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Abstract. The quantum group structure of 2D gravity recently put forward by
one of us (J.-L. G.) is used to study quantum gravity on the strip. The boundary
conditions, previously studied by A. Neveu and this author become easy to
implement when one introduces the universal family of chiral operators associated
with Uq(sl(2)). A general formula for inverse powers of the metric-tensor operator
is thereby derived. It contains a new universal matrix A, acting in representation-
space, which obeys identities involving the R matrix, the Clebsch-Gordon
coefficients, and the co-products of Uq(sl(2)). The physical meaning of these
identities is to ensure that these powers of the metric are local and closed by fusion.

1. Introduction

In the early days, Gervais and Neveu developed their operator-approach to
Liouville theory by dealing mostly with open surfaces [1-6], and imposing classical
boundary conditions derived from studies of the Weyl anomaly on surfaces with
boundaries [7,8]. Since then, the algebraic approach initiated in refs. 3,4 has made
significant progress when its connection with quantum groups was recognized
[9-13], but in recent times, 2D gravity with boundaries has received little attention
apart from ref. 14. It is the aim of the present paper to go back to this problem.
One will see that the quantum-group structure of refs. 9-13 leads to considerable
simplifications and progress. Indeed, although Gervais and Neveu completely
solved the classical problem on the strip [1,2], they could only derive the quantum
expression for the simplest inverse power of the metric tensor [4], obtaining a
rather complicated expression by imposing locality on the world-sheet. From the
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quantum-group viewpoint it corresponds to the simplest representation with spin
J = 1/2. In the present article we shall derive expressions for any negative powers
of the metric corresponding to arbitrary representations of the underlying quantum
group and check that they form a family of operators that are mutually local and
closed by fusion.

At first (Sect. 2) we reconsider the case of spin 1/2 which was already solved
in ref. 4. This allows to introduce notations and explain the background material
contained in the earlier articles. The formula [4] for the corresponding power of
the metric is re-expressed in terms of the spin-1/2 members of the universal family
[9,10] of chiral operators ξ9 obtaining an expression which is remarkably simpler
than that one of ref. 4 where the Block-wave basis was used. The operator-product
expansion of the ξ fields allows, next, to construct the powers of the metric
corresponding to each of the two possible quantum parameters separately. This
is the purpose of Sect. 3 where a universal form is derived that involves a matrix
A acting in the space of representations. In Sect. 4, it is shown that these operators
are mutually local and closed by fusion. This is the consequence of quantum-group
identities involving the A matrix, together with the R matrix, the Clebsch-Gordan
coefficients, and the co-products of Uq(sl(2)). Finally, in Sect. 5, the above discussion
is extended to the most general operator, that involves the two quantum-modifica-
tions together. A few concluding remarks are made in Sect. 6.

2. The Case of Spin 1/2

At first we review the results of ref. 4 which will be our starting point. Simpler
notations and normalisations will be introduced following ref. 10-13. We shall
work on the strip O ^ σ ^ π , — o o ^ τ ^ + o o , using Minkowsky coordinates on
the world-sheet. The boundary conditions is implemented by considering chiral
fields inside the strip as well as outside, using an approach similar to the method
of images in electromagnetism. Thus one introduces chiral fields on the covering
space of the cylinder 0 ^ σ ^ 2 π , — o o ^ τ ^ + o o , which are the same for open
and closed surfaces. We shall denote by y the Liouville coupling constant. Through-
out this article we consider all operators at the same time τ which may be taken
equal to zero without loss of generality and omitted. We are thus working on the
unit circle z = eiσ. First recall some basic formulae of refs. 10-13. For generic y,
there exist two equivalent free fields [3].

<Pj(σ) = 9(

0

Λ + P> + i Σ e-^pM/n, j = 1,2, (2.1)
nΦO

such that (primes mean σ derivatives)

, - σ2), p™ = - p%\ (2.2)

= N<2\φ'2)
2 + φyyfi. (2.3)

N(1) (respectively ΛΓ(2)) denote normal orderings with respect to the modes of φx

(respectively φ2). Equation (2.3) defines the stress-energy tensor and the coupling
constant y of the quantum theory. The former generates a representation of the
Virasoro algebra with central charge C = 3 + 1/y.
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The chiral family is built up [4-6,10] from the following operators with j = 1
or 2:

/^Γπφ'), (2.4)

- 1)), (2.5)

where dj and dj are normalization constants. The K's or the ^'s are determined
as solutions of the equations

L ^

*~2~.

(2.6)

(2.7)

These are operator Schrodinger-equations equivalent to the decoupling of Virasoro
null-vectors [4-6]. Since there are two possible quantum-modifications h and h,
there are four solutions1. By operator-product expansions, φj9j= 1,2, and φj9

7=1,2, generate two infinite families of chiral fields which are denoted φ%\
- J ^ m ̂  J, and φ(j\ -J^m^J, respectively; with ψ^Q = φu φ^ = ψ2, and
Ψ{- m = Ψi> ιAi1/22) = $2- An easy computation shows that the standard screening
charges are equal to — α+ where

α _ = y/ϊh/π9 oc+= Jlhlπ (2.8)

Ψ(m> ^ίί } ' a r e o f t h e ^ P e 0 ' 2 J + ! ) a n d ( 2 ^ + ! ' !)> respectively, in the BPZ classi-
fication. For the zero-modes, it is simpler [10] to define the rescaled variables

(2.9)

The commutation relations (2.2) are to be supplemented by the zero-mode ones:

The fields ^ and ^ shift the quasi momentum p^} = — p(

0

2) by a fixed amount. For
an arbitrary c-number function / one has

. (2.10)

For the time being, we shall consider the hatted and unhatted fields separately.
Since they are quite similar, we shall only discuss one family explicitly and deal
with the unhatted fields. Any expression we write down has its hatted counterpart.
Making use of the notations just recalled, the local operator of ref. 4 (formula (3.1)
of that article) reads2 (we denote 2π — σ by σ)

~a~Φ/2 = a(w)V1(σ)V2(σ)

. . „. y^-c{w)V2(σ)V2(S)\ (2.H)

The operators Vx and F2

 a r e equal to the operators φγ and φ2 °f r ef 4, respectively.
Up to a few misprints
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a, b, c, d which are only functions of w were determined in ref. 4 by imposing that

e - a - Φ(σ)/2 e-a- Φ(σ')/2 = e~«- &(<*')/2 e~a- Φ(σ)/2 Q γ 2)

as is required by locality. Their expression will be given below. The relations
between V and φ fields explicitly read3 (φ±ι/2(l/2) are simply written as φ±1/2)

/π) V2(σ). (2.13)

For our purpose, it is better to write the expression in terms of the φ fields as

e-—l2 = - ^ίΦ-ll2

π V 4π

-Φ1/2(σ)δ(m)φ_1/2(σ)-φ1/2(σ)y(rn)φ1/2(σ)l (2.14)

In this way, the α,..., y have a simple relationship with the rescaled quantities,
denoted by α,..., d of ref. 4. On the one hand, one has

δ(π) = d(m-l)eih{w-1)/\ (2.15)

and this gives

ρ2e~ihm\ δ(w) - -e'ih/4(Pl + p2e
ihw). (2.16)

The two parameters pγ and p2 are the quantum-analogues of the classical para-
meters relevant for the boundary conditions at σ = 0 and σ = π respectively. At
the quantum level, they appeared in ref. 4 as integration constants in solving (2.12).
We shall come back to this point below. On the other hand, condition (2.12) only
determines the product b(m + \)c(m — 1). One has

β(w)y(w) = sin [h(m + 1) ] sin (hπjb(m + 1 )c(m - 1). (2.17)

Equation (3.8) of ref. 4 becomes

β(w)y(w) - ot(m)δ(m) = sin2 (hm)e " ih/\ (2.18)

and the product βy is given by

β(w)y(w) = e" ί Λ / 2[sin2 (hπ) - p\- p\- 2pίp2 cos(fcm)]- (2 1 9 )

The φ fields have simple shift-properties for the zero-mode w; they are closed
under O.P.E. and braiding, and obey a quantum-group symmetry of the
ί/9(sZ(2))-type. However, the fusion coefficients and K-matrix elements depend upon
w and thus do not commute with the φ's. Their explicit form is unusual, therefore.
One may exhibit the standard L^(s/(2))-quantum-group structure by changing basis
to a new family of operators denoted by ξ. Following ref. 10 we introduce

#?(<*= Σ UMZΦ^iσl -JύM^J- (2.20)

3 Since we want to adopt the same notations as in ref. 12, the ordinary gamma functions (not
^-deformed) are characterised by an index zero (they correspond to a vanishing parameter h).
The ^-deformed gamma function with parameter h is denoted by Γ(z)
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\eihm/2

/ J — M \ / J 4- M

(J-M + m-r/2) integer \{J — M +ϊtl — t)/2/\(J + M + ΐΐl + t)/2

(2.21)

L̂Ĵ  -WLΠW W , ^ . (2.22), β / LβJ !LP-6J ! Λi sin/2

The last equation introduces g-deformed factorials and binomial coefficients. The
fields ξ{^ for —J-^M^J, span a representation of spin J of Uq(sl(2)). We shall
work for generic central charge C, so that eih and elΛ are not roots of unity; and
the representations are simple deformations of the s/(2)-case.

In this article, we are primarily aiming at the weak coupling regime where h,
h, and eigenvalue-spectrum of w are real. In this case, it was shown in ref. 10, that
the ξ-fields satisfy the hermiticity relation

Next we re-express formula (2.11) in terms of the fields £+/

1

2

/

)

2 which we simply
write ζ±ί/2 Formula (2.20) gives

τ l / 2 (2-24)

(2.25)

By inverting this relation one finds

1

2/ sin (hm)

or, equivalently4,

ih(π)/2_t: -i/i(m±l)/2η Π Ί

]

2 / s i n ( M

Substitute into Eq. (2.13). One gets

,hfϊ Σ NξN(σ), (2.27)
V l θ π M,Λf= + l/2

where

A -1/2.-1/2 = l-β(π)eihiBI+1/2) + y(m)e~ih{m+1/2) + φ) - δ{w)yi s'n2 hm, (2.28)

1̂/2,1/2 = l-β(π)em~a+1/2) + y(w)eihim-im + φt) - ^(ro)]/2sin2 hm, (2.29)
A -1/2,1/2 = \βfa) ~ y(π)e~ih - α(tσ)e ί f t (ro-1/2) + δ(w)e-ihim+1/2)]/2 sin2 to, (2.30)
Aii2.-ιi2 = ίβi^y ~ y(!») ~ Φ)e~mw~ιm + δ(π)e-ihia+1/2)]/2 sin2 hπ. (2.31)

So far the coefficients α,..., δ are not completely determined. The last four equations

4 Note that the braiding between m and the fields ξ is non-trivial
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imply

eihA -1/2,1/2 "

In the £-basis, it is natural to choose, if possible,
(2.32), (2.33) then imply

ih<*

(2.32)

_m=-lp2e"'-. (2.33)

, N independent of w. Equations

:p2e
ihl\ (2.34)

1/2.1/2

This completely determines the coefficients
Eqs. (2.16), (2.30) give

-ih/i = 2e~ih'

^ as well as β(m) and y(m). Indeed

l cos(/im) + p2),

+ l - P i sin{hm) + p2)?

\-p\ sin(Λm) -f p2).

(2.36)

(2-37)

(2.38)

per' —ye

and, combining with (2.19)

β(m) = e-iihι\p^

y(xjj) = — eιh/4(p! cos (hm) — .

S u b s t i t u t e i n t o t h e e x p r e s s i o n s E q s . (2.14)-(2.31) for e " α Φ / 2 . O n e gets

, - « - Φ / 2 _ ' h

_1/2(σ)}, (2.39)

where we have let pί = sinΩ1. On the original expression Eq. (2.14), one sees that
the field exp( —α_Φ/2) is hermitian, as shown in ref. 4, for p x and p 2 real, and
y= —β*e~ιh/2. This last condition is compatible with Eqs. (2.37,2.38) only for
p\ ^ 1. Indeed, according to (2.23), Eq. (2.39) violates hermiticity for real pγ and
p 2 except for Ω1-\- π/2 pure imaginary. What happens is that, unless this last
condition is satisfied, it is not possible to choose the coefficients AM N to be
independent of w, and preserve hermiticity. We shall restrict ourselves to the case
pλ = 1 for simplicity Our starting point will thus be the formula

(2.40)

where K = 2p2. This expression has a triangular form which is remarkably simple.
The present discussion is not symmetric between pγ and p 2 except if they

are both equal to one. This is due to the fact the original expression Eq. (2.14)
treats the two boundaries σ = 0 and σ = π differently. Indeed at the latter boundary,
σ and σ coincide, while they differ by 2π in the former. One may exchange the
role of the boundaries using the monodromy properties of the chiral fields. The
φ-fΊoids satisfy

φ±ί/2(σ + In) = e±ih™eih/2ψ±ι/2(σ). (2.41)

For later use, we note that this last equation also determines the monodromy
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properties of the ξ fields. Using (2.24-2.26), one obrains:

ξ _ (σ + 2π) = eihξ (σ), (2.42)

ξll2(σ + In) = 2eih/2 cos (hm)ξι/2(σ) - ξ_ι/2(σ). (2.43)

In the ξ-basis, the monodromy matrix is not diagonal, but only triangular. It
depends on m and thus does not commute with the ξ fields. For instance, one also
has

ξ1/2(σ + 2π) = 2e~ih/2ξί/2(σ)cos(hm) — e~ι2hξ_1/2(σ). (2.44)

Coming back to our discussion, let us note that Eq. (2.14) is equivalent to

eih/2 U

-φ1/2(σ)δ(m)φ_1/2(-σ)-φ1/2(σ)y(w)φ1/2(-σ)^ (2.45)

where

β = βe-
ihm, δ = δe~ihw, όt = aeihm, y = yeihm. (2.46)

In the above discussion, it is easy to see that, using the new coefficients is equivalent
to exchanging ργ with p2 and α with — δ. Thus the form (2.45) allows us to deal
with p2 = 1 and px real. The expression is triangular in the opposite way. We shall
leave out this case which is similar to (2.40).

Let us now discuss the physical meaning of the p parameters. At the level of
classical mechanics they were introduced in [1,2] as characterising the boundary
conditions at σ = 0 and σ = π, and this is our next topic. It will be pedagogical to
use the classical limit of the formulae just discussed, since they are much simpler
than the ones of refs. 1, 2 and will be directly related to the quantum boundary-
conditions to be considered later on. InJ he limit y-»0, h~2πy and α_ ~2^fy.
The classical Liouville field of refs. l , 2 i s Φ ~ α _ Φ + 21nα_. The boundary condi-
tions of refs. 1,2 are

(2.47)

(2.48)

and we are going to rederivative them (with p x = 1) from the classical limit of Eq.
(2.40). The limit y -» 0 is taken with m -• oo so that hm has a finite limit which we
denote with the same symbols. For instance, Eqs. (2.24-2.26) become, respectively,

(2.49)

(2.50)

where now hm = 2πym. Clearly hm must have a finite limit since otherwise the
classical limit would be singular, as shown for instance in (2.50). Equation (2.40)
becomes

(2.51)
4πN/2
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The boundary condition involves de~®l2/dσ at σ = 0 and σ = π, which are computed
from the Wronskian of the ξ classical functions. The latter is derived in Appendix A.
One has

n % C T - ei'&iσ) - ίLW-^y/V)=2*. (2.52)
da da

It is independent of σ since ζ{±fi2

 a r e solutions of the same Schrodinger equation
which is the classical limit of (2.6). Consider next the boundary a — n. One
immediately obtains

=--ί-p2 (2.53)
/2

in agreement with refs. 1, 2 (Eq. (2.44)). Consider, next the boundary a = 0. The
method is similar, but we have to first transform (2.51) using the monodromy
properties of the ξ fields, described by the classical limits of Eqs. (2.42-2.44). One
gets

/ + 2κ)ξ1/2(-σ)}9 (2.54)

and the same calculation as above gives

de'*l2/dσ\σ=0 =1/^/2 (2.55)

in agreement with refs. 10, 11 (Eq. (2.47)) with pλ = 1.
Finally we turn to the quantum equivalent of the boundary conditions (2.48)

(we leave out the boundary σ = 0 which is treated in the same way). The quantum-
equivalent of the Wronskian is discussed in Appendix A. It is replaced by the
following condition on the short-distance operator-product expansion. For σ -> σ',
one has, according to (A.24),

^ ( " C M - eίhξ[)'2

2Kσ)ξ^2(σ') ~ (d(σ - σ'))1 + 3 » ' 2 » ( - W ^ 0 / 1 +^\.

1 o(2 + Inn)

(2.56)

The left-hand side is rewritten by using the braiding relation

Starting from Eq. (2.40), a straightforward computation shows that, for ε -> 0, one
has

eihi4e-a^,2l=^_e-ihl4e-a-<>i2l=^ ϊhΓ0{\+hlπ)

^ / ) ' ι ' }

The left-hand side is the quantum equivalent of the σ derivative at σ = π. It is of
course modified to take account of the quantum-corrections to the Taylor
expansion.
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3. Recursive Construction for Arbitrary J

In this section, we construct the operators e~a Jφ for arbitrary positive integer 2J
by using the operator-product expansion of the ξ fields. The normalisations will
be chosen so that the leading-order fusion-rule is given by

e-a-JΦ(σ)e-a-J'Φ(σ') ^(Mσ_σ'\y2hJJ'/πe-<x-(J + J')Φ(σ)^ nn

where d(σ — σ') = 1 — e~ι(σ~σΊ. Some general information concerning our conven-
tions for primary fields on the unit circle is recalled at the end of the appendix,
following refs. 10, 11, 13. We shall omit the divergent factor (d(σ-σf))~2hJJΊπ in
the following. Motivated by Eq. (2.27), we shall start with the ansatz

h Vn \
i/ 3

16π

where A(j^N are constants to be determined, and
jd/2) _j(l/2) -p-ihlAr j(l/2) _ κpih/4 .(1/2) _ n /o ^

Λ1/2,1/2 — ^-1/2,-1/2 ~ e ' /±ll21-\)2~ K t : » Λ -1/2,1/2 ~~ U * W'"3^

In order to proceed, we recall two more relevant results of ref. 10:

/. To leading order, the fusion of two ξ fields is given by

f (MV)££ V ) - λ(J, M; J\ M')&:#(σ), (3.4)

where

2J \/ 2Jf

^t/ | ~ ^t/

//. Tfĉ  braiding properties are

1) For π > σ > σ' > 0, the ξ fields obey the exchange algebra

£!>K(MV) = Σ (Λ ̂ ϊ ' ^ ί ^ ^ ί σ ) , (3.6)

(J,J')N

MM'=«J,M\®(J',M'\)R(\J,Ny®\J',N'», (3.7)

/ °° Π ^ p2ih\npihn(n-l)/2 \

R = e(-2ί*j3®/3)( ! + y Vf—^_^ e-
ihnJ>(J+)"®eihnJV-Y i (3.8)

V n = i LwJ! /

where we have introduced the group-theoretic states | J, M>, -J^M^J; together
with operators J + , J 3 such that:

J± I J, M) = JlJ TM\lJ±M + \\\J,M±\y J3\J,M) = M\J, M). (3.9)

These operators satisfy the commutation relations

2) For 0 < σ < σ' < π, the ξ fields obey the exchange algebra
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( oo (\ _ p-2ih\np-ihn(n-l)/2 \

1+ Σ — — e-ihnJ*(J-)n®eihnJ>(J+)n I (3.13)
n=i Injl J

3) The two exchange-formulae are related by the inverse-relation

Σ (^ J'KW, J%P

N = < W M , / " (3.14)

Going back to our problem, one sees that the above formulae give

MM'PP'NN'

%\JujrZλ(JuP-,J,N')ξ%^(σ). (3.15)

It is sufficient for the present purpose to choose J1 = 1/2. Then one has

(1/2,J)^- χ ι 2 = e-ihll{\ -e 2 i h ) J\J -MJIJ + M + 1J, (3.16)

1(1/2,-1/2; J,M)= l^ ~ M + l i

 e

ihmJ+M\
V L2J + lj

,1/2; J,M)= / L J + M + ' V ^ ^ ' . (3.17)

The recursion for the .4 coefficients reads

^ 2 W 4 + 1/2)]

+ e- 3»/4(i _ e2»)^/LJ - P + 3/2J LJ + P - 1/2J

•[A(l/2,1/2; J , P - 1/2)^13/2iN+1/2A(l/2, - 1/2; J,Λf + 1/2)]

+ ^ - ' ' M ^ I A 1/2;J,P-1/2)4'! 1 / 2 J V + 1 / 2 i ( l/2, -1/2; J,N +1/2)].

(3.18)
For J = 1 one finds the non-vanishing coefficients

. . ^ 1 - (3-19)

This may be rewritten as

3(^lfnllNχ (320)

c2 1 + e~2ih
where / 0 = 1, fλ = K:, / 2 = /c2 - 1 + e~2ih. One is led to the general ansatz

,Ny9 A(j):=e-ihj2> f e™*ψ?-fn. (3.21)
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It may be also verified to work for J = 3/2 if / 3 =fJ2+ fι(e~4ih - 1).
Let us turn to the general case. The above ansatz gives

J V [J + ΛΓJ ! [J-MJ! [M-ΛΓJ!

for M ̂  N, - J S M S J, - J S N ^ J, and A{£N = 0 otherwise. Substitute into
(3.18). After some computation, one sees that the ansatz solves the recurrence
relation for the A coefficients if the fn satisfy

Λe-2U" -l)- (3.23)
In order to solve this last recursion, we define

Fn(qY=~- with q = e~2i\ (3.24)

where

(y,ρ)v:=
Vf\(l-ypr). (3.25)
r = 0

This last definition is standard in mathematics. Its relationship with the present
conventions is expressed by the relation

V ) (2ismhΓveih[^-1)l2 + ™\e-2iha;e-2ih)v. (3.26)[ j v

Γ{a)

Equation (3.23) becomes

Fn-2-κFn.1+Fn = qnFn (3.27)

which is a ^-analog of a recurrence formula for Hermite polynomials [15,16] in
00

the variable κ/2. The solution is well known. Let P(ί, q):= Σ tnFn9 and κ:= qa + q~a.

One gets °
(1 - tq-a){\ - tqa)P{Uq) = P(qt9q) (3.28)

so that

P(ί, q) = Π . (3.29)
1o1(l-ί<rα)(l-ί<rα)

As a parenthetical remark, we note that Eq. (3.27) with K = 2, also appears in the
pyramid stacking of squares [17]. The initial condition is different and the solution
much more complicated, however. Using the standard identity

one finally obtains

/„= Σ <7a°-V s/2(n\ (3.30)

so that A(J) may be written as

oo (J y + s a{r-s) rs/2

A(J):=e-»'l Σ « " l ( + ) , I u

q (3.31)



290 E. Cremmer and J.-L. Gervais

This compact formula has a universal form which is somewhat similar to the
expression of the universal R matrix Eq. (3.8).

4. Operator-Algebra of the Local Fields Involving
One Quantum-Deformation Parameter

Here we establish the operator-algebra of the fields exp(— α_ JΦ{σ)) constructed
in the previous section. Starting from Eq. (3.2), and choosing σ > σ', for defϊniteness,
we may write the product of two operators of the family as

/ U \Ji+J2

β ~\TΣIϊ) 2. ΛM1Nί

ΛM2j g 3 / _ _*-* Mχ,Nχ^M2,N2

and, using Eqs. (3.6), (3.7),

/ U \JX+J2
-<x-Φ(σ)p-<x-J2Φ(σ') / n \ V V A(Ji) A<^) (1 J\M2Nι

e -\T^~3 ^ L AMi,NΛMtN2V
βl>J2)NM

Mι,M2Ni,N2 M,N

It is convenient to write, making use of Eq. (3.8),

•R(\J1,Ni}®\J2>M}KJ2,M\A(J)\J2,N2}, (4.3)

(\ _ P2ih\npihn(n-l)/2 \

V—t_Ll eihnJ'(J+)n®(J+)neihnJ'Y (4.4)
l]l J

R is deduced from R by taking the transposed in the second space. In operator-form,
one gets

MN

•(Uri,JV1>(g>|J2,iV2». (4.5)

Our discussion will be based on the following two theorems.

Theorem (1). Introduce the co-product associated with Uq(sl(2)):

Λ(J)± = J±®eihJ> + e-ihJ*® J ± , Λ(J)3 = J3 ® 1 + 1 ® J 3 . (4.6)

The operators A obey the following co-multiplication law

A(A(J)) = 01(7)® 1]Λ[1 ® A0)2 (4.7)

if the coefficients fn satisfy

f f f (\ —plih\p

LμJlLvJ! o^tΐn(μ.v)Lv-pJ!Lμ-pJ! LpJ!

Proof Introduce

x:=J+®eihJ\ y:=e-ihJ*®J+. (4.9)
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They satisfy
yx = xye~2ih. (4.10)

It is a standard result, which may be derived by recursion, that the ^-deformed
binomial coefficients are really binomial coefficients for non-commuting variables
of this type. Indeed, one has

(x + y)N = Y (N)e-ihr(N-r)xryN-r. (4.11)
r = o\r J

This allows to write the left-hand side of (4.7) in the form £ xmynamn. Re-expressing
mn

the right-hand side in the same way and identifying term by term complete the
derivation. Π

Theorem (2). Equation (4.8) holds if (3.23) is true andf0 = 1.

Proof. First (4.8) coincides with (3.23) if μ = 1 or v = 1. Thus the proof is equivalent
to the statement that the quantity

x»y = Σ ciJ*-pfy-p> ( 4 1 2 )
0 ^p^min(ju,v)

Cp :=(^ |( ^ | ( 1 —e2ih)p\Ό\\eih{p{p~1)l2~p{μ + v + ιl2)) (4 13)
"'v* \μj\vj

is only a function of the sum μ + v. This fact is verified as follows. The ̂ -binomial
coefficients satisfy

Thus

where βn:=e~2ihn — 1 is the coefficient of fn_1 in (3.23). Making use of (4.15) one
finally deduces from (3.27) that indeed Xμ,v = Xμ+itV-i only depends upon the
sum μ + v. •

Concerning the operator-algebra, it follows from Theorem (1) that Eq. (4.1) is
equivalent to

/ h \Jl+J2

e β ~ \ 1 A * 3 / ^ ζMΛσ>ςM2y
σ >

\lθπ / MuM2Ni,N2

«Ji,M1|(8)<J2,M2|)yl(Λ(J))(|J1,iV1>(8)|J2,iV2»

'&*)$?(?). (4.16)
The discussion of the fusion is based on the following fusion properties [12] of
the ξ fields:

J=\Jι-J2\

• ( J 1 , M 1 ; J 2 , M 2 | J ) ( ^ )

1 + M » +descendants)}, (4.17)
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where
Δ(J) ΞΞ-J(J+ l)h/π - J.

The g-Clebsch-Gordan coefficient (J l 5 M t ; J 2 , M 2 | J 1 ? J 2 ; J, Mγ + M 2) is abbreviated
by ( J ^ M ^ J 2 , M 2 | J ) . g^ j 2 is a number whose explicit form will not be needed
{g[j2)j2 is computed in Appendix A). Substituting (4.17) into (4.16) gives

+ Jι J1+J2 J1+J2

T T y QJr r QJr r

'(\J1,N1>®\J2,N2»(J1,N1;J29N2\J)

•KA?I +M2(
σ) + descendants)^ + N 2 (σ) -h descendants)}.

(4.18)

Introduce the states

\J9M,Jl9J2>= Σ (JnMuJ2,M2\J)(\JuM1>®\J2,M2)). (4.19)

Equation (4.18) can be rewritten as
/ U \Jl+J2 Jl+J2 Jl+J2

-a-J,Φ{σ) -<x-J2Φ(σ') _ί \ V V V Q3 QJ

e e - L 3 L L L yjι,j2yji,j2
\lθπ / M,N J = \Jι-J2\ J = \Jί~J2\

Γ,J 1 ,J 2 >(^ ) (σ) + descendants)

'(ξ{j\σ) + descendants)}. (4.20)

Next, we make use of the recurrence relation for the C.G. coefficients:

which lead to

h + M2]y ±Mi±M2 + 1}{JUM1;J2,M2\J)

J)

•), (4-21)

(4.22)

as expected from the group-theoretical meaning of the C.G. coefficients. Moreover,
the orthogonality relations of C.G. coefficients, that is

X (J1,Nι;J2,N2\J)(Jι,Ni;J2,N2\J) = δJJ, (4.23)
Nι+N2 = N

imply
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Therefore

9 (4.25)

and thus the O.P.E. expansion reads

e~a-Ji Φ(σ)e~a-J2Φ(σ') _
Jί+J2-J

+ descendants}.
(4.26)

We terminate this section by checking the locality of the operators
According to Eq. (4.7) we can also write

- ί *
\l6π3

•«J2,

.ξ(Jl)L

V1+J2

J »
Aί!l®<

τ')ξ{J'\σ

fi.JW»..Wa

 M l

H

,N2y<ί

(4.27)

Indeed, σ' — σ = σ — σ' is positive, so that the computation is the same as when
we started from (4.1). Using the braiding-algebra Eqs. (3.6)—(3.13), one permutes
the operators £j£V), ξ&V), and ξ^l\σ'\ξ^l\σ\ respectively. One makes use of
the identity

RT = R~1 (4.28)

to transform (4.27) into

Mi,M2Ni,N2

^ 2 > ® l ^ i ^ i > ) ^ V ) ^ 2

2 V ) . (4.29)

Equation (4.28) is easily deduced from (3.14), if one expresses it in terms of R, and
notices that this last matrix is invariant by exchange of the two spaces in the
tensor-product^ The basic quantum-group property of the R matrix is to satisfy
the relation RΛ = ΛR, where A is the other co-product

A(J)± = J± ®e~ihj3 + eihj3®J±, Λ{J)3 = Λ{J)3. (4.30)

Thus Eq. (4.29) may be simplified since R ~ M(yϊ(J))K = A(Λ (J)). Finally, one makes
use of the identity

iV2>®|J1,JV1», (4.31)

and arrives at an expression which is identical to the right-hand side of (4.16).
Thus we get locality:
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5. The Complete Operator-Algebra

In this last part, we deal with the most general operator exp(-(α_J + α+J)Φ).
First, we define these fields by fusion. They will be normalized so that

e-a- JΦ(σ)e-a + JΦ(σ') „ ^ σ _ ^ y 2JJ/π^-(α-J + α +J)Φ(σ) ^ ^

where ~ means that one takes the leading order in the limit σ -» σ'. As before, the
divergent factor will be omitted. The left-hand side is given by Eqs. (3.1), (3.22).
The right-hand side is computed using the fusion and braiding properties derived
in ref. 10,11, for an arbitrary £-field and an arbitrary f-field, that is, for σ > σ\

λ (5.2)

')ξ^(σ). (5.3)

Making use of these relations one obtains

/ h V / h V
-(<xJ + a + J)Φ(σ) / ! \ I n \

& $ • (5-4)

One may check that one gets the same result if, instead of (5.1), one uses

e~a + JΦ(σ)e-<x- JΦ(σ') ^ e~(ct- J + <x + J)Φ(σ) /^ ^\

Next we verify that the operator so defined is again local. This immediately
follows from its definition (5.1) (or, equivalently (5.5) if one admits that the ordering
between fusion and braiding is irrelevant: it is then a consequence of the locality
of e x p [ - α_ JΦ(σ)] and e x p [ - α + JΦ{σ)~\ separately, as was shown in the previous
section; and from the fact that exp[— α_ JΦ(σ)] and exp[— α +JΦ(σ)] are mutually
local, as one easily sees since their braiding matrix is trivial. We shall nevertheless
carry out the proof, as a consistency check, omitting the details of the calculations.

Consider

- ( h V1

= c~2iπ(JιJ1+J2J2)ί H \= e

Σ Λ(Ji) ΛiiiL ><[(Mi -ΛTi)Ji +(Mi -Nι)Jι]z(JiJι) (n\PVι>h)(~\

MjNjMjNj,j= 1,2

ΛM2N2

ΛM2N2

e ^M2,M2^σ ^N2,N2 ^ >' V'0'

Note that since π > σ > σ ' > 0 , we have π > σ' >σ>σ> σ' > 0 . Next commute
ζ^l'^iv) a n d ζ{M2

Jώ2(
σ')> making use of the general braiding relation, valid for

π > σ > σ' > 0,

^Mi,Mi l σ ^M2,M 2 i σ /~ L tΛMι,Mi;M2,M2(*N2,N2 \ σ f^Ni.Ni \°» ^J' '>
Nι,N2,Nι,N2

where

unN2,N2;NuNi _/τ j \N2Nt ?f f \N2N1
^Mi,Mi;M2,M2 ~~ \J l ' J 2)MιM2\

J 1>J 2)MιM2
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which was derived in ref. 10. One gets

/ U \Jι+Ji/ t \Jι+Ji

= l n ) ( )
\Jι+Ji/ t \J

) ( — — )
π3/ \l6π3jV16π3/ \l6π3j MJNJMJNJJ=I,2.M2,N'1,M2,N[

.11 j \M'2N\ A(hL FiJl'h)(n:\pV2,J2)(fT'\

is given by

ψ l = Jx{Mγ - 2M'2 - N\) + J2{M'2 + 2N\ - N2)

M, - 2M'2 - N\) + J2(M'2 + 2N; - JV2). (5.10)

It does not depend upon JV 1,M 2,N 1, and M 2

 s o t n a t , by making use of Eq. (4.7),
each term of the summation may be written as

K ^ (5.11)

There remains to commute ξ(J

M

ι;%\(σ) with ξ(£3£(σ') and ξ%ϊ)\σ) with ζ^2J2

2Kσf).
Applying formulae (5.7), and (5.8), one sees that the calculation proceeds as in
Sect. 4 for the hatted and unhatted braiding-matrices. After some algebra, the
additional phase-factor is found to be precisely such that one obtains the same
expression as in (5.6), but with the roles of 1,2, and σ, σ' interchanged, respectively.
Thus one concludes that one would have derived the same expression, if one had
started from the product in reverse order; and locality follows. •

The last point concerns closure by fusion. In the same way, as for locality one
may consider that it is obvious: it follows from the discussion of Sect. 4 and from
the definition (5.1), if one admits that fusion is associative. We nevertheless give
the elements of the derivation for completeness. The general operator-product
expansion of the ξ(^J^ fields are given by

J1+J2

Λσ J - L \\a\σ σ>> yjίJ29j1J2

jJ=\Jι-J2\

(5.12)

where p(JuJ2JJ2;J,J):= \JjJlQ-ΛKJJUJ^C)-ΔKJJ2J2;C). Some
general details about the structure of this formula are given at the end of the
appendix. The quantities gJ

JιJ2, and gjj2 are coupling constants whose explicit
expression is not needed for the proof, since they only depend upon the eigenvalues
of the Casimir operators. This result was derived in ref. 12, apart from the second
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exponential on the second line. Since this factor is important for checking closure
by fusion, we give some explanation of its origin. In ref. 12, the above general
formula was derived by consistency with the co-product for the general fields ξ{^%
However, the formulae used for the latter (formula (2.53)) are not co-associative,
namely, applying them twice to "add" three irreducible representations, one gets
a result that depends upon the ordering chosen to combine them. We modify the
general co-product in order to achieve co-associativity. For this formulae (2.53)
of ref. 12 are to be replaced by

J(12) _ e + iπ(J^V-J^-JW)ίj{\)eihjψ + iπJW + ^-i/iJ^ + iπJ*1)y(2)\

J(12) _ e+iπ{J^2)-J^-J(2))ίj{l)eihjψ + iπJW _j_ £-ihJ^TiπJ^ j(2)\ /$ γy,

where we used a self-explanatory notation that differs from the one of ref. 12. The
additional factor in front includes the total spins J ( 1 2 ) , and J ( 1 2 ) , which are given
by the Casimir operators computed from the left-hand sides. This definition makes
sense, since these Casimir operators are not sensitive to these factors. J ( 1 2 ) , and
J ( 1 2 ) of course commute with J{±2\ J(

3

12), J{12\ and J (

3

1 2 ). It is easy to check that
co-associativity holds, that is,

J((12)3) = i/(l(23υ J|(12)3) = J|1(23))# (5 1 4 )

When the fusion-coefficients are derived, as in ref. 12, by imposing its compatibility
with the co-product, the new factor above gives the additional exponential in (5.12).

Finally, the general fusion-algebra is derived by applying (5.12) to each pair
of terms appearing in (5.9), for σ->σ' and <7-xτ', respectively. The calculation
makes use of the basic identity (4.7) for the hatted and unhatted A matrices. There
are additional phase-factors which may be transformed to verify that the ortho-
gonality of the q-C. G. coefficients (Eq. (4.24)) may be applied both for the hatted
and unhatted ones. After some algebra, one gets the desired result:

J i + J l

'(Qij2)
2(ύij2)

2{e-{a-J+a+3)Φ{σ) + descendants}. (5.15)

6. Outlook

We have obtained a general construction of the operators exp( — α_ J — α+J)Φ(σ)
for arbitrary J and / positive integers or half-integers. It is based on the
introduction of the A matrix which takes a universal form and has a close
connection with the universal R matrix and Clebsch-Gordan coefficients of the
quantum group Uq(sl(2)). This novel structure is related with the problem of
factorizable scattering on the semi-line [18, 19]. Moreover, locality of the inverse
powers of the metric is equivalent to a relation involving four R matrices and four
A matrices. A similar equation has just been introduced independently in ref. 20
for the .OfZ-model with free ends. In this connection, we note an interesting
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generalisation of Eq. (4.16) namely,
Jk

P j φ / h \P*

P

Y (x) IΛ, τvk> ) n ^ V.) Π ^ ί ^ ) } -
\*=1 / r /

In this equation, β1^"'^ is a compact notation for the iterated co-product, which
may be defined recursively by the equation

J(2,...,P)1 ( 6 2 )

where the notation is self explanatory, A being the usual co-product (4.6). Due to
the co-associativity, j ( 1 ' 2 'i>) satisfies,

i/(1.2.....P) = Λ(J(1.2.....m, i/(Λ+l i....P) )> y. l g | ^ p _ l . (6.3)

Equation (6.1) is derived by recurrence, repeating the proof carried out in Sect. 4,
in order to establish Eq. (4.6). One of the standard properties of the R matrix is
equivalent to the identity

R(J(1\β3))R(β2\Ji3)) = R(J(12\ J ( 3 ) ). (6.4)

This formula is easy to verify from the explicit expression (4.6), using the property
indicated on Eqs. (4.9)—(4.11). Making use of (6.2), one deduces that

Π R(J(s\J(P+1)) = R(Jil>->p\JiP+1)). (6.5)
s=l,...,P

With this last relation, the recurrence proof is obvious. Formula (6.1) has an
interesting structure. For instance, the decomposition of the general operator-
product is reduced to the decomposition of co-products into irreducible representa-
tions, that is to the g-deformed Bethe ansatz. In general (6.1) illustrates the interplay
between integrable algebraic structures and quantum gravity on the strip.

The future developments of the present study go in several directions. First,
one should treat the case of rational theories, that is when eih is a root of unity.
For some special cases, it was already observed in ref. 4 that the Hubert space of
states has a remarkable truncation to a subset with positive highest-weights. In
general, one can determine the set of critical exponents for gravity coupled to
some world-sheet matter with boundaries. The factors gJ

JίJ2, gjj2 will then be
needed to obtain the three-point functions. They may be determined, after some
computation, following the recursive method of refs. 10, 12. Second one may
consider strongly coupled gravity and try to derive a unitary truncation theorem
similar to the one of refs. 11,12. Third, one may use the A matrix for studying
integrable models on lattices with boundary. We hope to return to these problems
in the future.

Appendix A

In this appendix, we derive the quantum-version of the Wronskian condition for
the ξ fields. This will also be useful to determine the normalisation of the classical
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^-functions by taking the classical limit. First recall some formulae of ref. 10. For
this, it is convenient to adopt the slightly different notation of Appendix A of ref. 10:
One writes ψμ'v instead of φ^ with μ = J — m and v = J + m and introduces Vμ'v

such that K1'0 = Vi and V0Λ = V2. In general (see formulae (A.14-A.18) of ref. 10),
the ψ's and the F's are related by

ψμ,v Ξ (C^Dμ>\m))Vμ>\ (A.I)

The coefficients Cμ'v which do not depend upon w satisfy the relations

C1'° = C°'1 = 1, (A.2)

C C

Γ 0 (l+(v+l)Λ/π)

Since we want to adopt the same notations as in ref. 12, the ordinary gamma
functions (not ^-deformed) are denoted with an index zero since they correspond
to a vanishing parameter h. Following ref. 12, it is the g-deformed gamma function
with parameter h which is denoted by Γ(z). The dependence on w is contained in
the coefficients Dμ'\m) which are determined by the recursion

(A 6)

with D 1 ' 0 = dλ and D 0 ' 1 = d2 satisfying

d1(w)d2{w - 1) = Γ0(-m/z/π)Γ0((tπ - l)h/π). (A.7)

One repeats the discussion of Appendix A of ref. 10 for the fusion of Vίt2 with
Vμ'v keeping the two terms, following the proof of Theorem (2.8) of ref. 13. This
leads to

(Λ( f\\-Jh/πl 0\ A ' "/»*/'"/•* 0VA i v/* i " i v * / ' V l τ / u + 1

V Γ 0 ( l + (w + v)Λ/π)Γ0(l + (μ + l)h/π)J

+ {d{σ~σ')f Γ0(-2vh/π)Γ0((m-μ-ί)h/π)

(A.8)

\ Γ 0 ( l + ( - o j + v)Λ/π)Γo(l+(v- '

• (d(σ σ , ) γ + ( J + i W «^o(l ~ P W O ( - 1 - (μ + v

r o (-2/iΛ/π)Γ o ((-m-v-l)Λ/π)

(A.9)

where d(σ — σ') = 1 — e~ί<σ~ff>. it is next straightforward to re-express the last two
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relations in terms of the φ fields using Eqs. (A.1)-(A.7). One gets

+ (d(σ - σ')Ϋ +<J+lw*gl;i;ί
2lT^]

miψ^l'l

2

2\ (A. 10)

where

0Γ1/22 = Γ o ( l + 2Jh/π)Γ0( - 1 - (2J + l)h/n) (A. 11)

is the coupling between spins J, 1/2 and J - 1/2. The φ fields have been normalized
in such a way that ff^^fi2 = 1. Next we turn to the ξ fields. For our purpose, we
only need to extract the J = 0 component of the operator-product of two
£(1/2)-fields. One has,

Σ <AL1/2 Kσ)\J9 w - 2m)™ I J, m)™',^ 2 V ) (A. 12)
m= ±l/2m'=±l/2

and, according to Eq. (2.39) of ref. 12,

M= ±1/2

= Σ Ψ
m= ±1/2

where

CW2/2 = ± 2i

Next, letting σ-^σ' and making use of (A. 10), one gets

M= ±1/2

- ( d ( σ - σ'))(1 + 3h)/2«(-2iπeih/2) Γ Q ( 1 + f e / π )

; (A. 15)
V V ; ; V V ( 2 + 2Λ/)' V

Γ Q ( 1

where the first term of (A. 10) has disappeared, and where we used the fact that
the second term involves ψ(

0

0) which is a constant. Our conventions are such that
it is equal to —1. The first term of (A. 10) is the spin-one contribution which
disappears since the left member of (A. 15) only involves the spin-zero contribution
to the operator-product, according to the definition of ref. 12. Indeed, making use
of the co-product (4.6), one may check that

M= ±1/2

Ξ Σ (-1)1/2^

M=±l/2

- M\ LJ + M + 1 WhMξ^\σ)ξ^l\{σf)} = 0. (A. 16)

Equation (A. 15) is the quantum-equivalent of the Wronskian condition for
Schrδdinger wave-functions. The classical Wronskian is regained as follows: Let
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h -> 0 keeping the product hm fixed. The quantum formulae have a smooth classical
limit. Equation (A. 15) becomes

and thus the Wronskian

/^.--i/2v-/ '-i/2v-/^ σ ' i/^ v ) - 2 π . (A.18)

Finally a last indication about our conventions may be useful. We work on
the unit circle, and adopt the corresponding definition of primary fields. Our
formulation is thus invariant by translation of σ, and not under translation of
z = eiσ as is usual when one works on the complex plane. As a result the operator-
product expansion of two primary fields srf(σ) and &(σf) takes the form

σ - σ'))Mr~ Δ«- Δ*{%Xσ) + descendants}, (A. 19)
r

where d(σ — σ')= 1 — e~ι(σ~σ'\ The Δ's are the conformal weights, which for the
fields ξ^β are given by Kac's formula:

. , - ~ c -1 l
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