Commun. Math. Phys. 143, 431-449 (1992) Communications in
thematical
Physics

© Springer-Verlag 1992

Dual Polygonal Billiards and Necklace Dynamics

Eugene Gutkin* and Nandor Simanyi**
Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA

Received June 15, 1990

Abstract. We study the orbits of the dual billiard map about a polygonal table
using the technique of necklace dynamics. Our main result is that for a certain class
of tables, called the quasi-rational polygons, the dual billiard orbits are bounded.
This implies that for the subset of rational tables (i.e. polygons with rational
vertices) the dual billiard orbits are periodic.

1. Introduction

Let P be a closed bounded domain in R? with a C! boundary and set E=R*\P.If P
is strictly convex, the dual billiard T: E— E is defined as follows. For any pointoe E
there are two rays R and R’ emanating from o and tangent to P, where the observer
looking at P from o sees R on the left and R’ on the right of P. Let A and A4’ be the
points of tangency. For any point veR? denote by r, the Euclidean reflection
about v. Then T(0)=r ,(0). The mapping T is continuous, preserves the Lebesgue
measure and invertible with T~ (0)=r (o).

If P is not strictly convex (for instance, P is a convex polygon) the dual billiard
mapping T is defined the same way but not on all of E (Fig. 1). Denote by o, the
union of straight lines through the sides of P. Then both T'and T ~*! are defined on
E\o, and 6, E is the union of singular sets of Tand T~ '. By inductiononn>1 we
define o,, a finite union of straight lines, where T*, —n<k <n, are well defined on

E\o,. The singular set 2= () o, is a countable union of straight lines, and for

n=1
xe E\Z (regular points) the infinite orbits {T"x: — o0 <n< oo} are defined. The
theme of this work is the orbit behavior for dual polygonal billiards. In particular,
can they be unbounded? If P is not a polygon but is bounded by a C’-curve of
positive curvature, all of the orbits are bounded [M1, D]. The proof is based on the
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Fig. 1. Dual billiard about a polygon R

twist-map technique, thus the smoothness of the boundary curve of P is essential.
The question whether the dual billiard orbits are bounded if P has corners, in
particular if P is a polygon, was formulated in [M2] and discussed in [VS,K].

The main claim of [VS and K] is that if a polygon P satisfies certain conditions
then the orbits are bounded and under further assumptions on P the orbits are
periodic. We have tried hard to unravel the statements and the argument in
[VS,K]. To no avail. The exposition in [K] seems to follow that of [VS], but is
more cryptic, which makes it even worse. When we learned that the referee and the
editor of [VS] had the same problem with it and could not help us, we gave up on
[VS] and [K] and took up the problem on our own. The results are reported here.
In the rest of the introduction we briefly describe the contents of the paper.

In Sect. 2 we introduce the notions of the necklace and the necklace dynamics.
Let o€ E and let { T"0} be the corresponding orbit. Imagine an observer located at
o. From his point of view, o is at rest and P moves, getting reflected each time about
one of its vertices. The successive positions of P form a necklace {P,} with P,=P
(Fig. 2). The necklaces about o are the orbits of the corresponding necklace
dynamics. The one-to-one correspondence between the orbits of the dual billiard
and the necklaces (Proposition 2.2) allows to replace the study of the dual billiard
map by the study of the necklace dynamics. This is analogous to the technique of
reflecting-the billiard table in polygonal billiards [G2].

Further in Sect. 2 we associate with any convex polygon P and a point 0 a
polygonal line Q unique up to dilations about o. The rationale for Q is that any
necklace about o, if it is sufficiently far from o, roughly follows Q. We prove
(Proposition 2.5, the proof is in Sect. 3) that Q is actually closed thus defining a
polygon — the necklace polygon Q. The necklace polygon Q(P) is determined by P
uniquely up to scaling and translations. Let P have p vertices and let ¢ < p be the
number of directions of the sides of P. Then Q(P) is a centrally symmetric 2g-gon.

The necklace dynamics is given by a selfmapping W of the set £ of strongly
regular polygons congruent to P (see Sect. 2). In Sect. 4 we associate with each
vertex of Q(P) a subset of # which is naturally isomorphic to a disjoint union S of
two (truncated) semiinfinite strips (minus the singular set which is a countable
collection of intervals). The induced first return map F:S— S is a local translation.
More precisely, S'is tiled by a countable set of polygons S;, and F restricted to S; is
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the translation by a vector v;. The singular set of F is contained in () bd(S)),
thus the union of the singular sets of the mappings F", — 00 <n< 0, is at most
a countable union of intervals. Our original question becomes: are the (regular)
orbits of F bounded?

In order to answer this question, we study in Sect. 4 a slightly more general
(than F) class of mappings: local translations of multiple truncated strips. A local
translation F:S—S is periodic if there is a vector p'+0 along S such that for any
x € S we have F(x + p)= F(x)+ p. Our main technical result (Theorem 4.6) says that
if a local translation F is invertible and periodic then the orbits of F are
bounded.

A polygon P is called quasi-rational if its necklace polygon Q(P) satisfies certain
rationality conditions (Definition 3.2). A polygon P is rational if its vertices belong
to the integer lattice in some coordinate system on R? (Definition 2.7). Any
rational polygon is quasi-rational (Proposition 3.3) but not vice versa. For
instance, the regular n-gons are quasi-rational but not rational for n+3,4,6.

In Sect.5 we apply Theorem4.6 to the dual polygonal billiards.
Theorem 5.1 says that if P is quasi-rational then the dual billiard orbits are
bounded. If P is rational the orbits are periodic. A crucial point in the proof is that
the first return map F : S— S corresponding to a quasi-rational polygon is periodic.

The technique of Sect. 4 allows to obtain the upper and lower bounds for the
dual billiard trajectories. Denote by |x| the distance from a point x to the polygon
P. By Theorem 5.3, there are positive constants a <b, A and B (depending only on
P) such that for any x and all n

alx| - A=|T"(x)| = b|x|+B.

Therefore, if x is sufficiently far from P, the dual billiard orbit {T"(x): — o
<n<oo} is bounded away from P (Corollary 5.3).

Let P be a quasi-rational but not rational polygon. We expect the dual billiard
about P to have nonperiodic orbits. Our expectation seems to be confirmed by the
dual billiard about the regular octagon [GS].

2. Preliminaries

Let P be a convex polygon, E=R?*\P and let o(P) be the union of straight lines
through the sides of P. Any point o € E\o(P) (these points are called regular about
P) uniquely determines a vertex 4; of P such that T(0)=r 4,(0) (We use notation of
Sect. 1). Set P, =r4,(P). If o€ E\o(P,), it determines a vertex A, of P, and we set
P,=r,,(P;). After n steps of this process we obtain a sequence P,=P, Py, ..., P, of
polygons and a sequence A4, ..., 4, of their vertices (Fig. 2). Setting for brevity
rq,=r; we have P, =r;,(P), 0Si<n—1.

2.1. We say that {P,=P, P,, ..., P,} is a necklace of length n about o. It is obtained
by developing P (n times) about o in the positive direction. Reversing the direction
(which corresponds to replacing T by T~!) we get the necklace
{Py=P,P_,,...,P_,} obtained by developing P (m times) about o in the negative
direction.

We can extend the necklace {P_,,, ..., P, ..., P,} indefinitely in both directions
as long as o is regular about P,, — 00 <k < 00. We call such points strongly regular
about P. Let G be the group of reflections and translations of R? and denote by G,
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Fig. 2. A necklace

the subgroup generated by reflections about the vertices of P. The set X(P)
={go(P):geGp} is a countable union of straight lines. The set Rp of strongly
regular points contains E\ X(P).

Definition. Let oeRp, and let N(P,0)={...,P_,,...,Po=P,...,P,,...} be the
corresponding infinite necklace. We say that the necklace N(P, o) is bounded if the

set U P, is bounded. We say that the necklace N(P, o) is periodic if P,= P, for

k=
some n > 0. The definition of a bounded necklace applies in an obvious way to the
semiinfinite necklaces

N_(P,0)={..,P_,,...,Po=P} and N, (P,0)={P,=P,...,P,, ...}.
2.2. Proposition. 1. Let —m=0=n and let o€ E. The finite necklace
N" (P,0)={P_,,...Po=P,..,P,}
is defined simultaneously with the finite orbit {T"0), —m<k=<n}. For 1<k<n,
—m=Z —1< —1 we have
a) THo)=r,...r(0), b) T Ho)=r_,...r_J0). (1)

2. Let o€ Rp. The infinite orbit {T0), — oo <k <o} is bounded if and only if the
necklace N(P,o) is bounded. The statement applies in an obvious way to the
semiinfinite orbits and necklaces.

3. Let o€ Rp. The orbit {T¥0), — oo <k <0} is periodic if and only if the necklace
N(P,0) is periodic.
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Proof. 1) Consider the necklace {P,, ..., P,} and denote by T, the dual billiard
about P,,0<k=n, T,=T Set 0, = T(0). The reflection r sends (0,, P,) into (o, P,)
and conjugates T with T, : T=r,Tir, (Fig. 1).

It suffices to prove (1a) for k =n. We will prove it by induction on n. For n=11it s
trivial: T(0)=r,(0). For n>1,

T"(0)=T""XT(0))=T"" o) =(r, Ty~ r)(o)=rT7 " 0).

By definition, {P,, ..., P,} is a necklace of length n— 1 about 0. Hence, by inductive
assumption, 17"~ }(0)=r, ... r,(0), and (1a) follows. Equation (1b) is equivalent to
(1a) under the substitution T—T ~'. We leave the details to the reader.

2) and 3) Denote by d(X, Y) the distance between the sets X, YCR?. The orbit
{T*(0)} is bounded if and only if the sequence d(T*(0), P) is bounded. By Eq. (1),
d(T*(0), P)=d(o, P,) which proves 2). Let o be a periodic point, T"(0)=o0, and let
{Pg,...,P,} be the corresponding necklace with P,=r,...r{(P,). By Eq.(1),
Fn...ri(0)=0, thus either r, ... r, is the identity or it is the reflection about o (n has
to be odd). In the first case P, =P, and the necklace {P,, ..., P,} is periodic. In the
second case the reflection r, provides an isomorphism of (o, P,) and (o, P,).
Therefore r, induces an isomorphism of the necklaces {P,,...,P,} and
{P,, ..., P,}, hence P,, = P, and the necklace {Py, ..., P,,} is periodic. The proof of
the converse is even easier and we leave it to the reader.

2.3. Fix an “origin” 0 € R? and let P be a convex n-gon not containing 0. We say that
P is in a regular position (about o) if o ¢ o(P). Let [, ..., 1, be the straight lines
through o parallel to the sides of P (m=nif P does not have parallel sides). The lines
I, ...,1, divide R? into 2m closed cones C4, ..., C,,, and we denote by R,,...,R,,,
their boundary rays enumerated counterclockwise (Fig. 3). In what follows we use
the convention that C,,,,;=C,, R;,,+1=R,. We have —C;=C;,,,, —R;=R,, ..

c, A

C, -
c ) >
Cs 0 8 w-(P)

Fig. 3. The system of cones corresponding to a polygon and a point; the head and the tail of P; the
necklace mapping
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Let us denote our original polygon by P, and consider the set # of polygons P
congruent to P, (i.e. P=gP,, ge G) and in a regular position about o. Notice that
the preceding construction does not depend on the choice of P in . For any such
P let T be the dual billiard map about P and let 4, A _ be the vertices of P such
that T(0)=r,,(0), T~ *(0)=r ,_(0) (Fig. 3). Wecall A, the head of P, A _ the tail of P
and denote the corresponding reflections by r,,r_. In the necklace
{r_(P), P,r ,(P)} (Fig. 3) the polygons r _(P), . (P) are congruent to P, and do not
contain o. Denote the set of such polygons by % and define the mapping W: Z— %
by W(P)=r(P). Analogously, we set W~ (P)=r_(P).

We define the set 2 C £ of polygons P strongly regular about o by requiring that
W™ P)e £ for all n. The construction above defines an invertible selfmapping W of
2 with the inverse W~ !. The complement £\ is analogous to the singular set
2(P) of the dual billiard mapping and like Z(P) has codimension one. We call W the
necklace mapping. By Proposition 2.2, the correspondence between T and W
preserves the periodic and the bounded orbits. This allows us to forget
(temporarily) the mapping T and study the orbits of W, i.e. the necklace dynamics.

If A, B are points in R%, we denote by [ AB] the closed segment joining them and
by AB the corresponding vector. We also indicate vectors by upper arrows, e.g. d,
and use notation 4 +d for the usual action of vectors on R? e.g. A+ AB=B.

2.4. Choose a cone C from the set {C;:1<i<2m} and let R ,, R_ be its boundary
rays (Fig. 4). Denote by (%, Z) the subset of F(%, P) consisting of polygons
PccC.

Lemma — Definition. Let Pe % and let A, A_ be the head and the tail of P. The
vector A_A . does not depend on the choice of P e % .. We denote this vector by d.
and call it the necklace vector corresponding to the cone C.

0
Fig. 4. The necklace vector
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Proof. Let P’ € & be another polygon and let A’,, A_ be the head and the tail of P'.
Suppose first that P’ differs from P by a translation: P’=P+4d. Then A, = A, +a,
A_=A_+d (Fig. 4), hence A_ A", =A_A,. If P’ differs from P by a reflection,
P'=rP, we can assume that r is the reflection about 4_ (Fig. 4). Then A', =4 _,
A_=rA,)and A" A", =rA,A_)=A_A,.

Corollary. We have d_.= —d_.

Proof.Let Pe B-and letad.=A_A . Calculating @_. using the polygonr,Pe Z _
we obtain the assertion.

2.5. We denote by 4; the necklace vectors corresponding to the cones C;, 1 Ki<2m.
Choose a point A, R, (4,+0) and draw the ray emanating from A4, in the
direction of @; until it crosses R, at a point A,. Repeat this construction until we
come back to the ray R;=R,,,,, obtaining in the process the polygonal line
Q=A4,4,... A,, .. If we make another choice 4| € R, where 04, = H04,), 1>0,
we obtain the similar polygonal line

Q=A14... Aypi1=MA14; ... Asp+1)-

Proposition — Definition. We have A,,,,,=A, thus Q=A,A4, ... A,, . is a closed
polygon. Any change of the data involved in the definition of Q (i.e.0, A, € R, and the
choice of R,) changes Q by translations and dilations only. Thus the polygon
Q=Q(P) is determined by P uniquely up to translations and dilations, and we call it
the necklace polygon of P. The necklace polygon of P is a convex centrally
symmetric 2m-gon.

We postpone the proof of the proposition until Sect. 3.

2.6. The dual billiards are naturally covariant with respect to the group H of
orientation preserving affine transformations of R?. More precisely, let P and P’ be
two convex polygons. Denote by T and T’ the corresponding dual billiard
mappings of the respective regions E and E'. If P’=hP, he H, then h: E-»E' is an
isomorphism and T'=hTh™".

In view of the above, the theory of dual billiards should be H-covariant. A
subset LCR? is called a lattice if L=hZ?, where he H and Z? is the standard
integer lattice.

Lemma. Let P be an arbitrary polygon and let Gp be the corresponding group. The
group Gp is discrete if and only if the vertices of P belong to a lattice.

Proof. Both properties are H-invariant. Suppose first that the vertices of P belong
to alattice L. Acting by H, if necessary, we can assume that L=Z2. The group Gp s
contained in the group generated by reflections about the points of Z?2, which is
discrete, hence Gp is discrete. Take this as an assumption now and let 4, ..., 4, be
the vertices of P. Set a;=2A4,A4,,2 <i<n. The group L generated by the translations
a, 2<i<n, is contained in Gp, hence it is discrete. Therefore L is a lattice.

2.7. Definition. A polygon P is called rational if the group G, is discrete or,
equivalently, if the vertices of P belong to a lattice.

Remarks. 1. By definition, the set of rational polygons is H-invariant. All triangles
are rational. For n>3 rational n-gons are dense in the set of all n-gons (in the
natural topology). 2. The reader should not confuse the notion of rational polygon
in the present context with its counterpart in the theory of polygonal billiards (see,
e.g., [G1, Definition 6]). The two notions are dual to each other.
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3. Necklace Polygon

Let N(P,0)={...,P_,,...,Po=P, ..., P, ...} be a necklace (finite or infinite) and let
(o Ve Voron Virrs o}

be the corresponding sequence of heads and tails, where V; is the tail of P; and the
head of P;_,. The (finite or infinite) polygonal line

T=[cVopiVoroos Vi 1o
is the string of the necklace N(P,o).

3.1. Proof of Proposition 2.5. Assume the opposite, i.e. that A,,, ; = 4, and call the
piecewise linear curve [A4; ... 4,,,. ;] the necklace polygonal line. Replacing T by
T~ 1, if necessary, we can assume without loss of generality that |0A4,,,, | <|o4,]|
(Fig. 5). The ratio

0<|oAzmy (l/loA |=n<1

does not depend on the position of 4; on the ray R=R,. Hence starting the
necklace polygonal line S at any point A€ R and turning around o once in the
positive direction, we return to R at the point 4’ where 04’ = pu(oA4). Continuing S
indefinitely we obtain a selfsimilar infinite polygonal spiral about o that spirals
into o with the rate 1/u.

Let N(P, 0) be an infinite necklace with P, € # intersecting the ray R and let I" be
the corresponding infinite string. Consider the necklace polygonal line S, starting
at the point A=[V,V;]nR and returning to R at A,. Follow the string I from the
point A counterclockwise until it returns to R, and denote by A; the point of
return. We take the distance |4, 4| for the measure of the deviation between S|,
and I after one turn around o.

R, Rs
As -
2
AL &
Ag Ag A,
Rg 0 R
Ag
AT e
Re
. . Re
Fig. 5. Necklace polygonal line R,
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Recall the system of cones Cy,...,C,, we have introduced in Sect. 2. By
Lemma 2.4, a segment [V;V;, ] of I' located inside a cone C of the system is parallel
to the corresponding necklace vector dc. Therefore the deviation between I" and S,
can increase only at the crossings with the rays Ry, ..., R,,,+;. Denote by d the
diameter of P. There is a constant a depending only on P modulo dilations such
that at each crossing the deviation increases by at most ad. Thus after one turn
around o the deviation between I' and S|, is at most (2m + 1)ad = ¢, where ¢ does not
depend on the starting point 4. We have

lodi|=loA,|+|4, 41| = plod]+c. @

Let S, be the necklace polygonal line starting at 4} and going around o once in the
positive direction, and let 4, be the point where it comes back to R. Follow I' from
A’ in the positive direction until it crosses R and let A’ be the crossing point.
Continuing by induction, we obtain two sequences {4,} and {4,} of points in R
(ngoa A0= 6=A)

The preceding argument shows that for all n we have |4,4;| < c. Hence, by
construction and Eq. (2)

04,4+ 11= 04,4 1] +|Ans 1 An+ 1| Sulods] +c. ©)
It follows by induction from Eqg. (3) that
lod;| < ploA|+(1—p) ™ c. 4)

We reverse the direction and follow the string I' clockwise. Repeating the
preceding construction we obtain the sequences {4 _,} and {A4"_,}, n=0, of points
on R. The argument of Eq. (3) applies and yields

A s | Z 1™ oA | —c. )

Set v=u~'>1. From Eq. (5), by induction on n, we obtain that if |o4| > c(v—1) "1,
we have for all n>0,

loA”_,| 2V (lod] —c/(v—=1))+¢/(v—1). (6)

By Eq. (4), the polygons P, k>0, stay within a finite distance from the origin.
By Eq. (6), the distance from P _, to the origin grows exponentially as k— oo (at
least if Py, is sufficiently far from o).

Suppose now that the polygon P, (and therefore all Pe %) is rational. By
Lemma 2.6, the set of polygons {P,: — oo <k < oo} is discrete. The set {P,:0<k},
being discrete and bounded, is finite, i.e. the necklace N(P,0) is periodic. This
contradicts to the earlier conclusion that the set {{ ) P_,:k=0} is unbounded.
Thus Proposition 2.5 holds for rational polygons P.

The necklace polygonal line Q depends not only on P but on the choice of
“origin” o, the ray R (from the system of rays parallel to the sides of P) and a point 4
on R. Let us fix this data for P (assume for simplicity that P has no parallel sides).
Consider the polygons P’ (with the same number of sides) which are sufficiently
close to P. For any such P’ there is a unique ray R’ (from o) close to R and a unique
point A’ on R’ such that JoA'| =|oA|. The polygonal line Q' uniquely determined by
this data is close to Q. In other words (with an obvious normalisation), Q(P)
continuously depends on P.

Let now P be an arbitrary polygon and let P; be a sequence of rational polygons
converging to P. Since Q;= Q(P;) are closed polygons and since Q;—Q(P) as i— o0,
Q(P) is a closed polygon.
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Corollary. The necklace polygon Q(P) is a convex centrally symmetric polygon
determined by P uniquely up to translations and dilations.

Proof. Consider the necklace polygon Q as a polygonal line Q=A4, ... 4A,,,+,
determined (in addition to P) by o, R and a point A, € R. Varying 4, on R changes
0 by dilations about o. Choosing another ray R’ corresponds to a change of 4, on
R, i.e. it produces only dilations. Taking another point o’ for the origin corresponds
to a parallel translation of the system of rays {R,...,R,,}, thus it produces a
translation of Q.

Since the convexity of Q is obvious from construction, it remains to show that Q
is symmetric about o. By Corollary 2.4, the triangles A4,=A4,04;,, and
Apri=Ap, 04,1, are similar for all i. Denote by r;>0 the corresponding
dilation coefficient: 4,, ;= —r;4; (the minus corresponds to the symmetry about
0). Comparing the adjacent triangles we see that r; does not depend on i:|04,,, ||
=r|oA;|. Therefore |0A4,,,+|=r*|oA4,|, and, by Proposition 2.5, r=1.

3.2. Let P be a convex polygon and let C;, 1 £i<2m, be the corresponding system
of cones about a point o with the necklace vectors a;. Let Q=4,... 4,,,., be a
necklace polygon of P centered at o. By Proposition 2.5, there are 2m positive
numbers r; such that

AA,  =rd, 1Zi<2m 7

and r,, . ;=r;. By Corollary 3.1, the numbers r; are determined by P uniquely up to
a common factor, thus the point (r, :...:r,)e RP™ ! (the real projective space of
dimension m—1) is determined by P uniquely up to a cyclic permutation.

Definition. A polygon P is called quasi-rational if the numbers r4, ..., r,, are rational
(up to a common factor), i.e. (ry:...:7,)e QP™ 1,

Lemma. Let P be a quasi-rational polygon. There exists a necklace polygon
Q0=A,... Ay, Such that

AiAi"'l:kid’i’ 1§i§2m, (8)
where k; are positive integers.

Proof. Let Q be an arbitrary necklace polygon corresponding to P, and let o be the
center of Q. Let r;=r{Q), 1 £i<m, be the numbers in Eq. (7) corresponding to Q.
For the necklace polygon AQ obtained from Q by dilation by 4> 0, we have r(1Q)
=2r{Q), 1 £i<m. Since P is quasi-rational, there is A, >0 such that r;=r(4,Q) are
rational numbers. Let 4, be the least common denominator of r}, 1 <i<m. Then
the numbers ry(4,4,0)=41,4,r;=k; are integers. Thus the necklace polygon 4,4,0
satisfies (8).

3.3. Proposition. Any rational polygon is quasi-rational.

Proof. Let (x, y) be a coordinate system on R? and let 0=(0,0). A point AeR? is
called rational if it has rational coordinates. A vector @'is rational if =04 and A4 is
a rational point. A line in R? is rational if it contains two rational points.

Let P be a rational polygon and let (x, y) be a coordinate system on R? such that
the vertices of P are rational points and 0= (0, 0). Then the rays R; (corresponding
to P and o) define rational lines and the necklace vectors d; are rational. Choose a
rational point A, on R, and let =4, ... 4,,,, be the corresponding necklace
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polygon. The line containing 4, and parallel to &, is rational, hence A,, as a point
of intersection of rational lines, is rational. Continuing by induction, we conclude
that all vertices of Q are rational points, hence the vectors 4,4, , are rational. Two
collinear rational vectors differ by a rational scalar, hence the numbers r; in Eq. (7)
are rational.

3.4. Remark. Let P be a regular n-gon and let Q be the corresponding necklace
polygon. If nis even then Q is a regular n-gon, if n is odd then Q is a regular 2n-gon.
In any case, the numbers r; of Eq. (7) are all equal, hence the regular n-gon is quasi-
rational for all n. On the other hand, it is rational only for n=13, 4, 6. Thus rational
polygons form a proper subset of the set of quasi-rational polygons.

4. Necklace Dynamics

We use notation of Sect. 2 and assume that P, is not centrally symmetric (unless
specified otherwise). Then =%, U¥_, a disjoint union, where P=P,+4 for
Pe, and P=r ,(P,)for Pe &¥_ (a,r, are uniquely determined by P). We choose a
cone C from our system of cones (see Fig. 3), denote by C’ the following cone, by R’
the ray separating C from C’, and let R be the other boundary ray of C. We denote
by % the set of P in & intersecting R and set

FR=L S, RX=FFRR, PX=SFnP.

4.1.Let P,,P,e ¥R (or #®) and assume that P,nC' =0, i=1,2. Assume that the
heads A4,,A, of P, P, are well defined (e.g. P;e#%). By the argument of
Lemma 2.4, A,=A,+t, where f is the unique vector such that P,=P, +f.
Therefore the correspondence P— A which assigns to every Pe #%, PNC' =0, its
head A, uniquely extends to a mapping h:¥RUSR-R? satisfying h(P+1)
=h(P)+t. We set l(#R)= S, (suppressing the dependence on R). By construction,
both mappings h: X — S, CR? are one-to-one.

Figure 6 introduces the notion of a truncated strip. It shows an infinite strip
divided by a finite polygonal line into two truncated strips. The boundary of a
truncated strip S consists of two parallel rays R and R and a polygonal line L. A
vector like the vector ¢ on Fig. 6 (i.e., parallel to R and pointing to co) is said to be
along the truncated strip S.

Lemma. The sets S ,,S_ are truncated strips. The lower boundary ray of each is R
while the upper boundary ray is contained in R+ dc.

A R
L
—t S
A R

Fig. 6. Truncated strip
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Proof. Consider, for concreteness, the polygons P in #X. Denote by 4= A(P) and
B= B(P) the “head” and the “tail” of P. By our convention, A(P) (B(P))is indeed the
head (tail) of P if P CInt(C). Otherwise, for any P’ CInt(C), P'= P +t, we have A(P’)
= A(P)+1t, B(P')=B(P)+t.If A belongs to a side s of P parallel to R then A is closer
to o than the other vertex of s (Fig. 3). Therefore, for Pe #® with A(P)eR the
points A(P) sweep all of R forming the lower part of the boundary of S . For P in
FR with B(P) € R the points B(P) sweep a subray o CR (¢ + R if B belongs to a side s
parallel to R). The corresponding points A(P) span the ray R=g+d. (see
Lemma 2.4) which is the upper part of the boundary of S, . The remaining part of
the boundary of S, is swept by the points A(P), where o€ bd(P), i.e. it is a finite
polygonal line.

4.2. We consider the cone C with the boundary rays R, R’ and the corresponding
truncated strips S ., S _. For n =0 we define the ray R, = R'—nda, where d=d is the
necklace vector. Let R, intersect R(R) at D,(E,), and for n>0 denote by 7, the
parallelogram D,_,E,_E,D, (Fig. 7). We think of S, and S_ as being located
on two different copies of R? and denote by n,", 7, the corresponding copies of 7,
(n>0). Then S (S_) is the union of ", (%, ), n>0, and the closed polygon 75 (7y ).
For the case shown in Fig. 7, n7 is the “truncated triangle” 0E,6Ko. Denote by d, b
the vectors DD, DyE,. By Lemma 4.1, for n> 0, the vectors D,E, _, are equal to
the necklace vector @, and n* +d=nr,, (Fig. 7).

Remark. The constructions above are well defined only on polygons in regular
position. Therefore the constructions below will be well defined only on a set of
regular points in S (S -). To simplify the exposition, in what follows we ignore the
singular set which is a countable union of intervals in S_(S_). This should not
cause any confusion.

R'=Ry R; R,
Rj
R,
EZ E3 El.
R
Ty T,
D5 D, R

Fig. 7. Decomposition of truncated strip
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Let S=S,0US_ be the “abstract” disjoint union (the double truncated strip). We
use “prime” to denote the counterparts of the objects above corresponding to the
ray R',e.g. §', are the truncated strips with the base R'. For P € ¥4 there is a unique
k=k(P)=0such that W¥(P) e %.. This defines a mapping P— W*(P) of % into %..
Under the isomorphisms h: % —S, h': $¢.—S' it becomes a mapping f:S—S’ of
the double truncated strips.

Lemma. There exists a vector-valued function T=1(+,nmod2) such that for Aen?
(n=0) we have

f(A)=A+nd+7. )

Proof. Let o, (n=1) be the strip between the rays R,_, and R, (Fig. 7). Then
nE =0,nS . The head of a polygon P belongs to g, if (and only if) W"(P) intersects
R'. Let Aem, be the head of P and let {P, P, ..., P,=P’} be the corresponding
necklace (Fig. 8). Set A,=A+ka, 1 <k=<n. By Lemma 2.4, for k <n, A4, is the head
of P,=W¥*P),and 4, is a vertex of P’. The “intrinsic” position of the head 4’ of P’ is
determined by the “pairity” sgn(P’) of P’, where sgn(P)=+ for P'e %;. An
analogous statement holds for the head A4 of P, hence for the vertex 4, = A4+ nd of
P'. Thus the “correction vector” 7= A4,A4’ depends only on the pair sgn(P), sgn(P’).
Since sgn(P")=sgn(P)(—1)", Eq. (9) holds for n = 1. Our convention for the vertices
h(P), W'(P’) if P e my, 1, automatically extends Eq. (9) to the case n=0.

Remark. An elaboration of the argument above shows that the “head correction
vector” 7 can take at most two values.

The isomorphisms A, h' transfer the functions sgn(P), sgn(P’) from F, %% to the
double strips S, S’. We denote the transferred functions by sgn(A4), sgn(4").

Corollary. The mapping f:S—S' satisfies
f(A+2d)=f(4)+2b. (10)
In particular, sgn(f(A +2d))=sgn(f(A)).

0 R
Fig. 8. The mapping f:S—S’
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Proof. The vector d (b) is along the strip S (S'). The translation 4—A4 +2d sends
into n}, ,. Let Aemn, and let f(4)=A+na+7. Then A+2dem,. , and, by Eq. (9)

fA+2D)=A+2d+(n+2)d+T=f(A)+2Ad+d)=f(A)+2b.

4.3. Let D be a plane domain with a decomposition D=\ P;, i€ I, where P; are
subdomains with piecewise smooth boundaries dP; (e.g. polygons), and, for i<,
P,nP;COP,n0P; Amapping f: D— D’ (possibly singular on ( ) 0P,) is called a local
translation with respect to the decomposition D= | ) P; if there is a vector valued
function ¢ on I such that for xe P, rel

f)=x+1,.

The definition naturally extends to the situation when D, D’ are abstract disjoint
unions of (a finite number of) plane domains, e.g., D=D_ uD_,D'=D', uD"_, and
the domains D , =) P;{* satisfy the conditions above. Denote by e = { +} the index
set for D and by &' = { £} that for D. A local translation f:D—D'is given by a
vector valued function t(e,i) and by an index-valued function ¢'(¢, i) so that for
x € P{ we have

f)=x+8ei), f(X)€D;y- (11)

A mapping f: D— D’ from an abstract union of plain domains into another one is a
local translation if it can be put into the form above.

Let f:D-D', f':D'-D" be local translations. Then the composition
f'f:D->D" is a local translation.

Proposition. We use notation of Subsect.4.2. The mapping f:S—S' is a local
translation with respect to the decomposition S, = \) n;r. The vector valued

- N n>0
function t on {4} x {n=0} is given by t(e, n)=nd+ tle,nmod?2). The {+ }-valued
function €' is given by €'(e,n)=¢(—1)".

Proof. Follows immediately from Lemma 4.2.

4.4. We return to the system of cones {C, ...,C,,,} and rays {R, ..., R,,,} we have
associated with our dual polygonal billiard. With every cone C; (bounded by the
rays R, R;,,;) we associate (as in Sects. 4.1, 42) the double truncated strip

13

S;=8;US;, the decomposition S = ) =5 (i) and the vectors @, b, d; (i=1, ...,2m

n>0

with the convention 2m+-1=1). By Proposition 4.3, the mappings f;: S;—S;, , are
local translations, hence the product F=f,,, ... f; is a local translation of S=S§,
into itself. By construction, F is the first return map associated with W. More
precisely, for x € S there is a unique polygon P (intersecting R = R;) such that x is
the head of P. We follow the necklace of P: { P, = W*(P), k> 0} until it returns to R.
Let it return on a polygon P'=P, and let x" be the head of P'. Then x'= F(x). Set
d=d, (a vector along S). Define the function &(x) on S with values in {+} by
¢ =¢g(x)e. Let xe S, and let F(x)e S, (¢, = +).

Proposition. Let the polygon P defining the dual billiard be quasi-rational. Then
there exists a positive integer n such that F satisfies

F(x+ 2nd)=F(x)+2nd . (12)
Equation (12) implicitly means that &(x + 2nd) = &(x).
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Proof. We use the preceding notation and denote by 4, the triangle with the side
vectors d,d;,b; (i=1,...,2m) and vertex o. Let Q=A, ... 4,, be an arbitrary
necklace polygon of P and let 4;4;,,=rd, r;>0, 1<i<2m. The polygon Q is
divided into 2m triangles 0A4;A4;, , where 0A4;A; ., =r;4; (similarity of triangles).
Therefore, for 1 <i<2m,

0Ai+1=ril;;=ri+1¢2;+1- (13)

Suppose now that the polygon P is quasi-rational. By Lemma 3.2, we can
assume that the numbers r; are integers, r;=n,, 1 <i<2m. Applying Corollary 4.2
to the mappings f;:S;—S;., and using Eq. (13), we obtain that for any xeS,,

Sl 4 2nd) = fix)+2n.b; = fi(x)+ 2, 1 di 1y - (14)
Iterating Eq. (14) for i=1,...,2m we obtain that for x€ S,
(f2m ~~~f1)(x+2n1‘71)=(f2m ---fl)(x)+2n1‘71 .

This proves the proposition with n=n,.
Denote the vector 2nd by j. For any xe S and k>0 the point x +kpe S while
x —kp may not belong to S.

Corollary. Let ke Z and xeS. If x+kpeS then
F(x+kp)=F(x)+kp. (15)
Proof. Reduce to the case k>0 and apply Eq. (12).

45 SetIE =nfu...unf, Of =nf, . u...uni, etc..... Also set IT*, =nF. The
“double” parallelogram IT =113 UIl; is a “fundamental domain” of S with respect
to the translations by kp, i.e., for any x e S there is a unique x, € IT and a unique
integer v(x)= —1 such that

X=X+ v(X)P, (16)

where v(x)=k for xeII,. Note that in general not all points of the form x,—p’
belong to S because IT, are truncated parallelograms.

Lemma-Definition. We define a mapping ®:I1—1II and an integer valued function
7(x) on II by the equation

F(x)=&(x)+ t(x)p, a7
where 1(x) = Vv(F(x)), ®(x) € I. The pair (P, 1) uniquely determines F. The mapping &
is invertible and @, ®~1:II-1II are local translations.

Proof. Equation (17) is obtained by applying (16) to the point F(x), xeIl. By
Corollary 4.4 and Eq. (16), for any xe S

F(x)= ®(xo) +1(x)p + (x)p (18)

which uniquely determines F. The mapping F is invertible by definition. The
inverse mapping F ! : §— S is obtained by reversing the directions of the necklaces
in the constructions of Subsects. 4.3, 4.4. Hence F~! is a local translation and
satisfies the periodicity condition (15). Applying Eq.(17) to F~! we obtain a
mapping @' : IT1-1II and an integer valued function t’ on II where

F i (x)=?'(x)+7(x)p. (19)
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From Egs. (17)—(19) we see that &' =&~ !, '(x)= — (P~ (x)), hence
F i (x)=07(x)— (@~ '(x)p. (20)

Since F is a local translation, the function 7 is locally constant and Eq. (17) implies
that @ is a local translation. The same argument applies to @~ 1.

Corollary. Equation (17) establishes a one-to-one correspondence between the
mappings F:S—S and the pairs (®:11-I1,1:11>{n=—1}). The function t
corresponding to an invertible mapping F can take values —1,0,1 only.

Proof. The first assertion is immediate from the proof of Lemma 4.5. If F is
invertible we have the function 7’ defined by Eq. (19) with values = — 1. By Eq. (20),
7(x)= —7'(y) =1, hence the only possible values are 0 and +1.

4.6. The notion of a double truncated strip S=S,uUS_ has an obvious

generalisation. Namely, let S= () S,, |E| < oo, be an abstract disjoint union of a
eeE
finite number of truncated strips with a vector p'which is along all S,. We think of §

as a subset of |E| copies of R? and say that S is a multiple truncated strip. The
setting of Subsect. 4.5 immediately extends to the selfmappings of multiple
truncated strips. Leaving the details to the reader, we will use the notation and the
results of Subsect. 4.5 in this slightly more general situation.

Theorem. Let S be a multiple truncated strip and let F:S—S be a local translation
satisfying the periodicity condition (15). 1. If F is invertible, then the orbits
{Fx): —oo<k<oo} are bounded. 2. Let F be invertible and assume that the
translation vectors (s, i) defining F generate a discrete group. Then the orbits of F
are periodic.

Proof. 1. Let I = | J I1,, I CS, be the “multiple parallelogram” associated with F

teE
and let (@, 7) be the data corresponding to F. Here @: II—11 is a local translation

and t:11-Z is an integer valued function with 7(x)= —1. For any n>1 the
mapping F":S— S satisfies Eq. (15). From Egs. (17) and (18) we obtain that the
data (®,,t,) corresponding to F" are given by @,=®":I1-1II and

7,(x) =1(x) + 1(Dx) + ... + (D" 'x). (21)

Let (@, 7_,) correspond to the inverse mapping F~!:S—S and let (® ", t_,) be
the data for F™", n>1, where, by Eq. (20),

T (X)=1_1()+1_ (P 'X)+...+1_ (@ " Vx)= —1,(DP "x). (22)
By definition of 7, [Eq. (17)], we have for xeIl, — o0 <k< 0,
F¥(x)= 0%(x) + 1(x)P’, (23)

therefore an orbit {F¥(x): —oc0 <k<oo,xell} is bounded if and only if |z,(x)|
< const for all k. By Corollary 4.5, for any n=1, the functions t,, 7_, take values
+1 and 0 only, hence for xeIl,

l(x)£1, —w<k<oo. (24)

We have shown that the orbits {F¥(x): — oo <k<oo} are bounded for xe .
Equation (15) implies that they are bounded for all xeS.
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2. Denote by T the group generated by the translation vectors tle, ). By Eq. (11), for
any xe€S, neZ, there is t(x,n)e T such that F*(x)=x+t(x,n). If T is a discrete
group then any orbit { F"(x): — o0 <n< oo} C{x+ T} is discrete. Thus the orbits are
bounded and discrete, hence finite.

5. Main Results

We return to the dual billiards and their orbits.

5.1. Theorem. Let T be the dual billiard mapping about a polygon P. If P is quasi-
rational then the orbits of T are bounded. If P isrational the orbits of T are periodic.

Proof. Let o be a strongly regular point about P, ie. the orbit
0={T"(0): — oo <n< w0}

is well defined. By Proposition 2.2, O is bounded (periodic) if and only if the
corresponding necklace N(P,o) is bounded (periodic).

The necklace N(P, o) is an orbit of the necklace dynamics mapping W. We use
notation of Sect. 4. Let S be the double truncated strip corresponding to a cone C
and let F:S—S be the induced mapping. It is clear from the construction of F in
Sect. 4 that an orbit of W is bounded (periodic) if and only if the corresponding
orbit of F is bounded (periodic).

Let P be quasi-rational. Then, by Proposition 4.4 and Theorem 4.6(1), the
orbits of F are bounded, hence, by the preceding argument, the dual billiard orbits
are bounded. Let P be rational. Since, by Proposition 3.3, P is quasi-rational, the
dual billiard orbits are bounded. By definition of rationality (Definition 2.7), the
orbits are discrete, hence they are finite, i.e. periodic.

5.2. In the setting of Theorem 5.1 we want to estimate the spread of a dual billiard
orbit. We will need a lemma about the necklace dynamics.

We use notation of Sect. 4 for a quasi-rational polygon P. Let R and R’ be
arbitrary rays from the system of rays associated with P (and a point 0) and let S, S’

be the corresponding double truncated strips. Let S= U 1,8= () II,bethe

nz—1

respective decomposmons of the strips into the double parallelograms Iz, -
are truncated). Let jand p” be the vectors along S and S’ such that (forn=0) I, + p
=I,,, II,+p' =1, ;. With any integer r we associate a mapping f:S—»S’ as
follows. Let x € S and let P(x) be the polygon with the head x. We develop P(x) into
a necklace (in the positive direction if r =0 and negative otherwise). We let the
necklace make |r| full turns about o, then we continue until it reaches R’. Let P’ be
the corresponding polygon of the necklace and let x’eS’ be its head. We set
x'=f(x). Note that the mapping F of Theorem 4.6 is the special case corresponding
to §'=S,r=1.

Lemma. Let S, S',r be arbitrary and let f:S—S' be the mapping defined above. For
> -1
alln= we have FUL)CIT,  OIT'OIT, .

Proof. The argument of Sect. 4 applies and shows that f corresponds to a mapping
¢ : I1-IT' and an integer valued function 7 on IT such that for x e IT (identified with

II,) 0
fx)=o(x)+1(x)p
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and 7(x)= —1. The inverse mapping f ~!:S —S corresponds to ¢ ~!: II'—II and
the function 7'(x’) = — ©(¢ ~ (x')). Therefore — 1 <t(x) < 1. The periodicity property

J(x+np)=/f(x)+np’ (25)
implies the assertion.

Corollary. We use the preceding notation. For x € S denote by X CR? the orbit of x
under the necklace dynamics. Let xeIl,. Then for any double strip S,

XnS'cI,_vll,ull,, .
Proof. Immediate from the preceding lemma.
5.3. Denote by d(x, P) the distance from xe E to P.

Theorem. Let P be a quasi-rational polygon and let T be the dual billiard about P.
There are positive constants a <b and A, B such that for any ('strongly regular ) point

oand all n
a-d(o,P)—A<d(T"o0),P)<b-d(o,P)+B. (26)

Proof. Consider the infinite necklace
N(P,0)={....P_p,... Po=P,...,P, ...}

generated by P. By the proof of Proposition 2.2, Eq. (26) is equivalent to
a-d(Py,0)—A=<d(P,0)<b-d(Py,0)+B. 27)

In what follows we denote by const any positive constant if its value is irrelevant
for the proof. Denote by x;eE the head of P; and set |x| =d(o,x). Since
[x;| —d(P;, 0)] £diam(P), Eq. (27) is equivalent to

al[xol —const < [|x;[| =b|lxo || + const. (28)

Suppose that x, does not belong to any (double truncated) strip S. Then P,CC
for some cone C. Denote by x;, the head of the polygon P, in the necklace N(P, o)
such that P, crosses a boundary ray of C and |l| is the smallest possible. Then

Xo=Xo+1a+7,
where @=d, and 7'is a “head correction vector.” By elementary geometry, there
exist constants 0 <a < ff depending only on P such that
o[ x|l —diam(P) < || x5 || = Blixo [ +diam(P).
Therefore, Eq. (28) is equivalent to the inequalities
const || xg || —const < ||x;|| < const || x} || + const .

Equivalently, it suffices to show (28) under the assumption that x, € S for some S.
Let Q, be the unique necklace polygon (about o) satisfying Eq. (8), where the
maximal common divisor of the integers k; is equal to one. Let R be the base ray of
S and let @, d, b be the corresponding vectors (Fig. 7). Denote by k = k(S) the integer
k; in Eq. (8) corresponding to S.
Any point x € S belongs to a unique parallelogram =, where n=n(x). Then (see
Fig. 7)

Ix[/ld]l —const <n(x) = | x|/l +const.
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Let now N(x) be the index N such that x € IT. Since IT is 2k times longer than 7, we
have, analogously to the preceding inequality

llx[l/2klld]| — const = N(x) < || x||/2k||d]| +const. (29)

Let N=N(x,). By Corollary 5.2, the orbit {x;: —c0 <i< oo.} belongs to any
polygonal annulus A, A)={JAQo: 4, SAZA,} that contains
Iy _,vllyully,,. It suffices to take

Ai=(N=1)—c;, A=(N+1)+c,,

where the positive constants c,, ¢, depend only on P. Combining this with (29) we
obtain that the orbit {x;: — oo <i<oo} is covered by A(4,,4,) with

| xoll/2k||d|| —const < A, <A, < ||x0ll/2k||d|| + const. (30)

Denote by ¢,(g,) the radius of the maximal (minimal) circle about o inscribed
into Q, (superscribed about Q). The polygonal annulus A(4,, 4,) is contained in
the (usual) annulus about o bounded by the circles with the radii 1,0, <4,0,. In
view of Eq. (30), we get

01 llxoll/2k|d]| — const < [|x;[| <@, X |l/2kl|d ]| + const (1)
which finishes the proof.

Corollary. If a point x is sufficiently far from P, its dual billiard orbit is bounded
away from P.

Proof. Immediate from Eq. (26).
5.4. The following assertion has been proved in the course of proof of Theorem 5.3.

Corollary. Let P be quasi-rational and let o be an arbitrary (strongly regular ) point.
Let Q=AQ, be a necklace polygon (about o) intersecting P. There are c,,c,>0
(depending only on P ) such that the necklace N(P, o) is contained in the polygonal
annulus

Ad—cpA—c))={UpQo: A—cy<p<i—c,}.
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