
Commun. Math. Phys. 144, 351-372 (1992) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1992

Level-Rank Duality of WZW Models
in Conformal Field Theory

Tomoki Nakanishi and Akihiro Tsuchiya

Department of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464, Japan

Received August 13, 1990

Dedicated to Professor Masahisa Adachi on his 60th birthday

Abstract. We consider the decomposition of the conformal blocks under the conformal
embeddings. The case gl(lr)\ D sl(l)r x sl(r)ι x a (ά is an affine extension of the
abelian subalgebra of the central elements of gl(lr)) is studied in detail. The reciprocal
decompositions of gl(lr)\-modules induce a pairing between the spaces of conformal
blocks of sϊ(l)r and sl(r)ι Wess-Zumino-Witten models on the Riemann sphere. The
completeness of the pairing is shown. Hence it defines a duality between two spaces.

1. Introduction

The curiosity about the affine Lie algebras pair sl(l)r and sl(r)ι have appeared in
several contexts. In [F], it was found that there is a mutually commutative embedding
of affine Lie algebras

ΐl(l)rxΐl(r)ιcgi(lr)ι. (1.1)

Remarkably, mutually transposed pairs of representations Y ® ιY of sl(l)r x sl(r)ι
appeared in the reciprocal decomposition of irreducible representations of gl(lr)\ [F],
and the decomposition formula for the character of gl(lr)\ [JM]. The branching rule
of the embedding (1.1) was studied in [H, ABI] in detail.

For any reductive affine Lie algebra, one can associate a Wess-Zumino-Witten
(WZW) model [Wi] using the Sugawara construction [KZ, GWi]. Recently, two direct
connections between sl(l)r and sl(r)ι WZW models were found: The first one is an
equality between the fusion rules of the both models proved in [KN, GWe] and
partially proved in [SA]:

Λτγ3 ΐl(l)r _ N

t γ l Tl(Dι (Λ y\

where the Young diagrams Yi representing the primary fields, their sizes \Yi\ are
related as |Yi| + \Yι\ = \Ys\ and *Y is the transposition of Y. The second one is
strong evidence of the existence of a duality relation between the conformal blocks
of 4-point functions of both models [NS].
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In this article, we show a duality relation between the spaces of conformal blocks of
sl(l)r and sl(r)ι WZW models on the Riemann sphere using the theory of conformal
blocks developed in [TK, TUY, FS, MS]. To construct the duality, we use a conformal
embedding [GR, G, GNO]

7 l ( l ) r x ΐl(r)ι x ά c gl(lr)ι, (1.3)

where d is an affine extension of the abelian subalgebra of the central elements of

gl(lr). The embedding (1.3) induces the decomposition of the gl{lr)\ conformal blocks

into the sum of the sl(l)r x sl(r)ι x d conformal blocks:

where 9CχJ{ (X = G, L, R, A) denotes the space of the conformal blocks of gl(lr)ι,

sl(l)r, sl(r)ι, a having representations μ == (μi, . . . , //AT) as the external states (see

Sect. 2 for the definition). Because the dimensions of the conformal blocks of gl(lr)\

and d WZW models on the Riemann sphere are at most one, the domposition (1.4)

determined the coefficient matrix C(p, λ, λ')aβ by taking bases of 9ZL^ and 9
The equivalence of the energy-momentum tensors of both sides of (1.3) guarantees
that this matrix is independent of the insertion points of the external states.

Our main assertion in this paper (Sect. 4, Theorem) is a fact

d e t C ( p , λ , λ ' ) ^ 0 (1.5)

if λ and λ' is included in the branching rule of p, and the dimensions of the space

of the conformal blocks 9^ , 9£ ' are not zero. The non-singular matrix (1.5) then
λ λ

determines a duality between two spaces 9C ' and 9C, , which justify the observation
λ λ

of [NS]. If all of the external fields of the conformal blocks of gl(lr)\ are the same, it
is invariant under the braid group. It follows that the braid matrices of both invariant
subspaces of sl(l)r and sl(r)ι conformal blocks are contragradient to each other up to a
phase factor (Sect. 4, Proposition). A key fact for our proof of (1.5) is the irreducibility
of the conformal blocks of si under the braid group if all the external fields are those
of the vector representation. To prove the general case, we shall extensively use the
commutativity of the operations of factorization and the decomposition, which is a
consequence of the equivalence of the energy-momentum tensors of the conformal
embedding (1.3).

In Sect. 2, we formulate the decomposition of the conformal blocks of the g WZW
model into those of h WZW model for a conformal embedding g D h. In Sect. 3,
we prepare several facts about the conformal embedding (1.3) realized on the free
fermion Fock space. Especially, the highest weight states of sl(l)r x sl(r)ι x d and
the branching rule are reviewed. In Sect. 4, we derive a pairing between the spaces
of conformal blocks of sl(l)r and sl(r)ι WZW models, and give its consequences on
the braid matrices of these dual conformal blocks. In Sect. 5, we give a proof of the
completeness of the pairing. In Sect. 6 we discuss further extensions of the duality.
The conformal blocks of gl{lr)\ and d are given in the appendix.

We remark recent relevant works. The level-rank duality appears in the quantum
groups Uq(sl(l)) and UQ(sl(r)) at I + r t h root of unity [FD, SA, NRS]. The duality is
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also related to non-diagonal modular invariants of WZW models [Wa, ABI]. There
is a closely related work [GWe] in which the level-rank duality was studied in the
Hecke algebra. There are other branches of physical systems where the level-rank
duality plays important roles such as the two dimensional integrable lattice models
called the restricted solid-on-solid (RSOS) models [JMO, KN, KNS, BR], the Chern-
Simons topological field theory [NRS], a series of non-unitary minimal models of
Wn algebra and their deformations [KNS, ABS].

2. Decomposition of the Conformal Blocks for Conformal Embeddings

An affine Lie algebra pair g D h is called a conformal embedding if the central
charges of their Virasoro subalgebras satisfy the equality

c(g) = c(h). (2.1)

Such examples are initiated by [GO, GNO] and studied in the context of the string
model building [BETZ]. The complete classification was given in [BB, SW]. The
important feature of the conformal embedding is that the energy-momentum tensor
of both models coincide, i.e.,

(2.2)

Below we consider the decomposition of the conformal blocks of the JV-point
functions on the Riemann sphere of the g WZW model by the one of the h WZW
model for a conformal embedding g D h. As for the formulation of conformal blocks,
we follow the one in [TK, TUY] and consult them in further detail.

Let Z = (zi)fL{ be the collection of the N different points on the sphere and
attach an integrable representation λ; for each point zι. Lχ denotes the representation

/ N \ *
space of λ. Let us introduce the dual space LI = (g) Lχ . From the set of

λ \i=i /
currents Ji(z) associated to an orthogonal basis of a simple Lie algebra g, the energy
momentum tensor of g is defined through the Sugawara construction [KZ]

^ rank

T(z) = WTT) ΣWTT)

= i™ 2^Po Σ
with g* and I the dual Coxeter number and the level of g respectively. For a general re-
ductive g, the energy-momentum tensor is given by the sum of the energy-momentum
tensors of its simple or abelian components.

A conformal block (Φ^(Z)\ is defined as follows [TUY]:

1) For each Z, (Φ^(Z)\ belongs to the dual space Z/L

2) For each Z, (Φ^(Z)\ satisfies the gauge invariance condition. Namely, for any
meromorphic function ξ(w) on the sphere which is holomorphic outside the points Z,
the following residue formula for the currents J/ holds:

N

(ΦX(Z)\ ^2ResZi[ξ(w)ρi(JI(w))dw] = 0. (2.4)
2 = 1
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Here ρι restricts the action of currents Ji(w) only on the ith representation Â .
3) It satisfies the following differential equation

dZi (Φχ(Z)\ = (Φχ(Z)\ Res,. ρi(T(w)dw). (2.5)

We define the space 9y(Z) as the subspace of L\ consisting of the elements satisfying

the above condition 2) at Z. Also 9$ denotes the space of the conformal blocks.

Each g integrable representation Â  decomposes into a finite number of irreducible

components as an h representation like

μi)®£μ ), (2.6)

where the space of branching coeffients B(λ μ) is finite dimensional. Define

the set 6(λ) = {μ = (μi, . . . , μτv)| aim B(\i\μi) > 0 for alii} and the space

- N

B(λ; μ) = 0 B(λi\ μι). Then there is an isomorphism
i=l

φ : L[ -. 0 (B*(λ; μ) 0 φ . (2.7)
βebx

The main claim in this section is the following decomposition property of confor-

mal blocks of g WZW model into those of h WZW model:

Let us choose bases {(Ψχ(Z)\a}a, {(Ψff(Z)\β}β of the spaces of the conformal

blocks of g and h WZW models respectively, and also choose a basis {/(λ; μ)k}k of

the space #*(λ; μ). Then,

<ίf(Z)|α= Σ ΣC{\yμf*f(\\ϊl)k®{Ψ${Z)\β, (2.8)
μeb(X) β^

where C(λ, μ)^ are constants independent of coordinates Z.

Notice that sometimes the space of the conformal blocks of h WZW model with
the states μ is zero-dimensional and does not contributes to the summation of the
r.h.s. in Eq. (2.8).

Let us explain the decomposition (2.8). Suppose that a vector (Y9(Z)\eL\
λ λ

belongs to the ^-gauge invariant subspace 9C *(Z), and has a decomposition

φ((T9(Z)\)= Σ/(λ;μ)fc ® (Γ$(Z)\k with {r^{Z)\keL^ For any current J 7 of
μ,k

he g,
N

0 = (r?(Z)\ Σ R^Zι[ξ(w)ρi(JI(w))dw]
2 = 1

= Σ /(λ; μ)k ® {Γ?{Z)\k 2 ResZi [ξ(w)ρi(JI(w))dw]. (2.9)
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Fig. 1. A degenerate limit of the conformal blocks

From the linear independence of /(λ;μ)fc's, it follows that {Γff(Z)\k belongs to

the /i,-gauge invariant subspace 9CH\Z). Hence, the isomoφhism (2.7) induces the

inclusion

φ : 9CG\Z) --> 0 £*(λ; μ) ® 9CH\Z). (2.10)

βeb(λ)

We thus obtain the decomposition of a base (ψ9(Z) L as in (2.8) except for the fact
λ

that the coefficients C(λ, μ)^k might depend on the coordinate Z. Now recall the fact
that the energy momentum tensors of g and h coincide. By considering the action of
the operator Res^. ρι{T(w)dw) and using (2.5), we obtain the equation

0= Σ Σ(dZiC(λ,μ)ik)f(Mμ)k® {Ψ?{Z)\β , (2.11)
μeb(X) β>k

From the linear independence of the basis f(λ,μ)k ® (\Pp(Z)\β, the coefficients

C(λ, μ)^k are indeed constants.
We remark here the commutativity of the factorization [FS, TUY] and the de-

composition (2.8). Consider a degenerate limit where an iV-points block splits into
N\ + 1 and N2 + 1-points blocks (iVΊ + N2 = N) as in Fig. 1. It induces a canonical
isomoφhism

F a c : ψ?\ % φ qβ\ ®Ψ9^ (2.12)
A Vl^ ( Λ l > λ

i n t ) (λint>Λ2)
Λint

where

(λi 7 \it) = (λi, , λiv,, λ i n t),

and λint and λ*t represent an intermediate state and its conjugate. Since the decom-
position (2.8) is independent of Z, we have a following commutative diagram:

μeb(λ)

"I" (2.14)

We shall extensively use this fact in the proof of our main theorem.
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3. Branching Rule for gl(lr)t D sl(l)r X ΐl(r\ x α

In this section we present the branching formula for the conformal embedding

gl(lr)ι D sl(l)r x sl(r)ι x d following [H]. This was also studied in [ABI, Wa].

3.1. Fermionic Construction of gl(lr)\ in the Neveu-Schwartz Sector

The conformal embedding gl(lr)\ D sl(l)r x sl(r)ι x d is most conveniently realized
by considering the free fermions having sl(l) x sl(r) symmetry. Consider the Ir
fermions ψw (1 <j<l,l<p<r) and their conjugates ψjP. Here, the index
j(p) represents the vector representation of sl(l) (sl(r)), respectively. Throughout this
paper, we assume the Neveu-Schwartz boundary condition

Φip(z)= Σ «"n~1/Vp(n), ΦjP(z)= 2 z-n-ι/2φjp(n). (3.1)
n€Z+l/2 neZ+l/2

The canonical commutation relations are given by

Wvin\ φkq(m)} = <^<W,o (3.2)

The currents are expressed through the bilinear combinations of fermions as

ί ι 4P

q(n) = 5 3 : ΨJP(n - m)φkg(m):,
m

Jj

k(n) (jφk), Ji(ή)

p=l m

ΐl(r)ι Jp

q{n) (p φ q), Jζ(n) - J%\{n) (p = 1, . . . , r - 1), <3 3 )

i

Jp

q(n) = 5 3 Σ : ΨiP(n - rn)ψjq(m):,
j=\ m

I r

j = l p = l 771

We are now interested in the representation of gl(lr)\ on the fermion Fock space
F defined from the vacuum state |0) with

φjp(n)\0) = ψjp(ή)\0) =0 for n > 0. (3.4)

With respect to the gl(lr)\, the Fock space F is reducible and decomposes as

oo

F= 5 3 Fp, (3.5)
p=—oo

where the d-charge p counts the number of fermion creation operators ψip(—ri) minus
the number of conjugate fermion creation operators ψjP(—n) in a state over the
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vacuum. By the conformal embedding gl(lr)\ D sϊ(lr)\ x α, each space Fp factorizes
into

Fp * L Λ p <g> Hp , (3.6)

where Λp is the pth fundamental weight of sl(lr)\ (with the convention Λp = Λpr if
p = p' mod Ir), and Hp is the charge p representation of the abelian part α.

For n e Z + | , 1 < j < I, 1 < p < r, the state SjP(ri) of energy n is created by
ψip(—n) and annihilated by ψjP(n). The vacuum state |0) in Eq. (3.4) occupies all
the negative energy states. There is an effective way to represent the basis elements
of the Fock space using the 2-component Maya diagrams [H]. First, we introduce the
infinite series of I by r rectangles {[/,r]n} labeled by n e Z + \. We arrange them
in a row so that the right vertical edge of [/, r]n is attached to the left vertical edge
of [/,r]n+i as follows:

(3.7)

-3/2 -1/2 1/2 3/2

A 2-component Maya diagram M is an ordered set

M = {mjp(n) I mjp(n) = E3 or D (l < j < 1,1 < p < r, n G Z + \)

such that rrijP(n) = M for n <C 0, mjp(n) = D for n > 0} ,

and ./^ r denotes the set of all the 2-component Maya diagrams. We shall identify
rrijp(n) of M with the (j,p)th box of [Z,r]n. There is a one-to-one correspondence
between the elements of y/S[ and the basis elements of the Fock space F as

(3.9)
n < 0 n<0

mjp(n)=Π

(We do not mind the signature ambiguity from the ordering of the fermions.) In other
words, we hatch the 0,p) t h box in [Z, r]n if the state SjP(n) is occupied, and we leave
it blank, if the state SjP(ή) is empty. Here, we give some examples in the case I = 2,
r = 3.

energy -3/2 -1/2 1/2 3/2

(3.10)

the Fermi sea level

For a Maya diagram, the α-current counts

(# of hatched boxes above the Fermi sea level)

— (# of blank boxes below the Fermi sea level). (3.11)

The actions of the currents of sl(l)r and sl(r)ι are also easily represented on Maya

diagrams. The current JJ

k(n) in (3.3), for example, annihilates the states in the fcth row

of [l,r]m and create the states in the j t h row of [Z,r] m _ n . We choose the triangular
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decomposition of sl(l) (sl(r)) as the currents Jj,(O) (J%(0)) for j > k(q > p) are the
creation operators.

3.2. Branching Rule of Fp

The branching rule of Fp for the conformal embedding gl(lr)\ D sl(l)r x sl(r)ι x d
is a special case of Theorem 4.2 in [H]. (See also [ABI].) Let us rewrite the formula
to the form which is convenient for our later use.

We introduce the set of "Young diagrams" pf consists of sequences
Y — (2/1? ..., yι) (yi e Z,yι > . . . > yι-\) with the level r constraint

yi-yι <r. (3.12)

i

Let \Y\ = Σpi denote the "size" of the Young diagram Y G p{. There is an
i=i

inclusion J ^ r c ^M\ by the identification of a Young diagram Y G p{ with a
2-comρonent Maya diagram M(Y) G *J&\ as

if r(n-\) +p<

D otherwise
(n)=ίm i p ( n ) = { - ",•;•". "•' •"-<». (3.13)

Through the correspondence (3.9), a Young diagram Y is also identified with a basis
element of the Fock space F with d-charge | F | . Let us write this state \Y). For
example, in the case / = 2, r = 3,

_-3/2_ _-^j2_ l/2_ 3/2

• = ( 4 , 2 ) (p = 6) h - . | y ) = . . . " " " (3.14)

The fundamental fact about the branching rule for the embedding (1.3) is the following

one [H]: A state \Y) with Y G p{ is a highest weight state of subalgebra sl(l)r x

sl(r)ι x d, and conversely all the highest weight states of sϊ(l)r x sl(r)ι x d are given

by \Y) with Y G p{'. Hence, we have a decomposition

F P -

\Y\=p

where Fy is the irreducible sl(l)r x sl(r)ι x d-module of the highest weight state \Y).
To see what representation a highest weight state \Y) represents, we need some

notations. Let P+(/, r) denote the set of dominant integral weights of sl(l)r, and j^ί-i, r

denote the set of Young diagrams Y = (yj)1^ (r > y\ > . . . > y\-\ > 0) contained
in the rectangle [I — l,r] with height I — 1 and width r. Then, there is a bijection
λ : ^ _ i ϊ Γ - > P + ( Z , r ) a s

z-i

λ(Y) = (r - 2/i + 2/z)Λ) + Σ (%• " 2/i+iMi » ( 3 1 6 )

where we insert the dummy variable y\ = 0. Under this correspondence, the Young
diagram Y represents the classical part of the dominant integral weights λ(Y). We
extend the bijection λ to the map λ : p{ -» P+(/, r) through Eq. (3.16).
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The transposition of Maya diagrams t : ^M\ —> <J&ι

r is defined by setting mPj(n) =
rπjp(n), that is, by the transposition along NW-SE diagonal of each reactangle [/, r ] n .
The transposition of Young diagrams t : βff —> J£y is then obtained under the
embedding <p{ C *J&\ of (3.13), where that the level r constraint (3.12) insures that
the obtained diagram is a Young diagram with a level I constraint. We simply write
the image t(Y) as tY. For example, in the case I = 3, r = 4, the transposition of the
Young diagram 7 = (10,8,7) e ^ is *7 = (7,7,6,5) as

1/2 3/2 1/2 3/2 5/2

(3.17)

We thus obtain a diagram

(3.18)

We use the same symbol 7 for its image λ(7) if there is no confusion. In this notation,
the second fundamental fact is that [H] for any 7 e $f[', the state \Y) is the highest
state of the representation Y 0 * 7 0 ( |7|) of sl(l)r 0 s/(r)/ 0 α. Thus, the branching
formula of Fp becomes as follows:

j t γ

L \Y\=p

(3.19)

where Ly represents the irreducible module of 7 .
We introduce a subset J ^ c ^ r with the condition 0 < yι < r — 1 for (?/j) G ^

We write the Young diagram (r, . . . , r) as (rι). Let us define the addition of the two

Young diagrams 7 = (yj), Y' = (y^) as 7 + Y' = (yj + y'f). For any Young

diagram 7 e ^ r , there is a unique pair (7°, X), where 7 ° e gfa, K e Z such that

7 = 7° + K(r z). Thus, there is a decomposition

= 6?ω X (3.20)

From Eq. (3.16), λ(7) = λ(7°), λ(*7) - λ( t (7 0 )). It follows that the ΐl(l)r x ΐl(r)ι
part depends only on p modulo Zr, and that the decomposition has another expression

as

Fp = > Lty 0 (3.21)

where

(3.22)
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Let us illustrate the above branching rule (3.21) by the example / = 2, r = 3.

p = 0:

p = 1 :

0 0 +

• + 1 1 P)
+ CD

+ rm

+

(3.23)

4. Complete Pairing Between Conformal Blocks

We shall apply the general formalism in Sect. 2 to the particular case of our interest

gl(lr)\ D sl(l)r x sl(r)ι x o . A significant fact is that the dimension of the space of

the conformal blocks for gl(lr)\ and a on the Riemann sphere are at most one, i.e.

p p \ 0 otherwise

Let us choose the basis of the space of conformal blocks as follows:

(4.2)

a : (Φ

Here the index a distinguishes the multiplicity if the dimension of 9CL^ or 9CR^ is

greater than one. Using these bases, the base (Φ9\ is expanded as

p\= Σ
Ϋeb(p)

(4.3)

where b(p) = {Ϋ = Yu . . . , YNJ \ Y{ G b(pi) for every i}.

The coefficient matrix C(p, Y)aβ defines a pairing between the spaces of conformal
blocks 9CL and 9ζ$. The following theorem states that this pairing is in fact complete.

Thus it determines the dual basis of Ψ*-+ * from a basis of 9ζ- * and vice versa.

N

Pi = ® and Y ^ &(P) Then,Theorem. Fix p with

1)

2) / w ί/ze coefficient matrix C(p, Ϋ)aβ in Eq. (4.3),

dimensions of9C^ and 9ζ^ are equal.

Ϋ

(4.4)

where the determinant is taken with respect to a,β.
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The proof of the theorem will be given in the next section.

Remark. We can show that for p, q with Σpi = Σqi = 0 and p — q£i (lrZ)N, there

is a constant cpξ independent of a,β such that C(p,Y)aβ = cpξC(q,Ϋ)aβ. Thus,

C(p, Ϋ)aβ provides a canonical pairing between 9^^ and 9ζ^ independent of the

choice of pmod(lrZ)N.
For y = (yj) G ̂ r the conjugate of X(Y) 0 λ(*y) is given by λ(Y*) 0 λ(*(y*)),

where y * G ̂ r is defined as

y * = (-2Λ, -.., -ί/i). (4.5)

For y G ̂ oJ its conjugate y * G ̂ gj are defined through Eq. (3.20), or explicitly,

(v — ?//,..., T — y\) if 0 ^ y\ ^ r

(2r — 2/i, . . . , 2r — yi) if r < yi < 2r — 1
= ί

\

For the special case of 3-point functions, Theorem 1 reduces to the fusion rule duality
in Eq. (1.2).

Corollary. For any triplet Ϋ = (yi,y2,y3*) such that Yi G ̂  and \Yλ\ + \Y2\ =

|y3 | mod/r, and its transposition ιΫ = ^Yi^Yi, fY*), the equality

dim 9£Lf = dim 9 f 5 (4.7)

holds.

Proof. Because of the fact \Y3\ + \Y*\ = 0mod/r and the condition \Y{\ + |F 2 * | =

\Y3\ mod/r, there is a triplet ^ = (pi,P2,P3) satisfies i ) 7 e b(p), ii) pi +P2 +ί>3 = 0.
Then the equality (4.7) immediately follows from the theorem, q.e.d.

Let us see some examples of the dual pairing of conformal blocks in our familiar

example I = 2, r = 3. For a triplet λ = (CD, CD, 0) of sl(2)3, dim %CL] = 1. (The
λ

Young diagrams here represent the classical part of λ^'s.) For each representation Xi9

there are three choices of pi mod 6 such that Yi G b(pi) and λ(Y )̂ = λ .̂ Accordingly,
there are nine triplets X' of 5/(3)2 whose space of conformal blocks 9£f are dual to

λ

(KL\ We present them below

λ' p

(B'EP-EB) (2'°'-2) ( B f l ' m ) (2'2'-4> ( B ' D > 0 ) (2>4'-6)
(4,0,-4) ( D , 0 , 0 ) (4,2,-6) (D,D,gJ) (4,4,-8)

(4.8)

There is a canonical isomorphism between any two of them through the pairing

with 9CLf.

In general, there is a Z -Dynkin automorphism of sl(l)r generated by

σ .Λi^ Λi+ι. (4.9)
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For a Young diagram Y — (yj) G j ^ r , we define σ(Y) = ( ^ ),where

vΊ =yi+r, yf

j = yά_x (2 < j < I). (4.10)

Then, λ(σ(Ύ)) = σ(λ(F)). For Y e pζχy σ(Y) G %t are defined through Eq. (3.20),
or explicitly,

y[ = 2/z + r, y'j = yj-ι (2 < j < I) if 0 < y/_i < r - 1,

2^ =2/1, y'j=yj-ι-r(2<j<l) if r < ^ ! < 2r - 1.

Noticing the fact that for Y e %^ λ(*(σ(y))) = λ(*y) and \σ(Y)\ = \Y\ +rmod/r ,

Corollary. Lei σi, . . . , σAΓ be elements of the Zι-automorphism of sl{ϊ)r with

N

Fix p such that Σpi = 0. Then, for the sets of Young diagrams in J^J,

there is a canonical isomorphism between the spaces of conformal blocks 9 ^ and

9^r* through the pairing with their common dual spaces 9C-* '.

4.2. Braid Duality

Another application of our theorem is giving relations between the braid matrices of
ΐl(l)r and ΐl(r)ι WZW models as already pointed out by [Fu, NS, NRS, SA].

The braid group Bjy acts on the total space of conformal blocks of g:

(4.14)

A generator Bij interchanges the points zι and Zj and the representations λ̂  and λj

by the analytic continuation counterlockwise. We choose bases for gl(l)\ and a as in

the appendix. As for sl{ΐ)r and sl(r)ι, we choose dual bases w.r.t. the form C(p,Y),

that is Eq. (4.3) becomes a diagonal form

(Φp\ = ^2 "Σ (Φγ\a ® (Φtγ\(χ ® (Φp\ - (4.15)
Ϋeb(p) a

The braid generator B^ acts on these basis elements as follows:

Ϋ \ β ,
(4.16)

where σ^(λ) is defined from λ by exchanging its ith and j t h representations. Then,
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Proposition. For any Y G b(p), the braid matrices in (4.14) satisfy the following
relation

M(y,σiάQr))aβNCΫ,σiά?Ϋ))aΊ = δβΊK(p,σij(p))L(p,σij(p)Γι. (4.17)

If pi = pj, the space of conformal blocks 9CG^ and 9CA^ are stable under the action
of Bij. Their braid matrices are calculated from the explicit form of the conformal
blocks in the appendix, or by using the knowledge of the conformal dimensions of
the highest states, as

, σiά(p)) = e 7 ^ * , L(p, σtj(p)) = eπVZi^lr. (4.18)

In particular, in the case Ϋ = (Yι, ..., YN) such that Y\ = . . . = YN-I G b(p), the

above proposition states that dual spaces 9CL^ and 9ζ^ obey the braid group BN-\

representations contragradient to each other up to a phase factor e

7 Γ V ^ ( p ~ p /Zr).

5. Proof of the Theorem

Before giving a proof, we prepare the known facts about the dimensionality of the

spaces of conformal blocks, or the fusion rule, of sl(ϊ)r.

For λ = (λi, (r — 1)ΛO + Λ\, λ*) such that λi, λ2 G P+(Z, r), the fusion rules are
known to be

ί ! i f

= <
^ 0 ot

A- r?/*Li ί ! i f λ2 - λi = Λi+ι - Λi for some i,
dim ^ ' = < (5.1)

λ ^ 0 otherwise.

For Y G ^oJ and an integer N = | y | + ϋΓZr with X > 0 being an integer, a
restricted path of length N from D to 7 is a series of Young diagrams Y\ = D,
y2, . . . , γN = y + ^ ( r ^ G ̂ r with |y i + 11 = 1̂ 1 + 1 such that Yi+ι is obtained by
adding a box to 1$. Using Eq. (5.1) and the factorization property of the conformal
blocks in a degenerate limit of Fig. 2,

iV

Proposition 1. For Ϋ = ( D ^ T B , y*) w/ίA y G ^ α/iJ AT = \Y\ + ϋT/r w/ίA
<2λz integer K > 0

^ = (# o/ίA^ restricted paths of length N from ΠtoY). (5.2)

Moreover, the braid group BN acts irreducibly on 9^^ [TK, KT, We].

D D D

o ,1,1,1 _ L y
YΊ Yi YN-I

Fig. 2. In this degenerate limit, there is a one-to-one correspondence between the basis elements of
the conformal blocks and the restricted paths
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Because there is a bijection between the set of the restricted paths of lenth N and
D to Y in j ^ r to the set of the restricted paths of length N from D to ιY in J^ί by
the transposition (3.18), it follows from Proposition 1 that [JMO]

N

Proposition 2. For Ϋ = ( D T ^ Π , F*) with Y e %t and N = \Y\ + Kir with
an integer K > 0,

dim 9CL] = dim 9ζ^ . (5.3)

5.7. The Case p = (1, . . . , \,-Kγlr,-K2lr,-K3lr)

Let K\, K2, K3 be non-negative integers. Let

N

pf = ( ί ^ T ΐ -Kir, -K2lr, -K3lr) (5.4)

with AT = (K\ + K2 + ̂ 3)/r. From the branching rule (3.16), the expansion of (ΦS |

includes the terms

Σ C(βf,Ϋf)aβ(Φ$ \a 0 <«& 1/3 ® (Φ4| (5.5)

for
AT

ϊ> = ( S T T Γ Γ Γ Π , 0 , 0 , 0 ) . (5.6)
In this subsection, we concentrate on this special type of conformal blocks.

Lemma 3. Let pf and Ϋf be as above. Then, the coefficient matrix C(p/, Yf)aβ is
non-zero matrix.

Proof. Using the prescription in Sect. 3.2, the highest states have the following Fock
space representations:

Y ψj,p ( - \ - m) |0), < 5 ' 7 )

where the product is over 1 < m < Ki, 1 < j < i, 1 < p < r, and we do not
mind the signature ambiguity from the ordering of the fermion operators. Notice that
D ® D ® (1) has the elements

^ J . P ( _ I ) | 0 ) , l < j < Z , l < p < r (5.8)

as its descendant states as a sl(l)r x sl(r)ι x α module.
We rename the preceding N points zsi, . . . , ZN as zmjP (1 < m < K\ +K2-\-K3,

1 < j < i, 1 < P < r), and evaluate the following quantity for 9C

ΦjtP{- \ - m ) I°)ΛΓ+I
m,j,p I m,j,p

m,j,p J L τn,j,p
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where the subscription of the vacuum refers to the insertion points zmjP,
is evaluated by using the e §

vanishing function, q.e.d.

j P Ϊ- This
is evaluated by using the explicit form of (Φ§ | in the appendix, and indeed a non-

Lemma 4. Let pf and Ϋf are as same as in Lemma 3. Then,

1) dim 9^ = dim 9ζt
f f

Proof. The first part can be reduced to a special case of Proposition 2. To show the
second part, we consider the action of the braid group BN, which interchanges the
positions of points Zi(i = 1, . . . , N), on both sides of (4.3). Because of (4.1), the

actions of the braid group on 9CG^ and 9CA^ are trivial up to the phase factor. (This

phase factor is g^v^α-i/ίr) ^y (4.18), though we do not need to know its exact

value here.) On the other hand, the space of <%ZL^ 0 9CRj[ closes under BN. Thus, by

"- * is equipped with the non-vanishing bilinear formLemma 3 the space Ψi

C(pf,Ϋf)aβ invariant by the braid group BN up to a phase factor e^λ

From the irreducibility of the braid representations on 9£L* in Proposition 1 and by

using Schur's lemma, it follows that the braid representations on 9C ' and 9ζ~ are

contragradient to each other and that the coefficient matrix should be complete, i.e.,

j.Ϋj) ^ 0 . q.e.d.

5.2. Proof of the General Case

We show the theorem in the case of three-point functions. We take a degerate limit
of the basis element (ΦS | for pf of (5.4) as in Fig. 3a. Three intermediate states

appearing at the vertex are denoted by p = (pi,ί>2,P3) Correspondingly, consider the

Ϋdegenerate limit of (Φί | α <8> (Φ*L \β 0 (φ£ | for Ϋf of (5.6) as Fig. 3b. (We only write

the sl(l)r part in the figure.) Then the set of three intermediate states Ϋ = (YUY2,13)
are an element of b(p). Conversely,

- K2tτ

- Kzίτ

Fig. 3a, b. A degenerate limit of 9CG] and £

D
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Lemma 5. For given p = (pι,P2,P3) with p\ + p2 + P3 = 0 and Ϋ G b(p), there
exist some non-negative integers K\, K2, K3 such that p and Y are realized as the
intermediate states of^f and 2£ respectively under the degenerate limit as in Fig. 3.

Proof. If \Yi\ < pi, we set Kι = 0 and obtain Yi by the fusion of p^D's. If \Yi\ > Pi,
we set Ki = (\Y\ - pd/lr and obtain Yi by the fusion of | ^ | D ' s q.e.d.

Proof of the theorem. Now, we prove the theorem combining Proposition 2, Lemmas 4
and 5. For given p0 = (pi,#2,JP3) with p{ +p2 +£3 = 0 and Ϋo = (YuY2i Y3) e b(po\
set pf and Ϋf as (5.4), (5.6) and choose integers K\, K2, K3 as in Lemma 5. By the
construction, the factorization under the degenerate limit of Fig. 3 gives

Fac :
Pf

Fac : %t (5.10)

Yeb(p0)

where

= (1, . . . , l,-Kilr,-pi) ,

For a fixed intermediate state Ϋ, let

(5.11)

note a basis of 9^

obtained by the tensor product of bases of its components. Also let BR(tΫ) denote

the set of tensor products of bases of 9ζψ 0 9ζ^ 0 9ζ^ 0 9ζ^. The set

B = {φa®Ψβ\Φae BL{Ϋ\ Ψβ e BΛ(*f), Ϋ e b(p)} (5.12)

gives a basis of 9CL^ 0 9C?* through the isomoφhism (5.10). In this choice of a

basis, the elements of the coefficient matrix are

C(pf,Ϋf)aβ=0 (5.13)

for basis element Φa e BL(Ϋ) and Ψβ e BR(X) if X φ tΫ. In other words, the

coefficient matrix C(p/, Yf)aβ has a following block structure:

C(βf, Yf)aβ = (5.14)
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Since detC(p/, Yf) φ 0 by Lemma 4, it follows that

dim 9^ τ ® ̂ 1 τ ® ί^ τ ® 9^ τ = dim 9p: τ ® 9 p τ 0 9ft;τ ® 9ζtr . (5.15)

From Proposition 2,

dim ^ L + = dim ^ ? + (z = 1,2,3), (5.16)

so we obtain

dim 9ψΛ = dim ^ τ . (5.17)

Furthermore, the restriction of the matrix C(p/, Yf) to the square sub-matrix acting

on the subspace spanned by BL(Y) ® BR(?Y) has a following factorized form:

because of our choice of the basis and the commutativity in Eq. (2.14). Thus, we have
arrived at the formula

dεtC(pf,Ϋf)aβ=

Ϋeb(p)

x detC(£, Ϋ2)a2β2 d e t C ® , y3)α3/33 (5-19)

In the product the determinant is understood to be 1 if the corresponding space of
the conformal blocks is zero dimensional. Because the l.h.s. of Eq. (5.19) is non-
zero from Lemma 4, it follows that det C(po, Yo)aoβo Φ 0. Thus, we have shown the
theorem for three-point functions.

For general N-point functions, we can obtain a factorization formula for the de-
terminant of the coefficient matrices by those of the 3-point functions similar to Eq.
(5.19) in a particular degenerate limit. Thus, their determinant is non-vanishing. This
completes the proof of the theorem.

6. Discussion

We have shown that there is a complete pairing, or the level-rank duality, between the
conformal blocks of sl(l)r and sϊ(r)ι WZW models on the Riemann sphere induced
from the decompositions under the conformal embedding (1.3). The duality, as its
nature, provides us only a relation of both models and cannot determine the exact
behavior of each model directly. However, if we have some knowledge about one
theory, we can extract a hidden or unexpected structure of the other theory through
the duality. For example, the /-reduction property in the sl(l)r WZW model turns
into a Dynkin automorphism property in the sl(r)ι WZW model as we saw in the
corollary of Sect. 4.1. We left such applications of the duality as a future problem,
and we shall discuss further extensions of our formulation of the duality in the rest
of the paper.

The reciprocal decomposition formulas are also known for other types of algebras
(C, C), (β, B), (£ , D), (£>, D) [H] (for (C, C) case [KP]). It seems possible to repeat
the analysis along the lines presented in this paper. The easiest case is the pair

sp(2l)r x sp(2r)ι c ό(4lr)ι (6.1)
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bcause there is no Dynkin automorphism for sp and no spin representations. Again,
we consider the Neveu-Schwartz fermions

j = ±h . . . , ± J , p = ± l , . . . , ± r ) (6.2)

neZ+l/2

with the canonical commutation relations

j k (6.3)

This time, the fermion Fock space F decomposes into two δ-irreducible modules
as F+ ® F_ where F+(F_) consists of the fermion states with even (odd) fermion
number. The reciprocal decomposition formula for (6.1) is actually much simpler than
(A, A) case, and given by [H]

Lγ® Ltγ, F- Σ

|y|:even |y|:odd

where J ^ j Γ is the set of all the Young diagrams in the rectangle [Z,r]. From this

formula, we deduce that the dual pairing occurs again between the spaces 9CL^ of

sp(2l)r and 9ζ^ of sp(2r)ι. In our proof of the completeness of the pairing in the

A-type case, the following two properties are essential:
1) The braid representation of the conformal blocks is irreducible if the external states
are those of the vector representation.
2) Any integrable representation is produced by the fusions of the vector representa-
tions.

For C-type WZW models, these facts still hold [KT], so that the level-rank du-
ality exists. We remark that if we choose the Ramond boundary condition for the
fermions instead of Eq. (6.2), not the pair (Y, tY) but the pair (Y, (*Y)*) appears in
the decomposition formula [H].

Unfortunately, both properties 1) and 2) fail for o-type pairs (B, B), (B, D), (D, D)
because of the spinor representations. However, one can modify the situation if we add
a Dynkin automorphism to the generator of the algebra, and restrict the external states
to those of the representations produced by vector representations. This condition is
equivalent to the one that the classical part of the representations have the lifts for
O(n) representations. Then the completeness of the pairing could again be preserved.
It needs further investigation to justify these statements and also to include the spin
representations as well.

Though we have restricted our attention to the conformal blocks on the Riemann
sphere so far, it is possible to extend the duality to the conformal blocks on the higher
genus Riemann surfaces through the factorization to the three point blocks. Though the
principle of our construction remains valid, there are two major differences between
genus zero and other cases. One is the appearance of an infinite number of intermediate
states along the cycles for gl and a WZW models, or, the infinite dimension on the
conformal blocks. It is a characteristic property of the abelian theories. The other is that
the complete pairing occurs not between the spaces of conformal blocks themselves
but between their subspaces.

To describe the situation, let us consider the zero-point function on the torus. It is
useful to add a set of "charge shifting" currents (see the appendix for the field X{z))

Vn(z) =: e

nlrX(z) :, n e Z (6.5)
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both to a and to gl(lr)\ and make the dimensions of conformal blocks finite. We write

this new algebra o! and gl (lr)\. Then,

sl(l)r x sl(r)ι x a' c gl (lr)\, (6.6)

is still a conformal embedding. The dimension of the conformal blocks of zero-

point functions of gl (lr)\ are Ir. From the rule (3.16), each block or the character

decomposes as

chG'(p)= (6.7)
Yeb(P)

where chG , chL, chR, chA represent the characters of the gl (lr)\, sl(l)r, sl(r)ι, a!
WZW models, and | |y | | denotes the integer 0 < j < Ir - 1 with j = \Y\ modlr. For
example, for I = 2, r = 3, it induces the following pairing between the spaces of the
conformal blocks of zero-point functions of s/(2)3 and sl(3)2

i=

V

/ I

1

V

m

1

1

I 1
1 — '

1
1

1
1

1

1

E
1

1

\

/
DIΠ

D

(6.8)

As is obvious from this example, the complete pairings appear in the several combi-
nations between the subspaces of the both spaces of conformal blocks for the general
Riemann surface with genus greater than zero. This complication is originated to the
Dynkin automorphism property of the ^4-type, and it does not appear for the C-type
case. ^

For the duality, it is natural to add the fermions to gl(lr)\ as additional currents
[KNTY, Wi2] because the dimensions of the conformal blocks again become at most
one for a fixed spin structure. Remarkably, the modular transformations which do not
change the spin structure act trivially on the space of the conformal blocks up to a
phase factor. As a corollary, we can deduce a relation between the S'-matrices of the
sl(ΐ)r and sl(r)ι conformal blocks, which is an analogue of the braid matrix relation
(4.17). We note that such a relation has already appeared in Corollary 6.2b in [H].

Acknowledgements. Many details of the duality were realized through discussions with A. Kuniba.
We would like to give sincere thanks to him. We also thank K. Hasegawa and Y. Yamada for useful
discussions.

Appendix. Conformal Blocks of gl{lr)\ and ά WZW Models

The conformal blocks of glilr)\ and α WZW models are equivalent to the correlation
functions of free fermions and bosons respectively in the following way. Consult
[FMS, P] for the issues on fermion and boson correlators and the state-field corre-
spondence.
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The case gl(lr)\. We write the fermion operators ψkq(n), ψkq(ri) acting on the ith

Fock spaces of

as ψkq,i(ri)> ψkq

}i(n). The fermion operators are understood to be anticommuting
when i φ j . The identification of the basis elements is defined as

= / I . . . / Λ T | O ) (A.2)

with fi being a product of the operators ψkq,i(—n), ψkq,i(—n) (i : fixed). Let £Jj n (Z)
be the coefficients of the expansion

(z - ziΓ
m-l2Vdz = Σ B^n(Z){z - ZjT-τyίϊz, (A3)

n>0

or, explicitly,

S(Z) d < A - 4 )

Using them, a basis element of conformal blocks is given by

(Φ(Z)\ = ] Γ {Φ^Z)\ = <0| G(Z), (A.5)

Σp<=0

where (0| is the vacuum state in Fj 0 . . . 0 Fj and

= exp Σ Σ Σ^
<iJ<N m,n>0

(A.6)

The conditions (2.4-5) are proved by the following relation (n > 0):

N

G(Z)ψkq4-n)G(ZΓι = ψkq,i(-n) + Σ Σ BmnΨkqj(m),
i=l m>0

Σ βJί»'/'*',i
i=l m>0

Here we used the property B^n = — Bffm. Then the conformal block is evaluated as

(0\G(Z)\s) (A.8)

with the help of (A.7). This is equivalent to the usual Wick expansion rule of the free
fermion field under the correspondence

/ n , dhkq(zi), ψ\-n) ++ , n , d^%Zi). (A.9)
{n-\)\ \n-\)\
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Namely, if the state \si) corresponds to the field Ψi, then, the conformal block eval-
uated by the states

\s) = |si) 0 . . . 0 \sN) (A.10)

equals to

(Φι(zι)...ΦN(zN))F, (A.11)

where ( ) F means the free fermion correlation function.

The case α. Again we introduce coefficients C ^ n as

:-Zj)n~ldz,(Z - Zi

or

(A. 12)

(A.13)

We extend the definition of C%n(Z) through (A. 13) if m and/or n are zero. Let us
introduce scalar operators Xti conjugate to J,i(0) by

[J4(0),Xd] = δij. (A. 14)

(A.15)

(A. 16)

A basis element of conformal blocks is given by

where (p\ = ( 0 | e ~ Z i P i X ' i is the vacuum state in Hj, <8> ...<8>H^N and

l<i,j<iV m,n>0

G\Z) = exp

The conformal block is evaluated by using the following relations:

N

G'(Z)J4-n)G'(ZΓι = J4-n) + Σ Έ G™ Jj(m), (n > 0),
j=\ m>0

G\Z)ePiX^G'{Z)~x = ep'x^ x exp
N

Σ nlrC^0J
j=l m>0

(A.17)

In evaluating the conformal block using (A. 17), we choose a branch of the function

(A. 18)

> 0.so that they are real values if z^'s are on the real axis as z\ > . . . >
Again there is a state-field correspondence

lr p X Px(z)

n!

where X(^) is a free scalar field with a propagator

(A. 19)

(A.20)

and J(z) = lrdX(z).
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