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Abstract. It is shown that the description of the states of infinite S = 1/2 interacting

spin systems with the Hamiltonian Hs= — — £ a2sinh~2a(j — ΐ) j ι

2 j*l, j,leZ 2

can be performed by studying the hyperbolic Calogero-Sutherland eigenvalue
problem. The construction of multimagnon wave functions in each iV-magnon
sector is based on solutions of the set of linear algebraic equations which
determine also the structure of zonal spherical functions on symmetric spaces
Xΰ = SL(N, H)/Sp(JV) of negative curvature. The usual Bethe Ansatz for the XXX
Heisenberg model corresponds to asymptotic forms of these wave functions at
small values of a~x or large distances between spins turned over the ferromagnetic
ground state.

1. Introduction

Starting with the paper of Bethe [1], the investigation of one-dimensional exactly
solvable models of interacting objects (spins, classical or quantum particles in the
schemes of first and second quantization) has given a number of results both of
physical and mathematical significance. One of the highlights in this branch of
mathematical physics is the Yang-Baxter equation [2, 3] which serves as a source
of continuous development in the study of various aspects of group theory and
low-dimensional statistical mechanics. Most of the well-known statistical models
both in one- and two-dimensional cases have solutions in the form of the Bethe
Ansatz in its classical [1, 2, 4] or algebraic [5] versions with some more or less
sophisticated modifications. On the other hand, there is a family of systems which
were proved to be completely integrable [6-11], but the solutions were not
included into the Bethe Ansatz [9-10, 16] or still remained unknown.
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In the continuous case these one-dimensional systems are described by the
Hamiltonians

1 N ( d V

where A + is the variety of positive roots of classical Lie algebras realized as the
vectors in RN and the functions Va(ξ) may depend on the length of the root vector
but not on its direction [11]. The simplest but most interesting are examples with
the roots of AN_X algebra in which V(ξ) = g2fc>(ξ) or

V(ξ) = g2a2 sinh" 2 (aξ), 0 < a < oo . (2)

Periods of the Weierstrass p function may be arbitrary and the hyperbolic case (2)
is obtained from the general elliptic case if the real period is infinite.

The <S = \ spin versions of these Hamiltonians,

» . « - £ Σ v ( j - ψ
I j^l, j,leZ ^

where {σ̂ } are usual Pauli matrices, have been proposed only recently. It is worth
noting that, contrary to (1), the Hs is not singular and might be used in the models
of ferro- and antiferromagnetism.

The degenerate case of (j—ΐ)~2 exchange has been treated in [17,18] while in
[19] I have shown that the isotropic Heisenberg model with nearest-neighbor spin
interaction originally solved by Bethe [1] can be obtained as the limit of (3) with
V{ξ) = p{ξ) if the imaginary period of p tends to zero with the inverse of the
coupling J. Since in the case of nearest-neighbor interaction the eigenvectors of Hs

have the form of the Bethe Ansatz, the following problem arises: how to find an
appropriate extension of this Ansatz so as to get the solution of the eigenvalue
problem for the Hamiltonian (3)?

In this paper I shall give the complete description of the Hs eigenvectors for
infinite spin chains with the exchange interaction (2). In the simplest so-called
ferromagnetic ground states (f.g.s.) |0+> all spins have the same directions along
some axis,

.
|0±>=(g)zf, xΐ = [n\, x/ = L (4)

It is easy to see that f.g.s. (4) are eigenvectors of Hs, Hs\0±) = 0. Due to the SU(2)
symmetry of (3), all other eigenvectors can be represented in the form

lvί>= Σ t p ( > 1 , . . . , % ) f π < ) | 0 ± > , ΛΓeZ+,
neZ* \ y = l yJ

N ^ '

Π (nfi-n7)*09
β>y

where af is the operator which turns spin at j t h position to opposite direction
(μfχf=χf) and the JV-magnon wave function ψ{N)(nu...,nN) is completely
symmetric in its arguments. Explicit expressions for ψ{N) have been found in [19]
for N ̂  2 and in [20] for N ̂  4 where one of the possible ways of ψ{N) construction
for an arbitrary NeZ+ has been also indicated.
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As it will be shown later, a more simple solution of the problem consists in
finding the remarkable correspondence between ψ(N) and zonal spherical functions
(ZSF) on the symmetric space X^ = SL(JV,H)/Sp(iV) of negative curvature. As a
consequence, the asymptotics of JV-magnon scattering can be described in terms of
the Harish-Chandra function [10,12,13] c(λ\ λ e RN, the components of the vector
λ being expressed through elliptic Weierstrass ζ function of magnon
quasimomenta.

The usual Bethe Ansatz appears in two limiting situations: first, at small values
of the imaginary period of (2) and second, at large distances between spins turned
over the f.g.s.

The organization of the paper is as follows. The structure of ZSF on the
symmetric spaces X^, N e Z + is discussed in detail in Sect. 2. It is shown that the
eigenfunctions of the Hamiltonian (1) in the case of ΛN_ x root system and V(ξ) of
the type (2) at g2 = 2 can be constructed by solving the set of linear algebraic
equations. The similar set appears also in the process of solving the eigenvalue
problem for quantum spin Hamiltonian (3). It is just this fact that allows one to
find the extension of the Bethe Ansatz for quantum spin chains with non-nearest-
neighbor interaction. The proof is based on the representation of some infinite
trigonometric sums through elliptic functions, as it is shown in Sect. 3. The last
section contains a short summary and discussion of the results.

2. Zonal Spherical Functions on XN

and the Structure of Eigenvectors of Hc at g2 = 2

Olshanetsky and Perelomov [10] were the first who noticed that the Hamiltonians
of the type (1) at some values of the coupling g2 can be obtained by singular
transformation from radial parts of the second-order Laplace-Beltrami operators
on symmetric spaces. So the eigenfunctions are related to ZSF and various results
of group theory can be used. The most appropriate for our purposes are the ZSF
Φk

N\x) (k,xeRN) on the symmetric space X^ =SL(N,H)/Sp(N). In [10] it was
shown that Φ(

k

N) (x) can be written as

k x ~L/>ι m aXj Xι j ψ k

where ψk

N\x) are eigenfunctions of Calogero-Sutherland operator Hcs of the type
(I,2)atg 2 = 2,

= - ~ Σ h -
2j=ί\dx

Both Φk*\x) and ψ^Xx) are completely symmetric functions of (x1?...,%). The
eigenvalue of Hcs which corresponds to ψ^Xx) equals

7 = 1

It follows from (6) and the Harish-Chandra series [12] for Φ(

k

N\x) that ψ{

k

N\x)
can be represented in the form

ψίN\χ)= Σ ^
P

Σ
PeπN
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Here πN is the group of all permutations {P} of the numbers from 1 to JV, Px is
the vector in RN with the components (xP1,..., xPN) and χ£f°(x) is the eigenvector of
Hcs with the eigenvalue (8) which can be written as

χf)(x) = exp(i Σ kμxμ)φίN\x), (9)

where φj^x) is periodic in each xj9

φP(x) = φί*(x»...9xJ + iπa-1

9...,xN). (10)

Moreover, it depends on k only through the combinations {a~ί(kj—fc,)}.
The asymptotic behaviour of ZSF is completely determined by the Harish-

Chandra c function [10]. In the limit x7 —xz-> + oo {j>l) one obtains

limφf)(x) = φ- 1fc). (11)

As it was shown in [13], for the Xΰ space c(λ) can be written as

' ] (12)

Unfortunately, no more detailed information about the properties oϊψ^\x) can
be obtained from the general theory of symmetric spaces which gives for ZSF only
very cumbersome integral representations and multidimensional infinite series
with coefficients being determined by a recurrent procedure. The simplified
integral representation of ZSF on X$ has been constructed in [14]. The case of
some other rank 2 symmetric spaces has been studied by the method of
intertwining operators [15]. As for ZSF on X^ at JV^ 3, the explicit construction
of the differential operator which intertwines Hcs and the usual ΛT-dimensional

N ( d V
Laplacian £ I -— has been proposed recently by Chalykh and Veselov [15].

\dXJj
The functions of type (11) have been represented in the form

ί Σ kμxμ), D^Qh-^D^, (13)
μ=l

where

s = l

l^il9...,ίι<n, l^n^N. (14)

This double recurrence scheme of χ^ construction is also very cumbersome
because of the presence of multiple differentiations. So, explicit calculations
of χ^ have been performed only in the case JV = 3. However, I'll show that the
use of (1Φ-15) allows one to reduce the construction of Φj^x) and χ^Xx) to
a much simpler problem of solving the set of linear algebraic equations.

To start with, let us note that the function φ("Xx) from (9) can be represented in
the form

-xd}), (15)
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where R i's a polynomial in the variables {cothφc,—xt)}, ί<Lj<l^N. It follows
( d V

immediately from (13-14) and the representation of I — I [cothz]m as a poly-
\dzj

nomial in cothz of the degree (m + ή). As it can be seen from the structure of
singularities of Hcs (7), the function φ^\x) has a simple pole of the type
[sinhφcy—xj]'1 at each hyperplane Xj—xt = 0. As a consequence of (15), all the
limits of (Pk*\x) as x,—• ± oo, 1 ̂  j'^N, must be finite. Combining these properties
with the periodicity (10), one obtains that the eigenfunctions of Hcs can be written
as

l lίkμ-a(N-l)-]x\\ γ\smha(xμ-xv)\ ' SίN\{y})9 (16)
=i J l_μ>v J

where -^({y}) is a polynomial in yμ = exp(2axμ). The maximal power of each
variable in S{"\{y}) cannot exceed N — l. Hence this polynomial can be
represented in the form

sίN\{y})= Σ dmι,..mN(k) π y7\ (17)
meDN λ=l

where DN is the hypercube in ZN,

meDN o0^mβ^N-l, j» = l,...,ΛΓ, (18)

and d{m)(k) is the set of NN coefficients. It will be shown later that most of them
vanish.

From the eigenvalue condition [Hcs-E(k)']χi

k

N)(x) = 0 one obtains for S[N\{y})
the equation

It can be satisfied only if for each β,ρ^N the polynomial

\yβ- yQ— + ^-(kβ-kQ)\ Sf> is divisible by (yβ-yQ). By the use of (17) this
L vyβ cyQ

 l a J
condition can be expressed in the form of \{N — \)(2N — \)NΉ linear equations for
the coefficients d{m)(k\

Σ/m,..^ + ̂ ..We-^..w#)[m,-mρ + 2/+^(fe/?-feρ)J=0. (20)

Since the indices of d{m)(k) obey the restriction (18), the sum over / in (20) is finite
and runs from max( — mβ,mρ + \ — N) to mm(N — l—mβ,mρ). Upon substituting
(17) into (19) one also obtains the condition

\Ά yλJ {m]{) ]βi I ' + a^~ \ β+ a β 3 ; ( }J
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As (21) must be satisfied for all yeRN, one gets finally the second system of NN

linear equations for d{m) after performing the explicit division by (yβ — yQ) in the last
term in (21) by the use of (20),

ί \ ( i :
d J \ a

N

- Σ _
β + ρ leZ _ _

x d __ (k) — 0 (22)

Now the structure of d{m}(k) can be specified by the following four propositions.

Proposition 1. S^\y) is a homogeneous polynomial of the degree %N(N — i).
The proof is based on the system (20). It is easy to see that d{m](k) vanish if

mμ = mv = 0 or mμ = mv = N—l for any pair (μ,v).
N N(N—ί)

Let us consider some dm t _ mN(k) with M= Σ mμ< . Then at least two
μ=l 2

among the numbers {mμ} must coincide. Let j be the minimal value of coinciding
{mμ}. Choosing among these {mμ} any pair mρ = mγ=j, let us express
dm,...mβ...mγ...mN(k) through the coefficients 41...me+/...mv-z...m#) with the same
value of M by using (20). Repeating this procedure for each of these coefficients,
one finally obtains that the initial dmί ...m2V(fc) is represented as a linear combination
of those d{m](k) which have at least two zero values of the indices {m}, i.e. vanish.

JV(iV —1)
The case of M > can be treated in a similar way.

Proposition 2. The d{m}(k) can be chosen as depending on k and a only through the
combinations a ~ ι{kμ — kv).

For the proof it is sufficient to show that the coefficients in the system (22)
depend on k and a in this manner. It can be done by using the result of the
preceding proposition and the simple relations

N Γ N N \ N Ί

X kμmμ = N~ι\ Σ mμΣ K+- Σ (kμ-kv)(mμ-mv)\,
μ=l |_μ=l v=l 4 μΦv J

2 Σ K = N~Ί Σ K-m v )
2 + 2 Σ mμ) .

μ=l )_μ±v \μ=l J J

So the system (22) can be rewritten in the form

N

β<ρ

Σsi
lεZ

N

= 0.
(23)

Proposition 3. Let {P} be the following set of the numbers {mμ}: mμ = Pμ—1, where
PeπN, l g μ ^ i V . The nonvanishing d{m)(k) with coinciding values of {mμ} are
expressed through df^. The latter are determined by the system (20) up to some
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normalizaίion constant d0,

d{Pβ) = d0 fί Γl + ^-(*P-u-*P-gl. (24)
λ<μ\_ ^Cl J

The first part of this statement is proved by the same scheme as was applied for
the proof of Proposition 1. As for formula (24), let us note that in the case of

N—ί
noncoinciding {mμ} the system (20) contains the subsystem of—-—JV! equations

(25)+ dmι...mv...mμ...mN(k)\ ί + ^(kμ-kv) I = 0 ,

Let P e πN be the permutation (j->mj +1), 1 :g j ; SΞ JV. If R e πN permutes μ and v
leaving other numbers from 1 to JV unchanged, then (25) can be written in the form

With the use of the condition mv = mμ + l one can represent the right-hand side
of (24) as

JΠ

x Π Γl + fίfcp-u-fcp-gl. (27)

The corresponding expression for d{PR)(k) differs from (27) only by the change
kμ^kv. So (26) is fulfilled for any PeπN.

The leading terms in asymptotic expansions of χ^\x) are completely deter-
mined by the set d{P)(k) (24) as it follows from

Proposition 4. Let (— 1 )p be the parity of the permutation P. If xP(λ +ί) — xPλ-» + oo,

N(N-ί)

ί - l ^ 2 d{P-ί}(k). (28)

The scheme of the proof can be illustrated by the case
^JV-l.Then

JV -N(JV-l)
Π sinha(xλ-xμ)~2 2 exp - Σ xλ(N-2λ + l)

λ>μ |_ λ = l J

and

neD"

Γ iV~1 Ί
- 2 α Σ (xA + 1 - x J / A ( { m } ) ,

\_ λ=l J
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λ

where fλ({m}) = £ (mτ—τ +1). Let {m} be any set of numbers which corresponds
τ = l

to nonvanishing d{m)(k). Then /A({m})^0 and the equality holds for all λ from 1 to
N — ί only if mλ = A — 1. The general case of an arbitrary PeπN can be treated
analogously.

Remark. If the constant d0 in (24) is chosen in the form

N - l N I"/ Ί - l N Γ f Ί - l

do= Π (29 + 1)! Π -(kλ-kj Π 1 + ̂ - ^ '

then

where the Harish-Chandra function c(λ) is defined by (12). So the statement of
Proposition 4 agrees with the asymptotic relation (11) of general ZSF theory.

Let us note also that, according to Proposition 3, the solutions of (20) must
obey the system (23). Hence (23) can be treated as a consequence of (20). It would be
interesting to find the direct algebraic proof of this fact.

To end this section, let us give some examples of explicit calculation of d{m}(k) for
small N by Eqs. (20) and introduce the following notation. Let [_λί... λN] be the
permutation (ί-*λl9 ...9N-*λN) and rλμ = ί(2a)~ι(kλ — kμ).

1. N = 3. According to (24), the coefficients d{P](k) can be written as

d0i2(k) = d0(ί +r 1 2 )(l +r 1 3 )(l + r 2 3 ) , dί02(k) = d0(ί +r 2 1 )(l +r 2 3 )(l + r 1 3 ) ,

d2Uβ) = d0(ί +r 3 2 )(l +r 3 1 )(l + r 2 1 ) , dO2i(*) = <*o(l +r 1 3 )(l +r 1 2 )(l + r 3 2 ) ,

di2oW = do(l +r 3 1 )(l +r 3 2 )(l + r 1 2 ) , d2θl(k) = do(ί +r 2 3 )(l +r 2 1 )(l + r 3 1 ) .
(29)

The last nonvanishing coefficient dm(fc) is determined from (20) at m 1=0,
m2 = l, m3 = 2, jβ=l, ρ = 3,

diii(Λ) = ίo(6-r?2-r?3-ri3). (30)

2. AT = 4. There are 24 coefficients of the d{P}(k) type. The other nonzero d{m](k) with
coinciding values of indices can be divided into three sets. The first two of them
consist of coefficients with three coinciding indices. They can be calculated in the
same way as dllί(k) at JV = 3,

) = rfo(l+^i4)(l+^4)(l+^4)(6-r?2-^3-r|3), (31)

) = do(ί + r41)(l + r42)(l + r43)(6 - r\2 - r?3 - r2

2

3). (32)

The other elements of these sets,

<*ii3i(fc)> di31i(k), d31ίί(k) and d2202(k), d2022(k), dO222(k)

are obtained from (31) and (32) by the permutations [1243], [1342], [2341] of
indices in {rλμ}. The third set contains the coefficients

\ d21l2(k)9 d1221(k)9 dl212(k)9 d2121(k)

with two pairs of coinciding indices. They are determined from Eqs. (20) with the
use of the coefficients of the type (31) belonging to the first set. For example, taking
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I

in (20) m 1 =m 2 = m3 = l, m4 = 3, β = 3, ρ = 4 one obtains

After simple calculations, dίί22{k) can be written as

(33)
The remaining five coefficients of these sets are given by (33) after the permutations
[3412], [3214], [4123], [1324], [4123] of the indices in {rλμ}.
3. For JV = 5 there are, besides d{P](k), 171 nonzero coefficients d{m}(k) with
coinciding values of indices. They are divided into 8 sets. For N = 6 the number of
these coefficients increases to 2112 and the number of various sets becomes equal
to 21. In spite of this fast growth, the system (20) seems to be most convenient for
the explicit calculations of the eigenfunctions of the Hamiltonian (7) and zonal
spherical functions φ^\x) on X^.

3. The Solution of the Eigenvalue Problem
for the Quantum Spin Hamiltonian Hs

As it was already mentioned in Sect. 1, the eigenvectors of the operator Hs (3) are
classified with respect to the number N of spins turned over the ferromagnetic
ground state. Let us fix JVeZ+ and consider the JV-magnon eigenstates (5). The
eigenvalue problem Hs\ψ^} = εN\ψ^} can be represented in terms of the
iV-magnon wave function ψ(nu ...,nN) as [20]

JV

Σ Σ
= 1 seZ[n]

= ψ(nu

V(nβ-s)ψ(n1,

Γ N

...,nN)\ Σ V
\_β*y

-9nβ

\nβ-

-l >S>nβ+l

ny)-\-J~1εI

N

β>γ

ϊ-JVe0 ,

-»,)*0,

where neZN and the notation Z[n] is used for the variety Z — (nl9..., nN). Motivated
by the structure of ψ({n}) at JV = 2 found in [19], I'll search the solutions to (34) in
the form which is very similar to the ZSF on X^. It is the properly symmetrized
combination of the functions like χ^Xx) in the form (16-17) restricted to the integer
values of arguments,

)«A]

N f N

ψ(nu ...,nN)= Y[ [sinhα(nμ — n v ) ] - 1 Σ (— 1 ̂ c x p I i £ ι
μ>v PenN \ λ=l

[ N
aΣ^Pλ-N+\)nλ\. (35)

Here kl9...9kNe R(mod2π) are the magnon quasimomenta for scattering states
in which ψ({n}) oscillates at infinity. Contrary to the eigenvectors of the
Hamiltonian (7), there are, as it will be shown later, the bound states in which
ψ({n}) vanishes if \na — nβ\-+oo. All the other notations in (35) are the same as in the
preceding section.
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The eigenvalue problem reduces to finding the set Smι ...mjv(fc) if the Ansatz (35) is
correct. A crucial point is the calculation of the left-hand side of Eq. (34) with
ψ({n}) in the form (35),

N

) = a2 Σ Σ ίsinha(nβ-sJ]-2ψ(nu...,nβ-us,nβ+u...,nN)
β = ί seZ [ n ]

= Σ Σ (-1)PΓ Π sinhα(n,-nv)l ' ( - I ) " " 1

β=l PeτcN \_μ>v;μ,v*β J

x exp ί Σ Ukpy + a(2mPγ-N + l)]π y l W{kPβ,mPβ, {n}), (36)

where
a2 Γ N Ί " 1

W(k,m,{n})= Σ - u2 t : Π sinhφA-5)κ x SJ

 sez[n]smh2a(s-nβ)lUβ ']

x exp{pfc + α(2m- ΛΓ+1)>}. (37)

It is easy to see that the sum (37) converges for all m obeying (18) if k e C is restricted
to the strip |3mfe| < 2a. To calculate (37) explicitly, let us consider the function Wq(x)
of the variable xeC,

q = ίk + a(2m-N+ί). (39)

As it follows immediately from (38), Wq{x) is double quasiperiodic,

Wq(x + iπa~x) = exp[iπ(iV-1)] Wq{x\ Wq(x +1) = exp(-q)Wq{x). (40)

Hence it can be treated on the torus C\Γ obtained by the factorization of the
complex plane by the lattice Γ = l1 + iπa~1l2 ( ί 1 ? ί 2 e Z ) . The only singularity of
Wq(x) on C\Γ is the double pole at x = 0. It arises from the terms with s = nu...,nN

in (38). After simple calculations one obtains the first three terms of the Laurent
decomposition of (38) near x = 0,

q (41)
where

b0 = Qxp(qnβ) Π [sinhφ A -n β )~] ~ι, (42)
λ*β

N N

Σ cotha(nγ-nβ)- Σ exp(gnρ)
y*β a*β

(43)x s i n h φ β - ^ ) f[ sinhα(w λ-n ρ) >,
L λ*Q J J

Γ Γ i N—ί 1 N

= a2<b0\ - ^ + —^— + o Σ cotha(ny-nβ)cotha(nδ-nβ)

y

n ^ - n e ) + Σ cothα(n r -n e ) | + W(Λ, m, {«}). (44)
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Now let us construct the function Uq(x) with the same quasiperiodicity
conditions (40) and pole decomposition (41) by using the Weierstrass elliptic
functions p(x), ζ(x), and σ(x) defined on the torus C\Γ. The proper form of Uq(x) is

) - P(r) + A[C(x + r)-ζ(x)-ζ(2r) + C(r)]}, (45)

where 4̂, r, δ, and Zl are some constants. The term in braces is chosen so that it is
double periodic and has a zero at x = r. So the only singularity of Uq(x) on C\Γ is at
x = 0 for all values of r and J.

By using the properties of sigma functions [21] one obtains

, (46)

where τ / 1 = 2 u - ) and η2 = 2ζί — ) . Comparing (46) with (40), one finds two

equations for r and δ,

Solving them with the use of the expression for q (39) and the Legendre relation

ίπa~1η1—η2 = 2πi, (47)

one finds both r and δ,

The Laurent decomposition of (45) at x = 0 can be obtained by standard
expansions of p, ζ, and σ [21],

+ A(2ζ(r) - ζ(2r)) - p(r)] + O(x). (49)

The function Wq — Uq is analytic on C\Γ if 4̂ and δ obey the conditions

Λ = b0, Λ(2ζ(r) + δ-A) = bί. (50)

But, according to the Liouville theorem, the only analytic function defined on a
torus is a constant which must be zero because of quasiperiodicity of Wq(x) — Uq(x)
(40). Comparing now the decompositions (41) and (49) one obtains the expression
of b2 in terms of b0, bl9 r, δ, and A,

b2 = fto[i(2f (r) + δ - 2A)(2ζ(r) + δ) + A(2ζ(r) - ζ(2ή) - p(r)]. (51)
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With the use of (42-44) and (51) the sum W(k, m, {n}) defined by (37) can be written
as

ί Γ N I " 1

W(k, m? {n}) = a2<-exp(qnβ) Π s i n h φ λ - n β )

Γ(N-ί) 1 N

x — - — + - Σ coth a(ny - nβ) coth a(nμ - nβ)
|_ 2 2 y*μ*β

N N

+ X s inh^φy-n^-α" 1 /^) X cotha(nγ-nβ) + a
y*β y*β

t^ si

-ne)+ I cothφy-rcρ)-0-7fl(r)jj, (52)

where
7fl(r)=C(2r) + 5, (53)

ε » = - y + p(r)+ i(2f(r) + 5)(2C(2r)-2C(r) + 5). (54)

Now let us show that εa(r) and Ja(r) are some polynomials in m. According to
(44), r and (5 can be written as

m c

where
ik „ k u(in

By using the Legendre relation (47) and the quasiperiodicity of ζ(x)

ζ(x + l) = ζ(x) + 2lζ(i), leZ, (55)

one can represent (53) in the form

L(r)=fa(k)-a(2m + ί-N), (56)

where

M £ ΐ ) ( £ ) (57)

The calculation of explicit m dependence of εjr) is not so trivial. With the use of
(55) one obtains

2 ( m

i]-2CK-£]|.
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First, let us consider the case of even m. The periodicity of Weierstrass functions
now can be used explicitly. One finds

Ur) = ea(k)-a(2m + l-N)fa(k)+ y (2m + l -AT)2, (58)

where

Φ)= - y + P(rk)+ \(2ζ(rk)+δk){2ζ(2rk)-2ζ(rk) + δk). (59)

In the case of odd m one needs some more complex calculations. Note that εa(k) in
that case is given by

a2 ( 1

- i ) - 2 c Q -α(2m +1 -iV)J . (60)

Now one can use the addition theorems for Weierstrass functions,

> = P'(rk)\ω =

The formula (60) is transformed to

εjr) = εjk)-a(2m +1 -N)fJk)+ ^(2m +1 - j

where

The final trick consists in the use of the formula ζ(2x) — 2ζ(x) = jp"(x)[p'(x)']~ί

and the differential equation for p{x). I find that Φ(x) vanishes and sa(r) is given by
(59) as in the case of even m.

According to (52, 56-59) the left-hand side (36) of the eigenvalue equation (34)
can be represented as follows,

where

^ ^ ^ J (61)
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^2({n})=-α2Π[sinhφ,-nv)]-1 £ (-If £ Jmi,...,m#)
μ>v PeπN meDN

N C N
x Σ e x P 1 Σ

x exp {[i{kPβ + kPρ) + 2a(mPβ + mPρ-N + l)]n

cotha(nβ-nρ)+ Σ cothφ y-nρ)-β~1/α(/cp^) + 2mP^-iV + l
L y*e J

χ

ΠCsinha^-n,)]-1 Σ (-1)P Σ
μ>v PeπN meDN

xexp

- Σ [β" 1

(63)

It is easy to see that if one chooses the N-magnon energy as [20]

J
then ^({n}) exactly coincides with the right-hand side of Eq. (35). Now the
problem consists in finding the conditions under which £?

2({n}) a n d ^?>{{n})
vanish. Let us consider first the expression (62) for J£?2(W)

Let Q be the permutation (β<-+ρ) which doesn't change all other indices from 1
to JV. The sum over permutations in (62) can be transformed as

jSf 2 ({n})=-α 2 Π[sinhα(n μ -n v )]- 1 £ 3mu_mN(k)
μ>\ meDN

x Σ (~1)P Σ IF(P)-F(PQJ],
PeπN β*ρ

where
r N

Σ likPγ + a(2rnPy-N+l)']ny

x e x p {[i{kPβ + kPρ) + 2a{mPβ + m P ρ - N + l ) ] n j

β ρ λlβ,ρ s i n h α ( n A — nρ)

1 Γ N

x - < 2 m P β — a'γfa{kPβ) + c o t h a ( n β — n0) + Σ c o t ' 1 a ( n y — no) — N + l}.



Extended Bethe Ansatz for Infinite Quantum Spin Chains 373

Since F(PQ) differs from F(P) only by the first two terms in the last braces, one can
represent ^2({n}) *n Λ e f° r m

^ 2 ( W ) = - α 2 Π [ s i n h φ , - n v ) ] - 1 X (-If
Pμ Pejsr

N Γ N Ί

x Σ e x P Σ \ikPy + a{2mPy-N+\)]ny\
β*Q \_y*β>Q J

Λ sinha(nλ — nR)
Π • u ) — rkβ,Q s inhφ A -n ρ )

2(JV-1)

Σ Σ
{mλ}eDN, λ*Pβ,Pρ s = 0

Σ Σ
DN λ*PβP s = 0

ι Σ Σ ^1...
m p y 5 + Πίpρ =S l e Z

/α(/cP/,)+^/a(/cPff) + 2/J. (65)

Comparing the last sum in (65) with Eqs. (20), I conclude that ^2({n}) vanishes
if

K...m^) = dmι...mMa{k)), (66)

where d{m}(ifa(k)) is an arbitrary solution of the system (20) with kμ replaced by
f(k\( μ \ μ

The final step is the transformation of &3({n}). Upon symmetrizing the sums
over β, yv in (63) one finds

N j
cotha(nγ-nβ)cotha(nv-nβ)= -JV(iV-l)(ΛΓ-2),

Σ la-γ

β*y
N

= Σ ίmβ-Wγ-(2tf)"\fa(kβ)-fa(ky))~]cotha(nP-iβ-nP-h).
β*y

With the use of these relations the formula (63) reduces to

^{{n})=-a2 Π ίsmha(nμ-nv)rι

μ>v

x Σ (-lfexpJΣ C^-α(N-l)]nP-Ji?(P,{n}),

where

R(P,{n})= Σ ^m i...m#)exp(2α Σ nP-,λmλ
meDN \ λ=ί

- Σ lmβ-my-2a-\Ukβ)-fa{ky))-]cotha(nP-lβ-nP-ly)\.
β*y J
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Introducing the notation Gxp(2anP-iλ) = yλ, 1 ̂ λ^N at fixed P, one finds

R(P,{n})= Σ 1 , . J ) ( Π
meDN \ λ = l

Now it is easy to see that after replacing 2mί_mJk)-+dmi.mmtHJk)9 ifa{kμ)->kμ the
right-hand side of (67) exactly coincides with the left-hand side of (21). As it was
shown in Sect. 2, it must vanish for all y e RN if {dmi mN(k)} is an arbitrary solution
of the system (20). Hence both £?

2({n}) a n d ̂ ({n}) vanish under the conditions
(66) and the Ansatz (35) satisfies the eigenvalue problem (34) with the ΛΓ-magnon
energy εN given by (64).

The asymptotic behaviour of the iV-magnon wave functions ψ(nl9..., nN) (36) as
α->oo or \nμ — nv|-*oo can be found on the base of Proposition 4 in Sect. 2 (or,
equivalently, from the general theory of ZSF on X^)- In the former case one
obtains the usual Bethe Ansatz [1,4] as a consequence of (29) and the relation

lim Ήfίk )-f(k ϊl-iYc t^-cot^
a-*-co a a \ 2 2

This result is quite natural since the terms with the interaction of non-nearest-
neighbor spins disappear in (3) in this limit.

In the case of finite a one obtains the following asymptotic form of the
JV-magnon wave functions. If the distances between the positions of turned spins
tend to infinity so that nP{λ+ί) — nPλ-* + oo, ί^λ^N — ί, then

( N

ψ(nl9...9nN)~ Σ (~l)QPexp i Σ k

Qλnλ
QeπN \ λ=ί

where fa(k) is expressed through the Weierstrass ζ function according to (57).
Hence the multimagnon scattering matrix is factorized as it would be for integrable
models. Note that ψ{nί9...,%) doesn't vanish at infinity as the magnon quasimom-
enta {kμ} are restricted to R(mod2π).

There are also various kinds of bound complexes in iV-magnon states for which
some terms in the asymptotic expansion (68) vanish. These configurations are
determined by the roots of various systems of transcendental equations like
l-la'1 lfa{kμ)-/α(fcv)] = 0 with all {kμ} lying in the rectangle \Wek\ < π, |3mfc| < a,

and K= Σ kμeR. Evidently, these states have no analogs in the variety of
μ = l

eigenvectors of the Hamiltonian (7). It would be interesting to prove that the
minimum of the iV-magnon energy εN (64) in the ferromagnetic case J > 0 at given
K and JV ̂  3 is reached on the N-magnon bound state determined by the system of
equations

Σ
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4. Discussion

As it follows from the results of the preceding section, the eigenvectors of the
Hamiltonian Hs of infinite quantum spin chains with the exchange interaction (2)
are tightly related to ZSF on X^. The integral representations of the general ZSF
theory [11] or the recurrently constructed intertwining operators [16] can be used
for the investigation of their global properties. But, as for computational schemes,
I haven't found any more simple way than solving the linear system (20). The
explicit expressions for multimagnon wave functions at iV^4 following from
(29-33) can be obtained much more easily than it has been done in [20] by rather
complicated calculations.

The connection of quantum spin chains having non-nearest-neighbor exchange
with the Yang-Baxter equation and the corresponding algebraic structures of the
quantum inverse scattering method is not clear up to this time. The validity of the
triangle Yang-Baxter relation can be proved for the S matrix of the fermionic
version of these models but it doesn't serve as a guide to the construction of a full
set of eigenvectors, especially in the case of periodic chains with the exchange given
by the elliptic Weierstrass p function. Another question under study concerns the
correspondence between the radial parts of high order Laplace-Beltrami
operators on X^ and the operators commuting with Hs which have been found in
[19]. The investigation of that aspect of the above-mentioned analogy between the
objects of the theory of symmetric spaces and quantum spin chains with the
Hamiltonians (2, 3) seems to be one of the possible ways of understanding the
algebraic nature of their complete integrability.
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