = max{rc: Tn^U — Σ ί = ί ^V,} Let
v = max{/c: nk ^ m}. Note there are at most p2 — 1 values of nfe that are equal to
any given n ^ 1. Let

V

Then U < t ^ U + Tm and, since || / || < oo,

k

\h(x, s + t) - h(x, s)\ ^
k=2

h[x,S+ Σ Tnj)-h(x,S+
J = l

+ I A(x, 5 + t) x, 5 + t - Tm

1-p-
1 m

For m sufficiently large, this bound is less than any given δ > 0, and the almost
periodic claim follows.

By a standard result, the almost periodicity of the integral h(x, t) implies that
f(x, t) is almost periodic provided/(x, t) is uniformly continuous in t. Thus, we see
that Khas'minskii's condition (1.5) is close to the assumption that/is almost periodic.

On the other hand, even the simplest quasi-periodic function, of the form

f(t) = A cos 2πt + B cos 2πγt,

where γ is irrational may not satisfy (1.5) with r = 1, though it certainly satisfies
(A2). To see why it may fail to satisfy (1.5), take A = 2πα, B = 2πy, where γ is
a quadratic irrational and set

t + tn

hn(t) := J (2πa cos 2πs + 2πγ cos 2πys) ds
t

= 2a sin πtn cos π(2ί + ίw) + 2 sin πyίΠ cos πy(2ί + ίΠ) ,

where we will choose the tn | 00 to make || ίM/ιn || as small as possible.
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Now, it is known that a quadratic irrational is "approximable to order 2 and to
no higher order" (see e.g., Theorem 188 of ref. [12]), which leads us to the following
lemma.

Lemma 1.1. Ify is a quadratic irrational, then there is no sequence tn f oo such that

sup I ίAW I - 0 .

Proof. Since γ is an irrational,

sup I tnhn(t) I = It J a 11 sin πtn \ + 2tH\ sin πγtn | . (1.6)
t^tn

This follows from the observation that the orbit of

(π(2ί + ίn)mod2π, πγ(2t + ίw)mod2π), tn ^ t < oo

fills the 2-torus densely. If the right-hand side of (1.6) approaches zero, then both
tn I sin πtn\ -> 0 and tn | sin πytn| -> 0, which implies

tn = <ln + o ί - ) and yίM = pn + oί - ) ,

where qn and /?„ are integers. But this entails

Pn = 7<ln + o\ - I = yqn + oί — ) ,

hence

However, this contradicts the fact that a quadratic irrational cannot be approxim-
ated to an order higher than 2. D

In our first approach to this problem we tried to carry through arguments
similar to those in [14] and [2] using the value r = 1 in (1.5). We found that some of
the estimates obtained in those papers still apply when r = 1, but that no smaller
value of r is possible. It is for these reasons that we chose an alternative approach
based on almost periodicity.

Finally, we note that it is possible to weaken the almost periodic assumptions to
a form of asymptotic almost periodicity. If some function /satisfies condition (A2)
and

f sup|(/(x,t)-/(x,ί)) |Λ< αo , (1.7)
0 xeDo

then the results presented in this paper still apply.

2. Examples and Discussion

In this section we discuss several examples which illustrate the theory. Our
examples will be of the form (0.1) with

F{x9 ί, ω) = εf(x) + εp(x, t) + εF(0)(x, t, ω),
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where p(x, ί) : = / ( * , t) -/(x), and in most cases the vector field/(x) will be derivable
from a Hamiltonian, H(x). Furthermore, in the case where there is only one
invariant, we take phase space volume to be the invariant. More precisely, we take

I(x) = V(H(x)) , (2.1a)

where

V(h) = J dx . (2.1b)
H(x)^h

This is convenient because it simplifies the infinitesimal generator (1.2). Under the
assumption of ergodicity on energy surfaces H = h, for any given continuous
function φ(x) define

φ(y)=\\m i j^(χ( s ,χ))d s = _ L - i - J ψ(χ)dx, (2.2)
l^oo l 0 U y n ) a n

where y = I(x) and h = h(y) is defined by y = V(h). It is convenient to use the
notation Dn

m for the nth derivative with respect to its mth argument. If n = 1 we may
suppress the superscript and if there is only one argument, we may suppress the
subscript. If there are no parentheses, then Dn

m operates only on the next jndicated
function. The averages in (1.1) are obtained by setting φ = μ and % and φ = μ and
ϊ. It then follows that

μ2(y) = ^D2V(h(y))DH(x)C(x)DH(x)T + DV(h(y)) {JTrace[^(x

+ DH(x)K(x)} , (2.3)

where 3Ί[ (x) is the Hessian matrix of H(x), the bar denotes the average of (2.2) and
C and K are defined in (A5). In addition,

f(y) = (DV(h))2DH(x)C(x)DH(x)τ

= DV(h)ϊ- J (DH(x)C(x)DH(x)τ)dx . (2.4)
" " H(x)^h

The infinitesimal generator simplifies when μ2(y) = 2^ΐ{y\ Sufficient conditions
for this are

K = 0 (2.5a)

and

^r \ DH(x)C(x)DH(x)τdx= J Trace[^f(x)C(x)]rfx. (2.5b)

Under sufficient smoothness assumptions, the infinitesimal generator, Fokker-
Planck equation and backward Kolmogorov equation can be written

(2.6b)
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and

^ ( y , τ ; z , τ ' ) = - A(z)p , (2.6c)

where the transition probability density p(y9τ;z9τ') satisfies p(j/, τ z, τ')
= δ(y — z) and the appropriate absorbing boundary condition.

If Do = {x'.H(x) < hb} and Dx = [09yb)9 then the quantity β0 discussed in
Remark 5 to Theorem 1.1 is given by

Pίβo > τ] = J p(y, τ; z, 0)dy := G(z, τ) (2.7)
o

and G satisfies the IBVP

= 0 . (2.8)

The mean first passage time τm = — J^ τGτ(z, τ)dτ, thus from (2.8),

- ; O S I < Λ d »

0 z = j; f c

from which the mean time from z to yfe is

τ m (z , Λ ) = 2 j - ^ - d s . (2.10)

Example A. Here we consider the deterministic IVP

X! = εx2 ,

x2= -εU'(xί) + ε(x2Cθsλt +λaismλt), x(0) = x0 , (2.11)

where /I and α are parameters. In addition, U( — x1)=U(x1)9 1/(0) = 0,
l/(x!) -> oo as | x i | -> oo so that all solutions of the unperturbed problem are
periodic. From (A5) we have

μ1(x)= - ocx2

2DV(H(x)) ,

where H(x) = \x\ + Ufa) and (2.2) gives

fii(y)= -<*y>

The choice of the action as the invariant makes μ1 particularly simple.
Now y(t) = V(H(x(t)))9 and Theorem 1.1 (see Remark 1) gives

y{t, ε) - z(ε2t) = o(l) for 0 < t g τo/ε2,

where z(τ) = j (O) exp( — ατ) since z is defined by (1.3). In this case, we can actually
show that y(t9 ε) = z(ε2t) + O(ε) by refining the estimates in Sect. 3. This result, in
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which α behaves like a damping constant, seems remarkable to us. That is, simply
by fixing α in (2.11) to be positive, zero or negative, the action increases 0(1),
remains constant to 0(ε) or decreases 0(1) on O(l/ε2)ί-intervals. One might think,
a priori, that a KAM type theorem might apply to (2.11), since without the
perturbation p(x, t) all solutions lie on closed invariant curves. Our result shows
this cannot be the case. However, it should be noted that the vector field in (2.11) is
not divergence free.

To obtain more insight into this result, we apply the averaging theorem [7, 8] at
second order to (2.11). For this purpose, we introduce the averaged IVP at second
order,

ύi = εv2, ύ2 = — εU'iv^ — ε2aυ2 ,

) , (2.12)

and

w(ί, ε) := v(t, ε) + ε0>{v{t, ε), ί ) , (2.13)

where

-v2smλt — (xcosλt

(2.14)

The averaging theorem now states that for fixed xoe R2 and positive T < co, there
exist positive ε* = ε*(xo> T) and C = C(x0, T) such that 0 < ε < ε* implies that
for O^t^T/ε the IVPs (2.11) and (2.12) have unique solutions and
|| x(ί, ε) - w(ί, ε) || ^ Cε2. The equation for vx is iλ + ε2aύ1 + ε 2 ^ ' ^ ) = 0,
so that α does indeed behave like a damping constant on O(l/ε) ^-intervals
consistent with out result. Our result is deeper however, since it is valid on O(l/ε2)
ί-intervals.

Example B. Here we consider the deterministic IVP (0.1), where

x = εf(x,t)9 (2.15)

when fii(x) = 0. In this case (A6) is trivially satisfied and we do not need any form
of ergodicity for the unperturbed problem, x = εf(x). It then follows from the proof
of Theorem 1.1 and Remark 1 that the change in y on O(l/ε2) ί-intervals is o(\).

The theory of adiabatic invariance for deterministic systems has a long history
and much work has been done, however we are not aware of any result in the
literature which gives this result. Although results on adiabatic invariance of the
action do overlap with the present result.

In order to gain further insight we proceed formally with a second order
averaging transformation, that is, we look for a transformation

x = u + ε&iiu, t) + ε2^2(w, ί) (2.16)

which transforms (2.15) into

ύ = εVλ{u) + ε2 V2{u) + ε3R{u, ί, ε) . (2.17)
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.1
We require ^ and 0>2 to be of the same type as p(x, ί), that is periodic,
quasiperiodic or almost periodic. If we differentiate (2.16) along the solutions of
(2.15) and use (2.17), then at O(ε) we obtain V^u) =f(u) and

and at O(ε2) we obtain

V2(u) + D2P2(u, t) + D^iu, t)VM = DfluWiu, t) + DlP(u, t)»M t) .

It follows that V2(u) must be the ί-average of £>ip(w, ί)^\(w> 0 s i n c e these are the
only terms of nonzero mean; this gives

k ί λ k

Thus μi(x) = DI(x) V2{x) and is zero when V2 = 0. Therefore, it is a result of our
theorem that when V2 is zero in averaging at second order, then invariants of the
averaged problem become adiabatic invariants of the full problem on O(l/ε2)
ί-intervals. This extends the standard averaging result which would give this result
on O(l/ε) ί-intervals.

This result can be used to show that in planar and axial channeling in perfect
crystals [7], transverse energy is approximately conserved for very long times.

Example C. Here we consider particle motion in a rapidly varying field [3]

xx = εx2 ,

where U is a symmetric bowl potential as in Example A. Clearly
H(x) = \x\ + l/(xi) and gives rise to an ergodic flow. It is easy to check that
Dak(x)af(x) — 0, hence μγ = 0. Furthermore, the calculation in (2.4) gives

j y/h{y)-U(Xl) C22(xx)dxu (2.19)
o

where the action is given by

a(y)

V(h) = 4^2 J y/h-U(x1)dx1 , (2.20)
o

T(h) = DV(h) is the oscillation period as a function of energy, a(y) is the unique
positive solution of h(y) — U(a(y)\ C22(xl9 s, r) = E(Q(xί9 s)Q(xί9 r)) and we have
assumed C22(xi) is an even function. It is easy to check that (2.5) is satisfied, hence

μ2(y) = ±DΪ(y), (2.21)

and Eqs. (2.6) to (2.10) follow.
To apply Theorem 1.1, we take Do = {x: H(x) < hb} for some hb > 0, which

gives D1 = [0, yb\ where yb = V(hb). We take P(x1, t) to be periodic, quasiperiodic
or almost periodic with sufficient smoothness in Xi and t so that the series in (A2)
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converge. If Q is sufficiently smooth then (Al) and (A2) are satisfied. Since U is
smooth, V(h) and H(x) are smooth, so I(x) = V(H(x)) satisfies (A3). We assume
Q satisfies the mixing assumption (A4), where the σ-fields $F\ could be those
generated by Q{xχ, r) for r e [s, t] and x e Do. The uniformity of the limits in (A5) is
another assumption on C22(*i>s, r) and (A6) is satisfied because of the trivial
ergodicity in these one degree of freedom problems. Thus, by Theorem 1.1, the
process Yε(τ) — V(H(x(τ/ε2, ε))) converges weakly to the Markov process on
D1 defined by (2.19) and (2.21).

If we are interested in the process on Do = R2 and Dί = [0, oo) then, clearly,
Corollary 1.1 applies with Dφ = {x: H{x) < n} and D(p = [0, yn)9 and we obtain
the limit diffusion on [0, oo). Remark 5 helps refine this result in that it gives us
some qualitative information on the effect of the absorbing boundary condition.
For example, does the distribution of the process Yε(ε2t) on D^ with absorbing
boundary at yn concentrate at yn before t becomes O(l/ε2)? The answer is no, as can
be seen from (1.4). Furthermore, for z < yn, the mean time to hit yn is τm(z, yn)/ε2,
where τm is given by (2.10), thus for times τ <̂  τm(z) we would expect the process
Yo without the absorbing boundary condition to be a good approximation to
Yε without the absorbing boundary condition. _

To gain a little more insight, we take C2i = K a constant which gives

= KyT(h(y)). If U(Xl) = \ oc2x2 then T = 2π/α and τm = £-(yb - z), and if
2 Kn

= bt&n2ax1 then

T(h{y)) = 2πί~y + a^2b J and

This gives a clear picture of possible dependencies of first passage times on K and yb.

Example D. Here we consider the randomly forced pendulum equation,

xx = εx2 + εQ(t, ω),

x2= -εU'(Xl)9 (2.22)

where U(Xl) = α(l - cosx^. Clearly p(x, t) = 0, F{0)(x, t) = (Q, 0)τ and H(x) =

2*\ + U(Xl) gives rise to an ergodic flow. The only nonzero element of C is

Cί! = K a constant. It is now easy to show

z- aft) .

Uy) = KT(h(y))4^2 f U"(Xl)y/h - U(x1)dx1 (2.23)
o

and

± (2.24)

Here T(h) = DV(h)9 where Kis given by (2.20) and a(y) is defined as in the remarks
following (2.20). The separatrix energy and action are given by hs — U(π) = 2α and
ys = F(2α).

This problem arises in the study of the influence of RF noise on the longitudinal
motion of particles in modern accelerators such as the SPS at CERN or the SSC.
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We will discuss this problem in more detail in a separate paper [4]. Here, we will
focus on the dynamics inside the separatrix. A heuristic analysis of the RF noise
problem was presented in the paper by Dome [5].

To apply Theorem 1.1, we take Dx = [0, yh) and Do = {x:H(x) < h(yb)} for
yb ύ ys> It is easy to check that (Al) to (A6) are satisfied as long as Q satisfies the
mixing condition and the uniformity of the limit in (A5).

In the application to the RF noise problem, the absorbing boundary condition
needs to be eliminated. We are presently studying the coefficients $ and μ across
and beyond the separatrix and the applicability of Theorem 1.1. Here we apply
Remark 5 after the theorem. The mean first passage time is given by

and if times τ <̂  τm(z), where z = V(H(ζ)) < yb, then the processes with and
without the absorbing boundary conditions should be fairly close.

Example E. Here we extend Example C to the n degree of freedom case. The
equations have the form of (2.18) where xl9 x2, P and Q are now vectors in Rn. The
Hamiltonian H becomes H(x) = \x\x2 + ^ ( ^ I ) , where U is a smooth potential
with zero minimum. We assume that the energy surfaces H(x) = h in R2n are
compact and that the motion on these surfaces is ergodic. It should be noted,
however, that no Hamiltonians of the form kinetic energy plus smooth potential
have been provento be ergodic for n ̂  2. As in Example C, it is easy to see that
μ1 = 0 and that $(y) is defined by (2.4). If we define the accessible area by

A(h) := j dx,

then it can be shown that

) n / 2 h

Also C 2 2 = E[Q(x, s)Q(x, r ) Γ ] , and if C22 is K times the n-dimensional identity
matrix, then a lengthy calculation gives $(y) = nKyV'(h{y)) and μ2{y) = %Df(y).

Assumptions (Al) to (A5) go through as before, but even with the ergodicity, we
would not expect (A6) to hold and would have to assume the stochastic process
Q suffices to give (A6r).

Example F. In the final example, we illustrate the case of two invariants. We take

/(*) =
• ^ 3

, p{x, t) =
P2\X\ > X3> 0

0

\p4(Xi,X3,ί)

F ( 0 )(x, ί, ω) =

/O \

, x3, ί, ω)

0
(2.25)
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where α t and α2 have irrational ratio. Thus the unperturbed problem is a pair of
uncoupled simple harmonic oscillators and its motion is ergodic on two-tori. Here
we take the energies

^ (2.26)

as the invariants. The limits in (1.1) then become

-2 ί ί s\ — oo^θurγύnθu— cosθ 2 , r 2 s in0 2 )dθ1dθ2 , (2.27)
π 0 0 \ α ! α2 /

where rt = -Jΐy^ Furthermore, since the ergodization rate is the same for each
torus the limits in (A6) are uniform and (A6) is satisfied. It should be pointed out
that it is necessary to take two independent invariants because otherwise the limits
in (1.1) would not depend on x only through y. The structure of p and q give
βi = 0 = K,

rf; (2.28)

and

Σ(x,s r) = (
X4C44

The infinitesimal generator is then easily computed from (1.2). Theorem 1.1 now
applies by choosing p and F(0) so that (A1)-(A5) are satisfied.

3. Preliminary Estimates

Using the slow time τ = ε2ί, Eq. (0.1) becomes

o(l), Zε(0) = x o . (3.1)

The corresponding y-equation is

2, (), £ ( ) ( o ) (3.2)

We will analyze the behavior of Fε(τ) as ε -> 0.
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To sirήplify notation, we will denote the conditional expectations E(Z\ J^O) by
£ ( ί ) Z. The following standard mixing result is noted for later reference (e.g. see
[14]):

Lemma 3.1. Let H(x, ω) be an ̂ f+t measurable random variable with values in Rk

for each xeRp and be Borel measurable in x for each ω. Let \\H\\ < oo and let
h(x) = EH(x). Let Z be an 3F% measurable Rp valued random variable. Then

\\E^H(Z)-h(Z)\\^2\\H\\φ(t). (3.3)

Let J f = {f t :R*x[0, oo)xΩ->Cq and \\h\\2 < oo}.

Lemma 3.2. There is a positive constant C < oo, independent of h, such that for all

I τi / s \ [τ2/ε2l]-l

- J Λ XB(s), -2)ds- £ (εΞk(h9 ε, /, r) + ε2Γk(h, e, /, r))

^ C ( ( τ 2 - τ J I I Λ b ε / 2 + | | / * | | i ε 2 / 2 + | |A| |ε/) , (3.4)

where

Ξk(Ke,hr)= f h(Xε(ε2kl),t)dt,
kl + r

r du t

Γk(K ε, /, r) = f — (Xε(ε2/c/), ί) f ( / + F(0))(Xe(ε2fcί), s)dsdt .
fci + r ^ X JkZ

Proof First, note that

τ2

8 ti

τ2/ε

= fi ί h(Xε(ε2t\t)dt

= Σ 8 ί Λ(^β(ε2ί),ί)Λ+IIΛ||0(ε/). (3.5)
k = [τιlε2l] kl + r

To simplify notation let Xf] = Xε(ε2kl). Condition (Al) implies that, for
kl ^ t < {k + 1)/ + r,

C1ε/ (3.6)

and that, provided βeφ[kl, (k + 1)/ + r),

ε2/2)= ε J ( / + F ( 0 ) )(^ f c ) , 5)^5 + 0(ε 2 / 2 ),

and, applying Taylor's expansion to /ι,

h(XB{ε2t), t) = h(Xf\ t) + s^(Xf\ t) \ ( / + F^){Xf\ s)ds + ||Λ||20(ε2/2) .
ϋ x ki

It follows that

l)l + r

J /z(X e(ε 2ί),t)rfί = S(t(/z,ε,/,r) + ε Γ k ( / I , ε , / , r ) + | | / τ | | 2 0 ( ε 2 / 3 ) . (3.7)
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There are at most two values of k with βε e [/c/, (k + 1)/ + r), and for any value of
k the left-hand side of (3.7) is || h \\ 0(1) while the right side is || h || 0(/) + ε || ft || x0(/2).
The lemma follows on applying these estimates to the terms of the sum in (3.5),
since there are at most (τ2 — τj/ε 2? such terms (using the convention X^I* = 0).

D

Proposition 3.1. For each ε0 > 0 there is a C < oo such that for all 0 ^ τ1 < τ2 and
0 < ε ̂  ε0,

S C(τ2 - τx + ε) . (3.8)

Moreover, with probability one, as ε —• 0,

£ ( t ' / ε 2 ) - J g(Xε(s)Λ)ds = £ ( l l / ε 2 ) J μΛXe(s))ds

( τ 2 - τ 1 + ε 1 / 2 ) o ( l ) . (3.9)

Proof. 1. Apply Lemma 3.2 to gj(x91):= bj{x)eiλj\ with I = lj = 2πn/\λj\9 where
π is a given positive integer. Then Ξk(gj9 ε, /,-, r) = 0 and

1 τ2

- ε2

εn

^ , ε, /, r)

ε2n2

£CΛ(τ2-τ1)\\bj\\2ΊT+\\bJ\\1-rΓ+\\bj εn

=: ^(ε, n) .

By (A2), (A3) and Fubini's theorem,

l τ 2 / 5 \ _ y l τ

f

2

and so, letting α = 0/(2 — 0), where 0 is the quantity in (A2),

(3.10)

^ ) ds

1
-$glχε(s\-\ds-ε
ε \ ε

[τ2/ε2lj]-l

Σ

(3.11)

provided εαn ^ C 3 for any fixed C3 < oo.
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The first assertion follows from the estimate in (3.11) with n = 1 and the
following estimates of the Γk% where we let X = Xε(ε2klj),

\\Γk(gj,ε,lj,0)\\ =

so, for n = 1,

(k+l)lj 3L

J ds J dtψ(X)eiλ^(f+Fw)(X9s)
klj dx

(3.12)

2. Let

\λ \2π/{λj{

j , e, h)'= ~- J Γk(gj9 ε, /;, r)dr .
zπ 0

Since (3.10) and (3.11) hold for Γk(gj9 ε, lj9 r) and each r ^
when Γk is replaced by Γk.

Since /,- is a period of gj we have

, they also hold

and it follows that, again letting X = Xε(ε2klj\

ds J Λ | ^ (Jf,e i) = i-il f dr I
Z π 0 klj + r

2π

I 2π/\λj\ (k+l)lj + r

' I dr J
(fc+l)Ij + r Qgm

The third integral in 77; is at most 2| |b J ||1/|/l7 | and | £ ^ F ( 0 ) ( I , s)| | ^
C5φ(s - klj) by Lemma 3.1, hence \\Πj\\ ^ Cβ||fcj||i/|Aj|.

Now, let fv(x, s) = av(x)eiλvS, and note that we can write Ij = ΣvIj,v, where
IjtV is obtained by replacing / by/v in Ij. With a change of variables, we have

\λ \ (k+ ̂
o = — f

2 7 1 fcϊv

0 (fc+

du
1

DO

4

2π/\λj\

ί
0

For v φ 0 and v Φ — j direct calculation shows that

while Ijt -j = ljμ1j(X), defined in (A5).

Let/<m> = Σ|v1>m/v Then

Σ h.
| v | > m

ψ I dr I
Z 7 Γ 0 klj + r

{ ) j fin

ds I dtψ{X,t)r<»\X,s)
s 0 X
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j , ε, IJt _J £ (Cl

Summing over k and using (3.10) and the rectangular Riemann sums approxima-
tion to the integral of μltj yields

ετV
±)ds - E<»"2> J μUJ(Xt(s))ds
8

: ,„ + ̂  l^ίm)" + " ^ K ' / * π), (3.13)

where in the Riemann sum approximation we use the estimate

dx

since sup || α7-1| x ^ ΣII α j II I < °° •
Let g(m) = Σ\ \>mQj' ̂  w e replace g by g(m) in the first part of the proof, it is

clear that the bound in (3.11) applies. Combining this with the estimates in (3.12) for
\j\> m yields (use n = 1 for this estimate)

ε l ' \j\>m \Λj\

(3.14)

Combining (3.13) and (3.14),

: ^ 2 > - f g[ Xε(s\ ^)ds- £ ( τ i / ε 2 ) f μ1(XB{s))ds

(3.15)

If we let ε -• 0 and n-> oo so εn2 -• 0 then each e7 (ε, w) = (τ2 — Ti + ε 1 / 2) 0(1)
by (3.10), and so this estimate applies to the final sum in (3.15) for each m. Thus,
letting ε -> 0 then n -> oo then m -> oo in the iterated limit, all terms in the
brackets also go to 0, and the upper bound is (τ2 — t\ + ε1 / 2) 0(1). D

Remark. If condition (A2) is replaced by the asymptotic almost periodic condition
dl ~

(1.7), Proposition 3.1 remains true. To see this let g = — / Then
dx

τi/ε2

ε J (g(Xε(ε2tlt) - g(Xε(ε2t),t))dt = O(ε)
τi/ε2

and the estimates in the proof of the proposition apply to g.
The remaining analysis centers on the random perturbing terms. For this

part, we break the process into blocks of length L = L(ε), where L(ε)ε1/2 ->0
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as ε -> 0 slower than any power of ε, and let tk = kL and Xf] = Xε(ε2tk). We regard
the slow times 0 rg τγ < τ2 as fixed (but arbitrary) and let n1 — \τιlε

2L\
n2 = [τ2/ε2L] - 1.

Lemma 3.3. With probability one, a solution Yε(τ) to (3.2) satisfies (as ε -» 0)

{εζk + ε2(yk + ζk)} ,

(3.16)

where ξk = Ξk{&°\ ε, L, L), yfe = Γk(G ( 0 ), ε, L, L) and ζk = Ξk(G{1\ ε, L, L).

Proo/ By (Al) and (A3) we have | | G ( 0 ) | | 2 < o o and | | G ( 1 ) | | 1 < c». Thus, for
h ^ t ^ tk + 2L,

2 ί ) ? 0 = G(1)(Alfc), ί) + 0(εL)

and

ε2 t 2
ε 2 J G ( 1 ) ( X ε ( ε 2 ί ) , t ) d t = ε 2 Σ ίk + ( τ 2 - τ x + ε 1 / 2 ) o ( l ) .

τi/ε2 /c = «i

The lemma follows on applying (3.4) to the G ( 0 ) term. D

It is convenient to write yk = yk + γk, where

yk= f dt\ds-F-{Xf\t)f{Xf\s).

Lemma 3.4. With probability one, as ε -»0,

E^ξ, = 0(Lφ(L)),

) + o{L) ,

3(X(

ε

k)) + o(L). (3.17)

Proof. For the first relation, note that

dl tk+2
/ V(k)\ f fi(tk) ί?(0)/ V(k

dx ε J+t

S C J φ(t- tk)dt g CLφ(L)
tk+l

The second relation follows by a similar estimate since

and the fourth relation follows from

E^G^\Xf\ t) = μ3(Xf\ t) + 0(φ(ί -

and (A5).
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T o e s t a b l i s h t h e t h i r d r e l a t i o n , first n o t e t h a t , f o r tk^s^t,

dG{0) Ί

H e n c e
= 0{φ(t - s)) .

tk+2 tk+ί

™ J at \
ίfc+i tk

tk + 2 ίk

C \ dt ds φ(t - s)^C J rφ(r)dr < oo
0

by (A4). Also, for tk-1 ^ s S ί,

E(t>

so by (A4) and (A5)

tk+2 t

£('*> f dt f { ? \ ) ( ¥ \ ) μ2{Ϊ) + o(L). D
ffc+l ίk+1 ^

Combining the estimates in (3.17) and (3.9) and using the Riemann sums
approximation to the integral ^μίX^s^ds we obtain:

Proposition 3.2. With probability one, as ε -> 0,

- Yε(τι)) = E^] μ(Xε(s))ds + (τ2 - . (3.18)

In the following results involving higher moments, we will take YeR1 for
convenience. The more general case follows by the same arguments with suitable
changes in notation.

Lemma 3.5. With probability one, as ε -> 0,

and

(3.19)

forl>k+l.

Proof. The first assertion follows from (A5) since

|£(ί*>G(0)(x, 5)G(0)(x, ί) - f(x, 5, ί) | = 0(φ(L))

for 5, t ^ tk+l9 and since L2φ(L) = o(l) by (A4).
Next note that, for tk+1 ^ 5 ̂  tk+2 ^ ί,

), ί)] = , ί)]

- 5)) .

Integrating this expression over tk+1 ^ s ̂  tk+2 and
second assertion. For the third, use

by (3.17).

2 ^ ί ^ ί / c + 3 yields the

= E^\ξk\0(Lφ(L)) ^ (E™ξ2

k)
1/20(Lφ(L))

D
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Lemma 3.6. For 0 ^ τ1 < τ2 S τ 0 and any fixed τ 0 < oo, with probability one, as
ε-»0,

( ) = E ^ 1 f(Xε(τ))dτ + (τ2 - i* + ε)o(l) . (3.20)

Proo/. We have

Σ
=: /x + I2 + I3 ,

where k and / lie between n± and n2. By (3.19)

$ ) + (τ2 - τ i)o(l)

a n d , s i n c e $ ( X e ( ε 2 t ) ) - ${Xf]) = 0 ( ε L ) f o r tk^t^tk+2,

2Σ IW Ϊ fc + (τ2 - τx + β)o(l).

Also, by (3.19), I2 = (τ2 - τ J O ί L " 1 ) and by (A4), ε~2φ(L) = o(l), so by (3.19)

/ 3 = 0((τ2 - τιfε-2L-il2φ{L)) = (τ2 - T l)o(l). D

Lemma 3.7. For some finite C

| | 7 f c | | ^ C L 2 and \\ζk\\ ^ CL , (3.21)

and with probability one, as ε -• 0,

£ ( ί k )y? = 0(L3) αnJ £ ( ί k )y f e^ = 0(L4φ(L)) (3.22)

for / - k> 1.

Proo/ The bounds in (3.21) are obvious. For (3.22) note that

tk + 2 Π ίk + 2 r2

The first relation follows since

θG ( 0 )

For the second relation, use

E^hγ, = E«*\ykE
(tι)ίι) = 0(L4φ(L))

by (3.17) and (3.21). D

Lemma 3.8. With probability one, as ε —>• 0,

), Eitk)γ2 = 0(L2) and £ ( ί k ) f ί = 0 ( L 4 ) . (3.23)
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These results are established by the same arguments given in [14], since G ( 0 ),
(d/dx)G(0) and F(0) are each bounded and have zero mean. It should be noted that
Khas'minskii's proofs of these relations in [14] refer back to a mixing result he
establishes in Lemma 2.1 of [13]. The final assertion in Lemma 3.8 requires the
strongest hypothesis in order to apply his Lemma 2.1, namely that there is an
α-mixing coefficient α(ί) satisfying $™t3<x(t)dt < oo. Of course, our assumption
(A4) on the stronger φ-mixing coefficient implies this.

Now, let

Ϋ.{τ) = \ ]

Proposition 3.3. For 0 ^ τ1 < τ2 S to and any fixing τ0 < oo there is a finite C such
that

\E^\Ϋε{τ2) - Ϋε(τi))2 - £ ( ^ 2 ) J f{Xε{t))dt\ ^ C(τ2 - τ,)312 + o(l) (3.24)

with probability one, as ε -> 0.

Proof. Let fε(τ2) - Ϋ^τ^ = U + F, where U = εΣΓ=«Λ W e w i l 1 s h o w t h a t

E{τΦ2)V2 ^ C i ( τ 2 _ τ j 2 + 0 ( i ) a s > 9 a n d (3.24) will follow from this estimate and

(3.20) by the Schwartz inequality, since (3.20) also implies E(τι/ε2)U2 <;
C 2 ( τ 2 - τ 1 ) + o(l).

Letting ^ = Y^=n , (3.16) and the cr-inequality yield

Now, by (3.21)

Also, by (3.22)

Σ nΐλ
+ Kl Jk + K

^ Q((τ2 - τι)ε2L2 + (τ2 - τtftfφiL)) = o(ί),
and by (3.23)

^ ^ H Σ 2 ^ ) 2 . •
Lemma 3.9. For 0 ^ τ x < τ 2 ^ τ 0 αnrf any fixed τ 0 < oo ί/zere is α constant C de-
pending only on τ0 such that

E(Ϋε(τ2) - f β ( τ i ) ) 4 ^ C(τ2 - τ j 2 + o(l) . (3.25)

Proof. Letting £ = Σ£ 2

= n , we have by (3.16) and the cr-inequality that the left-
hand side of (3.25) is bounded by

By (3.21)

ε8||(ΣCfc)Ίl ^ C^L'ί^^X ί C\(t2 -
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Since Ey£ = 0(L4), it follows that

121

By (3.17) and (3.21), if i ̂ j ^ k < I - 1,

|£(W*y/)l S E^yjnE^y^ = 0(L8φ(L)) ,

and if i <>j < k - 1 and k = I - 1 or k = I then by (3.22),

\E(ytWkyί)\ ύ ElmjE^ny,] = 0(L7) .

Now write

ΣyjΣhΣyι) = (Σ(1) + Σi2)

where, letting i' ̂ / ^ k' ̂  Γ be z',7, fc, / ordered increasingly, Σ(1) is the sum over
indices i9j, k, I with k' < Γ — 1, Σ ( 2 ) is the sum over/ < k' — 1 and fc' = Γ — 1 or
k' = /', and Σ ( 3 ) is the sum over/ = k' — 1 o r / = k' and /cr = Z' — 1 or k' = /'. Then

= C 3 I 4 # ) ( τ 2 - z 1 ) 4 ,
ε 2 L

3

ε 2 L

ε 2 L

= C 4 ε 2 L 4 ( τ 2 - τ 1 ) 3 ,

= C 5 ε 4 L 6 ( τ 2 - τ 1 ) 2 .

By (A4), ε 8 £ ( X n ) 4 ^ C6(τ2 - τχ)2. Finally, let Σt be 2 ( l ) with γt replaced by ξk.
Arguments in Lemma 3.2 of [14] show £2 a n d ̂ 3 areθ((τ2 — T J 2 ) . TO estimate Σlt

note that by (3.20), for nί g k ̂  n2,

E

so by (3.17) and (

= (τ2

Lemma 3.10. For

k

A4),

n2 Γ / /

\

-τtfoiλ).

' some C < oo

1 ί + T
f

with probability one.

Proof. Condition (A2) implies

^ i = m

x,s)

(/(x

)V

α//0

Σ

»{,]

VII

3 t,

(X,

<

(τ.
7

i(*2 -

s)) s

• r '

2 -

ε 4

τ i )

2

—

τi)2

2L(f

C

ε 2 L

D

(3.26)
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The assertion follows from this and the estimate

E(s)
t + T

- J F™(x,s)ds
i t + T t + T

= 2£<s) — J du J dυF(0\x, u)τEMF<0)(x, υ) ̂  —
* t u *T \

since Eiu)Fi0)(x, t;) = O(φ(v - u)\ D

Noί^. By (3.24), for 1 ̂  / ̂  ε"1,

£ ( τ / ε 2 ) | Yε(τ + fe) - Γε(τ)|2 ^ Cε/ + o(l)

for some fixed C < oo, so

Now, if Xε(τ)eDo then Yε(τ)eDγ and there is a positive distance d = d( Yε(τ)) from
Γε(τ) to ^Di. Recall that βε is the time Xε(τ) hits 5D0. Since Xε(τ) is stopped when it
reaches 3D0, Fε is stopped on reaching I(dD0) and

= P(Ys(τ-

as ε -• 0 and εl -> 0.

The next result is a minor variation on the standard first order averaging result
(see Theorem 1.1 of [13] and the related Theorem 1.2 of Chap. 7 of [10]).

Proposition 3.4. For each fixed /,

P - esssupsup£ ( τ / ε 2 ) sup \Xε(τ + εί) - x(ί, Xε(τ))| -• 0 (3.27)
τ 0^ί^min{ί, (βε-τ)/ε)

as ε -> 0.
On these time scales, we can and do take F(1) = 0 and F = / + F ( 0 ) . Our result

replaces expectation by the conditional expectation £ ( τ / β 2 ) in the results mentioned
above. Since \Xε(τ + εί)| ^ |^ ε (τ) | + Ct with probability one, it suffices to prove
that, for each α > 0,

r)->oP - ess sup PI sup \Xε(τ + εί) - x(t9XE(τ))\ > a
\0^t^min{l,(βE-τ)/ε}

uniformly in τ. This follows from the estimates in the proof of Theorem 1.3 of
Chapter 2 of [10], replacing probability and expectation by the conditional
probability and expectation given J ^ 2 . The regularity conditions (Al), (A2) and
Lemma 3.10, which they imply, are more than is needed, and the uniformity in
τ and almost all ω for the conditional probability follows from the uniformity of
these conditions.
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Lemma 3lΐl. With probability one, as ε -» 0,

E™'2>(Y8(τ2) - Yε(τi)) = EM* ] μ(Yε(s))ds + (τ2 -

£ ( τ i / ε 2 ) (7 ε (τ 2 ) - 7 ε(τi)) 2 = £ ( τ ι / ε 2 )

τi

t2

+ 0 ( ( τ 2 - τ 1 ) 3 / 2 ) + (τ2-τ1)o(l). (3.28)

Proo/ We prove the first assertion, the proof of the second being similar.

1. First note that

τ + εl I

J μ(Xε(s))ds = ε$μ(Xe(τ + εr))dr
τ 0

/ *

= ε f μ(x(r, Xt(τ)))dr + ε f (μ(Xt(τ + εr))
o o

-μ(x(r,X.(τ))))dr

= : / i + / 2

Assumptions (Al) and (A3) imply that μ has bounded derivative, and applying
(3.27),

I

Eiτ/ε2)\I2\ ^ Cε J Eiτ/ε2)\Xε{τ + εr) - x(r, Xε(τ))|ίίr - ε/o(l) . (3.29)
o

Now, let

e(x,l):= μ(y(x))-\\ μ(x{s,x))ds .

Then

I^εliμiY^τ^-eiX^τXl)). (3.30)

2. Let (A6) hold. Then, by (3.29) and (3.30)

£ ( τ i / β 2 ) f μ(Xε{s))ds = Eiτφ2) ] ds-- J drμ(Xε(r)) + O(εZ)
τi ti β ^ s

- ^7 l / £ 2> jf μ(y β(s))ώ + { (e(Xe(s)91) + o(l)) ds + 0(εl),
ti τi

and the last two terms are at most

(τ2 - n ) Γsup β(x, /) + o(l)^ + 0(ε/) -> 0

as ε -» 0 then I -> oo by (A6).

3. Now, suppose (A6') holds. We will establish the result assuming Do bounded.
The lemma will then follow for this case and can be extended to unbounded Do by
choosing a suitable sequence of bounded D(

o

π) | £>o



124 R. Cogburn and J.A. Ellison

By the first assumption of (A6') and Egoroff's theorem, e(x, /) -»0 almost
uniformly on Do. Thus, given δ > 0, there is an lδ such that m{x: e(x, I) > δ} < δ
for / ̂  lδ (where m denotes Lebesgue measure in Rp). By the third assumption of
(A6'), for / ̂  lδ9

h\ I) = J e(x9 l)pε(τu τγ + h, x)dx
Do

άτuτ! +h)δ

where B = \\e\\. Thus

T2 T2

τi ti

T2

+ j E{τι/ε2)e(Xε(τ1 + 5), l)ds + 0(ε/) .

The second two terms are at most

tB + δ J (1 + Bpΰo(τu Ti + s))ds + O(εZ) .
τ i + ί

The first assertion follows by letting ε -• 0 then / -• 00 then δ -> 0 then
ί ^ 0 . D
Finally, we note the following standard result (see [14]):

Lemma 3.12. Let Zn-> Z in probability and P(ΛΛc

n u AcAn) -• 0. Suppose
- J 1 + α ίk C < 00 for all n and some α > 0. Then

J ZM dP ->\ZdP .

4. Proof of the Theorem

The estimates in Proposition 3.1 and Lemma 3.9 imply that the processes
{ Yε(τ), 0 ^ τ ^ τ 0} are tight as ε -> 0 and that sup τ^ τ o E\ Y&{τ)\4r < oo (see [1]).
Now, consider any weakly convergent sequence Yεn -• Yo. It follows from Proposi-
tions 3.1 and 3.3 and Chebychev's inequality that, for any δ > 0,

lim lim sup P [ | 7 ε n(τ2) - YEn(?i)\ > 5] = 0 .
ft-» 0 «->oo | r2 — τi I <Λ

A theorem of Skorokhod (Sect. 6, Chap. 1 of [16]) then states that there exists
a sequence of stochastic processes {Y'εn} and a process Y'o on some probability
space (Ω\ SF\ P') such that the finite dimensional distributions of the Y'&n

are the same as those of the YEn and Y'εn(τ) -• F0(τ) in probability as n -> oo for
each τ.

Using this Skorokhod imbedding, we will treat the Yεn(τ) as though
Yεn(

τ) -> ^o(^) in probability in the following argument. First, note that this and
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boundednbss and continuity of μ imply
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lim E μ(Yεn(s))ds- J fi(Y0(s))ds = 0 .

Now, let i ! ^ τ2 ^ g τfc ^ τ < τ + ft, 5 be a Borel set in and let

Choose J5 so P[(7 0(τi),. . . , Y0(τk))edB] = 0. Then P(AnA
cuAc

nA) -»0 and, by
Lemmas 3.11 and 3.12,

J (Γ0(τ + ft) - 70(τ))dP - lim J ( Γ J τ + h) - Yεn(τ))dP

= lim J Eiτ/ε2)(YEn(τ + ft) -
« - * CXD A n

τ + h

= lim J J μ{YBn(s))dsdP
n-*co An τ

= f]hμ(Y0(s))dsdP.

Thus, letting s4τ be the σ-field generated by Y0{t), 0 ^ ί ^ τ, we have

E(Γ0(τ + ft) - ro(τ)|Λ/t) = EΠ" μ(Y0(s))ds\stλ ,

and by a similar argument

£((7o(τ + ft) - Yo(τ))2\^τ) = EΠ" ϊ(Y0(s))ds\^τ) + 0(ft3'2) .

The remainder of our argument is similar to that of Borodin [2]. Let

Ϋo{τ)=Yo(τ)-]μ(Yo(s))ds.

Then Yo is a martingale. Since μ is bounded,

τ + h

A A τ

for Aesrfτ. It follows easily that

E((Ϋ0(τ + ft) - Ϋ0(τ))2\jtfτ) = E

Then a theorem of Doob [6] yields that

?0(τ) = ?o(0)

f(Y0(s))dsdP < Ch3'2
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where W(s) is the ^-dimensional Wiener process. Hence

Y0(τ) = I(x0) + ]fi(Y0(s))ds + } Jf(Y0(s))dW(s) . (4.1)
0 0

Since the distribution of Y0(τ) is the same for all convergent sequences YSn of Yε, we

have that Yε(τ) converges weakly to Γ0(τ) on [0, oo), and the form of the

infinitesimal generator follows from (4.1) (e.g., see Sect. 1.5 of [10]).

The final assertion follows from the weak convergence when I(D0) is closed

since P[Yε(τ)eI(D0)for 0 ^ τ g τ 0 ] = 1 for all τ 0 and ε > 0. D
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