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Abstract. The Zamolodchikov algebra is the next case after the Virasoro algebra in
the natural hierarchy of the Poisson structures on linear differential equations. We
describe here the complete classification of the symplectic leaves of this algebra. It
turns out that each symplectic leaf is uniquely defined by the conjugacy class of the
monodromy operator and one discrete (2- and 3-valued) invariant arising from the
homotopy classes of nondegenerate curves.

1. Introduction

The Zamolodchikov algebra is the algebra generated by the coefficients of the
third order linear differential equations on the circle with respect to the qua-
dratic Poisson structure [Z]. There exists a hierarchy of Poisson algebras on linear
differential operators of different order on the circle also called the SLW(R)
(GLπ(R))-Gelfand-Dikii algebras or generalized the KdV-structures [GD]. The
first Poisson algebra in this series on second order differential equations (more
precisely on the Hill's equations) coincides with the Virasoro algebra [Kh]. The
classification of the Virasoro coadjoint orbits was obtained in different terms
independently by Kuiper [Ku], Lazutkin and Pankratova [LP], Segal [S],
Kirillov [Ki].

In the Virasoro case, the Poisson algebra is linear, while for differential
operators of any higher order the corresponding structure is quadratic. In the
paper [OK] the classification of symplectic leaves (or maximal symplectic
submanifolds) of these Poisson brackets for arbitrary order operators was related
to the homotopy classification of some special curves on spheres (or in projective
spaces). Namely, an nth order linear differential operator on the circle defines a
nondegenerate quasiperiodic curve in Sn~1 (the "projectivization" of its "solution
curve," see Sect. 2). It turned out that two differential operators belong to the same
symplectic leaf iff the corresponding curves are homotopically equivalent.
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The only continuous (or "local") invariant of a symplectic leaf is the
monodromy operator [an element of the group SLW(R)] of the corresponding
differential equation [OK]. The discrete (or "global") invariant is the number of
connected components of the space of nondegenerate curves with given mono-
dromy. We present the classification of these curves for the case of SL3(R)-
bracket. It turns out that the number of connected components is finite and equals
two or three for different monodromy matrices in SL3(R). The different values of
this discrete invariant, in fact, split the group SL3(R) into two parts of nonzero
measure. It would be interesting to find the physical sense of this "global" invariant
in terms of conformal field theory.

The relation of the SL3-Gelfand-Dikii structure and the problem of differential
geometry was discussed in [O], where the identity monodromy case was
considered.

The second section is devoted to a geometric formulation of the main result,
and the third section concerns the Poisson aspect of our consideration. Details
of the proofs will be published elsewhere.

2. Spaces of Curves

Definition 2.1. A curve y:[0, 1]->S2 is called nondegenerate if at any moment
ίe[0,l] its velocity y(t) and acceleration y(t) are linearly independent.

This property of a curve depends only on the image y([0, 1]) in S2, but not on the
particular choice of the parametrization.

For a fixed orientation on S2 we will consider only "right-oriented" curves, for
which the pair (y(ί), γ(t)) at an arbitrary moment t defines the given orientation
onS2.

Remark 2.2. The motivation of the definition above is as follows. With any third
order linear ordinary differential equation (LDE) P</> = 0, one can associate the
class ΓP of GL3-equivalent curves in R3. Namely for any curve yPeΓP, its
coordinates (Φι(t\φ2(t\Φι(t)} = yP(t) (in arbitrary basis) form a fundamental
solution of LDE Pφ = 0. The crucial property of such yp is that yp(t), yp(t\ yp(t) are
linearly independent for any t. In particular, this means that the radial projection
of the curve yp e ΓP along yp(t) on the standard embedded unit sphere S2 CR3 is a
nondegenerate curve.

An analogous description is valid for any dimension and allows to study the
topological properties of the space of nondegenerate curves instead of the
corresponding spaces of LDE's.

For each LDE on the circle (i.e. with periodic coefficients) we consider its
monodromy operator (the transform of its solutions for the period). This operator
determines its conjugacy class in GLn (two monodromy operators can be
compared only up to conjugacy, since they act in different spaces of solu-
tions). Now we define the monodromy operator for a nondegenerate curve.

Definition 2.3. A curve y:[0, l]-»S2cR3 is said to be subordinate to a given
monodromy matrix MeGL3(R) if the image M(F0) of the flag F0, spanned by
<y(0), y(0), y(0)> (i.e. "extended initial flag") coincides with the "extended final flag"

Consider the space of all nondegenerate curves starting with the same initial
flag F0 and subordinated to matrices M from a fixed conjugacy class M in GL3 (R).
This space of curves is said to be the space of curves Γ(Jί) subordinated to the
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given monodromy operator Jt. [Notice that the spaces Γ(Jί) corresponding to
different initial flags F0 are naturally conjugated by an element of GLj.]

A deformation of a nondegenerate curve within the space Γ(Jt) of nondegene-
rate curves subordinate to a given monodromy operator Jί is called a
homotopy of this curve. In particular, we allow homotopies changing the
monodromy matrix M and hence the final flag F1 = M(F0) (but preserving the
flag FQ and the monodromy operator Jί, i.e. the conjugacy class of M).

The problem under consideration is to describe the topology of the space of
nondegenerate curves with given monodromy operator. This question is closely
related to certain problems of infinite-dimensional Lie algebras and con-
formal field theory (see [OK] or Sect. 2).

In 1970 J. Little found the homotopy classification of all closed nondegenerate
curves on S2. This case corresponds to the identity monodromy ̂  = id.

Proposition 2.4 [L]. The space of all right-oriented closed curves on S2 consists of
three connected components with the representatives:

Fig.l

Our main result is the following classification theorem for nondegenerate
curves on S2 with arbitrary monodromy

Theorem 2.5. The space of all right-oriented nondegenerate curves on S2 with given
monodromy Jί consists of two connected components if the Jordan normal form of
Jί is one of the following:
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(λ, μ, v > 0 are distinct real numbers) ,

and of three components otherwise.

The proof of the theorem is based on a detailed investigation of the
deformations, disconjugacy and covering homotopy properties of the correspond-
ing curves. The next two theorems present the main steps of the proof and are of
independent interest.

Definition 2.6. The curve γ: [0, 1]->S2 is called conjugate if there exists a great
circle (an equator) on S2 having at least three transversal intersections with

The curves violating this property are called disconjugate.
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Theorem 2.7. The space of right-oriented curves on S2 with given initial and final
flags consists of three connected components if for these flags there exists a
disconjugate curve connecting them and consists of two components otherwise.

Denote the space of all right-oriented conjugate curves with a fixed initial flag
F0 by C(F0) and the map taking each curve to its final flag by π: C(F0)->F03. Here
FO3 is the space of all oriented flags on S2 (coinciding with the space of all oriented
flags in the linear space R3).

Theorem 2.8. For any flag F0 the map π: C(F0)^FO3 satisfies the one-dimensional
covering homotopy property.

Remark 2.9. The analogous classification problem for nondegenerate curves in
higher dimensions is still an open question. The number of connected components
of nondegenerate curves is known only for closed curves on Sn [SS] and turns out
to be equal to three on any S2k and to two on any S2k+1 for fc^l.

3. Classification of Symplectic Leaves

In this section we recall the general definition of the Gelfand-Dikii quadratic
Poisson brackets on the coefficients of LDE and their relation to nondegenerate
curves on spheres following [OK]. The Poisson algebra of functions on the space
of third order LDE [of the form δ3 + u(t)d2 + v(tj] is also called the
Zamolodchikov- or classical PF3-algebra.

Definition 3.1. Consider the space J5? of all differential operators L of the form
w - l

dn + Σ "iίO^, where d = d/dt, ut e CGC(Sί, R). The space of all linear functional on
i = 0

Jέf is described in terms of "pseudodifferential symbols" X= £ aj{t)d~j,
j=ι

OyeC^SSR). Namely, associate with each X the linear functional lx(L)

= J TQs(XL)dt, where res (XL) is a function on S1 which is defined as follows. Using
S1 oo

the Leibnitz rule d~1f=fd~1 + £ (-l)'/^"1"', we can express the product

X-L as a pseudodifferential operator £ Pm(t)dm. Then by definition res (
meZ

=p_!(i). The space JSf is an affine space (rather than a linear one), but all
functionals lx vanish at the point L0 = 3", so L0 can be viewed as the origin of &. It
is clear that each linear functional on the space <& can be considered of the form lx

where X is a pseudodifferential symbol.

Definition 3.2. The operator Ω: lx\-* Vxε Vect(jSf) which associates with a linear
functional lx the vector field VX(L) = L(XL)+ —(LX)+L on the space of operators
(here the index + denotes the differential part) is called the operator of the second
Gelfand-Dikii Poisson structure associated with GLΠ(R). This operator defines the
quadratic (with respect to L) Poisson bracket on &: {lxJγ}(L) = lγ(Vx(L)). The
corresponding Poisson algebra of functionals is called the Gelfand-Dikii algebra.

Remark 3.3. The 5Ln(R)-Gelfand-Dikii bracket is defined on the space
ί "~2 1

g = j^n {un _ x(ί) = 0} = < dn + X uάήd1 > by the same formula. The restrictions on
( i=o J

{X} are determined explicitly from the condition P^(L)eVect(j5f) [i.e.
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In the SL2(R) case, this bracket turns out to be linear and coincides with the
Lie-Poisson bracket on the dual space to the Virasoro algebra [Kh].

Remark 3.4. In [OK] the description of symplectic leaves of these Poisson
brackets (or maximal nondegenerate submanifolds on which these Poisson
structures are invertible) was reduced to the homotopy classification of nondegen-
erate curves. More precisely, with each nih order operator L on a circle one
can associate a nondegenerate curve on Sn~ * cR" (see Remark 2.2) with the cor-
responding monodromy operator.

It should be mentioned that the differential operator L can be uniquely
reconstructed if we know the corresponding curve on the sphere and the coefficient
wn_1(ί). Indeed, the curve on S1 gives us the homogeneous coordinates of the
solution set of L. One complementary condition is provided by the Wronskian
W(t) of this set \_W(ί) satisfies the Liouville equation W= un_ ι(t)W]. In particular,
for the SLΛ(R) case this condition is W(t) = const.

Theorem 3.5 [OK], The complete set of invariants of symplectic leaves of the
second Gelfand-Dίkii brackets associated with the Lie groups GLΠ(R) and SLW(1R)
consists of the monodromy operator (up to conjugacy) and the homotopy class of
the corresponding nondegenerate curves subordinate to this monodromy on the
sphere S""1.

In other words, two differential operators on the circle can be connected by
some "Hamiltonian path" in the space 5f (i.e., by a path such that its velocity
vector at every instant is Hamiltonian with respect to the Gelfand-Dikii bracket)
iff they have the same monodromy operator and the same homotopy class of the
curves. In some sense, the monodromy is the "continuous" invariant and the
homotopy class is the "discrete" one.

For the SL2(IR) case, the classification problem of the Virasoro orbits becomes
very transparent from this point of view. In fact, in this case we have to classify
nondegenerate curves on S1 and for every monodromy there exists a countable
number of such curves distinguished by the total rotation number [OK].

For the SL3(R)-bracket, this classification is the object of the preceding section
and the number of homotopy classes turns out to be finite but depends on the
monodromy:

Theorem 3.6 (or 2.5'). Symplectic leaves of the Zamolodchikov algebra (i.e. the
SL3(Sί)-Gelfand-Dikii bracket) are enumerated by the Jordan normal form of the
monodromy operator (belonging to SL3(R)>) and a Z2-invariant for the monodromy
of types (*) or a Z3-invariant otherwise.

Roughly speaking, the discrete invariant is the parity of the "total rotation
number" of the corresponding nondegenerate curves (which are not necessarily
closed for a monodromy ^Φid). Moreover, for some monodromies the
disconjugate curves form a separate symplectic leaf.

Remark 3.7. The same classification holds for the GL3(R)-Gelfand-Dikii bracket,
where, certainly, the monodromy operator belongs to the bigger group GL3(R).
The identity monodromy case of SL3(R) was considered in [O].

It would be interesting to find a purely algebraic proof of this result similar to
the Virasoro case. The disconjugacy property (Definition 2.6) is closely related to
the factorization of a differential operator. In the recent work [W] the Gelfand-
Dikii bracket was transferred to the space of solutions of the differential equations
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through this factorization. Perhaps this approach can lead to a Sturmian-type
conjugacy theory for equations of higher order.

Acknowledgements. We are profoundly grateful to V. I. Arnold, V. Yu. Ovsienko, M. Z. Shapiro,
and A. Weinstein for fruitful discussions.
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