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Abstract. We study the dynamical entropy in the sense of Connes, Narnhofer, and
Thirring of automorphisms on quasi-local algebras in quantum statistical me-
chanics. We extend their Kolmogorov-Sinai type theorem for AF-algebras to
quasi-local algebras which are not necessarily AF-algebras.

1. Introduction

In their recent paper [5] Connes, Narnhofer and Thirring generalized the notion of
a dynamical entropy introduced by Kolmogorov and Sinai [8,15] for classical
dynamical systems to the case of automorphisms of C*-algebras invariant with
respect to a given state, and they obtained a Kolmogorov-Sinai type theorem [5]
for approximately finite (AF) algebras. The main purpose in this paper is to extend
their result to quasi-local algebras in quantum statistical mechanics which are not
necessarily approximately finite.

The concept of the Kolmogorov-Sinai (KS) entropy of measure preserving
transformations became a key notion in ergodic theory [2] and also it allowed a
formulation of the variational principle in statistical mechanics [14]. A quantum
or non-commutative analogue of KS entropy was required for both to provide an
important mathematical concept for quantum dynamical systems and to be
applicable in quantum statistical mechanics. There have been several attempts to
generalize the classical theory to non-commutative cases [3,4,6,10]. In order that
a generalization is meaningful, it is natural to require that if it is restricted to
classical systems, it must reduced to the KS entropy and that it has the continuity
of the KS type [8,15] to be able to compute the entropy. Due to much progress in
quantum statistical mechanics [1,9], Connes, and Stδrmer were able to handle the
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tracial state [3]. In [5] Connes, Narnhofer, and Thirring extended the tracial case
to the non-tracial situation, and they also established the continuity of the KS type
for AF-algebras. In order to apply Connes, Narnhofer, and Thirring (CNT) theory
to unbounded spin systems and Bose particle systems in quantum statistical
mechanics [1] one has to extend the continuity of the KS type to quasi-local
algebras which are not AF-algebras.

We organize the paper as follows: In Sect. 2 we review the definitions and the
results on the CNT entropy [5] which will be used in the sequel. In Sect. 3, we list
basic assumptions on quasi-local algebras (the tensor product property) and on
the states (the locally normal property), and then give our main result. Section 4 is
devoted to proof of the main result. As a simple application of our results we
compute the dynamical entropy of space translations for product states of the
unbounded quantum lattice system in Sect. 5.

2. Dynamical Entropy of C*-Algebras

As a preparation, we review the definition and some results on the dynamical
entropy in [5] which are needed in the sequel. Throughout this section we consider
a C*-dynamical system (stf,è,ö), where srf is a unital C*-algebra, è is an
automorphism on si and ö is a state over $# which is invariant with respect to è.

Let stf be a finite dimensional C*-algebra and let ö and ø be states on stf. The
density operators corresponding to ö and ø are denoted by ρ^ and ñø respectively.
The relative entropy for the states ö and ø is defined by

S(ö I ø) ̂ ôô(ñø(logñø-logñö)), (2.1)

where Tr denotes the trace.
A completely positive unital map y between two unital C*-algebras si and J* is

defined by a positive unital map such that the map ã between Mn(s/) and Mn(â)
the nxn matrices with elements from si (respectively 0$\ (y{a))ij = y(aij), is positive
for all n. With respect to composition they form a semigroup which contains
*-homomorphisms. If 3SCs/, a positive unital map ç\si->3t with y(b1ab2)
= bßy(a)b2, frr e J*, aås/, is called a unital conditional expectation. The natural
inclusions and unital conditional expectations are completely positive unital
maps.

We recall the definition of the CNT entropy in [5]. Let si be a unital C*-
algebra, Jr

u...,J
r

k finite dimensional C*-algebras and y^Jf^st a completely
positive unital map, j = 1,..., k. Let ö be a state on si and P: stf^>88 a completely
positive unital map of si into a finite dimensional abelian C*-algebra 0b such that
there is a state ìoxvSß for which ìoP = ö. lúpu ...,pr are the minimal projections in
36, then there are states öi9 i = 1, ...,r of si such that

P(x)= Σ Öt(x)pi9 xe^. (2.2)

Since ìoP = ö,

Ö= Σ ìipdÖi (2.3)

That is, ö can be written as a convex combination of the öt. As in [5], let

(2.4)



Dynamical Entropy of Quasi-local Algebras 151

The entropy defect is given by

εμ(P), (2.5)

r

where S(ì)= — X ì{p^\ogì(p^ is the entropy of ì.
i=l

Let 0Spj=ß9 ...,fc be a C*-subalgebras of 8ft and let Ey. 08-^0$] a μ-invariant
conditional expectation. Then the quadruple (&,EpP,ì) is called an abelian
model for (s/,ö9yß,...iyk) and its entropy is defined to be

S(ì\vËj)-ÓSì{Qj), (2.6)
J j

where Q^E^P oy.\jf^g^. is a completely positive map from Jß^ to Jy. The
supremum of the entropies of all such abelian models is denoted by

If è is ^-invariant automorphism of stf, let ã \Jf^>si be a completely positive
unital map of a finite dimensional C*-algebra Jß to st9 and denote by

höfè(ã)= lim i/Γ,(y,0o ? , . . . ,0*-ioy). (2.7)

fc->oo K

The dynamical entropy of è with respect to φ is defined by

hö(è)= sup höfè(y). (2.8)
y

For the details, we refer the reader to [5].
We collect some useful properties of Hö from [5]:

Proposition 2.1 [5, Proposition 111.6]. a) Let èj:J
rj-+Jfj be completely positive

unital maps, then

Equality holds if Jf^Jß'^ and èj is a conditional expectation for all).
b) Hö{ãl9 ...,yk) depends only upon the set {yú9...,ãk} = X9 that is H{y,y) =
c) With the notation of b) one has

max {Hö{X\ Hö(Y)} ^ Hö(Xêj Y) ̂  Hö(X) + HÖ(Y).

Proposition 2.2 [5, Proposition IV.3]. Let si be a unital C*-algebra, ö a state and
Jfpj = l,...,kbe finite dimensional C*-algebras, jp yr be completely positive unital
maps from Jß^ to si. Let d be the max of the dimensions of the Jf>s and
ε = max \y^ — y}||. Then the inequality

j

holds.

In order to be able to compute hö(è) it is necessary to have an analogue of the
Kolmogorov-Sinai theorem for the ordinary entropy of automorphisms. The
following is the KS-type theorem obtained in [5]:
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Theorem 2.3 [5, Corollary V.4]. Let s/=[jsin be an AF-algebra, then for any
n

state ö on si and automorphism è with öoè = ö, one has
hö(è)= lim höiè(ôn),

«-•(»

where ôn\sin-+si is the homomorphism of inclusion.

The following result show that the entropy of an automorphism è of a nuclear
C*-algebra si with invariant state ö determines the entropy of the corresponding
automorphism of the von-Neumann algebra ðö(siy\ the weak closure of si in the
GNS construction of ö:

Theorem 2.4 [5, Theorem VII.2]. Let si be a nuclear C*-algebra, ö a state on stf, è
an automorphism with ö°è = ö. Let Jß = ðö(si)"9ö, è the natural extensions of ö, è
to Jß, then

h(è)=hö(è).

For the proofs we refer to [5].

3. Dynamical Entropy of Quasi-local Algebras: Main Results

In this section we state our main results and then give some examples for which our
results can be applied. We work within the framework of quantum statistical
mechanical systems which we start from strictly local algebras sßA indexed by
bounded regions A in Rv (or Zv). The norm closure of (J siA is the C*-algebra si of

A

quasi-local operators. For the general definition of quasi-local algebras indexed by
directed sets, we refer reader to [1]. Let si be a quasi-local algebra whose
generating net {s/Ë} is formed of von-Neumann algebras siA in separable Hubert
spaces jfË. A state ö on si is said to be locally normal if ö is normal in restriction
to each siË. Then ö in restriction to each siA is determined by a density matrix ñA

on a Hubert space J^Ë.
We list some assumption on quasi-local algebras and then state the main result

(Theorem 3.2).

Assumption 3.1. Let (s/,{siË}) be a quasi-local algebra indexed by bounded
open regions ΛίcRv (or Zv) and let ö be a state on si. We assume that the fol-
lowing properties are valid:
(a) For each Ë, siA is a von Neumann algebra in a separable Hubert space fflA.
(b) Tensor product property: Let A1cA. Then there exists A2CA such that
AxnA2 = 0 and siA — siM®s/A7.
(c) Locally normal property: ö is locally normal and for each A the corresponding
density matrix ñË belongs to siA.

Remarks. 1. In the most quantum statistical mechanical systems the equilibrium
states obtained via thermodynamic limits of local Gibbs states are turned out to be
locally normal [1, 12,13].

2. It may be worth commenting that Assumption 3.1 (b) is not satisfied in
relativistic quantum field theories. Assumption 3.1 (b) will be used to construct a
completely positive unital map óA from si to siA which converges to the identity
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map in the pointwise norm topology as A tends to Rv (orZv). See Lemma 4.1 in
Sect. 4 for the details. In order to get such a map or a weaker version of it in
quantum field theories, one has to replace Assumption 3.1 (b) with other appropri-
ate property.

3. Our results stated below can easily be generalized to quasi-local algebras
indexed by directed sets under the assumptions analogous to those in Assump-
tion 3.1. To avoid the additional notational complications, we restrict ourselves
to quasi-local algebras indexed by bounded open regions A in Rv (or Zv).

For a given Ë, let ëb i = 1,2,... be the eigenvalues of the density matrix ñË listed
in decreasing order (counting multiplicities), and let JfAtK be the subspace of 3tfA

spanned by the eigenvectors corresponding eigenvalues ël9 ë2,. ., ëH. Denote by Pn

the projection operator from jfË to 3tfA9n and

^.^ΛΛΘCJί, (3.1)

where Pj- = 1 — Pn. Then from Assumption 3.1 (c)it follows that each s/ËfËis a finite
dimensional unital subalgebra of stA. For each A and n, let ôËfË be the embedding
map of siAn into siA. Throughout the paper we will adapt the convention that
A |RV indicates A increases to Rv so that A eventually contains any bounded region
ofRv.

The following is our main result analogous to Theorem 2.3 for AF-algebra:

Theorem 3.2. Let (s/9 {siË}) be a quasi-local algebra indexed by the bounded regions
A C Rv (or Zv), è an automorphism on si and ö a state on si invariant under è. Under
the assumptions in Assumption 3. ß, one has

hö(è)= lim lim hö,è(siËJ.
«->oo

Here the convention that the subalgebra siAtH is standing for the inclusion map
sßAiúl-^sß has been used.

Corollary 3.3. Under the assumptions as in Theorem 3.2, one has

hö(è)= lim sup hö^JT^.
Jf Ë'. finite

Proof. The corollary follows from the definition of hö(è) and Theorem 3.2. •

Next let us establish a non-AF version of Theorem 2.4:

Theorem 3.4. Let (s/,è,ö) be a dynamical system and let Jt = %ö(sß)\ ö,è the
natural extensions of ö and è to Ji. Then under Assumption 3. i one has

) = hö(è).

Proof. In the proof of Theorem 2.4 in [5], the nuclearity of si is not used and so the
same method as that used in the proof of Theorem 2.4 in [5] can be applied to our
case. For the details, we refer to [5]. •

It may be worth to give some examples of quasi-local algebras satisfying
Assumption 3.1 (a), (b).

Example 3.5. (Unbounded) Quantum Lattice Systems: For each site xeZ v , one
assigns a separable Hubert space Jºf^Jºf. For each finite ΛcZ v, let J^A be the
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tensor product space 3tfA = ® Jt?{x). The local C*-algebra sßA is then defined by
xeË

siË = ̂ (J^Ë). For Aã CA, one has that sfA = s/Al(g)s/A\Ai. Note that if tfx is not
finite dimensional, then si is not an AF-algebra.

Example 3.6. CCR algebra: Let Sfc be a (pre)-Hilbert space equipped with inner
product (,) and let σ(/,g) = Im(/,g) for all f,£eJP. Let si be a C*-algebra
generated by non-zero elements W(f\ for / e Jf, satisfying

(1) W(_/)

(2) ^(/)^(g) = β " w ^ ) / 2 ^ ( / + g) for any

Then there exists the unique C*-algebra s7 = si{$) generated by Weyl operators
W(f) up to *-isomorphism [1].

For each bounded open set ΛcRv, let sßA be the CCR-algebra generated by
W(f),fel}(A). Then (si, {^}) is a quasi-local algebra indexed by bounded open
set A C Rv. Note that for each A C Rv, sßA is *-isomorphic to ^{^Ë\ where J ^ is the
symmetric Fock space [1]. Since I}(A) = J3(Aß)®l3(A2) for AxcA9 where
^2 = 1^(^X^1!), it follows that ^Ë = siM®siË2.

Finally we remark that CAR-algebra over L2(RV) is isomorphic to (x)M2(C)π,
n

and so Assumption 3.1 (b) is satisfied if one chooses the index set
J = {J:/CN,/: finite}. Note that CAR-algebra is AF-algebra and so the CNT-
theory [5] can be applied directly.

4. Proof of the Main Result

In this section we prove Theorem 3.2. The proof is rather lengthy and so we divide
the proof into several parts. We first establish some technical lemmas.

Lemma 4.1. Let (jtf,{s/Ë}) be a quasi-local algebra satisfying Assumption 3.1 (b),
and let ôA\sßA-+si be the embedding maps. Then for each bounded region ΛcRv

(orZv) there is a completely positive map aA:s/-+jtfA such that

lim Hτ^oσ^-jcl^O.

for any xes/.

Proof Recall that the quasi-local algebra si is defined to be the norm closure
°f ¼^Ë" F i r s t w e will define óË on the dense subset \]sßA. as

A' A'

follows. For xes/Ë9 óË(x) = x. If x is not in siA9 there exists A' such that
xssßA, and Ac A'. By assumption 3.1 (b), there exists A"cA' such that
at xesiA, and Ac A'. By Assumption 3.1 (b), there exists A'CA! such that
AnA" = Ö and s/Ai = s/A®sfA». Since {y®z\yesiË, zesiË,) generates stA.9 it
suffices to define óË(x) only of the form x = y®z, where y e siA and z e sßA». Let ö
be a state on si. We define óË{y®z) = ö(z)y. By the linearity óË extends to (J s/A..

A'
By using a corollary of the Hahn-Banach theorem it is easy to show that óË is a
contraction. Hence óË extends to si by continuity. By the above construction
óË:si-^siË is a unital conditional expectation.



Dynamical Entropy of Quasi-local Algebras 155

We now prove the convergence. For any xe si and ε>0, there exists A such
that there exists x'es/Ë. with | |x-x'| | <å/2. Notice that ôËoóË(x')=x' for Ë'CË.
For given xesi and ε > 0 we choose A and x! e siË, as above. Then for any A with
AcË it follows that

This proves the lemma completely. •

The following is a consequence of Proposition 2.2 and Lemma 4.1:

Lemma 4.2. Let (si,{siË}) be a quasi-local algebra as in Lemma 4.1, è an
automorphism on si and ö a state on si invariant under è. Then one has

hö(è)= lim sup höfè(ôËoyË),

Jß\ finite

where ôA\siA-+si is the inclusion map.

Proof. Let ôË and óË be the completely positive unital maps defined in Lemma 4.1,
and let / : Jß-* si be a completely positive unital map from a finite dimensional
algebra Jß to stf. Put y'Ë

 = ôËoóËoY- Then

lim WË-ã'\\=09

since by Lemma 4.1 y'Ë's are contractions which converge pointwise in norm to ã'
on the finite dimensional algebra Jß. Thus Proposition 2.2 shows that

lim höè(y'Ë) = höè(ã').

Thus we use Proposition 2.1 (a) to obtain that

hö(è)= sup hö,è(ã')

= sup lim höiè{y
f

Ë)
y' ^ T R V ( Z V )

^ lim sup höiè(y'Ë)
yltRv(Zv) y'

^ lim sup hötèôËoyË)
^lßRv(Zv) yË'Jr-+ÜË

Shö(è). (4.1)

This proves the lemma. •

Let ö be a state on a C*-algebra s/. For any positive element x in the
commutant ðö(<stf)', we write

. (4.2)

Then $x is a state on stf.

Proposition 4.3. Let (J/, {stfA}) be a quasi-local algebra, è an automorphism on si
and ö a state on si invariant under è. Assume that the conditions in Assumption 3.1
are satisfied. Let stfËtn be the finite dimensional subalgebra of s/Ë defined in (3.1).
Then for a given completely positive unital map yA

:jV^<^A from a finite
dimensional algebra Jß to sßA, there exist completely positive unital maps
óË,n'"^Ë^^Ë,n

 suc^ that the following property holds: For any å>0 there exists
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n o eN such that for n^.no,keZ and for any finite sequence {xu ...,xt} of positive
elements in ðö(stf)' with ΣXJ = 1 the bound

i

Σ \\ÖXi°è
koôËoôË,noóË,noyË-ö oèkoôËoyË\\

2ö(Xi)-i<å

holds, where ôAtn:s/Ëtn-+s/Ë and ôA\siA-+si are the embedding maps.

Proof. We first construct óAfn:s/A-^s/Ëtn. Let Pn be the projection from 3tfË to
2tfAn defined in the above of (3.1). Then PH->1 strongly as w-»oo. Define

Ë P ú (4.3)

for any yes/Ë. Then σπ(l)=Pπ + Pπ

1 = l. A direct computation shows that
óË,n(xiax2)=xéóË,n(a)x2 f°r xi> x2e-^Ë,m a^^Ë Therefore óËn is a unital
conditional expectation.

Next we prove the bound in the proposition. For a convenience we write that
for any xeðö{sß)', O^x^l ,

öx(Ë >j) = ö°x°èJ°ôËoyË,

From (4.3) and the invariance of ö under è it follows that

öXi(Ë,j, n)(a) = ö(è-J(Xi)PnyË(a)Pn)

, (4-4)

öXi (Ë,J) (a) = ö(è ~ J(Xi) (Pn + Pa^Ë(a) {Pn+Pft

= ö(è-J(Xi)PnãË(a)Pn) + <KÈ-'(xdP

(4.5)

We use the Schwarz inequality and the facts that Pn, P^ e s/A and è~}(xi) e ðö(s/)'
to obtain that
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Thus the above bounds imply that since Óxi = l,

= 16\\ãJ2

= myË\\
2 Ó ëm.

m = n+ 1

The above tends to zeros as n-> oo. This proved the bound in the proposition. •

Proposition 4.4. Under the assumptions as in Proposition 4.3, one has that for a
given completely positive map yA-Jf-*srfA and ε > 0, there exists n o e N such that for

Proof. We will use the method similar to that used in the proof of Lemma 2.1 of
[11]. We remark that an abelian model (J1, ì, ̂ J)j=1 k f o r (s/, ö, è j ° ã)j= Xtmmmtk i s
equivalent to a decomposition of the unit {xj}/=il ik such that Xjeðö(j^)\ X/^0,
Σ x / = 1. Denote that

xim= Ó Xi, öim(a) = ö(xinéa), $
ii. .ik

i m : fixed

Then Hö can be written as in [5]

= sup }

where ç(x)= — xlogx.

In order to show the method of the proof we first show that for n ̂  n0,

\Hö(ôËoãË)-Hö(ôAoôËtnoóË>noãË)]<å. (4.7)

For a notational simplification, we use the following abbreviated notations:

) = ö oôËoãA9

ö(Ë, n) = öoôAoôAtnoóËtnoãË9 ö.(Ë, Þ) = ö} °ôAoôAino óËtË o yA,

Öj{A) = öj(Ë)/öj(ß), $j{Ë9 n) = öj(Ë, n) IÖ3{\). (4.8)

We assume that {x;} define for Hö(ôË ° ãË) a (close to) optimal decomposition, i.e.

Hö(ôË o yË) ^ S(ö(Ë)) - Ó Öi(l)S($i(Ë)) + β. (4.9)
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For this decomposition one has

By Proposition 4.3 we have that for n^

As in [11], we write

and decompose the sum into two parts:

Then it follows that

(4.10)

Ó
Ic

Put v=ÓÖi- Then we have that v(l)^ε1/3. For iel, we estimate
Ic

By the continuity of entropy in [11] and Proposition 4.3 (with xt = 1 and x { =0 for
i=2, 3, ...,/) it follows that for iel,

\S($,(A)) - S($t(A, n))| ^

\S(ö(Ë) - S(ö(Ë, R))| ^ å1'2 log(2d/å1'2),

where d is the dimension of Jß. From (4.9), (4.10) and the estimates in the above, we
obtain that

Hö(ôö(ôË ôË<n

ßS(ö(Ë))-S(ö(Ë,n))
Ó ø,
ie/

Ó
^ ε 1 / 2 log(2d/ε1/2 1 / 3) + 2å 1 / 3 log(rf) + å.

Here we have used the fact that \S(ö)\ ^ || ö \\ log( || ö || d). By redefining ε in the above
and interchanging the role of ö(A) and ö(A9 n\ etc., we proved the bound in (4.7).

The proof of the proposition now follows from Proposition 4.3, (4.6) and the
method used in the proof of (4.7). Notice that the sum over j gives k factor in the
bound. This proved the proposition completely. •

Finally we turn to the proof of our main result:

Proof of Theorem 3.2. From Proposition 4.4 it follows that for a given
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We now use the above relation and Proposition 2.1 (a) to conclude that

lim hötè{ôËoôËJ^ sup höfè(ôËoãË)

^ sup lim hötâ(ôË°ôË,n°óË,n°ãË)

^ lim sup höiè(ôËoôËfnoóËjnoyË)

ý lim höfè(ôËoôËJ,
n-*ao

and so

lim hötè(ôËoôËJ= sup hötè(ôË°yË).

Thus Theorem 3.2 follows from Lemma 4.2 and the above result. This proved the
main theorem completely. •

5. A Simple Application

Recently the dynamical entropies of space translation for the Gibbs state of one
dimensional bounded quantum lattice system [5, 11] and Bogoliubov automor-
phisms for the quasifree state of CAR algebra [16] were computed. We expect
that these results can be extended to the unbounded quantum lattice system and
CCR algebra, and leave it to further study.

As a simple (almost trivial) application of Theorem 3.2 (and Corollary 3.3) let us
compute the dynamical entropy of space translations for product states of
unbounded quantum lattice systems. As in Example 3.5, we assign for each site
x e Z a separable Hubert space Jf^Jf7. For each finite ΛcZ, let

xeË xexË

Let ñx = ñ be a density matrix on Jß?x with eigenvalues ëhieN, listed in
decreasing order, öx the corresponding state on <^(J^X), and ö= ã[ öx the

xeZ

p r o d u c t s t a t e o n t h e q u a s i - l o c a l a l g e b r a s / = ( [ ] & ' *
v

Theorem 5.1. Let {stf, {<srfA}) be a quasi-local algebra for a unbounded quantum
lattice system indexed by A C Z, è the automorphism on sd given by one step lattice
translation, and ö the product state. Then the equality

holds.

Proof. Let A = {1,2,..., /} C N. For a given finite dimensional subalgebra JfA C $tA

and fceN, let MËË be the finite dimensional subalgebra of s/Ë(ky9 A{k) = {1,2,...,
l + k}, generated by èj(tË

r

Ë),j = 0, 1,..., k — 1. Then by the monotonicity of Hö in
Proposition 2.1

Bö{JßA,è{JßA), ...,èk{^Ë))^Hö{MËË, ...,MËË)
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We use Proposition 2.1 and Proposition 4.4 to obtain

Hö(MAfkU Mm Hö(stmJ
n-» oo

^ lim Sö(s/Mk)J
n-*óo

= -(/+*) ÓVogë,.
ί

Thus by Theorem 3.2 (Corollary 3.3)

Next we get the lower bound of hö{è). By the monotonicity of Hö,

ö f J J). (5.1)

For A = {1,2,...,/} we choose m = /. Since ö is a product state and Èmk(s/Ën) are
pairwise commuting subalgebras, the right-hand side of (5.1) equals to kHö(jtfËn).
Let ρ = Σ hVi t>e the spectral decomposition of the density matrix, Pn = pß + ... +pn

and P^ = t — PM.Then {pu..., pn, Pw

x} defines a decomposition of öx. A direct
computation shows that

÷ λ.logλ,).

Thus by Theorem 3.2 and the above calculation we obtain

This proves the theorem completely. •
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