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Abstract. This paper addresses the theory of quasiclassical resonances for
Schrόdinger operators with potentials smooth outside some possible local singu-
larities. We introduce the notion of quasiresonance similar to that of quasimode,
but incorporating a condition revealing its scattering nature, and describe its space-
time behaviour. The definition is given in terms of the original Schrόdinger operator
and uses a description of its frequency set. The result on the space-time behaviour
justifies the intuitive picture of resonances as metastable states or "bound states
with finite life-times." We demonstrate how quasiresonances arise in several natural
situations.

1. Introduction

The quantum resonance is one of the central notions in Modern Physics. However,
its mathematical understanding is still at a preliminary stage. The formal definition
of the resonance in terms of the poles of a meromorphic continuation of the
S-matrix or in terms of bumps in the scattering cross section, given in Physics, is
hard to study. In Mathematical Physics the resonances are defined as complex
eigenvalues of quantum Hamiltonians deformed by complex canonical transfor-
mations. This approach was developed in successive degrees of generality in
[Ag-Co, Ba-Co, Si2, SI, Hul, Cy, He-Sj2]. One knows that both definitions yield
the same object for two-body potentials (see for example [Bal, Ge-Mal]) and in
some cases for N-body potentials (see [Ba2, Ha, De, S3]). Both definitions require
analytic (either in the coordinate or momentum representation) potentials, use
more complicated objects than original Hamiltonians and are not accessible for
phase-space analysis ([He-Sj2] uses a phase-space analysis but not in the original
phase-space).
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The purpose of this paper is two-fold. First, we introduce the notion of
quasiresonance. This notion is given directly in terms of the original quantum
Hamiltonian, it is similar to that of a quasimode except that the square integrabi-
lity is replaced by a condition pertaining to the propagation nature of the resonance.
As in the case of quasimodes the main idea behind our definition is to neglect from
the very beginning certain "inessential terms." As our analysis and examples show
such an approach saves much of an effort. It allows to formulate the problem in
terms of the Hamiltonians themselves and with natural restrictions on the potentials.
Next we break up the unitary invariance of the conventional spectral theory by
fixing a bounded region where the corresponding metastable will live for some time
and an exterior region into which it will eventually escape.

Secondly, we describe the space-time behaviour of resonances corresponding
to the intuitive picture of resonances as metastable states or "bound states with
finite life-times" (see [Ski, Sk2, Sk3, O, Hu2] for earlier results in this direction
and [Sil] for a review). This result is an easy consequence of our definition. It
determines the region in the phase-space in which the resonance states are
essentially localized and their rate of escape from this region.

In this paper we deal with the quasiclassical regime which provides an additional
structure necessary to define the resonance. We relate the notion of resonance to
propagation of quasiclassical frequency set. The negligible terms are those of 0(/z°°),
where ft is a quasiclassical parameter (the Planck constant divided by 2π). Descrip-
tion of singularities modulo exponentially small terms would require analytic
potentials and results on propagation of "analytic singularities." It is left out of
this paper.

As an example we demonstrate that equilibrium points and hyperbolic orbits
of the underlying classical system produce quasiresonances and compute the latter.
These computations are rather standard exercises, in the second case it is analogous
to the derivation of the Bohr-Sommerfeld quantization rules. The results coincide,
of course, with earlier results of [Ge-Sj, Sj, B-C-D] which were also given modulo
0(h°°) but whose derivations were rather involved.

In this paper we consider the Schrodinger operator

acting on L2(Rn) with the quasiclassical parameter h. The quasiresonance states
are defined as distributions uh solving the Schrodinger equation:

Phuh - E(h)uh = 0 mod 0(/ί°°) (1.1)

microlocally in some open set Ω of phase space. Here E(h) is called a quasi-
resonance and we assume that E(h) -> Λ0e]R when ft-»0.

In order to distinguish between incoming and outgoing resonances, we require
that the quasiresonant state uh has singularities (i.e. frequency set, see Definition 3.1)
only in a closed subset of phase space called the outgoing tail (see Definition 2.3).
Let p(x, ξ) = ξ2 + V(x) be the classical Hamiltonian function. The outgoing tail is
the set of points (x,ξ) in p-1(^o) such that the classical trajectory starting from
(x, ξ) does not go to infinity for negative times. In particular a quasiresonant state
cannot have singularities at points (x,ξ) which are trapped for positive times
without being also trapped for negative times. We construct quasiresonant states
and quasiresonances in all the cases where for dilation-analytic potentials true
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resonances have been computed in the semiclassical limit. Namely we consider in
Sect. 4 quasiresonant states generated by a closed hyperbolic trajectory (treated
in [Ge-Sj]), and by a potential maximum (treated in [B-C-D]), [Sj]). Moreover
if for example one considers a two-body Hamiltonian with a dilation-analytic
potential, then it is easy to show that a resonant function is a quasiresonant state.

To construct metastable states out of quasiresonant states, we cut them of
in a bounded region of phase space by applying a pseudodifferential operator
χ(x, hDx\ where χ(x9 ξ) is a smooth cutoff function. Then our main result can
be described as follows (see Theorem 3.7):

, hDx)uh = e~itE^hx(x9 hDx)uh + rout(ί) + rjί), (1.2)

where r^(t) has a norm O(/ι°°) uniformly for ί^O and rout(ί) is an outgoing
function in the sense that:

. (1.3)

Here χ0(x) is a suitable cutoff function. One also gets a sharper estimate on
rout(0 (see Theorem 3.8) which essentially shows that rout(ί) propagates out with
a velocity bounded from below. These estimates hold true provided lmE(h) is
not O(h°°). We then study time decay in a situation where this condition is not
satisfied, namely the well known shape resonances. In this case we need to assume
that the potential is two-body and dilation-analytic. It is then well known (see for
example [C-D-K-S, He-Sj2, Hi-Si],) that the width/*(Jι) of the shape resonances
is 0(e~2Solh), where 50 is some Agmon distance and 0(ά) means Oε(aeεlh) for any ε.
Then if uh is a resonant function associated with a resonance E(h) we have the
following time decay estimate:

, hDx)uh = e~itE^hx(x9 hDx)uh + rout(ί) + rjί), (1.4)

where:

(1.5)

uniformly for ί ̂  0 and rout(ί) is an outgoing function in the sense that:

°°) (1-6)

uniformly for t ̂  0. (See Theorem 4.3). The estimate on r^ί) shows that our result
is meaningful as long as t is less than Ce~εo/tίΓ(h) for some ε0 > 0. This difference
between resonances created by tunneling and others may come from the fact that
the decoupling between the decaying part of the metastable state and the outgoing
part is caused here by ellipticity instead of propagation.

Let us now say a word about the techniques used in this paper. The crucial
point is the dependence in t of the constants arising for example in (1.3), (1.5).
For example using a very simple argument of propagation of frequency set for
solutions of pseudodifferential equations one gets that for finite time t one has
ll#o(x)rout(OII = 0f(Λ°°), but without nice control on the size of Ot.

In order to have good estimates with respect to parameter ί, we use the method
of propagation observables introduced by Sigal-Soffer in [S-S]. An important
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intermediate result is a semiclassical version of the propagation estimate of [S-S]
(see Theorem 6.1). The essential idea (familiar also in partial differential equations)
is to construct an operator Ft such that the Heisenberg derivative DtF =
dtF + ih~l[Ph,F~\ is positive. The point is that one constructs Ft essentially as a
function χ(A/t) for some self adjoint operator A and some cutoff function χ. It
seems that these operators are not in general pseudodifferential operators since
the operators A used (typically A = (x hDx + hDx-x)) are not elliptic.

However there are two tools which allow to use this kind of operators almost
as if they were pseudodifferential operators. The first one is a commutator
expansion lemma whose use in this field is due to Sigal-Soffer (see Proposition 5.1)
and the second a localization lemma (see Proposition 5.2) which is used to compose
these operators with pseudodifferential cutoffs. We think that these methods could
be of interest in other semiclassical problems.

The paper is organized as follows. In Sect. 2, we introduce the class of
Hamiltonians we are going to consider in this paper and we give some examples.
In Sect. 3, we introduce the definition of quasiresonance states and prove the
main results of this paper, namely Theorems 3.7 and 3.8, using results from
Sects. 5,6,7. Section 4 is devoted to the construction of quasiresonant states created
by a closed trajectory of hyperbolic type and by a potential maximum (barrier
top resonances). We also study time decay of cutoffs of resonant states for the
shape resonance problem. We assume here that the potential is two-body and
dilation-analytic (see Theorem 4.3). In Sect. 6 we prove a semiclassical version of
the abstract propagation estimate of Sigal-Soffer and apply it to our class of
Hamiltonians. Finally in Sect. 7, we prove minimal velocity estimates in the spirit
of Sigal-Soffer. Some auxiliary results are given in the Appendix.

Notations. In all the paper, we will denote by HS(Ω\ the usual Sobolev space of
order s on an open set ί2eR", and by || || the L2 norm on R". For given hamiltonian
H and vector w, we will denote by {Ay the (time-dependent) expectation value of
A given by (Ae~ίtHu,e~itHuy.

2. Hamiltonians and Escape Functions

In this section we introduce the class of Hamiltonians which will be studied in
this paper. We also recall some geometric consequences of the existence of suitable
escape functions. In all the paper, we will denote the function (1 + x2)1/2 by < x >.

2.A. Hypotheses on the Hamiltonian. We will consider semiclassical Schrόdinger
operators Ph = - h2Δ + V(x\ on L2(R"), where the potential V— Vr + Vs satisfies
the following conditions:

(H.li): Vs is a compactly supported multiplicative potential such that Vs is
Δ bounded with relative bound strictly less than one.

(H.lίi)'. Vr is a smooth real potential satisfying some symbol type estimates.
To describe these estimates in a compact form, we will use the framework

of the Weyl calculus for which we refer to the book of Hόrmander [Ho]. Let
gx(dx) be a metric on R". We require that Vr belongs to the symbol class S(l,gx)9

i.e. that Vr satisfy the following estimates:
k

V*6H, sup \V^(X,tί,...,
riΓ*(R")
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where V(k) is the /cth differential of V. We will denote by p = ξ2 + Vr(x) the symbol
of — h2Δ + Vr, which is the regular part of Ph. The symbol p belongs to the
symbol class S((ξy2,g), where g is the metric on T*(R") defined by:

To have a good symbolic calculus in the class S«<!;>2,0), we will make the
following hypotheses on gx:

(H.2): gx is slowly varying i.e.:

3ε and C such that if gx(x - y) g ε, then VdxeR", C~*gx(dx) ^ gy(dx) ^ Cgx(dx\

(H.3): gx is σ-temperate which in our case is equivalent to:

3C,ΛΓ such that VίeR"0y(ί)g C

As an immediate consequence of hypotheses (H.I) and (H.2\ we see that Ph is
self-adjoint with domain #2(RW).

2.£. Hypotheses on the Escape Function. As we mentioned in the Introduction, in
order to define resonances near a given energy level λ, one needs to have some
control on the behaviour of the Hamiltonian near infinity. In semiclassical
problems, this control can be obtained by making hypotheses on the classical
Hamiltonian near infinity. We formulate these hypotheses by introducing an escape
function and the so-called non-trapping condition. This notion of escape function
was first introduced in the context of semiclassical resonances by Helffer and
Sjδstrand (see [He-Sj2]). We start by introducing the following definition:

Definition 2.1. An energy interval I is called non-trapping for p if V(x,ξ)ep~1(I),
one has: exp tHp(x, £) -> oo when t tends either to + oo or to — oo. Here Hp denotes
the Hamiltonian vector field of p.

Our first hypothesis is a condition ensuring that the classical Hamiltonian p
has no trapped trajectories near infinity. So we ask that there exist a function
G(x,ξ) in C°°(T*(RΠ)) called an escape function such that:

(H .5): G is of the form G = <x, ξ> + r(x, ξ), where r belongs to the symbol class
S(l,g).

(H.6). there exists an energy interval / such that:

HPG^C0 on p-\I)n{\x\^R} for C0>0, R»L

(H.7): there exist a real function WeC^R") such that / is non-trapping for

Let us now recall for later use two results proven in [Ge-Sj] and [Ge-Ma2].

Proposition 2.2. i) Under hypotheses (H.5), (H.6) there exists a function
r0eC£)(Γ*(R'1)) such that:

on p~\I).

ii) Under hypotheses (H.6\ if I is non-trapping for p, then there exists a function
r1eqj)(T*(R'1)) such that ifG^G* rί9 one has:

HpG^C0 on p-\I) for C0>0. (2.1)
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We consider now the trapped part of the phase-space. We recall a geometric
definition from [Ge-Sj, Appendix].

Definition 2.3. The outgoing (respectively incoming) tail Γ+ for an energy interval
I is the set

The trapped set is defined as K = Γ+ n F_ .

Note that from the existence of G(x, ξ)9 we know that K is a compact set in p ~ *(/).

2.C. Examples. We now give some examples of potentials satisfying our hypotheses.

Example 1: Two-body Potentials. These are potentials for which:

\D*Vr(x)\^CΛ(xy-'p-M for p>0, αeN". (2.2)

Then V=Vs+Vr satisfies the hypotheses (H) with the escape function G(x, ξ) = <x, ξy
on any bounded interval / included in R* .

Example 2: N-body Potentials. These are potentials whose behaviour at infinity
varies depending on the direction. Let Vs = 0 and V = Vr be given by:

V(x)= Σ ^α(πflx)
αe«δ/

Here s/ is a set labeling a family of vector subspaces Xa and πα are orthogonal
projections on Xa. Assume that each potential Va satisfies the estimates (2.2) on
Xa. Then V satisfies the hypotheses (H) with an escape function G = <x, £> + r(x, ξ)
for some function reS(l,g) on a bounded energy interval /, if / is non-trapping
for all classical subhamiltonians. We refer to the Appendix 1 for a description of
the metric g and for detailed proofs.

3. Resonances and Metastable States

In this section we shall introduce the definition of quasiresonance states and quasi-
resonances for Hamiltonian considered in Sect. 2. These quasiresonant states are
analogues of the well-known quasimodes in situations where discrete spectrum
appears. We will then prove time decay estimates for the quantum evolution of
these states which exhibit their metastable behaviour. Finally as an illustration of
the influence of trapped trajectories for the classical system, we prove some
propagation estimates for the non-trapping case.

3.Λ. The Frequency Set. To formulate the notion of a quasiresonance state, we
will first recall the definition of the frequency set of an /ι-dependent distribution
(see Guillemin-Sternberg [Gu-St]).

Definition 3.1. Let u(x9h)eD'(Rn) be a distribution such that for any open set Ω,
there exist ΛΓ0EN with \\u(x,h)\\H-No(Ω) = 0(h~N°). Then a point (x0,ξ0) in T*(RΠ)
is said not to belong the frequency set ofu, denoted by FShu9 if there exists a cutoff
function χ(x, ξ) with χ(x0, <J0) ̂  0 and:

\\χ(x9hDx)u\\=0(h").
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We now recall the fundamental result of propagation of FShu (see [Ro]).

Theorem 3.2. Let p(x, ξ) be a real symbol in S(m, dx2 + dξ2) with a weight m, such
that dp Φ 0. Then FShu\FSh(p(x, hDx)u) is a union of integral curves of Hp.

A consequence of Theorem 3.2 adapted to our problem is:

Corollary 3.3. Let V be smooth and real. Let w0(x, h) be an L2 function with
|| MO ||L2 = 0(h~N°) for some N0eN. Then ifut = e~itPh/hu0, one has:

(x0, ̂ 0)eF5ΛM0 o (xt9ξt)eFShut,

where (xt9 ξt) = exp tHp(x0, ξ0).

3.B. Quasiresonance States. We now introduce the definition of quasiresonances
states. We consider a semiclassical Schrόdinger Hamiltonian Ph= —h2Δ+ V(x\
where V satisfies the hypotheses (H) of Sect. 2. It follows from Hypothesis (H.5)
that there exists constants c0 and R such that HpG^c0 on p~1(/)n{|x| ̂  R},
where / is a given energy interval and R can be chosen such that the support of
the singular potential Vs is included in {|x| ̂  K — 1}.

Definition 3.4. An h-dependent distribution fifc(x)eίf 2(R") is called a quasiresonance
state associated with the quasiresonance E(h) if:

i) V R 0 £ 1, 3N such that KI|a-»«w§J{o)) =
ii) There exists a compact set K0 c R" such that \\ uh \\L2(K ( ̂  1.

iii) (/>„ - E(h))uh = 0(Λ«>) in L,2

OC(R").
iv) uh is outgoing near infinity i.e.: there exists C0 and R0 such that:

v) £(/*)-> AO, for some λ0eί.

Let us first make some comments on this definition.

Remark 1. It follows easily from iii) and v) that FSuhr\ { \x\ ^R} ap~ I(λ0\ if R is
chosen such that supp Vs c { |χ| <; R — 1 }.

Remark 2. If the frequency set of uh does not intersect the singular support of Vs

(which means that the singularities of the potential have no influence on the
quasiresonance state), one can replace condition iv) by simpler conditions. This
remark is expanded in the next proposition.

Proposition 3.5. Let uh be a quasiresonant state. Then uh the following properties:

VC^QlRi such that FSuhn{\x\ ^ R^} c {(χ,ξ)\G(x,ξ)^ Cj. (3.1)

If moreover FSuhr\ sing supp Vs = 0, then the condition iv) is equivalent to any of
the following conditions:

iv')
iv") for some Cx » 1 FSuhn{(x9ξ)\G(x9ξ)£-Cl} = 0.

For the proof of Proposition 3.5, we refer to Appendix 3, Lemma C.I.

Remark 3. From Definition 3.4, it is clear that if E(h) is a quasiresonance, Im E(h)
is defined only modulo 0(h°°). In Sect. 4 we will see that under stronger hypotheses
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one can get also time decay estimates in the case of shape resonances where
lmE(h) = 0(e~c/h) for some constant C.

3.C. Time Decay for Quasiresonance States. Our goal in this subsection is to prove
time decay results from the evolution of a quasiresonant state uh. In order to apply
e-itph/h to u^ we grst neecj to cut u^ microiocaiiy in a bounded region of phase

space to turn it into an L2 function. The cutoff region has to be large enough in
order to eliminate the influence of the singular part of the potential and of the
possible existence of trapped trajectories in a compact region of p~^(l\ So we
start by picking up a cutoff function in a convenient way and by introducing some
notations. Let:

G! = 1 + sup G.

Here W(x) is the modifying potential (see (//./)) such that / is non-trapping for

Pί = p + w. We take then a cutoff function χ(x, £)€C£)(T*(Rn)) such that:

, (3.2)

where R^ is large enough such that supp Ksusupp W a{\x\^R1 — 1} and such
that (3.1) holds with the constant CΊ chosen above. Let now introduce a definition:

Definition 3.6. A cutoff function χ0(x)eC£(Rπ) is adapted to (C l 5JR1?/), if the
following condition is fulfilled:

for any (x, ξ) such that G(x, ξ) ̂  Cl9 \x\ ̂  Rl9 and /^(x, ξ)el,

one has:

πx(exptHpί(x,ξ))φsuppχ0, for ί^O.

It is easy to see using the fact that / is non trapping for p^ and Proposition 2.2
that one can find cutoffs adapted to (Cί9Rί9I) with arbitrary large supports by
taking R1 large enough.

The following Theorem is our main result on time decay:

Theorem 3.7. Let uh be a quasiresonant state with quasiresonance E(h) and let us
denote by a (h) = h'1 lmE(h) the inverse of the lifetime of the quasiresonance E(h\
Then ifχ(x,ξ) is a cutoff function as above we have:

e-i<phl»χ(x9 hDχ)Uh = e-WW^x, hDx)uh + rout(ί, h) + rjί, h)

where:
i) r^t.h) has an L2 norm of size O(ΛGO)α~1(l -e~ta) uniformly for t ^0.

ϋ) tfXo is an adapted cutoff, rout(t,h) satisfies the estimate:

II XoMrJίt, h) || = °(/lC°) + '""> uniformly for t Z 0.

Let us make some comments on this theorem.

Remark 4. If |Im£(Jι)| ̂  ChN° for some JV0 ̂  0, then the estimates i), ii) become:



Space-Time Picture of Semiclassical Resonances 289

The estimate ii) captures the outgoing nature of rrout(ί, h). To describe more
precisely this outgoing behavior we prove the following result:

Theorem 3.8. There exist v > 0, c> 0, T0 ̂  1 such that for any 0 < α < 1 we can
write:

with ra and rout α satisfying:
i) ifa(h) = 0h(\\then:

|| rΛ(t, h) || = 0(e~at(1 -«>(! + a(h)

uniformly for /ze]0, 1], ί ̂  T0

ii) ι/ α(/ι) -> oo w/zett /i ->> 0, then:

uniformly for Λe]0, 1], ί ̂  Γ0.

iii) || χ(|x| g vαt)routjα(t, λ) || = - uniformly for he]0, 1], ί ̂  Γ0.

Proof of Theorem 3.7. we have:

0

= χ(x, hDx)uh -ih-1 }

0

From Definition 3.4, it follows that χ(x,hDx)(Ph- E(h))uh = r^ ^h) has a norm

Also ift""1[Pfc,χ(x,ΛDJ] is a p.d.o. supported in (|x| ̂ ^J, (see (3.1)) so

ih'^Pk, X(x, hDx)-]uh = r^2(h) + χout(x, hDx, h)uh,

where r^ 2 has an L2 norm 0(/ι°°) and χout(x, ξ,/ι) is supported in an outgoing
region {(x9ξ)\G(x9ξ)^Cί9\x\^Rί} by Definition 3.4iv). On the support of
χout,MΛ satisfies (-h2Δ + Kr(x) -h VF(x) - E(h))uh = 0(/ι°°), since W and Ks vanish in
{ I x l ^ t f i } . Using then the functional calculus of Helffer-Robert [He-Ro],
generalized to non-conformal metrics in [Gel], we easily get that:

where χ(λ) is a cutoff function supported in /. We also have by combining Proposi-
tion 5.4 and Theorem 7.3:

e-isPh/hXouiuh = e-isPh/hχ(Ph)χouiuh
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Here χ(λ) is a cutoff function supported in / and equal to 1 near λQ. Finally we get:

X L rv \ 4 . .5 ιίJE(π)/hΛ./v. l»Γ\ \Λ,, nυx)uh -e χ(x, nDx)uh

t

i s* - i(ί
e

0

where HΓ^S)!! = O(/ι°°) uniformly in s.
The integral of the last term is bounded by:

uniformly in ί, which proves ί).
To prove the Theorem, we just have to establish the desired estimates on:

0

If χ0(x) is as in the statement of the Theorem 3.7, we have:

l,,1out --.
\S/

This follows from Theorem 7.2 and from Egorov's Theorem for small s. This gives:

II Xo(x)rwt(t) II ̂  I e-«-s»

for any NeN. Then it suffices to apply Proposition B.I in Appendix 2 to prove
ii), which completes the proof of the theorem. Π

Proof of Theorem 3.8. We write roυt(ί) = rα(ί) + rout α(ί) where:

rj® = ϊe-K
o

'Όu .αW = ί ̂ ί('

Let us first estimate ||rβ(ί)||: the computation is rejected to the Appendix. By
Proposition B.2, we get:

- if a(h) -* oo when h -» 0:

llr^H^Cα-^-'X1-"".

Let us now consider roul α(t): by Theorem 7.2 we get that:

||χ(|x|

uniformly for s ̂  at.
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Then we get immediately that:

which completes the proof of Theorem 3.8. Q

3.D. Propagation Estimates Near a Non-Trapping Energy Level We consider in
this subsection an Hamiltonian.

Ph=-h2Δ+V(x)

satisfying the conditions of Sect. 2 with Vs = 0, and an energy interval / such that
/ is non-trapping for p(x, ξ) = ξ2 + V(x). We denote by x^eC^fR) a cutoff
function supported in / so that Corollary 6.5 and Theorem 7.2 hold with the
energy cutoff Xι(Ph) Then we have the following result:

Theorem 3.9. Let χ0(x9ξ)EC™(T*Jkn) be a cutoff function. Then there exist <5>0
and a time T0 = T(χQ) such that:

for t>Ί

The important part in this estimate is of course the factor O(h°°).

Proof. The proof will be an easy application of Theorem 7.2 and Egorov's theorem
(see [Ro]).

We first take another cutoff function χ2(λ) with χί(λ)χ2(λ) = χί(λ) and χ2 is
supported in /. Then using the functional calculus (see [He-Ro], [Gel]) we get
that:

where χps(x, hDx, h) is a pseudodifferential operator with total symbol supported
in p~l(I\ and R^h) has a norm 0(Λ°°) between any weighted Sobolev spaces
H <x>k. So

Xι(Pk)Xo(x> U>x) = χι(PΛ)χp»(x, hDx, h)χ0(x, h, Dx) + Rm(h)χ0(x, hDx).

Since χout 1 = R00(h)χQ(x, hDx) satisfies the estimates iii) of Proposition 6.4, we have:

| ̂  v(ί + l))^"ίίPh/;ιχouU II = ||χ(|x| ̂  v(ί

by Theorem 7.2.
We consider now χps(x, hDx, h)χ0(x, hDx) which is a pseudodifferential operator

supported in p~^(I). By Egorov's theorem (see [Ro]) we get:

e-itPhlhχps(x, hDx, h)χ0(x, hDx) = χr(x, hDx, h)eitP^

where χf(x, hDx, h) is a p.d.o. with essential support in

exp tH p (supp χps(x, ζ, %0(x, ξ)).

Since / is non-trapping, we can choose T = T(χ0) such that χτ(x, hDx, h) has
essential support in a region {(x, ξ)\G(x, ξ) ̂  Cx }, where Cx » 1, and G is the escape
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function modified as in Proposition 2.2 Hence we can apply Theorem 7.2 with
χout = χτ(x, hDx, h) for t ̂  T, which proves Theorem 3.9. Π

4. Examples

In this section, we will give examples of quasiresonance states and of quasireso-
nances. We first show that for dilation analytic two-body potentials, exact
resonance states are quasiresonance states in the sense of Definition 3.4. We will
then construct quasiresonances states and quasiresonances in situations where one
has shown the existence of true resonances, at least for two-body dilation analytic
potentials. Namely we will study the cases when the set of trapped trajectories in
p~\λ$\ Knp~l(λ0) is either a closed hyperbolic trajectory (see [Ge-Sj]) or an
unstable equilibrium point. This last case occurs for example when Vr has a
non-degenerate maximum (see [Sj], [B-C-D]). Although we make these construc-
tions for smooth potentials, it is clear that one can admit a compactly supported
singular potential, as long as the frequency set of the quasiresonances we construct
does not intersect with its singular support. Finally we will treat under stronger
hypotheses the case of the shape resonances, where the methods of Sect. 3 no longer
apply.

4.A. Dilation Analytic Potentials. We assume now that Ph is a 2-body Hamiltonian
and that Vr(x) is dilation analytic in a sector {xeCπ | |Imx| ̂  ε<Rex>}. Then one
can define resonances near / with / c IR* by the method of complex canonical
transformations developped in successive degrees of generality by Aguilar-Combes
[Ag-Co], Balslev-Combes [Ba-Co], Sigal [SI] Hunziker [Hul] (see Combes-
Duclos-Klein-Seiler [C-D-K-S], Briet-Combes-Duclos [B-C-D], Hislop-
Sigal [Hi-Si], Sigal [2] for semiclassical versions) and Helffer-Sjόstrand [He-Sj2].

In this last approach, resonant functions are distributions in some Hubert
spaces denoted by H(ΛtG,m) of Sobolev type with microlocal exponential weights.
Then it is very easy to see, using for example the characterization of frequency set
through F.B.I, transforms (see Martinez [Ma]) that a resonant function is also a
quasiresonance state since it has no frequency set in {(x9ξ)\G(x,ξ)^ — C^} for
C1 > 1 (see also Remark 2).

4.B. Quasiresonances Generated by a Closed Hyperbolic Trajectory. This situation
was studied by Gerard-Sjostrand [Ge-Sj] for dilation analytic potentials. We put
ourselves under the hypotheses of Sect. 2 and fix an energy level A0. The energy
interval we consider will be of the form / = [Λ,0 — ε, λ0 + ε] for ε small enough. We
assume that the set of trapped trajectories in p-1(/l0) is a closed trajectory y° of
hyperbolic type, i.e. the eigenvalues of the linearized Poincare map are not of
modulus 1.

We first fix some notations. For λ close to λ0 we denote by yλ the (unique)
closed trajectory of Hp in p~l(λ). yλ is still hyperbolic for λ near A0 and we denote
by θι(λ\ ...,#„_!(>!,) the eigenvalues of modulus > 1 of the Poincare map Pλ of γλ.

To completely specify PΛ, we fix in p- 1(A) a symplectic manifold Πλ of
codimension 2 in Γ*R" which is transverse to Hp at γλnΠλ = pλ. Then we take
Pλ to be the first return map in Πλ and Pλ is a symplectic map for the symplectic
structure on Πλ. We denote by Λ + ( _ } the stable outgoing (incoming) Lagrangian
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manifold of yλ. Λλ

+is tangent at ρλ to the space generated by Hp and the eigenvectors
of DpλP

λ with eigenvalues θ^λ) l^i^n-l.
We denote by Γλ

± the manifold Λλ

± nT7A, which is still Lagrangian in Πλ and
invariant under Pλ.

For αeDSP1"1, we denote by JV(α) the number of βeN"'1 such that
θ(λ)~β = θ(λ)~*. We denote by σ the Maslov index of 7°, by C(λ) = J ξdx the action
along γ\ and by T(λ) = C'(λ) the period of yλ.

Then we have:

Proposition 4.1. For αrcj; αeN""1, there exist aN(a) x Λf(α) matrix

w - 1

where M0(λ,z) has the eigenvalue θ(λΓ* f] \θi(λ)Γll2eiT(λ)z with multiplicity JV(α)
SMC/* ί/iαί: 1

i) λ + hz is a quasiresonance if

det (eiC(λ)lheiπσl4M(λ, z, Λ) - 1) = 0,

ii) ί/ie quasίresonant state uh associated with EΛ(h) = λ + hz is a Lagrangian
distribution living on Λλ

+.

Remark 4. As in [Ge-Sj] one shows easily that:

- Σ ^Logθt(λ)
I /

Re £β(fc) = A + T(A) " 1 h σ - + 2/cπ - C(A)/Λ ) + o(Λ),

where keZ is such that 2/cπ - C(/l)//z = 0(1).

Proof. The construction of quasiresonant states will be separated in three steps:

Step I. We find quantization conditions to have a solution uh of:

) (4.1)

microlocally near y°. Here z = 0Λ(l) and Pή could be any pseudodifferential
operator p(x, hDX9 h). Instead of directly constructing uh as a Lagrangian distribution
on Λλ

+9 we reduce (4.1) to construction of solutions of

) (4.2)

microlocally near pλ, where vh lives on Πλ and Kλ(z) is the "quantized Poincare
map."

We first choose a canonical transformation χλ which sends ρλ to (0, 0), 77Λ on
{*ι = ί i = 0}, Γλ

+ on {{' = 0}, Γi on {x' = 0}, where x = (x l5 x'), { = ({lf {') (see
[Ge-Sj, Sect. 2]). Since Hp is transversal to 77λ, we can also assume (possibly after

exchanging x1 and ξj that — (0,0) ̂  0 in the new coordinates. χλ is defined near
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pλ and we extend it arbitrarily in a large region of T*RΠ. We quantize χλ by a
Fourier integral operator Tλ and consider everything after conjugation by Tλ.

In these new symplectic coordinates we can construct an operator Mλ(z) such
that if vh is defined microlocally near (0, 0) in 77A, uh = Mλ(z)vh solves:

J(PM — Eλ)uh = O(/ι°°) microlocally near γλ

\ uh\Xi=Q = vh

Here PM = TλPhT~ l, and Eλ = λ + zh. We will see below that the existence of uh

solution to (4.1) is equivalent to the existence of a solution to (4.3) which is univalued
under the operation of "moving one loop around yλ."

Mλ(z)vh can be constructed near xλ = 0 as a Fourier integral operator:

M^(z)Ok = (2πhΓn + lίei(S^χt^-y' η>)/haλ(x, η', z, h)vh(y')dy' dη' ,

where Sλ solves the Hamilton- Jacobi equation:

=o = * (4'4)

where pΛ is the symbol of Ph A, and:
00

αλ(x, i/', z, Λ) =

with αAJ solving the transport equations.
Equation (4.4) can be solved near xi = 0 since Hp is transversal to Πλ at pλ.

The global construction of Mλ(z)vh as a Lagrangian distribution amounts to
construction of the Lagrangian manifold Λλ ̂  which is the image of {ξf = η'} under
the Hp flowing" ^λ).

Let us write the global construction of Mλ(z)vh as:

where Mλti(z)vh is a Lagrangian distribution solution to (4.3) near some point pλti

on yΛ, and MλtN(z)υh lives near pλ.
The Mλ)I(zjt;Λ patch together as a global solution to (4.3) except for MλjN(z)vh

and Mλtl(z)vh. The quantization condition for the existence of a solution to (4.1)
is that MλfN(z)vh = Mλtl(z)vh-\-O(hco). Since MλfN(z)vh and MλΛ(z)vh solve (4.1)
locally near pλ, they coincide (modulo O(A°°)) if and only if:

Mλ,N(z)vh\Xί=0 = vh + 0(Λ°°) near (0,0). (4.5)

We will denote by Kλ(z) the operator:

acting on D'fR""1) and defined microlocally near (0,0).
Let us now describe Kλ(z) in more details. Kλ(z) is a F.I.O. associated with the

canonical transformation Pλ. Since DpλPλ is of the form I λ

 f _ ) in the new
\ 0

(Λ. 0
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coordinates, where Aλ is a matrix with eigenvalues θ^λ), Kλ(z) can be written as:

KAι>fc = (2π/r"+1K"(*^^

where

kλ(xf, η'9 z, Λ) ̂
o

We will now compute <pA(0>0) and fcλ)0(0,0,z).
By Hamilton- Jacobi theory we know that:

Note that C'(λ) = Γλ, where Tλ is the period of /.
To compute fcλ>0(0, 0, z), we have to take into account the transport equation

and the Maslov bundle on Λλt0. If we consider again MλΛ near xl = 0 (fixing η' = 0)
and compute the principal symbol mλ of MλΛ as a half density, we get:

mλ = aλ(x,Q,z)\dx\i/2 with αλ(0,0,z)= 1,

since Λλι0 can be parametrized by x near xx = 0. It is well known (see [Ho,
Theorem 25.2.4]) that the principal symbol mλ of Mλ satisfies:

&Hpmλ - izmλ = 0

(remember that the subprincipal symbol of a Schrodinger operator vanishes). Here
<&Hpmλ denotes the Lie derivative of mλ.

So if we denote by Φf the flow of Hp on /iλ>0, one has:

where mλj is the principal symbol of MλJ.
At (0,0), mλtN is equal to fcλ>0(0,0,z)|dx|1/2 (modulo the Maslov factor).
According to [Ge-Sj, Sect. 2] the differential of ΦTλ restricted to Λλt0 =

is of the form ( 1 so:
AJ

modulo the Maslov factor.
If we take into account this factor we finally get:

/cλ(0, 0, z) = eίTλZ \detAλ\- x / Vπσ/4

where σ is the Maslov index of y°. We will denote |detv4λ | "
 1/2 by bλ. This completes

Step 1.

Step 2. We will describe the quantization conditions for (4.5). A similar problem
(with no dependence on λ) has been treated in [Ge2], so we will be quite sketchy.

If we replace Kλ(z) by its linearization Kλ(z) at (0,0), i.e. we replace φλ by
^x'-η', and kλ#(x',η',z,h] by fcλj0(0,0,z) we see that:

Kλ(z)υh =
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The eigenvectors of υh\-^vh(A^lx') are polynomials with eigenvalues

for αeN""1. So the quantization condition corresponding to Kλ(z)v = v is:
rt-l

C(λ) = (2kπ - σ/4π)h + i Log bλh - T(λ)zh - ih £ «« Log θ^λ)
i

for keZ. This can be inverted since T(λ) φ 0. The quantization conditions for Kλ(z)
can now be found by perturbation following the arguments of [Ge2], One gets the
quantization conditions given in Proposition 4.1. One also gets that vh solution
of (4.2) is a Lagrangian distribution living on Γλ

+.

Step 3. We extend globally the solutions of (4.1). If vh is the solution of (4.2),
uh = Mλ(z(h))vh is a Lagrangian distribution living on Λλ

+9 which satisfies

Since yλ is the only trapped trajectory on p 1(λ), we can extend uh to any open
neighborhood of Λλ

+ in such a way that it still solves Phuh — (λ + z(h))uh = 0(/ι°°)
in this neighborhood. To solve Schrόdinger equation everywhere, it suffices to
replace uh by χ(Ph)uh, where χ(λ) is supported near λθ9 and to use the functional
calculus of [He-Roj. This completes the proof of Proposition 4.1. Π

4.C. Quasiresonances Generated by a Potential Maximum. This situation was studied
by Sjδstrand [Sj], Briet-Combes-Duclos [B-C-D] for dilation analytic potentials.
As in subsection 4.B, we take / = [/10 — ε, λ0 + ε], for Λ,0eR and ε small enough
and we assume that V satisfies the conditions of Sect. 2.

We assume that the set of trapped trajectories in p'H^o) is a point (xθ90) where
V(x0) — λθ9 VXOV = 0, V'(XQ) is negative definite. If the eigenvalues of V at x0 are
denoted by λj9 1 ̂ j ^ n, the eigenvalues of the linearized matrix Fp of Hp at (x0, 0)
are the ±2(-/ί//2 = ±μj9 1 g ^n.

For αelK" we denote by N(α) the number of jSeN" with α μ = /? μ, where
μ = (μί9...9μn). We denote by Λ+ the stable outgoing manifold of (x0,0) (see
[A-M]). Then we have:

oo

Proposition 4.2. For αeNn there exist a N(α) x N(α) matrix F(z,h)^^Fj(z)hj,
n ( 1\

where F0(z) has the eigenvalue — ί Σ I &j + ~ }^j~z Wίί^ multiplicity ΛΓ(α), such that:
i V 2/

i) λ0 + zh is a quasiresonance if: det(F(z, h)) = 0
ii) the quasiresonant state uh associated to Ea(h) = λ0 + zh is a Lagrangian distri-

bution living on Λ+.

Proof. By the stable manifold theorem (see [A-M]) there exist two Lagrangian
manifolds Λ± tangent at (x0»0) to tne sPan of eigenspaces of Fp with positive
(respectively negative) eigenvalues, which are Hp invariant. By a change of symplectic
coordinates we can locally send (x0,0) to (0,0), Λ+ to {ξ = 0}, and Λ _ to [x = 0}.
If T is a F.I.O. associated with this change of coordinates, and P = TPhT~ί

9 we
have:

P = p(x, hDx) + hp. !(x, hDx) + 0(h2\
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with p(x,ξ) = <β(x,ξ)x,ξ>, where £(0,0) has the eigenvalues μ^...,μn. We will
use also the subprincipal symbol of P, defined as:

ub(*> & = P- 1(*» ί) +

Since at double characteristic points the subprincipal symbol is invariant under

conjugation by Fourier integral operators, we see that p_1(0,0)= — Σ^f/
2 i

We can write:

P= Σ ^a^p(x9hDx)(hDxy + ha.1(x9hDx) + h2a^2 + ̂ .
|α|,|/?| = l

To compute α_ ̂ 0, 0) we still use the in variance of the subprincipal symbol and get:

./=l

i
Now as in Helffer-Sjδstrand ([He-Sjl] Proof of Theorem 3.7) we introduce

the linearized operator:

PO = Σ xX/^OHAZ)^ +
W = l/9| = ι

and the space Sffe of formal symbols of the form:

A^Po sends 5T/2 into itself and h~l(P-Pv) sends S^ into S~/*+1.
- M / 1\

Now the eigenvalues of A 1P0 are the — /Σ( αj~ ί"~ l^j' αe^π with eigen-
vectors xα. i \ 2/

The quantization condition can now be obtained exactly as in [He-Sjl,
Theorem 3.7] or [He, Chap. 2]. It is also clear from the proof that the quasiresonant
states are Lagrangian distributions living on Λ+ . One can extend the quasiresonant
states to any neighborhood of Λ+ since (x0»0) is the only trapped point in
P ̂ ([Λo — ε> Λ0 + ε]) for ε small enough. The proof can then be completed as in
Proposition 4.1. Π

4.D. Quasiresonant States for Shape Resonances. We will now construct states
exhibiting a time-decay behavior in a situation where shape resonances appear.
It is known that in this case ImE(A) is of size 0(A°°), so this type of resonances
need a separate treatment.

In this subsection we will assume that V(x) is a 2-body potential which is
dilation analytic in a sector { |xe<C Λ | | Imx|^Λ<Rex>}. We assume that / is of
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the form [/10 — ε, λ0 + ε], for ε small enough. Here λ0 > 0, and there exists a
connected open set 0 c R" and a compact set ̂  c 0 such that:

^ AO in ̂ , K> AO in 0\% K< A0 in Oc.

We also assume that there are no trapped trajectories in p I(λ0) outside 0.
This situation has been considered in [C-D-K-S, He-Sj2, Hi-Si]. One proves

the existence of resonances due to tunneling through the potential barrier O\%
which are close to the real eigenvalues of a model Dirichlet problem, with an error
of size 0(e~2So/h), where S0 is the distance between ̂  and Oc for the Agmon metric
max(K-A0,0)dx2 and 0(α) means Oλ(e(-2So+λ)/h) for any A>0.

For simplicity we will consider a case where one can obtain lower bounds (and
even asymptotic expansions) on the widths of these resonances, i.e. upper bounds
on their lifetimes. We will assume as in [He-Sj2, Sect. 10] that:

<% = {χ0}? where K"(x0) > 0.

We will consider a resonance E(h) close to an eigenvalue E0(h) of Ph with Dirichlet
boundary conditions in M0 = Bd(^, S0 — η\ with E0(h) -*• λ0 when h -> 0. Here
Bd(tft, S0 — η) is the ball around ̂  of radius S0 — η for the Agmon metric and η « 1.
(see [He-Sj2], Theorems 10.8, 10.12). We assume that E0(h) is asymptotically
simple (see [He-Sj2], Theorem 10.7) and denote by uh the unique (modulo constant
factor) resonant function associated with E(h).

We can choose for example uh to be the eigenprojection (for the complex dilated
Hamiltonian) of a normalized Dirichlet eigenfunction of Ph for E0(h) (see [He-Sj2,
Sect. 9]).

Then we know from [He-Sj2, Theoreme 10.14] that:

Γ(h) = - Im E(h) ^ C0Λ
1/2^~25o/Λ for h small enough.

To formulate our result we fix a cutoff function χ0(x)eCJ(Rn) equal to 1 in a
neighborhood of O and another cutoff function Xι(x) such that no classical
trajectories for Hp in p'H^o) starting from suppVχ0 reach suppχx for positive
times. It is important to notice that χί can for example be supported in the
island 0.

Then we have:

Theorem 4.3. With the notations above, we have:

& Xθ^h = ̂  Xθ^h ' ^outlv ' ^ao(f/9

where

i) r^(t) has a norm 0(e~So/h) -f δ(e'2Solh)-^7Γ:(l - e~tr/h).
ii) rout(ί) satisfies the estimate:

IIXι(xKm(t)li =

uniformly for t ̂  0.
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Proof. Let us denote by χ(λ) a cutoff function supported in [E0(h) - λ, E0(h) + A],
equal to 1 in \_E0(h) - λ/2, E0(h) + λ/2]. We first remark that:

(e-s°'h). (4.6)

Indeed we have:

(Ph - E0(h))χ0uh = [PΛ)χo]«Λ + O(e-
2S^)χ0uh

which gives for zeC\R:

(P» - zΓ 'Jo"* = (E0(h) - zΓ Iχ0uh - (E0(h) - zΓ^P. - z)'1 [P», XoK

- (£0(Λ) - zΓ '(P» ~ zΓίδ(e-2S''"')χ0uh. (4.7)

Plugging (4.7) into formula (5.10) in Sect. 5 used to define χ(Ph)χ0Uh and using that
[P»»Xo]«» = 0(β~So/*) (see [He-Sj2, Theoreme 10.10]) we get directly (4.6).

Now as in the proof of Theorem 3.7, we get:

- (ihΓ1 f e-*-
0

For δ > 0, δ « 1, let us denote by Wδ(x)€C J(0) a positive cutoff function supported
in Bd(<%,δ) such that V+ Wδ > λ0 in 0. Let us put PM = PΛ + W^ and forget the
δ dependence of PM for the moment. We claim that:

(x(Ph) ~ χ(PM))IΛ> Xo] = 0(e-s°!h). (4.9)

To see this, we use formula (5.10) in Sect. 5 and get:

(x(Ph) ~ χ(PM))IΛ» Xo] = - f 3fje(z)(z - PΛΓ 1 W^(z - PΛil)- * [PΛ, χ0]dz Λ dz.

Then (4.9) follows directly from Agmon-type estimates on (z — P^i)"1 (see for
example [He-Sj2, Lemma 9.4]).

We use now formula (7.12) in Sect. 7 and get:

, χ0] = e-ί'""

If we write:

χ0] = f ̂ "^W^^^
ι

where - is the spectral function of Ph 1 , we get again by Agmon-type estimates:
dλ

Integrating by parts in λ we also get:

(4.10)
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We now use that:

d-^ = —(R^λ + ίθ)2 - κ,(λ - ton
dλ2 2ιπ

where R^λ ± iO) are the boundary values of the resolvent of Phl.
We can then prove Agmon-type estimates for the kernel of R^λ ± iO)2 in the

same way as for the kernel of R^λ ± ιΌ).
So (4.10) gives:

, χ0] || = 0

Integrating by parts in λ once more and using the same type of estimates we get that:

From this we get finally:

Γ(h)

Let us put now

Since >10 is non-trapping for p = ξ2 -h V + M ,̂ we can apply Theorem 7.2 and
Egorov's Theorem to get that:

. (4.11)

To obtain (4.11) we need to take the support of χ(λ) sufficiently small depending
on (5, and use that p = p outside 0.

So it just remains to estimate f^-(ί-s)rw/Λ - ds. This is done in Appendix
S <s>"

2, Proposition B.I, and we get the desired estimate on ||χι(x)rout(ί)||. Π

5. Expansion of Commutators and Localization

5. A. Expansion of Commutators. In this subsection we generalize the commutator
expansion lemma of [S-S] to functions of operators which satisfy symbol-type
estimates. We also prove a localization lemma for a function of a (selfadjoint)
pseudodifferential operator. These two tools will allow us to work with functions
of pseudodifferential operators as if they were themselves pseudodifferential operators
(which is not clear if the pseudodifferential operators considered are not elliptic,
as for example ^h(x Dx + Dx-x)).
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We consider first a function F(x) in the symbol class 5Π°(R), i.e.:

Let H and A be two selfadjoint operators on a Hubert space Jjf , such that for
any fceN, ad*(#) is bounded. Here ad^β) = [B, A]. In particular /ί is bounded.
From this it follows easily that H and adk

A(H) are bounded on D((|Λ| + l)α) for
integer α and then for any α by interpolation. We will prove the following Proposition:

Proposition 5.1. The commutator \_H,F(A)~\ originally defined on D((\A\ -h 1)"°) can
be expanded as:

[//, F(A)1 = Σ A F*\A)adk

A(H) + Rn(A9 H, F),
k = ι k\

where Rn(A9 H, F) is bounded on J^ with α norm bounded by Cn \\ ad"A(H) \\9forn>n0 + l9

and for a constant Cn depending only on a finite number ofseminorms ofF in 5"°(R).

Proof. We write F = (x2 + l)nιg = fg, with w 0 -2n 1 =-l-ε, ε>0. Then
from which it follows that VrceDsί, sπ^(s)6L°°(R), and hence also

Hence we can apply to g(A) the result of [S-S, Lemma 1.1]. We will write:

(5.1)
It is straightforward to show by induction on the degree of/, that if f(s) is a

polynomial of degree n0, one has:
n o f ( k )

[H, /(/!)]= Σ J—(A)*d"A(H).
fc=ι fc!

So
2«ι y (fc)

[H,(>42 + lΓ]flf(^)= Σ J—(A)*ά\(H)g(A).
k=\ K

We apply now [S-S, Lemma 1.1] to H = adk

A(H) (since H is either selfadjoint or
antiselfadjoint). We get:

2m Λ f - 1 /-(„) (fc) /-(„)

(5.2)

The second term in the r.h.s. of (5.1) is:

Λ*-l Q(k)

Σ /μ)^τμ)adfe

Λ(//) + /μ)κMμ,//,^). (5.3)
Λ = ι Λ!

Let us take in (5.2) Λί = M(n) such that n -h M(n) = M0 » 1. We get from (5.2), (5.3):
2/iι Mo-1 -w y (n) (fc)

Σ Σ ^-μ)

(k}

= Σ
k = l
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by the binomial formula. It remains to estimate RMo.
Let us first consider a term of the type:

f(n)(A)RMo_n(A9adn

A(H)9g) = f f^(A)e^Kn(s)ds9 (5.4)
— oo

where

0 0

(see [S-S],Eqs. (1.12), (1.10)).
2πι — n

We use now that f(n\A) = £ cnfkA
k. Let us consider one term of (5.4) with

k = 0

f(n\A) replaced by Ak

9 k^2nί- n. We get:
+ 0 0 /1 <3 V

Λα = ί τ^K^U^, (5.5)
-oo \iSsJ

where the integral converges in norm in <&(D((\ A\ + l))fe, 3?\
Since Kn(s) has a norm in &(D((\A\ + 1)*), D((|A| + 1)*)) bounded by CJ

we can integrate by parts once.
Then we have:

where 0( ) means in norm in &(D((\A\ + 1)*), D((\A\ + l)fe)).
We use now that 5

M°~"+ A ~'d'a
lό(s) is the Fourier transform of D^°~n+ A ~'(iίflg(t)

which is in Js'+»-"0-<ι+β)0R)β

Since I^2n1- n, by taking M0 > 2n l5 s
M°~"+Λ"/δf1^(s) is the Fourier trans-

form of a term in S~ x ~ε(lR), so tends to zero at infinity faster than any power. So
we can integrate by parts k times in (5.5) and we get that /„ k has a norm bounded

byCM o | |ad?«(fl)ll.
Here CMo depends only on a finite number of seminorms of F(s) in SΛ°(R).

This completes the proof of the proposition. Π

5.B. A Localization Result. We now prove a localization result for functions of
pseudodifferential operators. We consider a real function A(x, ξ) in some symbol
class S(m0, g0) for some σ-temperate metric g0 and some #0-temperate weight m0.
We assume that A(x9 hDx) is essentially selfadjoint on 5(RΠ) and denote by A(x9 hDx)
its unique selfadjoint extension.

We have the following result:

Proposition 5.2. Let χ^x^eCJCΓ*!?/1) and such that on supp;^ one has:

Let /(J,)eS°(R) such that:

f(λ) = 0 for Co-eo^gCi+eo, ε0>0.
Then

f(A(x9 hD^χ^x, hDx) has a norm 0(/ι°°).
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Proof. Let χ(λ) be a cutoff function supported in [C0 - ε0/2, Cl + ε0/2], equal to
1 in [C0 - ε0/3, Cj + ε0/3]. Then χ(A)/(A) = 0, so it suffices to show that χ^x, hDx) -
χ(A)χ1(x, hDx) = 0(/ι°°). Let us now take a function ^(x, ξ) such that:

Λ! = A in a neighborhood of suppχ l 9 (5.6)

(5.7)
4 4

A^x, ξ) is constant at infinity. (5.8)

We denote by Ά(x, hDx) its Weyl quantization which is a bounded operator
by (5.8).

By (5.7) we get that for h small enough:

So χ(Al) = 1 and we are left with the proof of:

This is proven in Lemma 5.3 below, which will complete the proof of the
proposition. Π

Lemma 5.3. Let χ1 be as in Proposition 5.2 and χ as in the proof of Proposition 5.2.
Then:

(χ(Aί)-χ(A))χί(x9hDx) = 0(h™).

Proof. We use a formula for functional calculus due to Helffer-Sjostrand [He-Sj3].
We denote by χ(z) an almost analytic extension of χ(λ\ i.e. a smooth function on
C such that

zr). (5.9)

Moreover we can take χ(z) with compaόt support in C.
Then one can prove (see [He-Sj3]) that:

χ(Λ) = -*- f diχ(z)(z - A)'ldz Λ dz. (5.10)

The integral in (5.10) converges in norm by (5.9).
Using that (z- A)'1 -(z- A,)'1 =(z- AΓ^A- A,)(z- A,Γ\ we get by

(5.10):

)χί=-^d,χ(z~AΓl(A-A1)(z-A1Γ
ΐXιdzΛdz. (5.11)

2πc

Then we have:

(A-Al)(z-AίΓ
1χί=(A-Aί)χl(z-A1Γ

1

+ μ-^)(z-Λ1Γ
1[Λ1,χ1](z-,41Γ

1. (5.12)

By pseudodifferential calculus (A — A^χ^ has a norm 0(h°°) and [A^Xj] has a
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norm 0(h) so (χ(A) - χ(A1))χί = 0(h) using that || (B - z)~ l II y(*9Dm = 0(Qm z)~l)
for any selfadjoint operator B on a Hubert space ffl .

We use now that:

Again by pseudodifferential calculus (A — A ι ) [ A l 9 χ ί ' ] has a norm 0(h°°) and
p4ι» D4ι,χJ] a norm O(/ι2) so lχ(A)-χ(A^χl = O(h2). Iterating this argument
in the obvious way gives the Lemma. Π

5.C. A Result on Functional Calculus for Singular Potentials. In this subsection,
we consider a Schrόdinger operator satisfying the hypotheses of Sect. 2. We will
show that outside the singular support of VS9 for a smooth cutoff function/eC J(R),
the operator f(Ph) given by the functional calculus is a pseudodifferential operator
modulo some error of size 0(/ι°°). This result is summarized in the next proposition:

Proposition 5.4. Let χ0(x,ξ)eC^(T*(Rw)) such that Vs is smooth on support of χ0.
Let us take a smooth potential V1 satisfying the same hypotheses as Fr, such that
V1 = Vs(x) + Vr(x) on support ofχ0(x, ξ). Then ifPh^ = — h2Δx + V l 9 f o r any smooth
cutoff function χeCJOR), we have:

where 0H2 means an estimate in <&(L2

9H
2).

Proof. Without loss of generality, we can replace sing supp Vs by supp Vs. Let us
take another smooth cutoff function χ^xJeC^ίlR"), such that:

and Vl = Vs(x) + Vr(x) on support of χι(x). Since χ^χ^x, hDx) = χ0(x, hDx) -f 0(Λ°°)
by pseudodifferential calculus, it suffices to show that:

To do this we use formula (5.10) to represent χ(Ph). One has:

Here χ(z) is as in (5.10) an almost analytic extension of χ(λ) with compact support
in (C. This formula gives:

2π<c
Then we have:

where VK= Fr + Vs — V^ is supported where χt = 0. Then we have:
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This can be iterated since DPM,Xi] = ;fe(*)[J>fcfι»Kι]» where χ2 is another cutoff
with Wχ2 = 0. This way we get finally a term in the integrand of (5.13) of norm
between L2 and H2 equal to O(hN(lmz)~N) for any N, which completes the proof
of the proposition since d^χ(z) = O(Imz)00. Π

6. Semiclassical Propagation Estimates

In this section we prove a Semiclassical version of the propagation estimates of
Sigal-Soffer [S-S]. Since we will later apply it to different types of conjugate
operators, we will prove the propagation estimates in an abstract setting.

We consider a self adjoint operator H on an Hubert space Jtf* with domain
D(H). H is supposed to depend on the Planck constant h. Actually the only place
where h will appear will be in the size of the multicommutators. We consider also
a commutative family A(t) of unbounded ft-dependent self adjoint operators with
a common domain D satisfying the following properties: for a cutoff function
χoί/OeCJίlR) we denote by Hί the bounded operator χ0(H)H. We fix another
cutoff function χ^λ) such that χ0χ1 = χ^.

We denote by DA(t) the Heisenberg derivative of A(t) w.r.t. Hl9 i.e.

A A
D>l(ί) = ifc-1[H1MW] + -Γ (6.1)

at

and by (&dk

A)(H) the multicommutator h~k[[H9A] A~\. With these notations we
ask that A(t) satisfies:

dA
(H.2.Ϊ) A(t) is norm differentiable with — uniformly bounded in t.

dt
(H.2.H) χί(H)DA(t)χι(H)^ C0χl(H) for some C0 >0.
(H.2.UΪ) adk

A(t)(H) are uniformly bounded in t and h.
dA

(H.2.iv) — commutes with A.
dt

This last assumption is not necessary and can be replaced by control on the multi-

~* ίdA\commutators ad^(ί)l — 1.

As in [S-S], we set A(0) = A and τ = t + 1.
We will consider the propagation observables

φ =φ(t) = -(-A(t))aF( -̂  -ε
\ τ

where F(Ω) stands for a smoothed-out characteristic function of Ω with F' ^ 0.
We also fix a bounded operator χout such that:

ΦΛ(Q)χι(H)χout is bounded with norm O(Λ°°) for any αeN. (6.2)

Later on χout will be a pseudodifferential cutoff with support in an outgoing region.
We will prove the following theorem, which for h = 1 is an extension of

Theorems 2.3-2.5 in [S-S].
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Theorem 6.1. Under the hypotheses (H.2\ Vα, Vwe^f, we have:

i) ί*<Φα

2(0*-/ίH^out"^ VNeN,
o

ii) || ΦΛ(t)e-itH/hχoutu \\ ̂  CNhN \\ u \\ VNeN, uniformly in t ̂  0,

hN

iii) V 11/out" ^ CN II u || VΛΓeN, uniformly in t ̂  0.

We start by fixing some notations.
We will denote by Fδ any operator of the form fδ(A(t\ t)F - g — ε I, where

, ί) belongs to the symbol class Sδ(Rλ) uniformly in ί. If fδ is such that fδ(λ, t) ̂

yδ, we will denote / (̂ί), ί)F(
ί A(t) \ ^

operator F( — — ̂  - ε/2 , and put

, we will denote / (̂ί), ί)F( — ^ -ε by F/. We will denote by G the

^ τ

where Φα(A, ί) = - ( - λ)*F ( - ̂  - ε ).
\τ /

We take a vector um Jf and denote by ^f the vector e lίHl//Iχι(#)χoutM. If B
is an observable, we denote by <£> the expectation value (Bψt,ψty. We first
prove the following lemma:

Lemma 6.2. For α < N0 + 1, 0 < β, 0 < β' < 1, we fcαt;*?:

<0Φα> ̂  C0<χι(//)Fα

+_ιχι(//)> + Rt,

where

No M

Σ Σ

[No/2]+l

We will follow closely the proof of [S-S]. The proof is divided in several steps.

Step 1: in Step 1 we compute DΦΛ. We start by computing dtΦΛ. Since τ = ί + 1,
we have:
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Let us now compute ih"l[H^ ΦJ. Since Φα = ΦαG, we have:

ih~l[.Hl9 ΦJ = ifc-^Hi, ΦJG + ih-lΦΛ[Hl9G].

Using the commutator expansion of Proposition 5.1, we get:

(6.4)
for N0 ^ sup (2, α).

Applying again the commutator expansion to [JflsG], and using that:

F(λ^-ε)G(k\λ^-ε/2) = 0 for j f c ^ l ,

we get:

iΛ-1Φβ[H1,G] = iΛ-1ΦβΛN o + 1(X,H1,G). (6.5)

From (6.3) . . . (6.5), we get:
No

,H,,G). (6.6)

To complete Step 1 we will estimate the size of the remainder terms. We have:

| |^oll. (6-7)

- A
This follows from Proposition 5.1 with A replaced by A =— if one recalls that

Similarly we have:

= |<(-yl(t))«+ΛW o H. 1μ,H 1,G)^,(-yl(t))-»+ 1Φ.^>|.

Again by Proposition 5.1 we have ||Λ~1(->4(ί))JV(>+1RjVo+1(/l,/ί1,G)|| = 0(HN°)and
since α — N0 — 1 < 0, we have:

So the remainder terms in (6.6) have expectation values bounded by

Step 2. We estimate the terms Fβ _λ(a<iΛ)*(ίί1)G. We will use the trick of Sigal-
Soffer of commuting ( — A(t)fG through (ad ,̂))* !̂), but in our case we need to
take j8>l. We write:
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We use again Proposition 5.1 to expand {.Fft9(adA(t))k(H1)']9 but this time by putting
the functions of A(t) to the right. (This follows directly from Proposition 5.1 by
taking adjoints.)

We get:

(6.8)

So we finally have:

Sk = hk-lFx.k(SΆA(l})"(Hί)G= £ ̂ -'Fα-^aa^r^JF^ + R^, (6.9)
( = 0

where

<*!,*> = 0(/l*
+AV-<M+1>)||F0,_,_,«/rr|| || fc, ||. (6.10)

Step 3. We symmetrize the term Φ'xDA(t), and use the positivity of DA(t). Since

-g-εY we write:

Φ'xDA(t)G = F(:_ 1

Using also that

we get:

Let us first compute K1.
We have:

= /C11 + X12. (6.11)

Let us start by computing \_F(a-^/29χι(H)']: again by Proposition 5.1, we get:

[No/2] + I

= Σ F^-^

α- 1
In (6.12) we use that - <N0/2. In (6.11), we take β' < 1 and use (see [S-S,

Lemma A.2]), that:
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From (6.12) we get:
[ΛTo/21+l

where Bk and RNo are bounded operators, uniformly in h and ί. Similarly we get:
[No/2]+l

^12 = Σ hk + 1F((Λ-.1)l2)-kBkFqΛ-1)/2)-β,
1

This completes the computation of K±. K2 can be estimated exactly as Kit Let
us now consider K3:

Expanding again the commutator [F(α_1)/2,IM(ί)]> we get:
[ΛTo/2] + l

^3 = Σ Xι(H)hkF{(Λ-1)/2)-.β,BkF((a-1)/2}-k+β>

where as above Bk and ,RNo are uniformly bounded in h and ί. This completes Step 3.

Step 4. In Step 4, we establish a bound from below on <DΦα>, which is the key
estimate.

We first remark that:
F(«- 1}l2Xι(H)DA(t)χι(H)F(Λ. 1)/2 ̂  C0F(α_ 1)/2χ?(H)F(α_ 1)/2 by ii).

Then we write:

(α_ 1)/

-!̂ ]. (6-16)

The two commutator terms can be easily estimated as K^.
Putting together (6.6), (6.7), (6.9), (6.10), (6.13), (6.14), (6.15), we finally get:

Σ Σ
k=2 /=0

No

k = 2

[No/2]+l

-C Σ hk\\F((Λ.ί)l2).k+β^t\\\\F(Λ.l)l2.β^t\\
k = l

This completes the proof of the lemma.
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Proof of Theorem 6.1. We will prove the theorem by induction on α. Our induction
hypothesis will be:

(HN for δ<(n-
' 2 for δ<n/2,

Let us start by proving (H.I).
We take α < 1, and use Lemma 6.2 with /? = /?'= 0. Using that α - k < - 1 for k ̂  2,

we have ||FβHk<M = O(τ«-*)||ιAoll,andalso ||F((α_1)/2)_^ll =O(τ(("-1)/2)-*)||<Aol|.
This gives:

Using that <DΦαχ = — < ΦαX and that Φα is a negative operator, we get as in [S-S]:
at

- < ΦΛOWo, «/Ό> + 0(h).

Since || Φα(0)ιAo II = 0(h°°) by (6.2), this proves (H.I).
We assume now that (H.N0) holds and prove (H.N0 + 1). The only thing to

do is to estimate ||ΛJLι(Λ).
The terms in Rt will be estimated either by Cauchy-Schwarz inequality in ί

or by Lco(dt) — L}(dt) estimates. Let us consider successively the different terms:
(recall that we take α < N0 + 1)

a) term tfWWJ -w-iNW^ψ^ \\F(Λ_1}l2φt\\: since <7V0/2,

τ(α-l)/2-[N0/2]-2 js ̂  jl^ βy (/f ̂ ^ || F^. 1)/2^ ||Loc(<ίf) = 0(h^2\ which glVCS a

term with norm in Ll(dt) bounded by ChNo+1.
b) term^0τα-(No+1) | |G^||||^0ll:

t\\ \\φ0\\ =hN°τΛ-(No+1)-ll2\\τ1/2Gψt\\ \\φt\\.

Since τ'-^'-^eL2^) and Hτ^G^II ^ C||F1/2^|| using that ||F1/2^||L2(A) =
O(h\ we get a term with L^Λ) norm bounded by ChNo+1.

c) term tf\\F((a-l}l2)-k+β.ψt\\\\F((Λ-l}/2}-β,ψt\k we take j?^^. Then since

Using the induction hypothesis and Cauchy-Schwarz inequality, we get an
Ll(dt) norm bounded by Chk x hNol2hNol2~k+l = ChNo+i.

•d) term tf+'-l\\FΛ-k.βψt\\ \\Fβ.^t\\ for fc^2, /^O: since ίc^2, we have

,

By the induction hypothesis and Cauchy-Schwarz inequality, we get an Ll(dt)
norm bounded by hNol2hNol2hk+f~l = O(hNo+l) since k ̂  2.

e) term hk+Mτβ~(M+ υ || FΛ.k.βψt \\ \\ ψ0 \\ : we take M>βso that T>~(M+ "eL^Λ).

Then if /? = - , one has α - fc - β < — - , so by induction hypothesis we get:

\\FΛ-k-βψt\\La,(dt)^ChN°12. Taking M large enough gives again an l}(dt) norm
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bounded by ChNo+i. So we have proved:

\\Rt\\L^ = 0(hNo + 1). (6.17)

By the same argument as above we get:
r

This implies (H.N0 + 1) using again (6.2).

Using now that Fα ̂  εταF( - ̂  — ε ) we get the rest of the theorem. Π
V τ /

We will now apply the abstract Theorem 6.1 to Schrόdinger operators with
smooth potentials.

We consider Ph= — h2Δ+ V(x\ where V(x) is a potential satisfying the
hypotheses in Sect. 2. We assume that / is an energy interval which is non-trapping
for p = ξ2 + F(x), so that there exist a modification G^x, ξ) of the escape function
G such that the estimate (2.1) in Proposition 2.2 holds. For simplicity of notations
we will still denote by G this new escape function. We take A(t) = G(x, hDx) — bt,
where b will be chosen later. We will first state the following Mourre estimate
which can be proven as in [Gel, Proposition 4.1], [Wa, Proposition 3.2].

Proposition 6.3. Let Ph= —h2Δ + V(x\ where V(x) is a smooth potential satisfying
the hypotheses in Sect. 2 with Vs = 0, such that the energy interval I is non-trapping
for p = ξ2 + V(x\ Then if χ2(λ) is a cutoff function supported in /, there exists some
C0 > 0 such that the following Mourre estimate holds for h small enough:

X2(Ph)LPh, iG]χ2(Ph) ^ C0hχ2(Ph)
2. (6.18)

We take then 0 < b < C0. As noted in the beginning of the section, we will have
to replace Ph by PM = χ0(Ph)P^ where χ0(λ) is a large cutoff function equal to 1
near /.

Finally we take a cutoff function χout(x, ξ) supported in

{(x,ξ)εT*(W)\p(x,ξ)εI9G(x9ξ)^C1} for d>0.

We denote by χout the operator χoui(x9 hDx). We start by proving a proposition
which shows that we can apply Theorem 6.1 (recall that PM = Xo(Ph)Ph for some
large cutoff function χ0):

Proposition 6.4. i) (SΆA(t})
k(Ph t) is bounded uniformly in h.

") Xι(Pk)lPk.ι,iA]Xι(Pk)* (C0 ~ Φxl(Ph) far any ε>OJorhί h(ε).
iii) ( - A(0))*F(A(Q) ^(b- ε))χι(PΛ)χout is bounded with norm

Proof. Let us first prove i). As in Sect. 5, we use the following formula to define
PH,I = Xo(Ph)Ph'- if K(χ) = xXo(x) we denote by K(z) an almost analytic extension
of K(x) which can be taken with compact support. Then we have:
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Then:

= h~ '[PM, G] = - 1 (z)(z - PkΓ
 lh~ llPh, G](z - Pk)~ ldz A dz

2πc oz

= ̂  ί §*)(* - PΛΓ HP* + ι)Λ- HP* + 0" l [P*, G](z - PΛΓ ̂ z Λ dz. (6.19)
2πc dz

Since Λ'HΛ + O"1^^ is bounded and \\(z-PJ-1 ||^(L2iH2) = OdlmzΓ1)
we get that Λ"1^*,!,^)] is bounded uniformly in h.

Using (6.19) to write Λ~"2[[PM,4(ί)]Λ(ί)] gives that (aa^(ί))
2(PΛ,ι) is bounded

uniformly in h. The general case follows by induction, using that (aclG)k(PΛ) is
bounded uniformly in h from H2(X) into L2(X).

Let us now prove ii).
We have:

By (6.18), the first term is bigger than CQhχi(Ph)
2. Let us consider the second term.

We first take a function F^λ), constant at ± oo such that if P'h = F^Pf,), one
has: χ0(P/,) = Xo(P;>). Let us check that [G,P;] = 0(fc) and [[G,P;],P;] =
The fact that [G, P'h ] = 0(h) follows from i), by noticing that one can take an

almost analytic extension Fx(z) of F^x) such that —± has compact support.
Since P'h commutes with (z — PΛ)~ 1, we have: z

[[G,n],n] =f i^-PJ-lLlG,PaPa(z-PJ-ldz Λ dz.
2πc ^z

Now:

Since (P/l + 0"1[PΛ5[G,PΛ]](PΛ + 0~1 has a norm 0(/ι2), [[G,PJ, P^ and
[[G,PJJ,PJJ have also norms 0(h2). Then we can apply Proposition 5.1 to expand
[*o(Phl*'G] to order 1. The first term is χ'0(PΛ)[PΛ,ϊG] which gives 0 by left
multiplication with χι(PΛ). The remainder term is 0(h2). So this gives ii), for h
small enough.

Let us now prove iii). We write

G«F(G S b - e)Xl(Ph)Xmt = G~^+'~ 1F(G ί b -

Using the functional calculus of Helffer-Robert [He-Ro] adapted to non-conformal
metrics in [Gel], we get that for any N:

where χps(x, hDx) is a pseudodifferential operator with total symbol equal to 1 near
supp #out(x, ξ) and RN(h) has an operator norm O(hN) between any weighted Sobolev
spaces Hs

<x>k.
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This gives that modulo error terms of norm O(hN\ GIβ]+1χ1(/>

Λ)χout is a pseudo-
differential operator with total symbol supported in {(x, ξ)\G(x, ξ) ^ C^}. Then by
applying Proposition 5.2, we get that F(G^b-ε)G[Λ]+1χi(Ph)χout has a norm
O(/ι°°). This completes the proof of proposition. Π

We are now able to apply Theorem 6.1 to M. So we get:

Corollary 6.5. Let Ph9 b and G be as Proposition 6.4. Then one has:

7. Minimal Velocity Bounds

In this section we prove minimal velocity bounds in the semiclassical limit by
adapting the arguments of [S-S]. We assume that Ph= — h2Δx+ V(x) is a
Schrόdinger operator with potential V satisfying the hypotheses of Sect. 2 with
Vs = 0 and the Mourre estimate (6.18).

We denote by Gα the propagation observable

We take v2<b<C0, where C0 is the constant in (6.18). We denote by A0 the
generator of dilations \h(x Dx + Dx x).

We first prove a lemma which extends [S-S, Lemma 3.2]:

Lemma7.1. 3Γ0 such that one has for t^. T0:

D

where <Λ0,t> satisfies:

Proof. We have:

where G'=^

So: σ|X|

ίh-'[?», GJ = 2G'ΛA0 +1ΔGΛ - 2hG'a,

Since G^ ̂  0, we have:

where we will denote by Fs an operator of the form t* x Kfl , ί I, where Kf(s, t)

is a bounded function supported in {selR|s ̂  v}.
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With this notation, we get:

where R0 α is a multiplication operator of the form hτΛ~2K0ί 1. By Hypothesis

(H.5) and Proposition 2.2, we know that G(x,hDx) = A0 + RQ, where R0 is a
bounded operator, and we get:

to-'IΛ.G.] = 2F(α/2)_1GF(α/2)_1 + R0<a + 2FW 2 )_ IΛ0FW 2 )_1. (7.2)

Now we use that:

(G> \
\ t = a ) +

which gives:

where:

Λι.. = 2βtFw2)_1F^^β^FW2)_1,

We can rewrite R2a as:

We have:
K*3..>l = IC'W2,-iGF(-5T^G^O)Fw2)_1^^)|

^2^τ||F( t (/2)_1u( | |
2. (7.4)

Using (7.4) and the fact that R0 is bounded, we get:

^-1[PΛ,GJ^2(α-2,5)ίFα_2 + R0jα + R1 > α + K2,α, for ί^T0. (7.5)

In the next step we will estimate the terms Λ1>β and R2ιΛ. Let us begin with /? l jβ.
We have:

It is straightforward using pseudodifferential calculus and hypothesis (H.5) to check

that (aίiGπ Kαί ,ί J J is bounded uniformly in h and ί.

Applying then the commutator expansion, we get:
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From this we obtain:

315

Let us now estimate R2ιβ. We have:

F(x/2}_lGF(G^-δτ)F(x/2}_1=Fx_2GF(G^ -δτ)

+ fW2,-ι[GF(G ί£ -<5τ),F(α/2)_J.

The second term in the r.h.s. of (7.7) is equal to:

Expanding the commutator gives:

(7.6)

(7.7)

— , where F^s) = sF(s ^ —δ). From this we
τ

Using the estimates of Theorem 6.1 with A(t) = G, we get finally that:

AC*
To complete the proof of the lemma, we just have to compute —-. As in [S-S],

we have:

α (ht2 — |γ | 2 W 2

Since also G'x = -(- G._2) - - - j^—Γ, we get for t ̂  Γ0:

which proves the lemma.
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We now prove the analog of [S-S, Theorem 3.1]. We use the notations of the
end of Sect. 6.

We ask moreover that the cutoff function χout(x, ζ) is supported in

(x6RΛ | |x|^v(T0-f l) + ε0},

where T0 is the time in Lemma 7.1.

Theorem 7.2. Let χ^(λ\ χout(x,hDx) be as in Proposition 6.4. Then for t ̂  T0, one
has:

Proof. Similarly to Theorem 6.1, the proof is done by considering the observable
GΛ and by induction on α. Lemma 7.1 and negativity of the observable GΛ gives:

Γ°
+ CNhN + Ch J <»*-2 II G0φt \\2dt. (7.9)

Γ0

By the pseudodifferential calculus, we have

so

<

For α < 1, (7.9) yields:

T<θΊG0^||2A£Cfc V<5<0
To

Vί£T 0 :<ί> a | |G 0 ιM 2 gCΛ V5<1.

The last estimate follows from:

Let us check by induction on N that one has:

CNhN Vδ<N-l, (7.10)
To

Vί^T 0 <f>*IIGolM 2 ^CNhN Vδ<N. (7.11)

Assume that (7.10), (7.11) hold for N = JV0. Using (7.9) for α < N0 + 1, and (7.10)
for δ<N0- 1 to estimate the r.h.s. of (7.9) gives immediately (7.10), (7.11) for

This completes the proof of the theorem. Π

For use in Sect. 3, we will now consider the case of an Hamiltonian satisfying the
hypotheses (H) of Sect. 2. From hypothesis (H.6\ there are no trapped trajectories
on p~^(I) near infinity, but we assume that there may exist trapped trajectories
near the origin. In other words the semiclassical Mourre estimate (6.18) does not
hold. By hypothesis (H.7\ there exists a C£ function W such that if p1 — p + W, I
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is non-trapping for p±. We put Phl =Ph+ W— vs. By Proposition 2.2, one can
modify the escape function G in a compact set of T*(Rn) such that HPIG^ c0 on
p^(I). We will still denote by G this new modified escape function.

Let us denote by χout(x,^)eC^(Γ*R") a cutoff function supported in

where R1 is large enough such that supp Vs a {\χ\ g R1 — 1} and:

C1 = sup G(x,£).
xesupp W u supp Vs, p i (x,ξ)el

The following remark will be used in the proof of Theorem 7.3 below:

Remark 5. Since HPIG ^ c0 on p^(I)9 we get that:
-i

V(x,£)esuppχoutf|(/),Vί^O, one has: πx(e\ptHpί(x,ξ))φsuppWvsupp Vs.
i

Then we have the following result:

Theorem 7.3. Let χ(λ) be a cutoff function supported in p~\I). Then:

χ(Ph)eitPhlhχoui(χ, hDx) = χ(PM)*-ίίPh '/Λχout(χ, hDx) + R^h)

where:

in

Proo/. We use the following standard formula:

e-itph/h = e-itph,l/h _ (ih)- 1 ̂ e-i(t-s)phih(w _

0

Let us take another cutoff function χ^λ) supported in p~l(I) with χWχ^λ) = χ(λ).
Using the functional calculus ([He-Ro], [Gel]), Proposition 5.4, and the fact that
χout is supported away from the support of VS9 we get that:

where χout(x, hDx, h) is a pseudodifferential operator with total symbol supported
in suppχ^np"1^), and R^h) has an operator norm 0(/j°°). From this we get:

out = χ(Ph)e-itPh/h

χί(Ph)χout

= χ(Ph)e-itP»'hχout(x, hDx9 h) + Λω(ί, ft), (7.14)

where R^t.h) has an operator norm 0(/ι°°) uniformly in h.
By the same argument, using that on supp χout(x, ξ9 h) p is equal to px , we have:

χ(Ph)e-^hχmi(x9 hDx9 h) = χ(Ph)e-itPhlhχ2(Phtl)χoui(x, hDx9 h) + R^t, h). (7.15)

Here χ2(λ) is another function equal to 1 on /. Using (7.12) we get:

1 e-i(t-s}Ph/hχ(Ph)(W-
o

(7.16)



318 C. Gerard and I. M. Sigal

Let us consider now χ(Ph)(W- Vs)e-isPh ί"'χ2(PhΛ)χout.
We first remark that by Egorov's theorem (see [Ro]) and using the Remark 5,

we get:

|| χ(Ph)(W- Fs)C-ίs/>'""*χ2(PM)χ0u, I I = Os(h<°). (7.17)

So we only have to consider what happens for s ̂  s0, s0 » 1. We have:

χ(Ph)(W- V^e-^ ^χ^P^χ^ '

- VS)F(G ί b(sy)χ2(Ph,1)e-ί*p"»'χout

= S^'' •'"'

Using Corollary 6.5 applied to PA>1 and the fact that Vs is PA-bounded, we get that:

for s=s° (7 18)

Let us consider now /2(s). We write:

<syNχ(Ph)(W- Vs)χ2(PhΛ)F(G Z

= X(P,,)(W- Vs)χ2(Phtl)(G + if Ft(G =

Here FΊ(A) is a cutoff function such that F tF = F. One first notices that:

G + iΓNF(G ^ fr<s» || ̂  CN. (7.19)

Then we use that Vs and W are compactly supported multiplicative potentials.
We take a cutoff function χ0(x)eC^(R") such that (W- VS) = (W- Vs)χ0. So we
have:

χ(Ph)(W- V,

Then χ(Pι,)(W— Vs) is a bounded operator and XoWyfaί^A.iίί^ + if >s (modulo a
term of norm 0(hx)), a pseudodifferential operator with symbol supported in a
region where |G(x,<*;)| ̂  Cj +£0. Let χj(A) be a cutoff function equal to 1 near
L — C i ε<), C i + £Q J.

Then using Proposition 5.2, we get that:

*oMX2(/V)(C + 0"(1 - *ι(G)) =

So:

= 0(Λ«)

for S ^V (7-20)

for s ̂  s0 with fc<s0> ̂  2(Cj + ε0).
Using (7.19) we get:
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Using (7.16), (7.17) -(7.20) we get:

Using again Remark 5 and Corollary 6.5, we get:

χ(Ph)e-i">" "l'χ2(Ph,1)χoM = χ(Ph)F(\x\ ΪC + ε0)e~"p" '»'

Here C is such that supp(W + V,) <= {|χ| <; C} and ε0 is small enough. Then by
Proposition 5.4 we have:

χ(P»)F(|x| ̂  C + ε0) = χ(PM)F(|x| ̂  C + ε0)

So:

)F(|x| £ C + β0)β-ftΛ '/*χ2(

(Here and above the remainders O(Λ°°) are uniform in ίeR+). But again by
Proposition 5.4, χout = χι(Ph)χout + 0(A"°) (see (7.13)) = χι(P^)oui + O(Λ<°) so:

which is the desired result. Π

A. Appendix 1

In this section, we prove that generalized many-body Schrόdinger operators satisfy
the hypotheses (H), as indicated in Example 2, Sect. 2.

We first review the definition of generalized many-body Schrόdinger operators
introduced by Agmon [Ag]. One considers a finite dimensional real vector space X
with a positive definite quadratic form, and a finite family {Xa}, aeA of linear
vector subspaces of X closed under intersection and obeying (°) Xa = {0} and

aej/

Xe{Xa}. One denotes by Xa the space X^ by πfl,πα the orthogonal projections
on Xa and Xa.

On jtf one puts a partial ordering by saying that b c a if ΛΓb c= Jffl. With this order-

ing one gets that Xflmax = {0}. Let as before Dx = -dx and let <x> = (1 + g(x, x))1/2.

One defines a many-body Schrodinger operator by:

where: V(x) = £ Vfl(παx) and gf' is the dual quadratic form of g.
aejtf

We assume that KΛeC°°(Jία,R) satisfies:

(H.I) |^F,(y)|^Cα<y>-^-|α| for p >0,

From now on we can as well assume that (X, g) is R" with the usual metric
and Ph =-h2Δ+ V(x). We will denote by p(x9 ξ) = ξ2 + V(x) the symbol of Ph.

The generalization of regular many-body Schrodinger operators introduced
above allows for example to add /c-body forces or exterior fields without changing
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the nature of the problem. The many-body structure of the potential energy term
is most naturally described by the use of the following metric on T*(X):

Let us denote it by g for simplicity. Then with the definitions of Sect. 2, we get
that p(x, ξ) is in the symbol class S(<£>2,0). To describe the behaviour of a classical
many-body system near infinity, one has to consider its subhamiltonians, which
are defined as follows:
for aestf, a / αmax, we set:

«-, t def
_α/,-α κα\ == (£<*\2 _ι_ \^ ϊ/ (γ"\ = (Pa\ -4- Va(\a\

b cza

The energy levels which are trapping for a subhamiltonian are the exact classical
analogs of the thresholds for the quantum Hamiltonian Ph. We have the following
proposition, which was proven for in the case of three-particle Hamiltonians by
Gerard [Gel] and in the general case by Wang [Wa].

Proposition A.l. Let p(x, ξ) be a classical many-body Hamiltonian and let I c= R an
energy interval which is non-trapping for all pa, a^amΛK, and such that Qφl.

Then there exist a function G(x,ξ)6C°°(Γ*(Rw)) and constants C^C^SQ such
that:

HpG(x9ξ)^C0>Q on p-1(/)ι

where r(x,ξ)eS((ξy*9g).
If I is also non-trapping for p9 then one has moreover:

HpG(x9ξ)^C0>0 on p-*(I).

Note that the condition 0^7 is equivalent to / non-trapping for pαmin(x, ξ) = ξ2.
Finally we prove that one can modify the potential V(x) on a compact set to

make / non- trapping, so that p satisfies hypothesis (H.7).

Lemma A.2. Let p(x, ξ) a many-body classical Hamiltonian and I an energy interval
such that I is non-trapping for all pa, a / αmax. Let G(x, ξ) be the escape function of
Proposition A.I. Then there exists a function W(x)eC£(X) such that ίfp = p+W
one has:

HfiG^C0 on p-\I).

Proof. By a covering argument, it suffices to consider the case when / is a small
neighborhood of an energy level λQ. We choose a function χ6CJ(R+) with χ' ̂  0,
such that χ(s) = 1 for 0 ̂  5 ̂  1/2, χ(2/3) = 1/2, χ(s) = 0 for 5 ̂  1.

We will choose W(x) = C1 χl — for some constants C± , C2 to be chosen later.

Recall that given any ε > 0, the escape function G can be chosen such that
G^-ε everywhere (see [Wa, Theorem 2.2]) and that G = x-ξ + r, with
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ε 2
We first notice that if \p — λ0\^— , one has |x|^-C2, as soon as

Ci ^ C!(AO, V,&ι\ since in [s ^ 2/3} one has χ(s) ̂  1/2.

We also know that HPG ^ C0 in |/? - λ\ g ε l 9 and |x| ^ C0. If W ^ (1 - ε0)C2, ε0

depending only on ε l 9 and if ]p — λ| ̂  — , one has |p — λ\ ̂  ε1? so HPG ^ C0. Also:

if we take Ci/C2 large enough.
So it remains to consider the region:

\p-λ\£—9 and -
^ j

In this region we have:

Since HPG ^ -ε, with ε small fixed, by taking Cl > C^Co, A0, K,ε), and — large

enough we get: 2

C ε 2
H*G~Ύ m ' P " A I = 2 " » -C2£|x|^(l-β0)C2.

This completes the proof of the lemma. Π

B. Appendix 2

In this section we collect some technical computations. In the statement of the first
proposition we use the notations of the proof of Theorem 3.7.

Proposition B.l. Let us put a (h) = Γ(h)/h. Then one has:

t Oί7ι°°V~(ί~s)fl

Km(a, t) = f ̂ --^ ds =
0 <5>"

uniformly for h^ε0 and t ̂  0.

Proof. We have to estimate:

uniformly for 0 < h< ε0 and for ί ̂  0.
Let us consider different cases:

Case A: t ̂  CΊ for some CΊ > 1. Then:

In<Cn}easds + Cn\^-ds^a-\ec^-\) + Cn\
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Let us denote by Jn the last integral. We have:

at pS

a "

We consider now different subcases:

Case A.I: C ~ 1 g a ̂  C0 for some C0 > 0.

(5~ Vy = s" V - ns~n + 1es ̂  ±sV. (B.I)

Let sn be such that for s ̂  sn one has:

We can write:

) ess~nds= ] ess~nds + ]ess~nds.
aC\ aC\ sn

Since a is bounded below, we can always assume that aC1 ^ sπ, by taking C1 large
enough, so we just have to consider the last integral. By (B.I) it is> bounded by:

Cn((atΓneat-C'n).

So we get that:

e

c»a — 1 eat

n
a atn

So finally using that CQ l ^ α ̂  C0, we get:

Case A.2: a = oh(l). We have again to compute Jn. We have to consider two
subcases:

Case A.2i): at ̂  sn.
Then we have:

So we get finally:

C ι α _ ι

a tn~ at"

since at ̂  sn and a~l(eCιa - 1) is bounded.

CaseA.2ίί): at^.sn. Then:

By (B.I), the last integral is bounded by Cn(at)~tteat. So we get finally:

n
atn
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CaseA.3: a~l=oh(i).
Then for h small enough Jn can be estimated using (B. 1) since a ̂  sπ, and we get:

a at

Let us now consider the case when t is bounded.

Case B: t ̂  CΊ for some Cl > 1. Then:

Since t ̂  C l 9 we get that:

α

It is now straightforward to check that in all cases Kn is bounded by:

which completes the proof of the Proposition. Π

We now give a computation used in the proof of Theorem 3.8. As above we
denote by a(h) the width Γ(h)/h. We use the notations in the proof of Theorem 3.8.

Proposition B.2. Ifa(h) = Oh(l) then:

|| rβ(ί) || ̂  Ce~at(ί -α)(l + α~ 1/2(1 - <ΓCflί)1/2).

Proo/. The estimate on J(t,h)= ||rα(ί)|| when α"1 is oh(l) is obvious. Let us now
consider the case when a = Oh(l) and for simplicity of notations replace Ph ^ by
Ph. We write: J(ί, h)2 = e ~ 2tal(t, h), where:

I(t,h) = ]ds]ds\e-is(p*-Evhκ(Ph)^^^
o o

Let us put ReE = E0. Then:

We put s 4- s' = σ and s — sf = σ'. Then:

/(ί, A) =

where ί2 is the region drawn on Fig. 1.
Let σ0 be a time such that no trajectory starting from supp χout is still in supp χout

for t ̂  σ0. Let us first assume that αί ̂  σ0. Then by the results of Sect. 7, we know
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T -

^0"

-α —

X
\

, a>
σ0 T 2T - σ0

"\
/2T σ

-T-

Fig. 1.

that for s ̂  σ0, one has:

* e-it(Ph-Eo>/h 2
out^ A

/ fcoo \

II = 01 — _ I
u t H \ /f\°o /

Accordingly we cut ί2 in four pieces as shown in Fig. 1.
Let us now compute the various integrals.

Integral on Ω^: We integrate first in σ' and get an integral which is O(h°°) by the
previous remark. Then the integral in σ gives a term which is 0(ft°°)(α~ 1e2aat — 1).

Integral on Ω2: The integral is not better than 0(1), so we get a term equal to:

Integral on Ω3: We integrate first in σ' and get a term which is O(σ). Then the
integral in σ gives: 0(a~1(eas°- 1)).

Integral on Ω4: We integrate first in σ' and get a term 0(2αί — σ). Then the integral
in σ gives a term which is:

0(a-1e2aΛt(l-e-aso)).

Let us now estimate e~2atl(t,h). If we denote by At the term coming from the
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integral on Ωh we see that A1 can be absorbed into A2 and we get:

A2 = 0(a~1)(e~a(so+2t(1~Λ))-ea(so~2t}l

A4 = 0(a~ >- 2βί(1 -α)(l - e'aso).

We will now find a simpler upper bound by considering separately the two cases
Ci^a for some constant CΊ and a = oh(l).

Case 1: Then one gets easily that for ί ;> T0, J(t,h)2 is 0(a~le~2at(l~Λ}).

Case 2. : We use that if a = oh(l) then a~ \i - e±soa) is Oh(l). We find that Ai for
ι = 1,3,4 are 0(e~2at(1-a}). For A2 we get:

A2 ^ Ca-le-2at(l-*\\e-*s°- 1| + |1 -ea(s°-Λt)\).

By the previous remark this completes the proof of the proposition. Π

C. Appendix 3

In this section, we will prove Proposition 3.5. We will prove the following lemma,
which implies directly Proposition 3.5.

Lemma C.I. Let uh be a quasiresonant state. Then uh satisfies thefollowing properties:

i) VC^Oa*! suchthat FSwhn{|x| ̂ R,} c {(x9ξ)\G(x9ξ)^ί Cj.

If moreover:

FSuh n sing supp Vs = 0 (C. 1)

then thefollowing properties hold:

ii) FSuW\l\

iii) FSuh ci Γ+ o VCj » 1, FSuh n {G(x, ξ)^-C1} = 09

iv) FSιι f cn{|x|^Λ}

v) FSwh c Γ+ o VΛ ^ 1,

Proof. Proof of ϊ): Let (x0,ξ0)eFSMΛn{|x| ̂ ^i}, for some Λ!^!. We choose
some #o^l such that HpG^c0 in {|x| ^R0}np~l(I) and Ks = 0in { |x|^Λ0}
Then we know that for - T0 ̂  ί ̂  0, where T0 = e^/^ - RQ). ^^XQ, ξ0)

 stays ^n

{|x| ̂  KO}, and hence in FSuh by Theorem 3.2. So we have G(φΓo(x0, £0)) ̂  C0,
by Definition 3.4. Since HpG^.c0 along the trajectory, we get that
G(x0> £o) ̂  CO -h CoεoίRi — RQ). This can be made bigger than C1 by choosing R1

big enough, which proves i).

Proof of n): Let (x0,ξ0)eT*(Rn)nFSMh. If x0esuppFs, then (xQ9ξ0)φFSuh by
hypothesis (C.I). If x0£supp V89 then uh solves:

(C2)

microlocally near (x0, ξ0\ and E(h)-+λ0 with /10

6A so by ellipticity one has
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Proof of Hi): =>: This follows from the fact that 3 C0 such that Γ+ c {G(x, ξ) ̂  - C0}
(see [Ge-Sj, Appendix]).

<=:Let (xo,£o)eΓ*(R*)nFStιΛ. If x0esuppFs, then (x0,ξ_0)φFSu, by hypo-
thesis (C.I). So we can assume that x0£supp VS9 and (x0, £0)ep l(I) by ϋ) Suppose
that (x0, £0)£/V Since outside the set of trapped trajectories K, dp is non-zero, and
since Γ+ is Hp invariant, dp is non-zero along the whole Hp trajectory starting
from (x0, ξ0). We consider two different cases:

Case 1: There exists a minimal time T such that πxφτ(x0, £0)esupp Vs. We will
then say that (x0, ξ0) is a point of type 1. Then by hypothesis (C.I), we know that
Φτ+ε(

χo> ζo)ΦFSuh f°Γ ε small enough. Since uh solves (C.2) along the Hp trajectory
between ^Γ+εC^o^o) and (xo>£o)> we can aPPty Theorem 3.2 and get that

Case 2: The Hp trajectory starting backwards from (x0,£o) does not meet
supp Vs. We will then say that (x0, ξ0) is a point of type 2. Then since (x0, ξ0)φΓ+9

we get easily that G(φt(x0, ξ0)) -> - oo when ί -> - oo. Applying again Theorem 3.2,
we get that if (x0, ξ0)eFSuh then there exists some points in FSuhn{G^ — C x}
for CΊ ^ 1, which gives a contradiction.

Proof of iv): Let (x0,ξ0)eFSufcn{|x| ^Λ} and (x0,£o)£Γ+. If (x0,£o) is a Point of

type 1, then (x0, ξo)φFSuh by the same argument as above. If (x0, ξ0) is of type 2,
then since (x0, ξQ)φΓ+, one knows that φt(x0, ίo)-^ °°> G(Φt(xo> ίo))^ — °°ί when
ί-> — oo. By the same argument as in the proof of iii), we get that there would
exist a point φt(xQ9 ξQ)eFSuhn{(x, ξ)\\x\^R9 G(x, ξ) ̂  C l 9 for any R, C±. This gives
a contradiction and proves iv).

Proof of v): => is obvious. To prove <=, it suffices as above to consider a point
(xo,ζo)€FSuh of type 2 which does not belong to/V Since (x0)£F+, we know
that ^(XQ, £o)~> °° when f-> — oo. Using Theorem 3.2 .and the fact that Γ+ is Hp

invariant, we get a contradiction. This completes the proof of the lemma. Q
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