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Abstract. We consider the Ginsburg-Landau equation for a complex scalar field
in one dimension and consider initial data which have two different stationary
solutions as their limits in space as x-> + oo. If these solutions are not very dif-
ferent, then we show that the initial data will evolve to a stationary solution by a
"phase melting" process which avoids "phase slips," i.e., which does not go through
zero amplitude.

1. Introduction

In this paper, we pursue our study of the Ginsburg-Landau equation

dtu = d2

xu + u-u\u\2

9 (1.1)

where u:R xR->C, cf. [CE,CEE]. We shall fill in more details of the phase
diagram of this equation, by studying the time evolution for initial data which are
close to stationary with different amplitudes at ± oo. More precisely, define two
stationary solutions u+ by

u±(x) = r±eίq±x+ίθ±

9 (1.2)

withr+ =(1 — g + )1 / 2,r_ =(1 — gl)1/2. Assume now that the initial data u0 satisfy

lim M0(x)-w±(x) = 0,
x-» ± oo

in a sense to be described in more detail below, and assume r+ « 1.
Under these conditions, see below for details, we shall show that the solutions

have no phase slips. See Langer and Ambegaokar [LA] for an example with phase
slips. Furthermore, we will show convergence to a "stationary" solution in the
sense that u(x, t) = r(x, t)eiφ(x't} satisfies

sup I r'(x, t) I ̂  ε, sup | φ"(x, t) \ ̂  ε,
ceR xeR
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provided t is sufficiently large. This means that on every compact interval, the
solutions look for large times like a stationary solution R(t)eίφ(t)x + ίΘ(t). However,
we have been unable to show that R(t), Φ(t\ and Θ(t) are independent of ί. Again,
the detailed nature of this convergence will be explicit in the statement of con-
vergence.

We change variables in (1.1), setting u = reiφ, with r, φ: R x R+ -> R, which leads
to the equations

(1.4)

with η = φ'9 and using the notation ' = SX9' = dt. Upon setting r = 1 + s, we get the
system of equations in final form:

s = s" - 2s - 3s2 -s3-η2- sη2,

(1.5)

It is useful to define functions F and G and to rewrite (1.5) as

s = s"-2s-2F(s9η)9

ή = η" + G(s9s'9η)'. (1.6)

By the nature of the initial data, and of the time evolved solution, the right-hand
side of Eq. (1.6) is 0 at x = ± oo. Since the whole problem is of diffusive type, we
expect, and it will follow from the solution of the problem, that the values at infinity
stay unchanged in time. However, s and η themselves are not zero at infinity, and
the main purpose of this paper is to show how one deals with such a problem.

A trivial example which illustrates this mechanism is the pure diffusion equation
/ = /", with lim /(x, 0) = a, lim /(x, 0) = b. The solution /(x, ί) converges for

χ-» — oo χ-> + oo

every fixed, finite x to (α + b)/2 as ί-> oo, but for every fixed t the limits at infinity
are still α, respectively b, see also the explicit example at the end of the paper.

Our method consists in introducing a new independent variable z: R x R+ ->R
which vanishes at oo (s does not), and so we define

z = s + F(s9 η),
where F is the polynomial

2F(s9 η) = 3s2 + s3 + η2 + sη2.

However, our proof uses a little less: We only need to know that F(εx, εy) = @(ε2)
as ε-»0, where x,yeR, and that F is Ή2. Clearly, there is a function / such that
for sufficiently small z and η we have

s = z + f ( z 9 η ) .

Note that /(εz, εη) = 0(ε2). We will now change variables in (1.5) from s to z.
Denoting partial derivatives with appended subscripts, we have

s" = (1 + /2)z" + /zzz'2 + 2fzηz'η' + fηηη'2 + fηη». (1.7)
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We introduce notation to simplify the sums of derivatives. Dί9D2 denote the vectors

D!=(Z', ι/', 0,0,0),

D2 = (z\η\z'\z'η\η'2\

so that (1.7) becomes

with

#ι=(Λ,Λ, 0,0,0),
^2 = (/z> /ί/> /zz> 2/ zιp /w),

and //jD/c denoting the scalar product. Note that if z and η are small in L°° then
H1 and the first two components of H2 are small in L°°. Furthermore, the last
three components of H2 are bounded. We call 3f the set of functions like Hl9H2:

), i = l , 2

^OU = 3, 4,5, when H/ILJI^IL g 1}.

Consider next the term G in the second equation of (1.6). We define H0 = f(z,η).
Then

g ( z , z ' 9 η ) ΞΞ G(s,s',ι/) - G(z + H0,z' + H^D^η),

and therefore

Here, all G's are evaluated at (z + H0,z
r + H1D1,η). Recalling the definition of G

in (1.5), (1.6), we see that

~G(s,s',η) = H(VD2. (1.8)
dx

We can now transform the system (1.5) as follows:

z = (l+F,)s + Fηή

= (1 + Fβ)((z" + H2D2) - 2z) + W

/ί(z)D2, (1.9)

where A = (1 + Fs) is a function of z and 77 which satisfies, for || η \\ ̂  || z || ̂  ̂  ε,

A = 1 + 0(ε).

The equation for f/ is immediate from (1.8) and we get the system of equations

z = z" - 2Az + H(Z)D2,

ή = η" + H(G)D2, (1.10)

with H(Z\H(G} in Jf and A - 1 = 0(ε).
We now consider in more detail the second equation of (1.10). We encounter

here a problem which is similar to the one found in the relation between s and z.
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Namely, since the limits of η at oo and — oo are not necessarily the same, we do
not expect ηεL2, which would be useful in view of the application of "energy
methods."

But we can now use the fact that the limits at infinity stay constant in time
and express η as an approximate solution ζ which has the correct behavior at
infinity and then bound the difference y = η — ζ in L2.

We first recall that s = z + /(z, η), and therefore the right-hand side of the second
equation of (1.6) can be written as

z + f(z,η)

, η)ϊ + WQ2(z, η))',

where
1, 61 =

With this notation, we have

ή = η" + (ηη'QJ + (ηz'Q2)'. (1.11)

We define the approximate quantity ζ as the solution of

C = f" + fo£W, (1.12)

with the boundary condition ζ( ± oo, t = 0) = η( ± oo, t = 0). This equation is of the
type

ζ = dx(ί+ηQ1)dxζ. (1.13)

We define y = η — ζ, and the equation for y is

(U4)
We now formulate some assumptions on z, η, ζ, and y, and we shall show that

if these assumptions hold at time t = 0, then they hold for all t ̂  0.

Definition. We denote by &e the set of all functions z, η, ζ, and y, mapping R -» R,
which satisfy

max J dx(z2 + z'2 + z"2 + η'2 + η"2 + y2 + y'2) + || C || £, = ε2. (1.15)
— 00

Main Assumption. The initial data of the problem (1.1) — or equivalently, of (1.6),
(1.10), (1.12), (1.14)— with ζ(t = 0, -) = η(t = 0, •) are in Λε.

Our result is

Theorem 1.1. There is anε0>Q such that if the initial data satisfy the Main Assump-
tion with ε < ε0, then the solution is, for all t ̂  0, in &ε.

Remark. The conditions in the Main Assumption are somewhat redundant, since,
e.g., the bound on z' follows from that on z, z", and y, ζ, and η are not independent
variables. For the sake of clarity we keep all the conditions.
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2. Proof of Theorem 1.1

Before going into details we recall that z and η are real functions, and we will use
00

the shorthand J/ = J dxf(x). Furthermore, we shall throughout make ε0 smaller
1 1 ~°°as the need occurs.
We denote by ξ the set of functions z,ff,ζ, and y. If ξe&ε then we have in

particular

/iuiίiL^β. (2.1)
We shall need repeatedly a set of simple inequalities, which we call A, B ____

Inequality A.

Inequality Bμ. If α, b > 0 then, for all μ > 0,

I/ 2 1
= 2V μ

Inequality Cμ. For all μ > 0,

I/ 2 1
1=2\ μ

Inequality D (Sobolev inequality).

Proofs. The proofs are almost trivial. To prove A, we observe that

from which the assertion follows at once. Clearly, B, C, D are trivial.
The inequalities (2.1) imply the further inequalities

N II oo, II >/' II «>^4e,
II y\\ oo^3ε. (2.2)

Indeed, the bounds on z9z',η' follow from (2.1) by the Sobolev inequality. The
bound on || y \\ ̂  follows from Inequality A by

||y| |2

α ) = 2 | J );/|^3||/||2||};||2^3ε2, (2.3)

and the bound on || η \\ ̂  now follows from η = y + ζ.
After these preliminary estimates, we can now bound the various quantities in

(1.15). We begin by bounding L = |Jz'2 +ijV2 WG shall show L<0 and in fact
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even a little bit more. Integrating by parts, we see from (1.10) that

L=-\z"z-\η"ή

= -\z"2-2A\z'2-\H(z)z"D2

-\η"2-\H^η"D2. (2.4)

Since H(z\H(G)e<tff, we shall bound their components in L°°, and bound then the
integrals of the terms occurring in z"D2 and η"D2.

There are 9 different terms in z"D2 and η"D2, most of which are trivially bound-
ed. To be precise, we bound Jz"2 and \r\"2 by themselves, (and since they have
small coefficients they will be dominated by the explicit integrals in (2.4)). Similarly,
by Inequality C1? we have \\z"η"\ ^iJV'2 + η"2}. Using Inequality A, the term
l\η"z'2\ is bounded as follows:

^ ε || η"\\ 2

2 + 9e- 1 1| z \\l || z" \\ 2 = tf(ε)J(z"2 + η"2\

The same method leads to the bounds

Note next that, by Inequality B1?

|zY|^i( |zΊ 2 + |^|2). (2.5)

Therefore,

Adding all terms together, and noting that H(z\H(G)G^f, we find that

(2-6)

We next consider the quantity W = \\z2. We get from Eq. (1.10),

W = \zz = jzz" - 2 J Az2 + jz//(2)D2 = - jz'2 - 2 j Az2

The terms coming from zH(z)D2 are bounded as follows:

f|zz"
\l,

Since the first two terms are multiplied by terms of order ε, and the last three by
terms of order 1, we find

(2.7)
2 at
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We next provide bounds on the second derivatives. We let V = ̂ (zf'2 + η"2}
We find

1 - Jz"2 = Jz(">z = Jz<"V - 1\Az^z + $H(z)z(iv)D2.

We again bound the various terms, but the calculation is somewhat complicated
by the fact that we now need to integrate by parts and that, e.g., the coefficient A
is not constant. Furthermore, the estimates are somewhat asymmetric in the handl-
ing of z and η because we cannot use || η' \\ 2 in the upper bounds (because there
will be no compensating negative term).

The first term leads to Jz(ίy)z" ̂  — Jz'"2, and this term will be responsible for
the success of the final bound. We deal next in much detail with the term J A(z, η)z(iv)z,
where h = A — 1 is a small function, with bounded partial derivatives. Then

f A(z, η)z™z = - J Az'"z' - j\z'"z'z - J hηz"'η'z.

0(ε), and || hz \\ „, || hη\\

I fAz<*»z| ^ 0(ε)( || z'ΊI I + I I z'|| 2)

Note that || A || „ = 0(ε), and || hz \\ „, || hη\\ao = (9(1). Taking absolute values we get
the bound

2)

We next consider the terms which come from §H(z)z(iv}D2. We begin with §hz(iv)z'2.
Of course, h does not denote the same function as above, and it obeys now a
bound 0(1). We can again expand and integrate by parts as before

J/zz(hV2 - - 2 jAz'"z"z' - jA2z'"z'3 - J V'z'V.

We bound each of the terms as follows:

f |Az'"zV|^| |Az' |Li(z" / 2 + z"2),

j|/izz'"z'3 1 ̂  || A,z' || oo (φ'"2 + ε- 1 Jz'4) ̂  Θ(e) \\ hzz' \\ „ J(z'"2 + z"2),

J|^z"'z'2^y'| ̂  || hηη' \\ ^(εjz'"2 + ε' 1 Jz'4) ̂  φ(e) || hηη' \\ ω J(z'"2 + z"2).

Similarly,

J/jz(iΎ2 = - 2\hz'"η"η' - $hηz'"η'3 - $hzz'"η'2z',

and this leads to bounds,

' llooίίz'"2 + η"2)
We next bound \$hziiv)z'η'\ by Ij/tz^z'2 + ?;'2)| which we just handled. The term
J/jz(iιy is rewritten as

and this can be bounded by

^ε)(||z"Ί|2 + | | ^ " Ί | 2 + | | z " H 2 + | | ^ " H 2 ) . (2.8)

This completes the analysis of Jz//2.
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The equation for JV'2 is

-~\η"2 = fηWή = J^V + \η(

The roles of η and z are now exchanged, with the quantity \H(G}η(iv}D2 replacing
$H(z)z(iv}D2. Therefore, this term is again bounded by an expression of the form
of (2.8). Adding up all the terms, we finally get that

V = ~ J(z"2 + η"2) ^ - (1 - 0(ε))f (z'"2 + η'"2) + &(έ)\(z"2 + z'2 + η"2\ (2.9)
2 at

We next want to bound the L2 norm of y, and we consider therefore Z = | J y2.
We have, cf. Eq. (1.14),

z = $yy= -ί/M^βi-ί/^' (2.ιo)
The sum of the first two terms on the right-hand side of (2.10) is bounded above
by - (1 - d(ε))J/2, if ε is sufficiently small. The last term is bounded by

0(l)(efr2 + B-ιμ2\ηQ2\
2). (2.11)

The first term in (2.11) is again absorbed easily in J/2, whereas the second is
bounded by

so that we find

Z ̂  - (1 - &(ε))$y'2 + &(φ'2. (2.12)

We finally bound / in L2. By Eq. (1.14), we get, for M = ij/2,

g - (i - &(ε))$y"
2 - f yy(»ίβ1y - ί/v'toQz) - f /^

Consider first the term j/'/C/6ι)' It can be rewritten as

ί/wδ! + jywifίfli), + ίyy^ίfli).,
with Hβ1|L,||»ί(β1),IL,||ί/(β1)l|L = <P(e). Similarly,

' = J/zVfl2 + $y"z'ηη'(Q2)η + $y"ηz'2(Q2)z,

with ||β2IL,||(β2),IL,and ||(β2),IL =
We bound these terms as follows: First, note that by Inequality A, we have

We next observe that

z'| ̂  ε|/'2 + e'1 ||y |L/(y2 + z'4),
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Applying again Inequalities A and D, we have

\\η'\\2

x^W\\2\\η"\\2
and

Using the bounds on QltQ2, we get from all of the above

M = ij/2 £ - (1 - (9(ε))\y"2 + (9(ε)\(n"2 + z'2 + z"2). (2.13)

We can now combine the bounds on L, W, V, Z, M, and we get

- -J(z'2 + η'2 + z2 + z"2 + η"2 + y2+ y'2)
2dt

£ - (1 - 0(ε)) J(z"2 + 3z'2 + η"2 + z2 + z"'2 + η'"2 + /2 + y"2). (2.14)

From this we can conclude, using (2.2):

Proposition 2.1. Assume the initial data ξ satisfy ξε&ε for sufficiently small ε. Let
T> 0 be the first time tfor which the inequality

is violated. Then for all ί,0 ̂  t ̂  T one has ξte&ε.

End of Proof of Theorem LI. To prove Theorem 1.1 it suffices to show that T, in
Proposition 2.1 above is in fact infinite. Indeed, consider Eqs. (1.12), (1.13). By the
Maximum Principle, [PW], we have sup|C(ί,x)| fg ε, as long as \ηQί \ < 1. But since

X

\ηQι\< $(ε2), this is the case for all t ̂  0. The proof is complete.

3. Convergence

In this section, we address the question of convergence of the solution to one of
the stationary solutions of Eq. (1.1). Ideally, one would expect that convergence
should take place in the following sense:

Conjecture 3.1. For every initial datum satisfying the Main Assumption with suf-
ficiently small ε > 0, there is a stationary solution

u*(x) = jl-q*2eiq*x+iθ\ (3.1)

such that for every finite interval I c R one has

lim sup I w(x, t) - u*(x) \ = 0. (3.2)
ί^00 xel

The convergence of the type of (3.2) holds true in the case when q+=q- in
Eq. (1.2), and in fact convergence even takes place in suitable U spaces [CEE].

The case of q+ +q- is more complex. One cannot expect convergence of u in
Lp, because the values at infinity are different. However, one can study the conver-
gence of the time derivative. If, for example, |ιi(x,ί)l rg C(x)ί~3/2, then clearly the
pointwise time-limit lim u(x, t) will exist. A situation where this really happens is
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Fig. 1. Six frames of the evolution of the real part of u for an initial condition with q+

(The figure is produced with ό = ώ" and with r2 + φ'2 = 1.)

encountered with the pure diffusion equation ή = η", which is a caricature of the
phase equation (1.4).

Indeed, it is easy to check that η(x, t) = h(x/^/ί + ί) is a solution ifh'(v) = Λe~v2/2.
Therefore, integrating the Gaussian from y = 0, we see that η equals an error

function, and η(±cQ,t) = B± ^/2πA, so that η has different limits at ± oo. Clearly,

ή(x,t)=--h' 3/2'

For fixed x this is integrable in ί, but it is clear that the convergence is not uniform
in x. We believe that the same mechanism takes place in Eq. (1.1), and we illustrate
this in Fig. 1 by replacing the phase equation (1.4) by the diffusion equation. The
number of phase rotations in the space interval [ — L, L] at time t is then
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L L/yi+f / j /

J dxη(x, t) = yίTί $ dξh(ξ) = 2LI h(0) + t h'(0) + 01 -
-L -L//ΪT7 \ 2^/Γ+ f V

Thus, the adaptation of the phase rotation is diffusive and consists in a rearrange-
ment of phases at infinity. This can be done without phase slips, as is illustrated
in Fig. 1.

At present, we are not able to prove the Conjecture 3.1, but only the following
weaker statement:

Theorem 3.2. There is an ε0 > 0 such that if the initial data satisfy the Main
Assumption with ε < ε0, then the solution converges in the following sense:

lim || z( , 0II oo = 0,

lim||z /( ,ί)||0 0=0,

lim || η'( 9 f) II oo = 0,

lim || X , ί)ll oo=0. (3.3)

Remark 1. The convergence is on the derivatives only, and not on the functions
themselves, because the values at infinity are unchanged in time for the function ζ,
and they are not 0. Furthermore, as we have already mentioned in the introduction,
the statement of Theorem 3.2 only implies convergence locally in time; Theorem 3.2
implies the existence of a function η*(t\ (of t only!) such that

lim sup(|z(x, ί)| + \η(x, t) - η*(t)\ + \y(x, ί)|) = 0. (3-4)
ί-*00 xe/

At any given instant, the solution looks like one of the stationary solutions, but
at some later time it can look like another stationary solution. Note that Eqs. (3.3)
imply similar bounds on quantities more directly related to u(x, t). For example,
we have

so that r' tends to zero as well, since fz and fη are bounded.

Remark 2. Our difficulty in proving pointwise convergence is related to the function
C, cf. Eq. (1.12). Although we have bounds on the coefficient (1 + ηQ±\ these bounds
seem not good enough with respect to time convergence to guarantee the existence
of pointwise limits for f (x, t) as t -> oo. The literature contains very sharp Harnack
inequalities, cf. [M, FS], but these only guarantee convergence to "flat" functions
locally in time. But, such methods do not exclude a time evolution of those flat
functions.

Proof. The proof will be seen to be an easy consequence of Theorem 1.1 and of
Eq. (2.14). Let Y denote the left-hand side of (2.14), and U the right-hand side.
Then Y(t) is a bounded function of f, and hence each term in Y is bounded as a
function of ί. If we reverse the inequalities and the signs in Eq. (2.14), then we get

f dτU(τ) < - - - 1 Y(t) - Y(t')\ = 0(ε), (3.5)
-
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under the assumptions of Theorem 1.1. Therefore each of the terms in U is integr-
able as a function of ί. Since Y(t) is bounded, this in turn implies

so that 7 has a limit as t -> oo. In fact, from (2.6), (2.7), (2.9), (2.12), and (2.13), we
see that

all have limits as f-»oo. One can do better by inspecting the last two lines of
Eq. (2.4), which show that | |zj | | 2 and | |^J| |2 converge individually since, e.g., the
bound on z' is

dtV ~

with B an integrable function of time. Similarly, the calculations leading up to
Eq. (2.9) show that || z" \\ 2 and || η" \\ 2 converge individually. Hence every integral
on the left-hand side of Eq. (2.14) has a limit as f-> oo.

Observe now that there are integrals occurring on both sides of (2.14). These
terms are integrable (as functions of ί) and have limits (as functions of ί) and
therefore these limits must be zero. Thus,

l l ^ l l i + I l z ί l l 2 + l l < l l 2 + l l y ; i l 2 + l l<l l2^o, (3.6)
as f->oo. Since we also have bounds on all the norms in (1.15), we can use the
Schwarz inequality and get, e.g.,

Using this device, we get

l l ^ l l o o + l l ^ l l c o + l l Λ l L + l l ί ί l l c o ^ o , (3.7)
as t •-> oo. This completes the proof of Theorem 3.2.
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