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Abstract. The generalized Toda theories obtained in a previous paper by the
conformal reduction of WZNW theories possess a new class of W-algebras, namely
the algebras of gauge-invariant polynomials of the reduced theories. An algorithm
for the construction of base-elements for the M^algebras of all such generalized
Toda theories is found, and the W-algebras for the maximal SL(N, R) generalized
Toda theories are constructed explicitly, the primary field basis being identified.

1. Introduction

In some previous papers [1] it was shown that Toda field theories [2] could be
regarded as Wess-Zumino-Novikov-Witten (WZNW) theories [3], in which the
Kac-Moody (KM) currents were subjected to some first-class linear constraints.
Among the advantages obtained by regarding the Toda theories as reduced WZNW
theories was a very natural interpretation of the W-algebras [4, 5] of Toda theories,
namely, as the algebras of the gauge invariant polynomials of the constrained KM
currents and their derivatives [1].

In a subsequent paper [6] it was shown that the WZNW-Toda reduction could
be extended to yield a series of generalized Toda theories. These generalized Toda
theories are a set of conformally-invariant integrable theories that interpolate
between the WZNW theories and the Toda theories, and are partially-ordered in
correspondence with the strata of group-orbits in the adjoint representation of the
WZNW group G, the traditional Toda theories corresponding to the (unique)
minimal stratum. To obtain these generalized Toda theories the KM currents of
the WZNW theories are subjected to a more general set of first-class linear
constraints, and thus, like the Toda theories, are gauge theories, the gauge group
being just that generated by the constraints. As a result these Toda theories possess
algebras of gauge-invariant polynomials of the constrained currents and their
derivatives, where the multiplication is defined by the Poisson-brackets and
commutators of the polynomials in the classical and quantum cases respectively.
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As will be seen below, the algebras of gauge-invariant polynomials obtained in
this way are W-algebras in the sense of Zamolodchikov [7], that is to say, they
are non-linear extensions of the Virasoro algebra by primary fields. But they can
also be regarded as non-linear extensions of KM algebras.

The purpose of the present paper is twofold, namely to give an algorithm for
constructing a basis for all such VF-algebras (Sect. 3 through 5), and to display
the W-algebra itself for the maximal Toda theories of SL(N, R) (Sect. 6 through 8).

The bases are not quite general in that they are constructed subject to a
technical restriction on the ordering of subgroups in the WZNW reduction, but
the procedure is such that it can readily be generalized to other orderings. To clarify
the procedure we first consider the case of SL(N,R) Toda theories before
proceeding to the general case. All the results include, of course, the construction
of gauge-invariant polynomials for the conventional (minimal) Toda theories.

It is evident from the structure of the W-algebra for the maximal SL(N, R)
Toda theories that they are polynomial extensions of KM-algebras, but because
the fields involved are not all primary it is not immediately evident that they are
Zamolodchikov algebras. However, we determine the non-tensorial properties of
the fields, and, using this information, identify the Virasoro operator and the
primary fields (Sects. 9 and 10).

2. Recall of Generalized WZNW Reduction

We begin by recalling the generalized WZNW-reduction. First the WZNW groups
G used are the (maximally non-compact) simple groups generated by the real linear
span of the canonical Cartan generators, i.e. by the generators (Hh Ea) in conven-
tional notation. For the A and D Lie algebras, for example, these are the simple
groups SL(N,R) and S0(N9N).

The problem is that the KM currents Ja(z) have conformal spin unity with
respect to the conformal group generated bythe Sommerfield-Sugawara energy-
momentum tensors L(z) = Tzz(z) and L(z) = Tzz(z\ i.e.

» ] = -(dwJ
a(w))δ(z - w) + Ja(w)dzδ(z - w), (2.1)

and similarly for the barred quantities, and since the constraints that must be
imposed in order to obtain the Toda theories involve setting some of the compo-
nents of the KM currents equal to non-zero constants, this cannot be done without
breaking the conformal symmetry generated by L(z) and L(z). The solution is to
replace the conformal group generated by the L(z) and L(z) by another conformal
group generated by modified generators, Λ(z) and Λ(z) say, with respect to which
the current components in question are scalars. The Λ's are defined as
follows:

Let nij, ί = 1,...,/, where / is the rank of G, be the / fundamental coweights of
G, select any subset mfl, define a vector was w = ^ m f l and an element H of the
Cartan subalgebra H as H = w H . Then the element H has the property that the
simple root-vectors Eai are eigenvectors of H with eigenvalues zero or unity
(depending on whether the αf are dual or not to the weights mα chosen). Thus

[ # , £ " ' ] = /z£α , where Λ = 0,l, i=l ,2, . . . ,Z. (2.2)
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It is clear from (2.2) that H provides an integer grading of the whole Lie algebra,

[H,Ea

h] = hEl where h = h(ot)eZ. (2.3)

In particular the elements of the algebra of the little group of H, which we shall
call B, have zero grade. It is not difficult to see that the set of little groups B for
all possible choices of H are just the (non-compact versions of) the little groups
in the adjoint representation of the compact form of G. Since these little groups
are, by definition, in one-one correspondence with the strata of G-orbits in the
adjoint representation of (the compact form of) G and the strata can be partially
ordered [8] it follows that the WZNW-reductions can be partially-ordered in the
same way. The minimal stratum is unique, and has as little group the Cartan
subgroup of G. It occurs [1] for w = s, where s sum over all the simple coweights
(= half the sum of the positive coroots), and the corresponding (minimal) Toda
theory is just the conventional Toda theory. The maximal strata are not unique.
For example for SL(N, R) they occur when the reducing matrix H has only two
distinct eigenvalues and thus corresponds to a two-block reduction, SL(N,R)-+
S{L(p9 R) x L(q, R)\ where p + q = N. A particularly interesting case is the reduction
of SL(2n9R)-+S{L(n,R) x L(n,R)) of SL{2n,R) into two equidimensional blocks.
This case is a natural generalization of the Liouville case, to which it reduces for
n= 1 and, accordingly, we shall call the resultant S(L(n,R) x L(n,R)) theory the
generalized Liouville theory.

The extension of (2.3) to the (left- or right-handed) KM algebras of WZNW
theories (or indeed of any KM theories)

[Ja(z% Jb(w)l = fab

cJ
c(w)δ(z - w) + kgabdzδ(z - w), (2.4)

where Ja(z) = tv(J(z)σa) and the σ's are the generators of G, is evidently

lH(z)9 J » ] = hJl(w)δ(z - w), (2.5)

where H(z) = tτ(J(z)H). Note that the part JB

L of the current JB corresponding to
the little group B, which is orthogonal to H, commutes with H(z\ and that H(z)
has a nonvanishing commutator with itself,

= 0, [H(z), fl(w)] = kdzb{z - w) tr H\ (2.6)

This means that if we modify the Virasoro operators L(z) of the WZNW theories to

Λ(z) = L(z) + dzH(z\ (2.7)

then A(z) again satisfies a Virasoro algebra (with centre c-+cKM+ 12/ctr/f2), but
since

lΛ(z), H(w)-] = - (dwH(w))δ(z - w) + H(w)dzδ(z - w) + k tr H2d2

zδ(z - w),

[Λ{z\ J»Λ = ~ (SwJ
Λ

h(w))δ(z - w) + (1 + h) J*h(w)dzδ(z - w), ( ' }

only the KM current components JB

L are conformal vectors, the H(z) being a
spin-one connection and the Ja

h(z) being conformal tensors of weight (1 + h). The
physical meaning of Λ(z) and the corresponding Ά(z) is that they are the com-
ponents of the improved (i.e. traceless) energy-momentum tensor of the reduced
theory and the physical meaning of the connection H(z) is that it is a gravitational
connection of the Polyakov type [9]. In fact if we define the field h(z) as H(z)(tτ H2)~ \
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then

(2.9)

(2.10)

is a covariant derivative for the current components of spin s, i.e.

[Λ(z), £ U » ] = - (dw(@wJ"s(w)))δ(z - w) + (1 + s)(@wJ*s)d2δ(z ~ w)

Note that even in the classical case, for which cK M = 0, the centre c for A is not
zero but 12fctrH2.

From (2.8) it follows, in particular, that with respect to Λ(z), the current com-
ponents of grade h = — 1 transform as conformal scalars. Because of this one can
impose the constraints

and JJ(z) = 0, ft<-l, (2.11)

without breaking conformal symmetry, or, more precisely, without breaking the
conformal symmetry generated by A(z). Note that, in general, the constraints (2.11)
can be expressed as

jconβtr.φ = M i + j p o s ^ (2.12)

where M _ x is a constant matrix of grade minus one and Jvos(z) denotes the part
of the current for which the components have zero or strictly positive grades. The
constraints (2.11), or, equivalently, (2.12), are the constraints that define the reduced
theory.

An intuitive feeling for the meaning of the constraints (2.11) or (2.12) may be
obtained by considering the G = SL(N, R) case, for which the constrained current
J(z) takes the form

J c o n β t r (z) =

M il J22(z)

0

0

0

M32

0

0

V o 0 0

(2.13)

where Mr+lr = Jr+ 1>r(0) and the Mr+ltt. and Jab(z) denote submatrices of currents
which in general are not single entries or even square matrices. (The single-entry
case corresponds to the original Toda reduction.)

The constraints (2.11), (2.12) are obviously not invariant with respect to general
KM transformations, J(z)->l/(z)J(z)ϊ/~1(z) + kU(z)dzU~1(z), but there exists a
residual group of KM transformations with respect to which they are invariant.
These are the KM transformations for which U(z) lies in the subgroup A of G
generated by the root vectors with strictly positive h, and correspond to the KM
transformations that would be implemented by the constraints themselves. These
residual KM transformations are then regarded as gauge transformations and only
those functions, or functionals, of the constrained currents J(z) which are invariant
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with respect to this gauge group are regarded as physical. Since there are dim A
constraints and dim A gauge degrees of freedom, there are just dim G — 2 dim A =
dimB independent physical fields altogether. So there exist dim B independent
gauge-invariant polynomials of the constrained currents and their derivatives.
Furthermore, since the Poisson- or commutator-bracket of two gauge-invariant
polynomials is again a gauge-invariant polynomial, it is clear that the Poisson- or
commutator-bracket algebras of the dim B gauge-invariant polynomials will close.
We define these Poisson- and commutator-bracket algebras to be the classical and
quantum PF-algebras of the generalized Toda theories.

3. Jf-Bases: Generalized Toda Theories with G = SL(N, R) and B Maximal

We consider now the problem of constructing the dim B gauge-invariant poly-
nomials in the constrained currents and their derivatives explicitly. To illustrate
the idea in its simplest form we begin with the case of maximal SL(N, R) Toda
theories, which, as discussed in Sect. 2, are just the 2-block reductions of WZNW
theory. In this case the reduction matrix // = w Ή takes the form

H = —diag(qIp, — plq), where p + q = N and Ip and Iq denote the unit matrices in

p and q dimensions respectively. The constrained current (2.12) reduces to

JJ
V M C(z)

where the entries K,R and C are p2,pq and q2 block-sub-matrices, respectively.
The gauge group A of residual KM transformations discussed in the preceding
section evidently consists of all matrices of the form

?>>

where a(z) is a block-matrix and thus contains pq parameters. We shall assume
that p ^ q and that the constant matrix M is minimally degenerate, i.e. that
rank (MM') = q. This means that there exists a matrix M such that MM = Iq (and
the MM is a rank-g projection on a space of p dimensions). It also means that
we can choose a basis so that

(3.3)

where Y and C are square matrices of dimension q and A is a square matrix of
dimension p — q. This basis will be called the canonical basis.

The gauge transformations of the constrained current with respect to g(a) are

jconstr. ̂ j c o n s t r . ^ - 1 + gdg-\ (3.4)

where g(a)eA, and we have set k = 1 to simplify the notation. It will be convenient
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to write (3.4) as

jconstr.^^j^μcoπstr.^ (35)

where Adj(#) is the usual adj(#) of Lie group theory supplemented with the
derivative term. The important point is that, as is easily verified from (3.4), Adj(g)
satisfies the group property Ad)(g1)Ad)(g2) = Δd)(gίg2). It is easy to see that
for the sub-block K of (3.1) the gauge transformations induce the transformations

K-+K + aM. (3.6)

It follows that if we define a pg-block j as

j = KM9 (3.7)

then the gauge-transformation of j is simply

j->j + a. (3.8)

(Thus j absorbs all of the gauge-transformation.) Then, if we define g(j) as the
matrix g(a) with a replaced by j we have

(3.9)

Let us now define the current

βtΓ . (3.10)

We see at once that under a gauge transformation

\j + a)) Adj(0(α))Jconstr

\j + a)g(a))JC0™ir = Ad)(g-ι(j))Jc™iτ- = J ( 2 ) . (3.11)

Thus J ( 2 ) is gauge-invariant and its entries are the required gauge-invariant poly-
nomials. That they form a complete set follows from the fact that J c o n s t r has
dimG —dirndl independent components and since J(2) is obtained from it by
a gauge-transformation with dim A parameters (which are completely absorbed
according to (3.8)) it must have (dim G — dim A) — dim A = dim B independent
components, which, as discussed in Sect. 2, is the total number of independent
gauge-invariant polynomials. On computing J ( 2 ) explicitly we obtain

jm-(κW R{2)\_(K-jM R + Kj-JC-jMj+Λ

[hi C^)~\ M C + Mj / ( ]

Thus the gauge-invariant polynomials in the diagonal blocks are actually linear
in the original current components and the gauge-invariant polynomials in the
off-diagonal block are bilinear. Note that since J(2) has only dim B independent
entries it must satisfy dim A constraints, and it is easy to check that these are

0. (3.13)

In the Toda reduction a gauge in which the gauge-invariant polynomials are
current components themselves is called a Drinfeld-Sokolov (DS) [10] gauge. It
is clear that the gauge defined by J(2) has this property. Thus DS gauges exist for
the generalized Toda theories and we may write

J D S = J ( 2 ) . (3.14)
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The content of the gauge-invariant current J ( 2 ) becomes more explicit in the
canonical basis, in which (3.12) reduces to

I A™ 0 S<2)\
J(2) J B(2) 0 T(2) I ( 3 1 5 )

V o / c ( 2 ) j
Note that in the generalized Liouville case, i.e. the case in which the two

diagonal blocks are equidimensional (p = q\ we have, in the canonical basis,

K R

M C

Y T\ τ(2) /0 T-YC+Y'
so J ( 2 ) =

/ C \I C+Y
(3.16)

In particular, in the conventional Liouville case (p = q=l) one finds that, by the
traceless condition C + Y = 0, (3.16) reduces further to

0 A

1 0
(3.17)

where A = T + Y2 + T = t r ( | J 2 + HJ') is just the Virasoro operator [1] of that
theory.

4. ίf-Bases: Generalized Toda Theories
with G = SL (/V, R) and Arbitrary B

Let us next consider the reduction of SL(N, R) WZNW theory corresponding to
any subgroup B, i.e. corresponding to any number of sub-blocks. In this case the
current takes the block-form shown in Eq. (2.13). It will, however, be convenient
to label the entries by their weights with respect to the reducing matrix H of Sect. 2
and their rows. For SL(N, R) this means that we use the rows and the lines parallel
to the diagonal, rather than the conventional rows and columns. Thus we write

M_ l f 2 J02

0 M_1 > 3

0

0

0

0 0

0 0

un-2,l υn-l,l

Λι-3,2 Jn-2,2

^«-4,3 Jn-3,3

Jl,n-2 ^2,n-2

0 0 0

(4.1)

It will also be convenient to parametrize the elements g(a) of the gauge group
G, which is the group generated by all real strictly upper-triangular matrices, as

= cί(aί)c2(a2)'~cn-1(an-1), (4.2)
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where the ch(ah) are the matrices

(l 0 0

0 / 0

ch(ah) =

a>

0 0 /

0 0 0

0 0

0 aK2 0

0 0 ah,

0

0

0

\ 0 0 0

(4.3)

and α denotes the collection of parameters aKr. It will also be convenient to consider
the family of nested subgroups Gh of G defined as those with elements

= ch(ah)ch + 1 (ah +!) cn _ ! (an _ x ) , (4.4)

where αΛ denotes the collection of parameters ah,ah+l" an_1. Note that the ch(ah)
may be regarded as representatives of the cosets Gh/Gh + 1.

At this point we have to make an assumption concerning the non-degeneracy
of the matrix M_ 1 ? consisting of all the submatrices M_ l t Γ. This is the assumption
that the diagonal blocks JOr in J c o n s t r are arranged in order of non-increasing
dimension and that the rank of the submatrices M _lft.M

t_ί r is d imJ 0 r. As in the
previous section, this means that there exists a set of matrices M1 > r such that
M-ιtTMUr = /, where / is the unit matrix for the block JOr (and the same matrices
multiplied in the reverse order form a projection of rank-dimJOr for the block
JotΓ_ i). In a canonical basis M_1 > Γ takes the form (0 /).

Suppose now that J(/ l) is any current of the constrained form (4.1) for which
the gauge transformation induced by the general gauge transformation J c o n s t Γ -•
Adj(g(a))Jconstr< is only with respect to the subgroup Gh, i.e.

J^^Ad}(gh(ah))J^. (4.5)

It is easy to see that the block-components of J(h) with weights less than h — 1 are
left invariant and that the block-components of weight h - 1 undergo the simple
translations

J(h) v T(h) i Γ r Ά
J h-l,r J h - l , r ^ I Λ Λ J 1 V

More explicitly, for 1 ̂  r ^ n — h + 1, they are

(4.6)

(4.7)

where we have defined ah0 = M _ l π + 1 = 0. It is easy to verify from (4.6) and (4.7)
that if we construct linear combinations j h r of the J^]_ ι r by the iterative process

starting from j h 0 = 0, they transform according to

for 1 ̂ r^n — h (and fully absorb the coset Gh/Gh+ι part of the gauge trans-
formation).
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Let us now define the currents

J(fc + 1 ) = Adj(cΛ-1(Λ))Jw, (4.10)

where ch(jh) denotes the coset matrix ch(ah) with ahr replaced by j h r . Then the
gauge transformation of J ( Λ f υ induced by that of J(h) is evidently

(jh + ah)gh(ah)ch(jh))βh+1\ (4.11)

But, since gh(och) = Qh{ah, cch+ι% it is evident from the nilpotent structure of the gauge
group that the argument of Adj in (4.11) is an element of the subgroup Gh+1. Thus

J<* + 1>^Adjfofc+1(afc + 1))J<*+1>, (4.12)

where αΛ+ 1 is some function of <xh and j h . Since Gn = 1, it then follows by induction,
starting from J ( 1 ) = j c o n s t Γ

 ? that the current J(n) is gauge-invariant. We have thus
shown that the components of the (n)th current in the sequence

j f c 0 , (4.13)
where

πhU) = c1Ui)c2U2)-ch(jh\ (4.14)

and the /s are defined by (4.8), are gauge-invariant polynomials. Furthermore,
they form a complete set because, as before, J ( 1 ) = Jconstτ contains dim G — dim A
independent components, and since J{n) is obtained from it by gauge transformations
with dim A parameters (which are completely absorbed according to (4.9)) it must
contain dim G - 2 dim A = dim B independent components, which is the total
number of gauge-invariant polynomials. This implies, of course, that the com-
ponents of J(n) are subject to dim A constraints. To see this explicitly, we first note
that from (4.7), (4.8) and (4.10) the block-components of weight ft - 2 of J{h) can
be written as

J<'1l2,r = ( J r 2 i ; + M _ 1 , r Λ _ 1 , r _ 1 ) ( / - M 1 , Λ + r _ 1 M _ l i / 1 + r _ 1 ) , (4.15)

from which we obtain the constraints J ^ l 2 rMι Λ + r _ 1 = O f o r l^r^n — ft + 1.
Since the block-components J j ^ of weight k < ft — 2 are equal to «/j£r

+2) which fulfill
the above constraints, the constraints on J(h) can be collected as

l t + r + 1 = 0 f o r 0 ^ f c ^ f t - 2 , l^r^n-k-1. (4.16)

Then we find that for J(n) the total number of the constraints in the entries of
(4.16) is exactly dim A. Finally, since J (Π) is a current whose components are the
gauge-invariant polynomials it is, by definition, a Drinfeld-Sokolov current,

βn) = JΌS. (4.17)

We conclude this section by considering the case when the dimensions of all
the diagonal blocks are equal (as happens, for example, in the original Toda case
where they are all of dimension one). In this case the matrices M _ l t Γ can be chosen
to be unit matrices and then we see from the definition that the subcurrents j h are

/ _ J(h) , r(Λ) , τ(h)
Jh,3 ~ J ft-1,1 ^ /Λ-l,2^β/ft-l,3
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and so on. This means that (apart from the constant M_ ^blocks) the blocks to
the left of the hih vertical column in each J{h) vanish, which is also clear from (4.16).
In particular, all the blocks in Jin) vanish except those in the last column. Thus
the entries in the last column of J ( π ) are the gauge invariant polynomials for the
equidimensional SL(N, R) reduction.

For example, for the 3-block (Toda) reduction of SL(3, R) WZNW theory one
easily computes that

ϊ —
J 2 1 «

, (4.19)

1

using J01 + J02 + J03 = 0, and hence that

'0 0 Wλ

j(3)= 1 0 W2 ,

I o l o)
where

and

= J2

01 + J01J03 + Jo3 + Λ i + Ji2 + ^oi " ^03 =

(4.20)

&/ 2 + HJ')9 (4.21)

11 "" ^02) + "'Ol

= tr [ |J 3 + P(J'J tr(PJ) tr(ff 2 (4.22)

i ί = diag(l,0, - 1 ) being the reduction matrix and P = \{H2 + H) being the pro-
jection operator onto the first component of any vector. The gauge-invariant
polynomials W2 and W3 are the second and third-order elements of the W-algebra
of the SL(3, R) Toda theory, the second-order polynomial W2 being the Virasoro
operator. The expression (4.22) is not homogeneous in the generators because the
projection P is not homogeneous, but by subtracting W2/2 from (4.22) we obtain

W3 = tr iy3 + \{H{J'J + JJ') + H2J")-] + J[tr(HJ) tr(H2J') - tτ(H2J) tr (HJ')],

(4.23)

which is homogeneously cubic in the generators.

5. W-Bases: Generalized Toda Theories for Arbitrary G and B

We now turn to the generalized Toda theories corresponding to any of the subgroups
B of any (maximally non-compact) WZNW group G. We first note that the number
n of blocks in the reduction due to the reduction matrix /f = w H i s n = w ^ + l,
where ψ is the highest root of G. We then write the constrained currents (2.12)
more explicitly as

π - l

d = 0
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where the grading is with respect to # = wΉ, and JdEd means Σ / ^ , where
r

the summation index r runs for all generators of grade d (whose range therefore
may vary with d). The elements of the gauge group are of the form

) (5.2)
d=l J

where the α/s are the parameters. We define the nested subgroups Gh of gauge-
transformations

adΈd , (5.3)
J

where αΛ denotes all the parameters for d ^ ft, and the coset representatives

ch(ah) = exp(ah-Eh), (5.4)

for the cosets Gh/Gh+1. In particular we have

9h(<*h) = 9h+i(8)Ch(<*h)> ( 5 5 )

where the α are some functions of the αΛ.
As we did before we shall make an assumption about the non-degeneracy of the

matrix M_ j . To see what assumption we should make we express the assumption
for the SL(N, R) case in a more general form. It is not difficult to see that the
SL(N, R) non-degeneracy assumption is that the adjoint action of the matrix M _ x

on the Lie algebra of the gauge-group (see (4.6)) is not singular (has no kernel).
Indeed this is why all of the ah appear in (4.9) and can be compensated by linear
combinations of the Jh. The natural extension of this assumption to any group G
is that the adjoint action of M_1 on the Lie algebra of the gauge-group has no
kernel, and this is the assumption that we shall make. If we denote the space of
all generators of G of weight ft by Sh9 then since M_ x has a definite weight, this
assumption can also be expressed by saying that the kernels of the maps
Er

h^Er

h_1=did}{M_1)Er

h = \ _ M . u E r

h ] o f Sh i n t o Sh-1 f o r h^l a r e z e r o . N o t e

that So is just the Lie algebra of the subgroup B and that in general these maps
are only into, i.e. the images Sh_x of the maps are only subspaces of Sh-ί. (For
SL(N, R) they are onto only if h = 1 and the blocks are onedimensional.) Let F\ _h

be linear combinations of the generators E\_h which are trace orthogonal (dual)
to the Es

h_ι:

tr(F\_hE
s

h_1) = δrs, (5.6)

where the non-degeneracy of M_ x guarantees that the indices r,s run from 1 to
dimSΛ. Note that the F\_h are not unique unless the map is onto, Sh_x =Sh_1.
But this will not affect the results.

Now suppose that there exists a current J{h) of the form (5.1) for which the
gauge transformation that is induced by the original gauge transformation of J is
only with respect to #/,(αΛ),

(5.7)
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From (5.5) we then have

= Ad)(gh+ί(δί))(M_1-ah Eh_ι+
d=o

ft-1

From (5.8) we see at once that if we define the quantities

/Γ = — tr(J ( Λ ) F r ) (5-9)

then they gauge-transform according to

In particular, the coset representatives ch( jh) gauge-transform according to

Ck(Jh)^ChUh + "h)> (5-11)

Hence, if we now define the currents

Hh))^ (5.12)

then by exactly the same argument that led from (4.10) to (4.14) we conclude that
the components of J(n) in the sequence of (4.13) are gauge-invariant polynomials.
Also, as in the two preceding sections one sees that they form a complete set and
that J(n) is a DS current,

J (Π) = JD S . (5.13)

The procedure of the last three sections may be summarized in a more abstract
way as follows: Suppose Jih) is a current that gauge transforms only with respect
to the subgroup Gh. Then the components of J ( Λ ) of weight k < h — 1 do not
transform at all, and the components of weight h — 1 transform according to

1)ch. (5.14)

Hence, if we assume that adj(M_x) is non-singular and define

J ^ ^ A d J ί c ^ μ w where jh= -(adJίM.OΓ'iVfl i , (5.15)

and Ph is the projection on the subspace Sή_! of Sft_x, the jh and J{h+1) transform
according to

Jh^JH + ah and βh + 1^Adj(gh+ί(xh + i))βh + i\ (5.16)

respectively. It then follows by induction that the components of the nth current
J(n) in the sequence defined by (5.16) are gauge-invariant polynomials, and,
because of the construction, form a complete set.
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6. General Procedure for Computing ^-Algebras

Let us consider now the construction of the W-algebras themselves. The general
idea is the same as was used in ref. [1], namely to consider the (current-dependent)
KM transformations that keep the constrained currents in the DS-gauge form-
invariant and compute the changes in the non-zero components due to these trans-
formations. Because the gauge-invariant polynomials W are linear in the DS
current-components, and the KM transformations are canonical, these changes
are just the changes in the Ws that are induced by the (Poisson-bracket) W-
algebra, and thus the structure functions for the Poisson-bracket W-algebra can
be obtained from them by inspection. In other words we proceed as follows: First
we determine the most general matrix K which leaves J D S form-invariant, i.e. that
satisfies

[ K , J D S ] - K ' = <5JDS, (6.1)

where it is understood that δJΌS satisfies the same conditions as JD S . Then we
parametrize K in some convenient way as K = K(aa(z)\ where the α's are a set of
dimB parameters, a= l , . . . ,d im£. Since the components of J D S are the gauge-
invariant polynomials W the canonical transformations

jDS^jDS + ^jDS ( 6 2 )

define the corresponding canonical transformations

W->W + δaW (6.3)

of the matrix of gauge-invariant polynomials corresponding to JD S . Since these
transformations are canonical we are guaranteed that the variations of the W's
can be written in the form

δaW(w) = $dzaa(z)[WM W{w)l (6.4)

for some suitable choice of Wa(z). Then, once the Wa(z) are identified in terms of
the W(w\ the VF-algebra can be obtained from (6.4) by inspection.

So, in practice, all one has to do is compute the most general K that keeps
J D S form-invariant, parametrize it in a suitable manner, and compute the variations
of the components of J D S for each parameter. Once this is done, and the components
of Wa identified in terms of the W, the W-algebra can be read off from (6.4). In
identifying the base-elements Wa it is useful to use the fact that the Poisson-brackets
of any two elements must be anti-symmetric. Although this method of computing
W-algebras is much more efficient than many others, it is still quite laborious for
more than two blocks and for general WZNW groups G. Hence in this paper we
shall restrict ourselves to the 2-block reductions of SL(N, R).

7. ^-Algebra for Generalized Liouville Theories

To illustrate the basic idea, and because this is an exceptional case that has to be
treated, separately anyway, let us first consider the case where the two blocks in
the maximal Toda theory are equidimensional. In that case N = 2n, the reducing
matrix H is just H = ^diag(/π, — /„), where /„ is the π-dimensional unit matrix and
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from (3.16) we see that, in the canonical basis, the constrained DS-current is of
the form

° τ\ where trC = 0 ( 7 1 )
(Strictly speaking, the T and C should be written as TD S and CDS, but we drop
the superscripts to simplify the notation.) We write the most general SL(2n,R)
matrix K in the form

(X y) where trK = 0. (7.2)
τ yj

The Greek submatrices are the natural independent parameters because they are
conjugate to the C and T submatrices in the current with respect to the KM
centre, and the Latin submatrices are to be determined from the condition that
with respect to a KM transformation by K the current J D S remains form-invariant.
The KM variation δJDS = [K, J D S ] - K' of J D S generated by K is easily seen to be

ros / Tτ-y + x' Ty-xT-yC + yf

δJ™=-[ ' ' ~ * ' - ' ' , (7.3)

and from this one sees at once that K will leave J D S form-invariant if, and only if,

x = γ - Cτ - τ' and y = Tτ + x'. (7.4)

The general K matrices satisfying these conditions split naturally into

;') - *•(? T:;/>
where

try = O, θ = Cτ + τ'-τ0I and ΛΓτ0 = tr(Cτ + τ'), (7.6)

and the τ 0 is inserted in order to make Kτ traceless. From (7.3) one can read off
the variations in the components of J D S due to Kγ and Kτ, namely,

δyC = [y, C] - 2/, δγT = [y, T] + / C - yr/,

^ τC = [τ, r\ + ff- τ'o, δτT= TτC - (7τ)' -(θ + τo)T- Θ'C + 0". (7.7)

The display in (7.7) defines the W-algebra for this case. (When allowance is made
for partial integration the display is anti-symmetric.) Let us denote the elements
of the W-algebra by the corresponding components Ca = tr(σαC) and Ta = tr(σaT)
of C and T, where the σ's are the generators of GL(n,R) in the fundamental
(tt-dimensional) representation (and thus include a multiple of the unit matrix as
well as the usual SL(n, R) generators). Then the W-algebra given by (7.7) is easily
seen to take the explicit form

[CM Q(w)] = - fe

abCe(w)δ(z - w) + 2gabδ\z - w),

[CM 7 » ] = ~ fe

abTe(w)δ(z - w) - KbCe(w)δ'(z - w) - Qahδ"(z - w), ( ' a j
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and

lTa(z), 7 » ] = UhZ - /&)7»C s(w) - KbCr(w)Cs(w)

~ Kt(T'e(w) - C » ) + λ.(Ca(W)Cb(w) - C:(w)(trσb))]δ(z - w)
N J

+ ίK bC r(w)C s(w) + [he

ab + h<JTe(W)

- 2he

abC'e(W) + -(2C;(w)(tr σb) - Ca(w)Cb(w)) \δ'(z - w)

1 ' " ' ' t r σ < I ) - C » ( t r σ i , ) ) + fe

abCe(w)) \δ"(z-w)

+ \ ~9ab + -(tr σa)(tr σb) \δ'"(z - w), (7.8b)

where the primes on δ(z — w) mean differentiation with respect to z, the fe

ab are
the structure constants of SL(n, R) and

b\ h*ab = tr(σeσaσb) and hr

a

s

b = tr(σrσaσ
sσb). (7.9)

Note that the [Cfl, Cfc] part of the algebra is just a KM algebra (with the centre
double that of the original KM algebra). In this sense the W-algebra (7.8) may be
regarded as a polynomial extension of a KM algebra. The sense in which it is an
extension of a Virasoro algebra will be discussed in Sect. 9. For the moment we
note only that for the SL(2, R) (Liouville) case Ca = 0, and Ta reduces to a single
component and that, since J D S = J ( 2 ), this component is identical to the Virasoro
operator A obtained in (3.17). Indeed, for this single component the VΓ-algebra
(7.8) reduces to

lΛ(z), /l(w)] = - Λ'(w)δ(z - w) + 2Λ(w)δ'(z - w) - ψ\z - w), (7.10)

which is just the Virasoro algebra.

8. JF-Algebra for Generalized Toda Theories with G = SL(N,R)
and B Maximal

Let us now consider the generic maximal case when the two blocks are not equi-

dimensional, i.e., the reduction matrix H is of the form H =—diag[n/m+π, — (m + n)/n],
N

where m ^ 1, n ^ 1 and N = m + In. In that case the DS-current in the canonical
basis is of the form (see (3.15))

lA 0 S\

J Ό S = \ B 0 Γ , w h e r e t r Λ + t r C = 0, (8.1)

\o / c
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dim A = m and dim / = dim T = dim C — n. (As in (7.1) the entries in (8.1) should
have superscripts DS, but we have omitted them to simplify the notation.) We
then write the most general SL(N, R) matrix as

where tr K = 0. (8.2)

y)

Here again the Greek submatrices are to be regarded as the independent parameters
and the Latins are to be determined by the form-invariance condition. The KM
variation δJΌS = [K, JD S] - K' of J D S generated by K is easily seen to be

/[α,/l]+j8β-S(7-α' x-Aβ-Sτ-β' ocS + βT + xC-Ax-Sy-x'

luA + vB-B(x-Tσ-u' w-Bβ-Tτ-vf uS + vT+wC-Bx-Ty-w' (8.3)

\σA + τB-u-Cσ-σ' y-v-Cτ-τ' σS + τΓ+[y,C]-w-

from which one sees that JD S remains form-invariant if, and only if,

u = σA + τB - Cσ - σ',
v = y - Cτ - τ',

. (8.4)

The matrices K that satisfy this condition split naturally into the six sets

'0 β Aβ + β\

(8.5)

Kσ=\Σ 0 0 1, (8.6)

\ 0 0 -mocj

and

/τol 0 S

Kτ=tτB -θ Tτ-ff\, (8.7)

\ 0 τ τ,

where

Σ = σA - Cσ - σ', θ = Cτ + τ'- τoln and Nτ0 = tr(Cτ + τ'). (8.8)

As before, the τ0 has been inserted in order to make Kτ traceless. Note that
tr θ = (m + n)τ0. From (8.3) one can now read off the variations in the components
of JD S due to the X's and one finds the following table:
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δx

δy

δ0

δβ

δτ

A

[α,/4]-α'

0

0

(βB)

-(Sσ)

0

c
0

ly,C]-2y'

0

-(Bβ)

(σS)

ίτ,n + θ'

trA

0

0

— 2mn

N α°
tr(βB)

- tr(Sσ)

-mτ'o

B

-Ba.

yB

D(X0

0

*

*

s
ocS

-Sy

α0S

0

T

0

ly>T\ + y'c-γ"

m
ί a1 C* \ n"\

N ° °
*
*

*

(8.9)
1

m
where hat means that the trace part is to be removed, e.g., A = A tr A, and

the lower right-hand 3x3 subtable is

(8.10)
*β

K

B

0

- Tσ + ΣA - Σ'

(τB)A - C(τB) - 2τ'B - τB'

S

β(T-C) + AX + X'

0

(Sτ)C - A(Sτ) - (Sτ)'

T

BX-(Bβ)'

ΣS

Z

where

X = βC-Aβ-βf and Z = [τ,£S] 4- ΓτC-(0 + τ o)Γ-(Γτ)'-0'C + 0".

(8.11)

The array (8.9) defines the W-algebra for the general maximal SL(N, R) Toda
theory. Note that the first three rows and columns in (8.9) define an S(L(m) x L(ri))
KM algebra, and the first four rows and columns an S(L(m) x L(n)) Λ A(ri) KM
algebra, where A(ri) is the real abelian Lie group of dimension n2. Thus the W-
algebra defined by (8.9) is a polynomial extension of KM algebra, and the KM
subalgebra is quite large.

To write out the W-algebra defined by (8.9) would be quite laborious on account
of the parameters being block-matrices so we shall content ourselves with writing
it out for the S(L{2) x L(l)) reduction of SL(3, R). In this case A = C = 0 and if we
write tr A = — tr C = a one obtains from the last four rows and columns of (8.9)
the four-dimensional array:

h
δσ

δτ

a

~3aO

Bβ

-Sσ

i[(ατ)'-τ"]

B

-Ba0

0

- Tσ - 3(aσ)'+ σ"

Bτ - 2(Bτ)'

S

Sα0

fβ-3aβ'-β"

0

-(2Sa + S')τ-Sτf

T

- Bβ - 2Bβ'

2aSσ - Sσ'

Z

(8.12)
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where f = T - 2a2 - d and B = 2aB + B\ the last entry Z is given by

Z = - 7Y - (Γτ)' - f [(aa' + a")τ + {a2 + 2α')τ' - τ'"], (8.13)

and B,S and T are no longer matrices but simple functions. From (8.12) one can
read off the W-algebra in an obvious notation as

=§<5'(z-vv),

= - Wb(w)δ(z - w),

= Wa(w)δ(z-yή9

= K - Wa(w)δ'{z - w) + δ"{z - w)l

[_Wh{z\ WM\ = lWt(w) - 2W2

a(w) - W'aW]δ(z - w)

+ 3Wa(w)δ'(z - w) - δ"{z - w),

\Wh[z\ Wtfw)] = [ - 2Hς(w)H^(w) - W'h{y»y\δiz - w) + 2^(w)3'(z - w),

- w) + »^(w)5'(z - w),

\W'a(γi) + | ^ ( w ) ] ό ( z - w)

[2Wt(w) + \W2

a{w) + | ^ » ] 5 ' ( z - w) - f^w(z - w). (8.14)

9. Primary Fields for Generalized Liouville Theories

The reduced WZNW theories are conformally-invariant and thus the W-algebras
associated with them should be expressible in terms of a Virasoro operator and
a set of primary fields. In other words, they should be Zamolodchikov algebras.
The base-elements of the W-algebra (gauge-invariant polynomials) constructed so
far are not automatically primary fields, because they contain the gravitational
component H(z) = h(z)trH2 of the constrained KM current J, and, as discussed
in Sect. 2, this component transforms as a spin-1 connection. That is to say, under
infinitesimal conformal transformations h acquires, in addition to the usual
tensorial terms, the inhomogeneous term (see (2.8) with k = 1)

Δh(w) ^ [Λ(z), Mw)] i n h o m. = δ'\z - w). (9.1)

In this and the next section we determine where h occurs in the gauge-invariant
polynomials and hence identify the Virasoro operator A and the primary fields.
For clarity, and because of some special features, we treat only the generalized
Liouville case in this section, leaving the general maximal Toda theories to Sect. 10.

In order to locate the gravitational component h(z) in the gauge-invariant
polynomials we decompose the original constrained current j c o n s t Γ into its primary
field and its h(z) parts, i.e., we write

J — - 7 + * B ~ ( ; l ) . ^ ΐ ) + *(z>(ί _°,), (9.2)

where Y, C and T contain only primary fields. From (3.16) the matrix J ( 2 ) of gauge-
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invariant polynomials is

T-YC+YΛ

c+γ } ( 9 3 )

and if we now use (9.2) and the covariant derivative 2 = d + h for the spin-one
field Y to extract h explicitly we obtain

O T YCΛ.Q}Y\ 1 /Π

- - ( (9.4)
/ c+y / 2V0 0

From (9.4) it is easy to see that with respect to conformal transformations the
components of J ( 2 ) will acquire, in addition to the usual covariant variations, the
inhomogeneous terms

ΔCi2) = 0

ΛTi2) = - £[(7 + C)Δh - ®wΔh + hΔh],

QΔh - dwΔK] = - \\C™Δh - dwΔhl (9.5)

where we have used (9.3) to reconvert (Y + C) into C ( 2 ). Converting this result into
W-language and using (9.1) we obtain

Δ Wc = 0 and ΔWt(w) = - %[Wc(w)δ"(z - w) + b"\z - w)]. (9.6)

Thus the WJs are primary fields but the Wt's are not.

To identify the Virasoro operator A one now uses the fact that A must be that
combination of the W's whose Poisson-bracket with the Ws produces the usual
tensorial conformal transformation terms (spin 1 and 2 for the Wc's and Wt's
respectively) plus the inhomogeneous terms shown in (9.6), and it is easy to check
from the array (7.8) that the combination

Wt\ (9.7)

has this property. That is to say,

[Λ(z), wς(w)] = - W'c(w)δ(z - w) + Wc(w)δ'(z - w),

[Λ(z), Wt(w)2 = - W't(w)δ(z - w) + 2Wt(w)δ'(z - w)

- \Wc{w)δ"(z - w) - \δ"\z - w). (9.8)

Thus the A defined in (9.7) is the required Virasoro operator. For n = 1, it coincides
with the expression (3.17) obtained directly as a gauge-invariant polynomial. Its
central coefficient c is seen from (7.8) to be c = 6n, which, for k = 1 is in agreement
with the general result c=\2ktrH2 of Sect. 2.

To identify the primary fields one notes from (9.8) and the conformal trans-
formation properties of the derivative that the combinations Wz=Wt — \W'c are
primary fields. Since the remaining base-element tr Wt can be replaced by A we
then see that a Virasoro-primary-field basis of the W-algebras for the generalized
Liouville theories is

Λ Wc and Wx=Wt-\W'c. (9.9)
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Note that, because d + h is the covariant derivative for spin-one fields, the combina-
tions Wt-\-^hWc are also primary fields. But they are not gauge-invariant on
account of the factor h.

10. Primary Fields for Maximal Generalized Toda Theories

As in the generalized Liouville case we first decompose the original constrained
current j c o n s t Γ into its primary-field part J and gravitational part H(z) = h(z) tr H2:

/A X S\ AX
jconstr. = lβ γ Γ = β Ϋ

\0 I cj \0 I Cι
h(z)

I- ° ° \
JV \

o 1
N

0 0 -

(10.1)

JV

where, from the tracelessness and trace-orthogonality to H of J (first matrix on
the right-hand side) we have

tr(A + Ϋ) = 0 and trC = 0. (10.2)

From (3.15) the matrix J(2) of gauge-invariant polynomials is

ίA(2) 0 S ( 2 )\ ίA 0 S + AX-XC + dX\

Ji2)= lβ{2) 0 Γ(2) = IB 0 T + BX-YC + dY}, (10.3)

o / c(2y \o / c+γ )

and if we now use (10.1) and the covariant derivative 3f — d + h for the spin-one
fields X and Ϋ to extract h explicitly we obtain

* * 0

(A 0 S + AX - XC + 9>X \ ' N

Jm=\B 0 T + BX-ΫC + SiΫ l+l 0 0

IO / C+Ϋ

0

m

(10.4)

0 0 --h,
N /

where

Z = — \(Ϋ + C)h + -h2 - 2>h\.
N L N J

(10.5)

From (10.4) and (10.5) it is easy to see that with respect to conformal transforma-
tions the components of J(2) will acquire, in addition to the usual tensorial varia-
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tions, the inhomogeneous pieces
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(ΔA™

ΔBm

\o

0

0

0

ASm\

w

0

0 0

0 0

- Γ +—hΔh-3>wΔh

N

. (10.6)

Using (10.1), (10.3) and <3 to reconvert all the quantities in (10.6) into components
of J<2> we obtain

\ 0

0 ΔSm\

0 ΔTm =

0

JV
\

0 0

0 0

— n

N

(10.7)

Translating this result into W-algebra language, we see that from (9.1) all the W's
are primary fields except the Wo associated with the gravitational field h(z) and
defined as Wo = tr A{2\ and the Wt's, which, under infinitesimal conformal trans-
formations, acquire the inhomogeneous pieces

= — δ" and AWt= ~-[_Wcδ"
N N

(10.8)

respectively.
As in the generalized Liouville case the Virasoro operator is identified as that

combination of the W's whose Poisson bracket with all the Ws produces their
usual tensor transformation properties (spin 1 for Wa9 We9 Wb and Wo, and spin 2
for Ws and Wt) plus the inhomogeneous terms (10.8). It is easy to check from (8.9)
that the operator

W2

C) + W% - W09
(10.9)

has this property and is thus tfie required Virasoro operator. Note that in the DS
gauge the matrices Wa and Wc are traceless and could therefore equally well be
written as Wa and Wc as in Eq. (8.9). The centre c of the Virasoro algebra for

the operator in (10.9) is seen from (8.11) to be c = 12 , which for k = 1 is
N

in agreement with the general result c = 12ktτH2 of Sect. 2.
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To identify the primary fields one notes from (10.8) and the conformal trans-

formation properties of the derivative that the combinations

N nm2 [_ N

are primary and thus a Virasoro-primary-field basis for the W-algebra of the

general maximal Toda theories is

K Wb, Wc, WS9 A and ^ = ^ - ^ J ^ [ ^

(1.0.10)

This is the generalization of the result (9.9) for the generalized Liouville case. On

account of the element Wo it differs from the Liouville result not only in the

existence of the extra Wo terms in (10.10) but also in the fact that tr Wτ is a primary

field and that the fields

t \ t 0 c 0 0 (10.11)
m2

N
which are obtained from the Wτ by using the covariant derivative d + h^>d-\ Wθ9

-N ~ m n

to substitute WQ Wc for W'9 are both primary and gauge-invariant.
mn
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