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Abstract. Let k: Y —• X be an embedding of compact complex manifolds. Bismut

and Lebeau have calculated the Quillen norm of the canonical isomorphism identifying

the determinant of the cohomology of a holomorphic vector bundle over Y and the

determinant of the cohomology of a resolution by a complex of holomorphic vector

bundles over X. The purpose of this paper is to show that the formula of Bismut-

Lebeau can be viewed as an equivariant intersection formula over the loop space of

the considered manifolds, in the presence of an infinite dimensional excess normal

bundle. This excess normal bundle is responsible for the appearance of the additive

genus R of Gillet and Soule in the formula of Bismut and Lebeau.
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The purpose of this paper is to exhibit certain remarkable relations of Quillen metrics
on the determinant of the cohomology to equivariant Arakelov theory on certain infi-
nite dimensional manifolds. In particular, we will show that the result of Bismut and
Lebeau [BL1,2] describing the behaviour of Quillen metrics under complex embed-
dings can be viewed as a formal consequence of an intersection formula on the loop
space of the considered manifold, in the presence of an infinite dimensional excess
normal bundle. This intersection formula was first established in a finite dimensional
context in a previous paper [B2].

Let us briefly recall the formalism of [B2]. Let (LX,ωLX) be a compact Kahler
manifold, with Kahler form ωLX. Let K be a holomorphic Killing vector field on
LX.

Set

(0.1)

X = {x e LX; K(x) = 0} .

Let NX/LX be the normal bundle to X in LX. Then NX/LX is naturally equipped

with a metric gNχ/LX. Let κcmax(Nx/LX,g
Nχ/LX) be the Chern-Weil representative

of the equivariant Euler class of N X / L X associated to the holomorphic Hermitian

connection on {NXjLX,g
Nχ/LX).

In [B8], we constructed a if-invariant current κ SωLx on LX, whose wave front
set is included in i V L L I R , and is such that

κ
SωLX = 1 - κc-ml(Nχ/LX,9

N^)δx . (0.2)

Equation (0.2) refines on the localization formulas in equivariant cohomology of
Berline-Vergne [BeV], which themselves extend related formulas of Bott [Bo].

Let (LE, gLE) be a if-equivariant holomorphic Hermitian vector bundle over LX
and let r be a if-invariant holomorphic section of LE. Set

LY = {xe LX; r(x) = 0} (0.3)

Assume that LY is a complex submanifold of LX. In [B2], we constructed a K-
invariant current κeLX(LE,gLE), whose wave front set is included in ^
such that

(Lh,g ) = bLY - (^^{Lh.g ) . (0.4)

The current κeLX(LE,gLE) is in fact an equivariant Euler-Green current, and its
construction is similar to the construction of non-equivariant Euler-Green currents in
[BGS5].

Set
Y = LY Π X. (0.5)

TLX\Y

Let N — ——— !——— be the excess normal bundle.
TLY\γ + TX\γ

In [B2, Theorems 3.2 and 3.4], we established a formula relating currents on LX,
LY, X, and Y, which is a sort of generalized height pairing formula for the cycles
X and LY. In general, this formula reflects the impossibility of forming the product
of the currents κSωLx and κeLX(LE,gLE). The contribution of the excess normal
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bundle N to the formula appears in the form of a rather mysterious additive genus
KR evaluated on N.

Let (M, g™) be a compact oriented even dimensional spin manifold. Let LM be
the loop space of M, i.e. the set of smooth maps s e S\ = R/Z —» xs e M. The
metric g™ lifts naturally to a metric gTLM on TLM. Let K be the Killing vector
field which generates the natural action of Si on LM, by change of the origin. Then M
embeds into LM as the zero set of K. In [A], Atiyah and Witten made the fundamental
observation that the McKean-Singer formula for the index of the Dirac operator acting
on spinors could be written formally as the integral over LM of a if-equivariantly
closed form on LM. By applying formally the localization formulas of Bott [Bo],
Berline-Vergne [BeV] in this infinite dimensional situation, they obtained the right
index formula of Atiyah-Singer [AS]. This observation was extended in [B4] to the
case of twisted spin complexes. In [B6], a new proof of the localization formulas of
[Bo, BeV] was given, which reproduced in a finite dimensional context the "fantastic
cancellations" in local index theory. The geometric origin of such cancellations, and
their relation to equivariant cohomology was thus established, at least formally. These
considerations have been at the origin of subsequent developments, which include the
local families index theorem of [B5, B6].

Let now (X,ωx) be a compact complex Kahler manifold, and let (ξ,/ι^) be a
holomorphic Hermitian vector bundle on X. Let λ(£) = (det H(X, ξ))~ι be the inverse
of the determinant of the cohomology of ξ, and let || ||λ(ξ) be the Quillen metric [Q2,
BGS3] on the line λ(£) The metric || ||Λ(£) is the product of the L2 metric on λ(ξ)
(which is obtained by identifying H(X, ξ) to the corresponding harmonic forms on
X) by the Ray-Singer analytic torsion of the Dolbeault complex for ξ [RSi].

Let LX be the loop space of X, let K be the vector field generating the natural
action of Si on LX. The Kahler form ωx lifts to the Kahler form ωLX of LX, and K
is now a holomorphic Killing vector field. It was observed in [B8] that the logarithm
of the Ray-Singer analytic torsion of ξ could be expressed formally as a normalized
integral over LX of the current κ SωLx paired to the lift to LX of the Chern character
form for ξ ® (detTX)1/2, which was constructed in [B4]. As explained in [B8], this
formal analogy was crucial in understanding the generalized anomaly formulas for
Quillen metric [BGS3, Sect. lh]. One of the merits of this approach is that it expresses
the logarithm of the Ray-Singer analytic torsion - which is a global invariant of the
manifold X - as the formal integral of a local geometrically meaningful current over
LX.

Let now k: Y —> X be an embedding of complex manifolds, let η be a holomorphic
vector bundle on Y, and let (£,i>) be a holomorphic complex of vector bundles
over X, which provides a resolution of the sheaf k*(9γ(r\). By a construction of
Grothendieck-Knudsen-Mumford [KMu], we know that the line λ " 1 ^ ) ® λ(ξ) has a
nonzero canonical section σ. When Kahler metrics are introduced on TX, ΊΎ, ξ, η,
Bismut and Lebeau [BL1,2] calculated the Quillen norm ||cr||λ-i ( r 7 ) ( g ) λ^ ), in terms of
Bott-Chern currents on X, Y in the sense of Bismut-Gillet-Soule [BGS4] and also of
the additive genus R of Gillet-Soule [GS3] associated to the power series

^«-») ^ ])
nodd

where ζ(s) is the Riemann zeta function. The additive genus R appears in Gillet-Soule
[GS3] in their calculation of the analytic torsion of Pn(C). The genus R reappears in
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a completely different way in Bismut [B7], in a calculation of the generalized analytic
torsion forms of a short exact sequence of vector bundles. By putting together the
results of [BGS1-5, GS1-3, BL1,2], Gillet and Soule have then established their
conjectured Riemann-Roch-Grothendieck formula in Arakelov theory [GS4,5].

Let (E, gE) be a holomorphic Hermitian vector bundle on X, let r be a holo-
morphic section on X which exactly vanishes on Y, such that dr\Y: Nγ/X —> E\Y

identifies NY/X and E\Y. Let η be a holomorphic vector bundle on X. Then the
Koszul complex (ΛE* ® 77, ir) provides a resolution of the sheaf i*$γ(η\γ).

The purpose of this paper is to show that formally, the formula of Bismut-Lebeau

[BL1,2] which calculates LogdlσH^ )®\(ΛE*® Λ c a n ^ e γ i e w e d a s a consequence

of the intersection formula established in our previous paper [B2]. In particular the

genus R of Gillet and Soule is an infinite dimensional version of the genus KR of

[B2] described before.
The application of the result of [BL2] to the problem considered in [BL1,2] gives

the exact answer. Maddeningly enough, also the intermediary steps in the proofs
of Bismut [B2] and Bismut-Lebeau [BL2] are strictly similar. Of course there are
many more technical difficulties in [BL2], which are handled by operator theoretic
techniques. Nevertheless the comparison with [B2] gives a geometric interpretation
to the difficulties in the proof of [BL2]. Namely LY and X are not transversal in
LX; there is an excess normal bundle N, which is exactly the bundle of loops in the
fibres of Nγ/X whose integral vanishes. The impossibility of forming the product of
currents over LX whose wave front sets are included in N2Y/LXR and Nχ,LXR is
ultimately responsible for the appearance of the genus R. Equivalently, one could say
that the main result of [BL2] is in part the solution of a hard problem of microlocal
analysis in infinite dimensions, and this in the worst possible conditions, i.e. in the
case where the excess normal bundle is of infinite dimension.

In retrospect, a whole class of rigorous results concerning finite dimensional Bott-
Chern currents [B3, BGS4,5] and Quillen metrics [BGS1,3, BL1,2] may appear as
the shadow of infinitely more complex and richer properties of Bott-Chern currents
over loop spaces, whose only disadvantage is that they are ill-defined. Similarly, the
remarkable compatibility properties verified by Bott-Chern currents [BGS5] become
tautological once their formal relation to currents on loop spaces is understood. The
prototype of such a compatibility results is in fact the result of Bismut-Lebeau [BL1,2]
itself.

To moderate the somewhat romantic view expressed before, let us also say that
all these analogies remain formal, and that they only provide us with a guide to,
say, the proof of the main result of [BL2] and not with the proof itself. Certain
key objects which appear in the construction of Quillen metrics are invisible in the
functional integration formalism, and still play a key role in [BL2]: among these
invisible objects, the cohomology groups themselves... . This is why, in this paper,
we have been very careful in distinguishing "formal" results from rigorous results,
although even formal results may have proofs.

This paper is organized as follows. In Sect. 1, we introduce the loop space for-
malism, and we show how certain well-defined Bott-Chern currents on a complex
manifold X may be viewed as generalized restrictions to X of iΓ-equivariant Bott-
Chern currents on LX. In Sect. 2, we briefly recall the construction of the Quillen
metric on the determinant of the cohomology [Q2, BGS3], and we formulate the
problem considered in Bismut-Lebeau [BL1,2]. Finally, in Sect. 3, we make a short
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parallel between the result and proofs of [BL2] and [B2], which leads us in particular
to a formal proof of the main result of [BL1,2].

In the whole paper, we use the formalism of Mathai-Quillen [MQ], and also the
results and notation of the companion paper [B2].

I. Bott-Chern Currents in Finite Dimensions
and Euler-Green Currents in Infinite Dimensions

The purpose of this section is to show that certain well-defined Bott-Chern currents
on finite dimensional complex manifolds can be viewed formally as "restrictions" to
the manifold of equivariant Euler-Green currents on the corresponding loop spaces.
In particular we relate the lack of local integrability of these well-defined Bott-Chern
currents to the presence σf an infinite dimensional excess normal bundle. The results
of this section are only mildly formal.

The Bott-Chern currents have been rigorously constructed on finite dimensional
manifolds by Bismut-Gillet-Soule [BGS4]. Euler-Green currents have been con-
structed in [BGS5] on finite dimensional manifolds, and equivariant Euler-Green cur-
tents on finite dimensional maniftMs were constructed in \V>T\.

This section is organized as follows. In a), we introduce the loop space formalism.
In b), we express certain well-defined currents over a finite dimensional complex
manifold in terms of ill-defined currents on the corresponding loop space.

a) Complex Embeddings and Loop Spaces. Let X be a compact complex manifold.
Let Jτx be the complex structure on the real tangent bundle TRX.

Let LX be the set of smooth maps t e Si = R/Z -* xt e X. LX will be called
the loop space of X.

If x G LX, we identify the real tangent space (TRLX)X with the vector space
of smooth sections t € S\ -+ Ut e (TRX)Xt. The complex structure i τ x induces
the obvious complex structure JTLX :U G (TRLX) -> JτXU e TRLX. One easily
verifies that the complex structure JTLX is integrable. Then LX can be considered as
a complex manifold. If x G LX, the complex tangent space TXLX can be identified
with the vector space of smooth maps t G S\ —> Ut G TXtX.

lί x e X, we identify x with the constant loop t e S\ —* x. Then X is a complex
submanifold of LX. Let / be the embedding X -> LX.

For s e Su x e LX, set (ksx)t = x3+t. Then (ks)seSι

 i s a β r o u P o f diffeomor-
phisms of LX. Its generating vector field K is given by

at
Clearly, K is a holomorphic vector field on LX. Also

X = {xe LX; K(x) = 0} . (1.2)

Let gτx be a Hermitian metric on TX such that (X,grx) is a Kahler manifold.
Let (, )τx be the corresponding Hermitian product on TX Let ωx be the Kahler
form

U,VE TRX -> ωx(U,V) = (UJτxV)τx . (1.3)

Ifxe LX, if U, V G (TRLX)X, set

1

(U, V)TLX = J (Uu Vt)Tχtχdt. (1.4)
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Then (1.4) defines a Hermitian product gTLX on TLX. The manifold (LX,gTLX)
is still Kahler. The corresponding Kahler form ωLX is given by

+ ωLΛ(U,V)= / ωx

t(UuVt)dt. (1.5)

o

Of course the metric gTLX induces the metric gτx on TX, and ωx is the restric-
tion of ωLX to X. Moreover the vector field K is a Killing vector field with respect
to the metric gTLX.

Let E be a holomorphic vector bundle on X. We assume that dimE < dimX.
Let r be a holomorphic section of E over X. Set

Y _ ίχ £ χ> r(χ^ _ Qj (1.6)

We assume that for any y eY, the linear map dr(y): TyX —> Ey has maximal rank
dim(E). Thus Y is a complex submanifold of X.

Let /. be the embedding Y —> X. Let Λ/y/χ be the normal bundle to 7 in X.
Then dr: NY/X —> E|y is an identification of holomorphic vector bundles over Y.

The vector bundle TY inherits the metric gτγ from the metric gτx. The corre-
sponding Kahler form ωγ on Y is the restriction to Y of ωx. The manifold (Y, # τ r )
is also a Kahler manifold.

By identifying Nγ/χ with the orthogonal bundle to TY in TX\γ, Nγ/χ inherits

a metric g γlχ.
Let g^ be a Hermitian metric on E. We make the assumption that the identification

dr\γ: Nγ/X -» E also identifies the metrics. One verifies easily that there exists a
metric gE on E such that this assumption is verified.

Let s be the section of ER, 5 = r + f. Let V s be the holomorphic Hermitian
connection on (E, gE). Let LE be the set of smooth maps t e S\ = R/Z -> et £ E.
Then LE is a vector bundle over LX. If x G LX, the fibre (LE)X is the set of
e G LE such that if s G SΊ, et G E X f . By proceeding as before, we see that LE can
be considered formally as a holomorphic vector bundle on LX. If e, ef G (LE)X, set

1

(e,e')gLE = J(eue't)gEtdt. (1.7)

o

Then # L £ ; is a Hermitian metric on LE. Let V L £ ; be the holomorphic Hermitian
convention on (LE,gLE). One verifies easily that if x G LX, e G LE, if J7 G
(TRLX)X, then

(V[/ e)t = Vj/tet. (1.8)

If s G SΊ, e G LE, set
(k^Ee)t = es+t (1.9)

Then (kLE)sesι is a group of holomorphic unitary isomorphisms of LE, which lifts

the group (ks)sesι to LE. Let KLE be the vector field on LE which generates the

group (k^E)seSv The vector field KLE lifts X to LE.

We now use the notation of [B2, Sect. 2c)]. Namely let JLE be the horizontal part
of KLE with respect to the connection VLE. The tensor JLE is then a skew-adjoint
section of End(LE). '
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DE

Take x G LX, e € {LE)X. Let — - be the covariant differentiation operator along

the loop t —> xt with respect to the connection VE. One verifies easily that

( J ^ e ) t = ̂ . (1.10)

The section r of E lifts to a section of LE over LX. In fact if x G LX, for any t,
τXt G LEXt. We still denote by r this section of LE over LX. Similarly the section
s = r + f of EK over X extends to a section of LEu over LX. Of course r, s are
KLE-invariant sections of LE, LER.

Let LY be the loop space of Y. Clearly

LY = {xeLX;rx=0}. (1.11)

Also
Y = LYΠX. (1.12)

If y G LF, the normal bundle (NLY/LX)y can be identified with LNY/X, i.e. with
the set of smooth maps t G S\ —> n t G Nγ/X, with n t G (Nγ/χ)yt. If y G LF, the
map dry:NLY/LX y —> (LE)LYV is an identification of holomorphic vector bundles
overLF.

Similarly if y G F , let 7Vy be the set of smooth maps ί G SΊ —> n t G Nγ/χ^
1

such that / ήtdt = 0. Then we have an identification of holomorphic vector bundles
over Y o

NLY/LχlY=Nγ/x®N. (1.13)

b) Accumulating Evidence: Some Finite Dimensional Formulas.
1) Evaluation of κc^lx(Nχ/LX, gNχ/LX). Take x G X. Then one easily verifies that
(Nχ/Lx)x can be identified with the set of smooth maps t e S\ -> Ut € TXX such

that / Utdt = 0. Also NX/LX inherits the obviously L2 metric gNχ/LX constructed

in (1.7). If [/G N X / L X , then

JNX/LXU=?E. ( L 1 4 )

The eigenvalues of JNX/LX are obviously given by 2ikπ(k G Z*). Therefore at
least formally, Nχ/Lχ splits holomorphically as a countable direct sum indexed by
A GZ*,

NX/LX=@ TX. (1.15)
fcGZ*

Also the splitting (1.15) identifies the metrics. On the kth copy of TX, JNX/LX acts
by multiplication by 2ikπ.

Let Vτx be the holomorphic Hermitian connection on (TX,gτx), and let Rτx

be its curvature. Similarly let V χlLX be the holomorphic Hermitian connection on
(Nx/LX,g

Nχ/LX) and let RNχ/Lχ be its curvature.
Set

= jNχ/LX + RNχ/Lχ ( 1 1 6 )
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By [B2, Eq.(1.16)], we have the identity

KRNX/LX

det

Using (1.15), we get the formal formula

kez* det -
2iπ

Equivalently

1 1

-\-oo \ dimX +oo

π - k η π du v , 4π2k2

Let 4 be the complex Hirzebruch polynomial. Namely if B is a (g, g) matrix, set

(1.19)[sinhCB/2)J "

Recall that

x/2

Let C be the infinite constant

+OO

'-k2). (1.21)

From (1.17)—(1.21), we deduce the following result.

Proposition 1.1. One has the formal identity of forms on X

= C-άimXA(Rτx). (1.22)

The identity (1.22) is used in a crucial way by Atiyah and Witten [A] to show that
formally, one can derive the index theorem for the Dirac operator acting on spinors
from a localization formula from LX to X in equivariant cohomology.

2. Evaluation ofκcmΆX(LE^x,g
LE\χ) on X. Let RE be the curvature of V^ and let

RLE be the curvature of VLE. Then if KRLE = JLE + RLE, we have the identity
of forms on LX

/ Kr>LE\
KCr™ALE, gLE) = det ί - - ^ — J . (1.23)

The eigenvalues of JLE acting on LE\X are given by 2ίkπ(k e Z). By proceeding

as in (1.17)—(1.21), we get the identity of forms on X

g j det(eβ E/ 2-e-Λ B/ 2). (1.24)
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[ / _JDE \ "1
exp [ I be the Chern character form on X associated

V 2™ )\V )\
to (E,gE). Let ΛE* be the exterior algebra of E*. The metric gE induces a metric

gΛE* onΛE*. Set

ch(ΛE*,gΛE*) = Σ ( - I f ch(ΛPE*,gΛPE*). (1.25)
o

Let φ be the algebra homomorphism from ΛQvenT^X into itself which to ω G
Λ2p(T^X) associates (2iπ)-pω G Λ2p(T^X).

Then one has the easy formula

c\\(ΛE*, gAB*) = φ det( 1 - eRE) (1.26)

From (1.24), (1.26), we deduce the following result.

Proposition 1.2. One has the formal identity of forms on X

(
fy \ dim E p

±-ή [ ^ c h ^ / ^ l e - 2 ^ . (1.27)
3. Evaluation o//*5* κcτ(LE,gLE) on X. By proceeding as in (1.22)-(1.24), we
get the identity of forms on X

= 1 — 1 — detl e 2 -e-
±^-rί

\ / L \

s* exp I ~τ(^γ- + (ϋ β + 2π6Jβ)"1 J j I . (1.28)

The exterior algebra ΛE* is a c(E^)-Cliffoτά module. If e G ER, let c(e) denote
the corresponding Clifford multiplication operator. If e' G E, let er* be the element
in E* corresponding to e' by the metric gE. Then if e G £?, e' G J51, we have the
identities

c(e) - V^ie; c(e') = - v ^ e ' * Λ .

Let ^4τ be the superconnection on ΛE* in the sense of Quillen [Ql],

7-1 (L29)

Let NH be the number operator of ΛE*, i.e. ΛΓ# acts on ΛP(E*) by multiplication
by p. By [B3, Eqs. (3.142), (3.143), (4.21) and (4.22)], we know that

Q r
Trs[7V# exp(-Ay)] = — det(l - exp(i?β + 6))

. (1.30)

Using (1.28)-(1.30), we get the following result.
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Proposition 1.3. The following formal equality of forms on X holds

fs*κcτ(LE,gLE)

[( * ^ ) 2 ] ^ ^ (1.31)

4. Evaluation ofκex(LE,gLE). Let A; be the embedding Y -> X. The complex

(ΛE*,ir):0 -> ΛdhnEE* ->.. .-» Λ°£* = C -> 0

dim £7

provides a resolution of the sheaf k*$γ. Moreover ΛE* = φ ΛPE* is naturally
o

equipped with a Hermitian metric gΛE*. Therefore, by [BGS4], we can construct the
associated current Tx(ΛE*,gΛE*) on X. This current was also described in [Bl,
Sect. li)].

If B is a (<?, <?) matrix, set

Td(B) - det ( B Λ , ( i " 1 / ^ ) = %- [A-\B + b)]b=0 . (1.32)
\ 1 — e a J ob

Nγ
AT TrΓiΐ y / * l

Recall that cι(Nγ/x,g
Nγ/χ) = — -.

In view of [B3, Theorem 3.2], or of [B2, Theorem 2.18] and (1.30), we are entitled
to set the following definition.

Definition 1.4. For s e C, 0 < Re(s) < \, let Rx(ΛE*,gAE*) be the current on X

+OO

. f X / Him W. \
' A ̂  \

+ (A-1)'(NY/x,g
N^)e-c'/2(Ny^^NY/X)dy] du. (1.33)

Then RX{ΛE*, gAE*) (s) extends to a holomorphic function of 5 € C near 5 = 0.

Definition 1.5. Set

fx(ΛE*,gΛE*)=j-sR
x(ΛE*,gΛE*)(0). (1.34)

Let Px be the set of sums of currents on X of type (p, p) whose wave front set

in included in Ny,χR, and let Py'° be the set of currents a e Px such that there

exist currents β, 7 on X whose wave front set is included in Ny,χR, for which

a = dβ + dη.
We identify X to the zero section of E. Recall that the current e(E, gE), which lies

in PE, was constructed in [BGS5, Sect. 3f). It is of complex type (dim E— 1, dim E —
1). The pulled-back current s*e(E,gE) on X is well defined, and lies in Px.
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Theorem 1.6. The current fx(ΛE*,gΛE*) lies in Pfi. Moreover the following iden-
tity of current holds

gΛE*) in Px/P^°. (1.35)

Also,
fx(ΛE*,gΛE*) = Ύά~ι (E,gE)s*e(E,gE) in PXP*>°. (1.36)

Proof To construct the current TX(ΛE* ,gΛE*), one should essentially replace in

(1.33) NH - ^ ^ by NH. By using [B3, Theorems 2.4 and 3.2], (1.35) follows.

The identity (1.36) is a consequence of (1.35) and of [BGS5, Theorem 3.17]. D

Remark 1.7. By [BGS4, Sect.3], the current Tx(ΛE*,gΛE*) is in general not lo-
cally integrable near Y. The singularity of Tx(ΛE*,gΛE*) is described in [BGS4,
Theorems 3.3 and 3.4].

Recall that when X and LX are finite dimensional, the current κex(LE,gLE)
was constructed in [B2, Sects. 2e) and 2f)].

Using [B2, Definition 2.19] and from Proposition 1.3, we get the following formal
result.

Theorem 1.8. The following formal identity of currents on X holds

^ ) 2πiφ-ι(Tx(ΛE* ,gAB*))e-l/™EK (1.37)
2πι J

Identity (1.37) is of fundamental interest. In fact, by a direct study similar to

what is done in [BGS4, Sect. 3] for the current Tx(ΛE*,gΛE*)9 we see that in

general the current fx(ΛE^)g
ΛE ) is not locally integrable. More precisely, we find

that near Y, if Z is a coordinate normal to Y in X, fx(AE*,gΛE*) behaves like
1 1

\z\2

On the other hand, if we apply formally the results of [B2, Sects. 2e) and 2f)] to
the current κex(LE,gLE), we find that κex(LE,gLE) is not locally integrable on
X, and, more precisely, that the current κex(LE,gLE) also behaves near Y like

l 7 μ d i m E = lyl2άimNγ/x'
 T h a t t h e f o r m a l singularity of the current κex(LE, gLE)

II II
near Y coincides with the singularity of the current in the right-hand side of (1.37)
near Y is now a tautological consequence of (1.37).

In [B2, Remark 2.23], if LX was instead a finite dimensional manifold, the fact
that the current κex(LE,gLE) is not locally integrable near Y is essentially related
to the non-transversality of LY and X in LX, and more precisely to the presence
of a nonzero excess normal bundle N. At least formally, we have given a simple
reformulation of a result on the well-defined current fx(AE*,gΛE*) on X in terms
of the geometry of the infinite dimensional manifold LX.

II. Quillen Metrics and Resolutions

In this short section, we briefly construct the Quillen metrics on the determinant of
the cohomology, and we also describe the problem which is solved in Bismut-Lebeau
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[BL1,2]. We make the same assumptions as in Sect. 1. We also use the notation of
Sect. 1.

a) The Quillen Metric on the Inverse of the Determinant of the Cohomology. To sim-
plify the arguments which follow, we will assume that T^X and ER are spin vector
bundles. By [H], we know that it is equivalent to assume that the line bundles detTX
and dεtE have square roots (detΓX)1/2 and (det£) 1 / 2 . Observe that on V,

det TY = (det TX)\Y <g> (det E)γι . (2.1)

Therefore T^Y is also a spin vector bundle.
Let ξ be a holomorphic vector bundle on X. Let h£ be a Hermitian metric on ξ.
Let λ(£) be the complex line

dimX

λ(O = 0 (detίT(X,O)(-1)i+1 (2-2)
i=0

Let H be the vector space of smooth sections of Λ(T*®>ι)X) ® ξ over X. For
0 < p < dimX, let I P be the vector space of smooth sections of Λp(T*(0>l)X) 0 ξ.
Then

dimX

W . (2.3)

Let iVy be the number operator of EL Then Ny acts on W by multiplication by p.
Let cbx be the volume form on X associated to the metric gτx. We equip H with
the Hermitian product

a,βeU^(a,β) = J (a, β)gΛT,^x^ ^ ^ • (2.4)
X

Let dx be the Dolbeault operator acting on H, and let dx* be its formal adjoint
with respect to the Hermitian product (2.4). The Laplacian Πx is given by

nx = φx + 8x*f. (2.5)
dimX

The operator Ux preserves the splitting H = 0 W.
o

By Hodge theory, we know that we have an identification of Z-graded vector
spaces

* ] . (2.6)
As a vector subspace of M, Ker(D x) inherits a Hermitian product from the Hermitian
product (2.4). Using (2.2), (2.6), we may equip the line λ(£) with the corresponding
Hermitian metric, which we denote | \\φ.

Let P be the orthogonal projection operator from M on Ker(D x). Set PL = 1 — P.
The vector space H being Z-graded is also Z2 graded. Let Trs be the corresponding

supertrace in the sense of Quillen [Ql], which is evaluated on trace class elements of
End(M).

Definition 2.1. For s e C, Re(s) > dimX, set

) x ^ (2.7)
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By Seeley [Se], θ^-(s) extends to a function which is holomorphic near 5 = 0.
Note that classically

TrΛiΠXysp1] = 0. (2.8)

The introduction in (2.7) of the factor is essentially done for aesthetic

reasons.
Clearly, for s G C, Re(s) > dimX, we have the identity

Trs [ ( V - " ) extf-tD*)^] dt. (2.9)
0

Definition 2.2. The Quillen metric || \\\^ on the line λ(ξ) is defined by the formula

(2.10)

The factor exp < — -^- (0) > is called the Ray-Singer analytic torsion of the
{ 2 ds J

complex (H, d) [RSi].

b) Quillen Metrics and Resolutions. Recall that k denotes the embedding Y —> X.
Let η be a holomorphic Hermitian vector bundle on X. Let a be the restriction map
@χ{r\) —> k*Sγ(η\γ). On X we have the exact sequence of sheaves

0 -> &x(ΛάimE(E*) 0 r / ) ^ ^ ( y l ^ ^ - 1 ^ * ) 0 ry)

α
(2.11)

For p G N, 0 < p < dim E, ΛVE* ® 77 is a holomorphic vector bundle on X. Let
* (g) 7̂ ) be the corresponding inverse determinant line of the cohomology of

&x(ΛpE* (δ) 77), which we construct as before.
Set

άimE

λ(ΛE* 0 77) = (g) (λ(Λp£7* 0 77))(-1)P . (2.12)

Also 7/|y is a holomoφhic vector bundle on Y. Let λ(τ7|y) be the associated inverse
determinant line of the cohomology of <9γ{r\).

By a well-known construction of Grothendieck-Knudsen-Mumford [KMu], the
lines λ(ΛE* 0 77) and \(η\γ) are canonically isomoφhic. Let σ be the canonical
nonzero section of λ~ι(η\γ)<g>λ(ΛE* 07?) which defines this canonical isomorphism.
Of course σ depends explicitly on the section r of E.

Let gη be a Hermitian metric on η. The vector bundles TX, ΛPE* ®η(0 <p <

dim£^) on X, and TY, η\γ on Y are now naturally equipped with Hermitian metrics.

Let II \\\(ΛPE*®η), II Hλfaiy) be the corresponding Quillen metrics on the lines λ(ΛpE*(g)

V)> λ(77|y). We equip the line \(ΛE* 077) with the Quillen metric || ||λ(ΛE*<8>77)> which

is the obvious tensor product of the Quillen metrics || \\\(ΛPE*®η) o r their inverses.

Similarly, we equip the line X~ι(η\γ) 0 \{ΛE* 0 77) with the tensor product of the

metrics || | | ^ | y ) and || \\\{AE*®ηy

Recall that the metrics gτx and gTY are Kahler.



230 J.-M. Bismut

In [BL1,2] Bismut and Lebeau calculate Log(||σ||*_1( λ Λ £ ^ ) in terms of

explicit local quantities on X or Y. This result of [BL1,2] and its relation to our
previous work [B2] will be considered in more detail in Sect. 3.

Remark 2.3. The formula established in [BL1,2] is valid for general resolutions of a
holomorphic vector bundle on Y by a complex of holomoφhic vector bundles on X,
and not only for resolutions by Koszul complexes.

III. Equivariant Intersection Over Loop Spaces
and a Formula of Bismut-Lebeau

The puφose of this section is to show that the formula of Bismut-Lebeau [BL1,2]
which calculates the Quillen norm of the canonical section σ e λ~ι(η\γ)®λ(ΛE* ®η)
can be considered as a formal consequence of an equivariant intersection formula
established in [B2, Theorem 3.4]. The analogy is not only in terms of results. In fact
a detailed comparison of the intermediary steps and proofs in [BL2] and [B2] shows
that they are formally identical.

In particular, we will show that the additive genus R of Gillet and Soule [GS3]
is an infinite dimensional version of the genus KR of [B2] evaluated on the infinite
dimensional excess normal bundle N.

The organization of this section is quite simple. In a)-e), we express formally

the various quantities - like the Ray-Singer analytic torsions - whose sum is

LogdlσH^j )-i®λ(ΛE*<g> )) m t e r m s °f integrals of Bott-Chern currents over loop

spaces. We thus discover that LogdlσH^ )-i<g)λ(ΛE*<g> ? *s fo r m a n <y proportional

to the left-hand side of the formula of [B2, Theorem 3.4].
In f), we calculate formally the right-hand side of the formula of [B2, Theorem

3.4] in terms of well defined Bott-Chern currents on X and Y. The genus R appears
as a special case of the genus KR.

In g), we apply formally the intersection formula of [B2, Theorem 3.4], i.e. we ex-
press formally Log(||<τ||^_lf X(ΛE*^ J as a sum of integrals of Bott-Chern currents
over X and Y. ηiY

In h), we state the rigorous formula of Bismut-Lebeau [BL1,2] for

Log(||σ||^_1( xsxfΛE*® J9 w m c n t u m s o u t t o ^ e strictly identical to the formal for-

mula derived in g).
Finally in j), we show how the analogy of the results of [BL1,2 and B2] extends

to the proofs themselves.
a) An Equivariantly Closed Differential Form on LX. We make the same assumptions
as in Sect. 2a). Let V^ be the holomoφhic Hermitian connection on (£, h^) and let
R^ be its curvature.

Take x € LX. Let τt° be the parallel transport operator from ξXQ into ξXt along
the path 5 G [0,t] —> xs with respect to the connection V^. Set TQ = (τ®)~1.

For t £ Si, i ϊ | t is a 2-form at xt with values in skew-adjoint elements of End(^ t)i.
By pulling-back R^t by the map x e LX —> xt e X, we will consider i? | t is a 2-form
at x e LX with values in skew-adjoint elements of E n d ^ ) .

Definition 3.1. Let Ut be the solution of the differential equation

^• = Ut[τξR£tτ?], Uo = Iξxo. (3.1)
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We may expand U\TQ in the form

1

U^^TI + J τ*Rit

0 0<s<t<l

i.e. U\TQ is a sum of forms of degree 0 , 2 , 4 , . . . with values in Enά(ξXQ).

Definition 3.2.. Set

β(Lξ,hL*) = Tr[Uιτi]. (3.2)

Theorem 3.3. The form β(Lξ, hL^) lies in κ PLX. Moreover

O. (3.3)

Proof. Since R£ is a 2-form of type (1,1), it is clear that β is a sum of forms of type
(p,p). The remainder of our theorem is proved in [B4, Theorem 3.9]. D

Remark 3.3. As pointed out in [B4], the restriction of β(Lξ,gL^) to X is given by
the form Tr[exp(^)], i.e. it is a normalized version of the canonical representative
of ch(£) in Chern-Weil theory.

Let (£', h?) be another holomorphic Hermitian vector bundle on X. Let h£®^' be
the metric on ξ ® ξf

9 which is the tensor product of the metrics ht and h$ . Then it is
clear that

β(L(ξ <g> £'), h*^) = β(Lξ, hLt)β(Lξf, hL*). (3.4)

dθ
b) Accumulating Evidence: A Formal Expression for —— (0). We still make the same

as
assumptions as in Sect. 2a). Recall that Λ(T*^X)X) is a c(TMX)-Clifford module. In
fact if U G T ( 1 '0 )X, V e T^l)X, if Uf e T* ( 0 ' 1 }X corresponds to U by the metric

c(U) = VΪU'Λ , c(V) = -V2iv . (3.5)

gτx, set

We extend by C-linearity the map c to a map U G TRX®R C =
c(l7) G E n d ί ^ ί T * ^ ' 1 ^ ) ) . One then easily verifies that if U,V e TRX <g>R C, then

c(C/)c(V) + c(V)c(U) = - 2(C/, V). (3.6)

Equation (3.6) shows that indeed Λ(T*φ>l)X) is a c(ΓRX)-Clifford module.
Recall that the Kahler form ωx is associated to the antisymmetric section Jτx of

End(ΓRX) by formula (1.3).
Let ei, . . . , e2dimx be an orthonormal base of TRX.
The following simple result is proved in [BGS2, Proposition 2.4].

Proposition 3.4. The following identity holds

\Nx - l- dimX = V=ϊ Σ \ ^ X fe, ejMeiMβj). (3.7)
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By using (3.7) and by proceeding along the lines of [A], [B4, Sect. 2], [B8, Sect. B],
we get the following formal formula:

Γ/\rx dimXλΊxs \N$ — J

= _fiCγmX Γ
\2π) J

LX

β(L(ξ <g> (det TX)1/2)

The only minor difference is that in [B4], C was instead the infinite constant
+OO +OO +OO

Π k2> Here we have replaced Π A;2 by Π (~^2) by a more careful calculation of
1 1 1

the sign of certain expressions which appear in [A, B4, B8]. These expressions are
in fact very similar to the right-hand sides of (1.17), (1.18).

Using the notation in [B2, Definition 2.2], we thus find that

dim X

)
LX

Now recall that if LX was instead a finite dimensional compact complex manifold,
by [B8, Proof of Theorem 7], we know the first two terms of the asymptotic expansion
of the right-hand side of (3.9) at t —> 0. The first two terms of the asymptotic expansion
of the left-hand side of (3.9) have been calculated rigorously in [BGS2, Theorem 2.16].
As explained in [B8], the rigorous formulas obtained in [BGS2, Theorem 2.16] are
exactly the formulas one can obtain by extending formally the results of [B8] to the
infinite dimensional manifold LX. More dramatically, as also explained in [B8], the
method used in [BGS2] to derive the rigorous expansion of the left-hand side of (3.9)
was found by imitating formally the calculation of the asymptotic expression of the
right-hand side of (3.9) in a finite-dimensional situation.

In contrast with these remarkable facts, note that there exists c > 0 such that as
t —> +oo,

dimX

Σ (-ΌppdimHp(X,ξ)
0

*-*-"XX U\. ^ Λ j 4 v r ) i -r-rΠΓ\ s T y J-x . ^ ^ \ • /"»*f \ •/-% -| / ^ \

o

However, if LX was instead finite dimensional and compact, by extending formally
the arguments in [B2], we find that as t —> +oo, in the right-hand side of (3.9), there

should be O ( - J instead of O(e~ct).
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Here, there is an unavoidable contradiction. The formal functional integration
formalism does not always detect the behaviour of the considered expressions for
t —>• +00, and this for good reasons:
• LX is not compact.
• Certain "irrelevant" terms are neglected when passing from the rigorous expression
in terms of the Brownian measure on LX to ill-defined formal integrals of differential
forms on LX.

Nevertheless, and without fearing the contradiction, in view of (3.9), (3.10), we
will write the formal equality

(
'/~i\ dimX /»

-— I / K/ytβ(L(ξ®(detTXγ/2),g^®{deV1'Λy/n). (3.11)

2τr/ J
LX

Theorem 3.5. The following formal equality holds

-y\ dimX
d_

ds'

/ κ
SωLχβ(L(ξ <g> (de tTX) 1 / 2 ) , ( ? L ( ^ ( d e t T X ) 1 / 2 ) ) . (3.12)

LX

Proof. Using [B2, Eqs. (2.25)-(2.27)], (2.9) and (3.11), (3.12) follows. D

c) Accumulating Evidence: A Formal Expression for the Ray-Singer Analytic Torsion
of ΛE* ® η. We make the same assumptions as in Sect. 3b).

Set for s e C, Re(s) > dimX,

άimE

θf^(s) = J2 (-Dpθ*PE*®η(s). (3.13)

For 0 < p < dimX, let gΛPE* be the metric induced on ΛPE* by the metric gE.

Theorem 3.6. The following formal equality holds

/ fΊ\ dimX /»

LX

β(L(η 0 (ά^TX)ι^gL^dQtTX)l/2)). (3.14)

Proof Equation (3.14) is a trivial application of Theorem 3.5. D

We consider Eq. (3.1) associated to the vector bundle E. The operator U\TQ then

acts on EXQ. Let (U\TQ)ΛE* be the corresponding action of U\TQ on ΛE*. Then

(3.15)
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Clearly

TrstOΛTo1)^*] = det(l - (U^Γ1)

\yι/z. (3.16)

Also
detίC/iTQ1)"1/2 = β(L((detEyι/2),gL((detErl/2)). (3.17)

We will proceed as in Atiyah and Witten [A] to give another expression for
DE

det((ί/irj)1/2 — (C/irJ)"1/2). Recall that —— is the covariant differentiation oper-
dt JJE

ator along the loop x with respect to the connection V E . By (1.10), —— = JLE, and
so E

 d t

\-RE = KRLE. (3.18)
dt v }

We will calculate formally det ( — — ). First, we determine the formal eigen-
V 2zτr /

DE

values λ of the operator — — h RE

9 i.e. we should find λ G C and e e LE nonzero
dt

such that

(3.19)
dt

Then by (3.1), (3.19), we get

^ [Utrfa] = XUtrfa . (3.20)
at

= e λ t eo. (3.21)
From (3.20), we deduce that

Since e\ = eo, we get
Uιτ^eo = exeo. (3.22)

By (3.22), we see that if μi, . . . , μdims are the (formal) eigenvalues of U\TQ, the
eigenvalues of the operator KRLE are given by μj + 2iA;π(l < j < dimE, k e Z).
Therefore

) J [ ( ) f [ ( l . (3.23)
J Al \ 2iπJ \ l \ 4π2 J

Let C be the infinite constant defined in (1.21). From (1.20), (3.23), we see that

det (- i ) £
In view of (3.15)—(3.17), (3.24), we deduce the following identity:

άimE

o
—dimE

κ /2>). (3.25)

Using (3.14) and (3.25), we obtain the following formal result.
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Theorem 3.7. The following formal identity holds

d~sUχ w

/ '/~Ί\ dim X—dim

2π V2πy
LX
I":

β(L(η ®

We finally state an obvious consequence of Theorem 3.5.

Theorem 3.8. The following formal identity holds

/ y^i \ dim Y />

LX

gL,κη\γV[aeι-i-r y'2)^ ^ (3.27)

d) Accumulating Evidence: A Very Formal Expression for Log(|σ|^_! )®\(ΛE*® ?'

Let NH be the operator defining the Z-grading on ΛE*. Then NH acts on ΛPE* by
multiplication by p.

Let K be the Z-graded vector space of smooth sections of Λ(T*(0>l)X)®ΛE* <g) 77
over X. Trace class elements of End(K) have a well-defined supertrace.

Set v = y/^ϊir. Then υ acts as an odd operator on Λ(TH°Λ)X) 0 Λ(E*). Let v*

be the adjoint of υ. The operators dx, δx*, υ, υ* act on K. Set

J D X _ ̂ x _|_ gx ^ y _ ̂  _j_ ̂ * (3.28)

First, we will give a formal expression for

Trs

Clearly

Tr.ς

= I Trs [exp ( - (V^D* + Vfvf + b(^NH -
 0ψ-))\ fc Q (3.29)

We use the notation of Sects, lb) and 3a). If /i, . . . , fm is a base of T^X, and if
1, . . . , fm is the dual base of T^X, set

c(Vfασ). (3.30)
1

For 6 e R , let H% be the solution of the differential equation

t,ΛE*{RΛE*+h{N_d™l'\

Xt

\s(xt)\2\ 0AE*\
T—-—Jrt' I, HQ = I. (3.31)
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Then H\ is a form at x <E LX with values in End(ΛE*)XQ. Using (3.29) and pro-
ceeding as in [B4, Sect. 2c), B8, Sect. B], we see that formally

Trs

LX

β(L(η ® (detΓX)1/2), /W^<™> 1 / 2 >) _ ( 3 3 2 )

We will calculate — Trs[H^τ^ΛE*]b=0. Let H't
b be the solution of the differential

equation

t rτ'b\ t,ΛE* {ΏΛE* ,hAΓ , . / ^ C ( V s(xt)\ 0,ΛE*) rrf τ ,- ~~,

-=Ht\τo [Rxt +bNH + VT y= )τt , fίo = 7.(3.33)
: L V 2 J

Then

(3.34)

If 6 G R, let t/t

6 be the solution of the differential equation

^ - = UΪ[τt{Rξt-b)τ»], U0 = I. (3.35)

Then Ub is a form at x G LX with values in End(E:Co). An easy adaptation of a
formula proved in [B7, Theorem 5.1] and (3.33), (3,34) show that

\s(xt)\2dt

Note that (3.36) is a completely rigorous formula.
Also by proceeding as in (3.15)—(3.25), we get

(3.37)

Using (3.36), (3.37), we obtain

d T rrr6_l,>lβ*-|
— lr 3IHXTQ \b=Q

/ S~Ί\ ~ dim E

= f (71) s\κcτ{LE,gLE))β(L(d*ET"\gL^-φ). (3.38)
2π \2τr/

From (3.32), (3.38), we finally obtain the key result.



Infinite Dimensional Aspects of Arakelov Intersection Theory 237

Theorem -$.9. For u > 0, T > 0, the following formal identity holds

dimX — dim E

± J Kaus\KcT{LE)9

LE))
LX

β(L(η®(detTX)ι/2

Let PKQTD be the orthogonal projection from IK on Ker.D x .

Theorem 3.10. For any T > 0, the following identity holds

\ __ uiiii.c/ \ /—^Y /^;Tr ?

hm Trs \[NH exp(-(v^£> + V Γ F f )
u^+oo LV 2 y j

= Trs \p^DX (NH - ^ l λ exp(-Γ(P K e r D X yP K e r D X ) 2 ) j . (3.40)

Proof By proceeding as in Bismut-Lebeau [BL2, Proof of Theorem 8.2], we easily
obtain (3.40). D

Let H(ΛE* ®η) be the cohomology groups of the sheaf $χ(ΛE* <g>η). By Hodge
theory, we know that

Ker Dx ^H(ΛE* ®η). (3.41)

Also v = yf^Λir acts naturally on H(ΛE* <g> η). The operator pκ&τL>x

 vp&&Dx

represents this natural action of υ on H(ΛE* <g> η) under the isomorphism (3.41),
and pKerD

 v*pKerD j s iĵ g adjoint of p K e r ^ ^pKerD wjth respect to the metric
induced by the L2 metric (2.4) on K e r l } x .

We now assume that the complex (K, 8X +υ) is acyclic, and that the corresponding
spectral sequence degenerates at E2, i.e. (H(ΛE* (8) η),υ) is an acyclic complex.
Then p^rDxypKzrDx

 i s m invertible map. Also by [BL2, Theorem 1.7], the sheaf
(9γ(r}\γ) has zero cohomology.

For s eC, Re(s) > 0, set

+ OO

rs-l

Ύrs Pκtru I NH - r : : : ^ 1 J e x p ( - Γ ( P R e r ^ VPKQTIJ Y) dt. (3.42)

Then δ{s) extends to a meromorphic function, which is holomorphic at s = 0.
άimE

For 0 < p < dimX, let Tp(i;) be the canonical section of (g) ( d e t i ί ^ y l ^ * (g)

77))(~1)l associated to the acyclic complex (HP(ΛE* ® 77), ̂ ), whose inverse is con-
structed in [BGS1, Definition 1.1]. Set

άimE

p=0
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Then T(v) is a nonzero section of λ(ξ) By [BGS1, Proposition 1.5], we know that

Log(\T(v)\2

X{ξ)) = -δf(0). (3.43)

Equivalently

L o g ( | σ | 2

λ _ 1 ^ y ) β λ ( y l B ^ ) ) = - δ'(0). (3.44)

Now formally

(
'/^\ dim X—dim f? r / <S ς\ I—T LX

f) / exp (^κVEh
2πJ J

LX
β(L(η ® detΓX) 1/ 2 ® ( d e ι

άimX~άimE

LX

β(L(η 0 (detΓX)1/2) 0 (det E ) "

In view of [B2, Definitions 2.19 and 2.20] and of (3.39)-(3.45), we therefore easily
obtain:

Theorem 3.11. The following formal equality holds

—dimEg) /
XLX

1 / 2β(L(η <g> (detΓX)

L(»7(g>(detΓX)1/2®(det£?)-1/2)N _ /j 4^

In the sequel, we will do as if the formal equality (3.46) was valid in full generality.

e) Accumulating Evidence: A Formal Expression for LogdlσH2^ )®λM£*® 0'
now establish a key formal identity.

Theorem 3.12. The following formal identity holds:

/
LX

dim X—dim E

2τr ~~

ί K K

J
LX

β(L(η ®

κSωLγβ(L(η]γ®(dHTYγ'2),gL^r®(d«TY)i/2))

LY

(3.47)

Froo/. Using (2.10), (3.26), (3.27), (3.46) and the fact that dimX - dim.E = dimF,
we get (3.47). D
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Remark 3.13. Observe that the identification of line bundles (2.1) also identifies the
metrics. Set

μ = β(L(η <g> (detΓX)1/2 ® ( d e t J5)"1/2), ( / L ^ ( d e t T X ) 1 / 2 ® ( d c t £ ? r l / 2 ) ) . (3.48)

Then, the restriction of μ to LY is exactly the form β(L(η\Y ® (detTF) 1/2),
L^yOCdetTy)1^)

Moreover by Theorem 3.3, μ is a sum of forms of type (p,p), and also

c^μ = 0, 5 x μ = 0. (3.49)

Therefore the right-hand side of (3.47) is formally proportional to the left-hand side
of the identity in [B2, Eqs. (3.10), (3.11)], with μ given by (3.48). The idea will now
be to calculate formally the objects which appear in the right-hand side of [B2, Eqs.
(3.10), (3.11)].

f) A Formal Expression for Certain Finite Dimensional Integrals. Recall that if B is
a (g, q) matrix, then

TdCB) = det B

Theorem 3.14. The following formal identity holds:

, _, , , dimX-dimS
6

β(L(η ®

{-/"

= - / Ίά(TX,glx)Tx{ΛE*,gAE )ch(η,gη). (3.50)

x

Proof. By Proposition 1.1 and Theorem 1.8, we see that the left-hand side of (3.50)
is given by

Using Theorem 1.6 and the fact that e(E,gE) has total degree 2 dim £7 — 2, we see
that (3.51) is equal to

/ - \ dim A n

RE

x

e " Ύ « R \ - l ) d i m E(2iτ7)dim E-ι s*e(E, g

Ίά(Rτx)Ίά-\RE)(-l
/ \ dimA"

= f — ) I rΓAίΏTX\rΓA-\rΏE

s*e(E,gE)Tr[exp(IlP)]

= -J Td(TX, gτx) Ίά~\E, gE) S *e(E, gE) ch(7y, ̂ ) . (3.52)

X

By using again Theorem 1.6 again, we get (3.50). D
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Recall that Pγ is the vector space of smooth forms on Y which are sums of forms
of type (p,p). Also PF ' ° is the set of a e Pγ such that there exist smooth forms /?,
7 on Y for which a = dβ + $7.

Let Td(TY, ΓX|y, # τ x l y ) be the Bott-Chern class in Pγ/Pγ>° defined in [BGS1,
Sect. If)] which is associated to the exact sequence of holomorphic Hermitian vector
bundles 0 -» TY -> ΓX (y -» iVχ/y -> 0, and is such that

^- ¥d(τy, / x / x

- Tά(TY, gτγ) Td(Nx/γ,g
Nx/y). (3.53)

The class Ύd(ΊΎ, TX\Y,g
τx\γ) is normalized by the fact that if the considered exact

sequence splits holomorphicalΓy and metrically, then it vanishes in Pγ /P y ' ° .

Theorem 3.15. The following formal identity holds:

ά\vaX—ά\mE

Y

β(L(η 0 (detTX) 1 ^ Θ ( d e t j B )

(3.54)

/. Let λ(TY,TX\Y,g
τx\γ) be the Bott-Chern class in pγ/pγ>° associated to

the exact sequence 0 —> TY —> TXjy —> A^χ/y —> 0 and the complex Hirzebruch A

genus defined in (1.19). By [B2, Eq. (1.28)] and by Proposition 1.1, we get

(3,5)

Using the fact that A{x) is an even function of x, (3.55) and the uniqueness of
Bott-Chern classes [BGS1, Theorem 1.29], we get

Nx/LX]γ,

= 2ίπC-άimX φ-ιA(TY,TX{Yig
τx\γ) in PY/PY'°. (3.56)

Also since A(x) is an even function, it is clear from (3.55) that A(TY, TX\γ,g
τx\γ)

is a class of sums of forms of degree 4p + 2. Using an analogue of Proposition 1.1
for N and (3.56), we thus find that the left-hand side of (3.54) is exactly

ch(r/|y, gη\γ). (3.57)
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Recall that the isomorphism (2.1) also identifies the metrics. So we find that

A(TY,TX\γ,g
τx\γ)e-Ίj^rΛ = Ίά(TY,TX\γ,g

τx\γ) in Pγ/Pγ>°. (3.58)

Using (3.57), (3.58), we get (3.54). D

Recall that the genus KR was defined in [B2, Definition 1.20)]. In the right-hand
side of [B2, Eq. (3.10)], the class κR(N) appears. We will now calculate this class
in our special situation.

Let ζ(s) be the Riemann zeta function. We introduce the genus R of Gillet and
Soule [GS3].

Definition 3.16. Let R(x) be the formal power series

_ ζ(-n)^. (3.59)

nodd

We identify R with the corresponding additive genus. In particular R(NY/X,

g

Nγ/x) lies in Pγ.
Let φ be the homomorphism of Λeven(Tj^X) into itself which maps a e Λ2p(T^X)

into (-2iπ)-pa 6 Λ2p(T*X).

Theorem 3.17. The following formal identity of differential forms holds on Y:

± ΨKR(N,/) = R(Nγ/x,g
Nr/x). (3.60)

Proof The spectrum of the operator JN is exactly {2i/cπ}^e^*. Using the notation
in [B2, Proposition 1.24], we see that

(3.61)
\ /7.7Γ /

keZ*

Now

D-μ(τ\ _ _ nμ>(_τ\ (τ fjy\

We thus rewrite (3.61) in the form

K

Using (3.63), it is clear that to evaluate (3.60), we should calculate

2^

Now for k e N*, by [B2, Definition 1.22], we get

α 6 4 )



242 J.-M. Bismut

Set

hk(x) = i(r'(l) - 2Log(2kπ) - Log ίl + ̂ -X\ UkπU + ̂ -\\ ,

mk(x) = iΓf(l)(2kπίl + ^-Y\

By (3.64), (3.65), we get

ί ix

Now using Bismut [B7, Eqs. (8.37)-(8.39)], Bismut and Soule [B7, Appendix, The-
orem 1 and Eqs. (10), (11)], and also (3.66), we get

Equation (3.60) follows from (3.63), (3.67). D

Remark 3.18. It is very important to observe that the only step where we needed to
convert the ill-defined KR(N, g3*) into a well-defined expression is Eq. (3.63), which
ensures the convergence of the ill defined series (3.61).

Theorem 3.19. The following formal identity holds:

dimX-dim.Ef)
β(L(η

= - ί Td(ΓF)R(N Y / X ) ch(ry). (3.68)

Y

Proof By using (1.22) and (3.60), (3.68) follows. D

g) A Formal Formula for LogdlσH^ )®\(ΛE*® J ™ ^erms °f Finite Dimensional

Integrals. The main formal result of this paper is as follows.

Theorem 3.20. The following formal identities hold:

, gτx)Tx(ΛE*, gΛE*)ch(η, g")

x

= -J
x

Y

- JΊά{TY)R(Nγ/x)ch{η\Y),
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= -J Ύd(TX,gτx)Tx(ΛE"",gΛE^ch(η,g^

x

r
+ y Td

Y

- ί Ύά(TX)R(TX) ch(ΛE* ®η)+ f Ύά(TY)R(TY) ch(r/,y).

X Y

Proof. The first identity in (3.69) follows from the rigorous first identity in [B2,
Theorem 3.4] applied to the right-hand side of (3.47) in Theorem 3.12 and from
Theorems 3.14, 3.15, 3.19. Using [BGS4, Theorem 2.5], the second identity in (3.69)
follows easily from the first one. One may instead use the second identity in [B2,
Theorem 3.4]. D

Remark 3.21. It is essential to remark at this stage that both sides of the identities
(3.69) are well-defined and are not "formal" objects. Only the identities (3.69) are for-
mal (for the moment) since the identities which connect the two sides are themselves
formal.

h) A Theorem of Bismut-Lebeau. The following result is the main result of Bismut-
Lebeau [BL1], [BL2, Theorem 0.1].

Theorem 3.22. The following identities hold

i u ± SY JL Jiuj QΛE

X

+ / Td-1(

Y

Jτd(TY)R(Nγ/x)ch(ηlY),

(3.70

• - / •

X

/ Td (Nγ/χ,g r/χ)Td(Tr, TX\Y,g ' )ch(77|y,g '\γ)
Y

- I Ίd(TX)R(TX) ch(Λ£* ® η) + / Td(Ty)#(Ty)ch(τ7|y).
j J

X Y

Remark 3.23. As the reader will have observed, the formal identities (3.69) have now
become the rigorous identities (3.70).
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Also note that the result of Bismut-Lebeau [BL2] is valid for arbitrary resolutions
of a complex vector bundle on Y by a complex of holomorphic vector bundles on
X, and not only for resolutions by Koszul complexes.

i) One Word of Explanation. As we just, saw, the result of Bismut-Lebeau [BL1,2]
confirms the predictions of Theorem 3.20.

However the most essential point to observe is that the very structure of the
rigorous proof of Theorem 3.22 in [BL2] is closely related to the proof of the result
given in [B2, Theorem 3.4], with of course:
• many more technical difficulties,
• some essential differences.

The first basis result in [BL2] is as follows.

Theorem 3.24. Let ήUyT be the I-form on R*. x iϋ*,

— Ti
U

H l^— ) exp(-(V^^X + VfV)2) . (3.71)

Then the form ήu^τ is closed.

Proof Observe that by the McKean-Singer formula, Tvs[exp(-(^DX +
is an integer which does not depend on u or T. Our theorem then follows from [BL2,
Theorem 3.3]. D

Remark 3.25. Recall that the form μ £ PLX was defined in (3.48). Let ηu,τ be the
one form on R+ x iϊ* which is defined formally by [B2, Eq. (3.12)], i.e. by an
ill-defined integration process on the infinite dimensional manifold LX. In view of
(3.9), (3.36)-(3.39), we get the formal equality

1
— Γ—) ηu,τ (3.72)
2πι 2J

[B2, Theorem 3.6] and Theorem 3.24 are then formally equivalent. [B2, Theorem
3.6] plays a key role in the proof of [B2, Theorem 3.4]. Similarly, Theorem 3.24 is
essential in the proof in [BL2] of Theorem 3.22.

Recall that υ = Λ/—T V If t n e complex, (K, 8X +v) has the properties described in
Sect. 3d), the proof of Theorem 3.22 in Bismut-Lebeau [BL2] could be done by using
the contour Γ of [B2, Sect. 3c)] and by formally proceeding as in [B2]. However
in general, these very special properties are not verified. This is why a change of
variables u —> u, T —> Tu is done in [BL2, Theorem 3.5]. From the form f}u^, we
thus obtain a new closed form \u^τ on i?* x Λ*.

Let Γ' be the contour
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U A

A

p

0

r'2

1

r A

T

^ 1

T

Theorem 3.22 is proved in [BL2] by starting from the identity

(3.73)

and by making A —• +oo, TQ —» +oo, ε —> 0 in that order in (3.73).

Let <9y be the Dolbeault operator acting on the Z-graded vector space L of smooth

sections of Λ(TH°Λ)Y) 0 η\γ over Y, and let <9r* be its formal adjoint. Set

(3.74)

Let Ny be the number operator acting on L. By Bismut-Lebeau [BL2, Theorem 6.4],
we know that for any u > 0,

lim Trs

T->oo

= Tr.s

lim Trs

T-^oo
NH-

+ Vfv)2)

άimE

(3.75)

= 0.

The proofs of (3.75) rely on:

• A precise asymptotic analysis by an adequate rescaling of the operator y/ΰDx +

y/TV near 7 a s Γ ^ +oo, which is done in [BL2, Sects. 8 and 9].
• A remarkable algebraic property of the kernel of certain harmonic oscillators acting
on smooth form on C n , which is proved in [B7, Theorem 1.6]. This property explains
in particular the second identity in (3.75).
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As explained in Remark 3.25, we have the formal identites

Trs

dimX— άimE

—dim E

LX (3.76)

___L_/zCV

LX

By using [B2, Theorem 2.18] formally, we know that

lim f μκ

Ίus*κaτ{LE,gLE)= f μκ

Ίu,
Γ->°° J J

LX L y (3.77)

lim / μκ

Ίus*κcτ(LE,gLE) = 0.
T->oo J

LX

Therefore the formal formulas (3.76) exactly predict the correct answer in (3.75).
Note that as appears clearly in [BGS5, Theorems 3.12 and 3.15], the second identity
in (3.77) follows from the fact that

i.e. the expansion terminates at the index k — dim LE — 1 and not dim LE.
Here άimLE = +00, dim LE — 1 = +00, and still by (3.75), the second identity

in (3.77) is formally true!
In [BL2], the analysis of the terms / λ, / λ relies on remarkable properties of

r' r'
1 1 12

the spectrum of the operator Dx + TV as T —> +00, which are established in [BL2,
Theorem 9.25]:
• The spectrum (with multiplicity) of Dx + TV converges to the spectrum of Dγ.
• For T > 0, the dimension of the kernel of Dx + TV is equal to the dimension of
the kernel of Dγ.

If as in Sect. 3d), we assume that K e r D r = {0}, the analysis of the terms I\ =

J λ, I2 = J λ is much simpler, and is closely related to the analysis of I\ = J η,

I2 = / η in [B2, Sect. 3e)]. The term I3 = f X does not raise any special difficulty

in [BL2].
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In [BL2] the analysis of I4 = f λ is very difficult, but is still very closely related

n
to the analysis of / 4 = / η in [B2, Sect.3e)], especially at the last stage where

A
ε —> 0. One essential difference is that, contrary to what happens in [B2], in [BL2],

it is not easy to show that the problem is local near any arbitrary point y e Y. To do

this, Bismut and Lebeau [BL2, Sect. 13] use finite propagation speed for hyperbolic

equations.

However as should be clear from [B7] and [BL2], the strict analogues of the

forms XT which we also met in [B2, Sect, la)], appear when studying the limit as

ε —• 0 of I\. In [B7], the analogy is exhibited in the clearest way by a complete

explicit calculation of certain infinite dimensional superconnection forms, which can

be expressed as infinite products. Once these products are normalized (with infinite

normalizing constant!), we obtain exactly the forms χ τ

Most of the arguments in the proofs of [B2] are also very useful in understanding

the proof of Theorem 3.22 in Bismut-Lebeau [BL2] from an elementary point of view.

An important difference should be pointed out here: the scalings are in general not

exactly the same, in particular on the analogue of the coordinates Z, Z. Let us just

say that in [BL2], ku,τ which was defined in [B2, Eq. (3.94)] is replaced by kf

uT,

k'u<τ:(y,Z,Z',Z) - (y, 1^-= J Z, yfaZ1, \^= J ZJ . (3.79)

This change on the scaling reflects the infinite dimensional character of the problem

considered in [BL2].

Acknowledgements. The author is indebted to a referee for his helfpul comments.
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