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Abstract. A mathematical theory is mounted for a complex system of equations
derived by Gear and Grimshaw that models the strong interaction of two-dimen-
sional, long, internal gravity waves propagating on neighboring pycnoclines in a
stratified fluid. For the model in question, the Cauchy problem is of interest, and
is shown to be globally well-posed in suitably strong function spaces. Our results
make use of Kato’s theory for abstract evolution equations together with somewhat
delicate estimates obtained using techniques from harmonic analysis. In weak
function classes, a local existence theory is developed. The system is shown to be
susceptible to the dispersive blow-up phenomenon investigated recently by Bona
and Saut for Korteweg-de Vries-type equations.

1. Introduction

This paper is concerned with the initial-value problem
U, + uux + uxxx + A3Uxxx + a,vv, + aZ(uv)x = 05
blvl + ru, + v, + Uyexx + b2a3uxxx + b2a2uux + bza1(“l’)x = Oy
u(x, 0) = uo(x),
v(x,0) = vy(x),

where a,,a,,as,b,,b, and r are real constants with b, b, positive, u = u(x,t),
v = v(x, t) are real-valued functions of the two real variables x and ¢, and subscripts

(1.1)
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adorning u and v connote partial differentiation. This somewhat complicated
system has the structure of a pair of Korteweg-de Vries equations coupled through
both dispersive and nonlinear effects. It was derived by Gear and Grimshaw
(1984) as a model to describe the strong interaction of weakly nonlinear, long
waves.

The model system (1.1) arises in the following general context. Consider a
medium represented by R x [ —h,0] in a standard Cartesian plane which can
support two-dimensional wave motion in the horizontal direction. Frequently,
the linearized theory for infinitesimal-amplitude wave motion in such a medium
leads to a representation of a significant dependent variable #, say, in the form
n = A(x,t)¢.(y), where x is the variable in the horizontal direction, y the vertical
variable and ¢, is an eigenfunction of some linear eigenvalue problem posed for
ye[— h,0], and with appropriate boundary conditions at y= —h and y=0,
k=1,2,.... Different motions are associated to different modes ¢, which define
the particular vertical structure of the wave, though often interest is focussed on
one of the lowest modes. In this sort of representation, A = A, is a function of
x — ¢, t, where ¢, is the eigenvalue associated to the eigenfunction ¢, k=1,2,....
When the theory is extended to allow for the weak effects of nonlinearity and
dispersion, 7 is represented in the form ¢A,¢,, where ¢ is a small, amplitude para-
meter and ¢, is as before. Such a form is based on substantial assumptions about the
spatial and temporal scales appropriate to the wave motion. Usually A is a function
of a long spatial variable ¢*x and a slow time variable perturbation &t of the basic
speed ¢, associated to the mode ¢,, where a and f§ are positive constants that
reflect the particular laws governing the motion. The function A is then seen to
satisfy a nonlinear partial differential equation and the combination ¢A¢, is taken
to be a good approximation to the underlying wave motion on a longer time scale
than provided by the corresponding solution of the linear equation.

An interesting possibility now presents itself, in which a motion may be initiated
in the medium which corresponds to more than one of the vertical modes ¢,.
Consider the case wherein there are two different modes ¢, and ¢,, and the
motions associated with each are localized in space. If the fundamental phase
speeds ¢, and c,, associated with these modes differ sufficiently, then basically the
motions associated with each will pull apart rapidly enough that, to leading order
in the parameter ¢ A, and A,, are determined independently of one another.
However, if ¢, and c,, differ by order £, there is the prospect that the motions
associated with ¢, and ¢,, may remain in the spatial vicinity of each other long
enough that the effect of interaction between them can accumulate to make a
leading-order difference to each amplitude function A4, and A,,. In this case, 4,
and A,, will satisfy a coupled system of partial differential equations. It is to this
latter, interesting situation in the nonlinear regime that the present work is
devoted.

Consider now the concrete situation of wave motion in a density-stratified fluid
of constant total depth h which is far from any lateral boundary. Assuming the
motion to be uniform in one of the unbounded directions, and neglecting dissipative
effects, the two-dimensional Euler equations are taken to be the full equations of
motion. If the undisturbed density variation is a function p, = po(y) of the vertical
coordinate alone, then we find that the generalities outlined above apply. In
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particular, the linear eigenvalue problem for the vertical modes is

0
ci%(f’o—qs—")*powﬁo for 0>y>—h

dy
¢=0 on y=—h, (1.2)
¢k=yc3% on y=0’

ady

where N?(y) is the Brunt—Viisila frequency (and so proportional to p,,) and 7 is
either zero in case the upper boundary is fixed or is the Boussinesq parameter (a
non-dimensional measure of g~!, where g is the gravity constant) if the upper
surface is free. Erkart (1961) examined the linearized problem in the case where
the undisturbed density variation p, consists of two, well separated pycnoclines,
and determined that resonant transfer of energy between waves propagating on
each of the two pycnoclines is possible when the waves in question have nearly
identical phase speeds. In the same configuration, Liu, Kubota and Ko (1980) and
Liu, Pereira and Ko (1982) showed that such energy transfer was possible between
nonlinear waves propagating on widely separated, neighboring pycnoclines. In
particular, they found that solitary waves propagating on neighboring pycnoclines
could interact strongly. The model with which they drew these conclusions consists
of a pair of intermediate depth equation (cf. Kubota, Ko and Dobbs 1980) coupled
through a purely dispersive term. This system has recently been analyzed by Bona
and Saut (1991b). In contrast, when the overall depth h of the fluid is shallow with
regard to a typical wavelength L, so that, in particular, neighboring pycnoclines
are not widely separated, Gear and Grimshaw (1984) have shown that the strong
or resonant interaction between waves on neighboring pycnoclines is approxi-
mately governed by the pair of Korteweg—de Vries (K-dV) equations in (1.1)
which are coupled through both nonlinear and dispersive effects. Indeed, the
assumptions leading to (1.1) include that h%/L? is of the same order as the amplitude
¢, and this plus the presumption of one-way propagation leads inevitably to a
K-dV-type model.

If ¢, and ¢, are two distinct solutions of the eigenvalue problem (1.2) with
phase speeds ¢, and c,, differing by a quantity proportional to ¢, i.e. ¢,, = ¢, — &),
then Gear and Grimshaw found that the vertical displacement # = #(6, y, ) of the
fluid is given by

1 =e{A4,(1,0)$,(y) + An(t,0)p(y)} + O(€?),

where the wave amplitudes A, and A4,, satisfy the evolution equations

1,/ 164 04, . 334
0=2n( 2%y g P00y g O
c,f(c,, or a0 T g )
o4 9 24
w3 A3y Cgayys Tom 1.3
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and
104, y04 94 83Am>
o2 <c,, ot ¢, 00 ™m0 263
04 034,
A—= A,A A R 1.3b
+3vnmm n 00 +3 nmm ( m)+ nm 603 ( )
with
v 09,04, 42y

vskl= .f Po a ay ay
0

A= j Podrd1dy,
h

3,9 (oo
Ikﬂk—ch I Po( 6yk) dy,

1 0
L= ch f Po¢fdy,
—h

and the orthogonality condition

where J,, is the Kronecker delta. Note that 21y, = 3c?v,,, and 21,4, = ¢} 4y Now
by letting
A
Ko A, = X,
I Al Tl

Fa M2 rha Y t
()" ()
X X Cun

the system (1.1) is recovered with the constants a,,a,,as,b,,b, given by

A=

n

. =3czvnmmu,,/12 . =3c§vnnmlm . =cfu,,/1,,mlm

oLz 7 2hpad, 0 2LpuaAR
)'n )'3 2

b1=1‘"‘l, b2=1 1,3,’1#3‘

The constant r is a non-dimensional, disposable parameter which does not affect
our analysis and which will henceforth be neglected. Notice that the parameters
b, and b, are automatically positive since I, and A, are strictly positive because
the density is strictly positive and the ¢, are not constant in the presence of true
stratification (po, # 0).

Gear (1985) showed that although these coupled equations possess an exact,
traveling-wave solution involving the characteristic sech’—profile of the K-dV
equation, they are in general not solvable by the inverse-scattering transform
technique.
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Our aim in this article is to study local and global well-posedness of the
initial-value problem (1.1) in the classical Sobolev spaces HSIR)x H’(R). The
problem (1.1) is said to be locally well-posed in H%(R)x H(R) if it generates
a continuous local flow in H(R)x H(R) (i.e. if existence, uniqueness, persistence,
and continuous dependence on the initial data hold). The problem is globally
well-posed if the local flow can be continued indefinitely in the temporal variable,
so defining a solution of (1.1) valid for all £ = 0. Such a theory is basic to the
analytical or numerical study of the system.

It will be demonstrated that (1.1) is locally well-posed in H*(IR) x H(R) for
any s = 2. As with other, dispersive wave equations, global well-posedness in any
particular Sobolev space seems to depend on the available local theory and on
the conservation laws or energy-type inequalities satisfied by the solutions. In
general, solutions of (1.1) satisfy the following conservation laws:

D, (u)= }0 udx, @,(v)= }0 vdx, @;(u,v)= }0 (b,u* +bv¥)dx.  (1.4)

The time-invariance of the functionals @; and @, expresses the property that the
mass of each mode separately is conserved during iteraction, while that of @; is
an expression of the conservation of energy for the system of two modes taken as
a whole. In general, while total energy is conserved, it may nevertheless be passed
between the two modes. As remarked by Liu, Kubota and Ko (1980) in a related
problem, the functional @, supports the tentative conclusion that a mode can
increase its energy only by increasing its amplitude and decreasing its width, while
the other mode must correspondingly decrease its energy by decreasing its
amplitude and increasing its width. Solutions of (1.1) satisfy an additional conser-
vation law which is revealed by the time-invariance of the functional

) 3 3
O, u,v)= | <b2u,2c + v2 + 2b,azuv, — b, u? — bya,uv — bya,uv® — % — rvz)dx.
(1.5)

The functional @, is a Hamiltonian for the system (1.1), and if bya2 <1, @,
will be seen to provide an a priori estimate for the solution pair (u,v) in the space
H'(R)x H'(R). Furthermore, the linearization of (1.1) about the rest state can
be reduced to two, linear K-dV equations by a process of diagonalization. Using
this remark and the smoothing properties (in both the temporal and spatial
variables) for the linear K-dV derived by Kato (1975, 1979, 1983) Kenig, Ponce
and Vega (1989, 1991a,b), it will be shown that (1.1) is locally well-posed in
H*(R)x H(R) for any s=1 if \/b‘2a3 # + 1. It will therefore follow from the
a priori estimates provided by @, and @, that the system (1.1) is globally well-posed
in H'(R) x H*(R) for any s = 1 whenever |a;| < 1/\/b*2.

It is worth contrasting the theory developed here for (1.1) with the early methods
used to prove global well-posedness for the K-dV equation in the spaces H¥IR)
for k=2 (see Bona and Smith 1975; Kato 1975; Saut and Temam 1976). These
theories relied on an a priori bound in H%(R) provided by one of the infinite string
of conservation laws with polynomial densities. For the system (1.1), we have only
found the four conservation laws listed above, and these only provide a priori
information in H'(R)x H'(R). Hence, to establish global well-posedness, it is
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central to our argument that (1.1) is locally well-posed in the relatively weak space
HY(R)x H'(R). In consequence of this requirement, we must call on the sort of
theory developed recently in Kenig, Ponce and Vega (1991b) for the initial-value
problem for the K-dV equation posed in the space H*(IR) for smallish values of s.

This paper is organized as follows. The general, local well-posedness result
together with a sufficient condition for local solutions to be globally continuable are
presented in Sect 2, while a priori estimates in H!(IR) x H*(IR) are derived in Sect.
3. Estimates concerning the linear propagator are contained in Sect. 4, and our
main result for smooth solution is established in Sect. 5. In addition to the theory
of strong solutions, we are also able to develop existence results in case the
initial data lies only in L*(R)x L*(IR). This theory of weak solutions is coupled
with a theory of existence in weighted Sobolev spaces to demonstrate a type of
singularity formation termed dispersive blow up in Bona and Saut (1991a). These
results, which appear in Sect. 6, are a result of the way dispersion appears in the
model, with a negatively unbounded group and phase velocity.

Notation. The norm in L(R), 1 <p < co will be denoted by |-||,. We shall use
the abbreviations J* = (1 — 82)¥2 and D* = (— 02 to denote the Bessel and Riesz
potentials of order —s, respectively. Define L? =J~°L”, a Banach space whose
norm will be denoted by |-[; ,= 7, When p=2, L? is the classical Sobolev
space H(R), and H*(R) = ﬂ H(R). Also define the commutator between two
s>0

operators A and B by [4, B] = AB — BA. Thus, [J*, f1g = J%(fg) — fJ°g in which
f is regarded as a multiplication operator. The space H}, (£2), where £ is an open
set in IR and s = 0 connotes the class of measurable functions f defined on £ such
that for every ¢peCg (), ¢ feH(R). If [0, T] is an interval and X is a Banach
space with norm || x, then

T
I’0,T; X) = {u:[O, T]- X such that | |ul} < oo}.
0

The space C(0, T; X) comprises the class of all continuous functions mapping [0, T]
into X. If [0, T] is compact, C(0, T; X) is a Banach space when equipped with the

norm |* [l w0, )

2. General Local Theory

In this section, we shall present a theorem about the local well-posedness of
the initial-value problem (1.1) and a continuation principle that ensures local
solutions to be extendable to smooth solutions defined globally in time. The
well-posedness theorem is obtained by a straightforward application of the abstract
techniques of Kato (1975, 1983) for quasi-linear evolution equations and hence
the proof is abbreviated. The continuation principle uses the local theory and
energy-type estimates.

For simplicity of exposition, we shall restrict ourselves to integer-order Sobolev
spaces. This is a restriction of convenience only. For any T > 0 a finite number
and s an arbitrary integer Sobolev index, let

X,(T)=C(O, T; HR))n C'(0, T; H*~ *[R)).
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Theorem 2.1. Let s = 2 be an integer, and (ugy, vo)e H(IR) x H(IR). Then there exists
a T = T(||(uo,v0) Il ,) >0 and a unique solution (u,v)e X (T)x X (T) of the system
(1.1) corresponding to the initial data (uy,v,). Moreover, the pair (u,v) depends
continuously on (ug,v,) in the sense that the mapping (uy,vy)—> (u, v) is continuous
Srom H(R) x H*(R) into the space X (T) x X(T).

As mentioned above, Theorem 2.1 is an easy consequence of the general results
of Kato. The functional-analytic setting for Kato’s theory consists of a pair of
reflexive Banach spaces X and Y, where Y < X with the injection continuous and
dense. A central role in the theory is played by a Banach-space isomorphism S of
Y onto X, and the norms on these two spaces are chosen in such a way that S is
an isometry. The theory applies to the abstract, quasi-linear evolution equation

U,+ A, U)U = F(t, U), 2.1)
for 0 < t, with
U0)=U,,

where Uy,eY is a given initial value. Kato’s theory asserts that there exists a
positive time T =T(||Ugylly) such that (2.1) possesses a unique solution in
CO, T; Y)nCY0, T; X) provided that certain conditions are satisfied. Moreover,
the mapping that associates to U, the solution U is continuous from Y into
CO, T;Y)nCY0, T; X).

To apply this theory to the situation of interest here in case s=3, take
X = H* 3 R)x H*"3(R) and Y = H'(R) x H(R), let S = (J*,J?), let 4 be the matrix
operator

A= A(W) = 02+ y0, +a,z0, a30> + a,20, + a,yo, ’
bads 3+ bad yo, + bad 20, 1 3+ lzax o 0,
b, 1 1 b, b, b,
where

()

and let the operator F be zero. With this choice of 4 and F, and writing

()

(1.1) reduces to (2.1), if Uy = (uy,v,). To verify the hypotheses of Kato’s theory, it
is convenient to take the inner product of two elements (f,g) and (y,h) in
L(R)x L*(R) to be

<(f9g)a(’7’h)> =b2 _j f”+b1 _j gh

Hence the norm of an element (£, g)e H'(R) x H'(R), where r > 0 will be given by
1), =Gl f 12, +billgl2 )M,
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where as mentioned above, b, and b, are known to be positive. It is then
straightforward to verify that the hypotheses of Kato’s theory are satisfied.

In case s < 3, one takes X = L2(R) x L{R), Y = H(R) x H(R), and S = (J*,J%).
To apply the theory, one needs to use the trick observed by Kato (1979) in which
new variables @ and ¥ are defined by conjugating u, v with e'’, viz

The details follow exactly the lines laid down by Kato, and so they are passed
over here.

Lemma 2.2. If (u,v)e X (T)x X(T) is a local solution of the initial value problem
(1.1) corresponding to the initial data (uy,vg) as specified by Theorem 2.1, then for
any k with 1 £k <s,

lsoug (-5 2), 005 ) Ml 2 = [l (4o, Vo) Iy, , €XP <CI(H U5 ) oo + 1005 7) lloo)df> (2.2)
Proof. In light of the local well-posedness theory sketched above, the following
formal calculations can be easily justified provided k <s by simply regularizing
the initial data, making the calculations for the associated smooth solutions, and
then passing to the limit in which the regularization is allowed to degenerate to
the identity operator. Consider the case k = 1. Differentiate the first equation in
(1.1) with respect to x, multiply by u, and integrate the resulting expression over
IR, thereby obtaining the equation

1d < 1 ® a, ® ®
2dt _f u +as .f u Uxxxx=_§_.f uzuxx.vc'_?l_jv Uzuxxx_az __( UDU y - (23)

Now, divide the second equation in (1.1) by b, and perform calculations similar
to those leading to (2.3) to arrive at the relation

bl d 0 ) o) 1 0
—— | v2+a v, =—— | v,
2b, dt _jw 1 _joo 2b;
- ?2 [ wo . —ay [uo, ..  (24)
Adding (2.3) and (2.4) leads to the equation
1 d o9 ) 0
- a2b2 »[ uvuxxx 5 j vzvxxx
b 0
—% | v —ab, [ uov ., 2.5
from which one obtains the inequalities
1d % b, % 1
= I (byu} +bvl)=——= j uj—- j 03

2d 2 e T 270,
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_3ayb, }° 2o _3ayb, }O 2u
S 2 S YT

S Cllluglleo + 0 lloo) (a3 + lloel13)
S Clllugllo + 104 ll0) (B2 [ ll + by [0, 13). (2.6)

Now consider the case k > 2. Apply 9" to both sides of the first equation in (1.1),
multiply this expression by 0“u and integrate the resulting expression over R. One
finds that
1 d P k P k, Ak P k ,, Ak
f (w3’ +ay [ tudv =— [ dudi(uu,)

—a, [ dudiwvy)—a, [ Fudi(w),. (2.7)

Next, divide the second equation in (1.1) by b, and perform a similar set of
operations to obtain

zbbl o 1 @0y +as j 00K
= —bi [ o%vdt(vv,) —a, f 04 (uv), — a, j 3 v0* (uu,). (2.8)
2 —

Adding (2.7) and (2.8), using Leibniz’s rule and several integrations by parts together
with Holder’s inequality, one obtains the estimates

d
‘E(bz Ho5ullz + b1 1185013) < Clllugllo + vl o)1 B5uell3 + 11050 113)

' S Cllugll + o) b2 | F5ull3 + by [ 350113). (29)
Gronwall’s inequality applied to (2.6) and (2.9) yields the desired results. W

Remark 2.1. Actually Theorem 2.1 is valid for fractional exponents s > 3/2, while
Lemma 2.2 is valid for fractional indices s=0. However, to prove the latter
assertion, we seem to need the commutator-estimates of Kato and Ponce (1988)
and so this level of generality has been eschewed in favor of the simpler proof
presented above.

Lemma 2.3. Let (ugy,vo)e H*(R)x H(IR), where s=2 and let (u,v) be the local
solution as in Theorem 2.1 emanating therefrom. Suppose there are finite constants
K and T, such that for any t £ T, for which the solution exists on the interval [0,t],
we have

‘I) lus(o ) e + 10:C 1) [ )dr S K. (2.10)

Then the local solution can be extended at least over the time interval [0, T,].

Proof. Let T, be the maximum temporal existence interval for the solution (u,v)
and suppose Ty < T;. Thus for any T < Ty, (u,0)e X ((T)x X (T), and so from (2.2)
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and (2.10) it follows that for any such T, we have
sup Il (@), v(®) lls,2 = 1 (10, vo) Ils, 2 €xP(CK), (2.11)

for any s = 1. Hence there is a uniform bound on (4,v) in H'(R)x H*(R) on the
time interval [0, T). This fact and the local existence theory contradict the definition
of Ty unless Ty >T,. A

3. A Priori Estimates in H'(R) x H'(R)

The conservation laws @,, @, and @5 were derived by Gear and Grimshaw (1984).
The Hamiltonian functional @, in (1.5) appears to be new and hence its derivation
is offered now.

Multiply Eq. (2.3) by b, b, to obtain

b—12b—2 —4— j. ui + b bya, I Uy Uxxxx
@ bibya; * T
= - b12b2 uzuxxx - : 22a1 -[ Uzuxxx - b1b2a2 j UDU gxx- (31)

Differentiating the first equation in (1.1) with respect to x, but this time multiplying
by b,b,a;v, and integrating over IR, we find that

) [
a3b1b2 I vxuxt+a3b1b2 j Uslyxxx
o i

o)

bb, © b,
=% [} uzvxm—%b2 | 020 —ayasbyby | uvve,,. (32)
e 8

A similar operation applied to the second equation in (1.1) gives

) 0 9}

asb,b, j UV, +asrh, [ veu,+asb, j U
= 43b, [ v? %31)2 j wlly,, —aya3b3 | uvu,,,. (3.3)
Adding (2.4) (3.1), (3.2) and (3.3), we find that
b @
21 0 _jw (b,u? + v% + 2a3b,u,0,)
b,b bb, %
- - —2 u ( Usexx + a3vxxx) - b j Uz(uxxx + a3vxxx)
2 e 2 e
© @ "
- a2b1b2 j uv(uxxx + a3vxxx) - E j v (Uxxx + a3b2uxxx)
a2b2 o] ) feo}
T A u (Uxxx + a3b2uxxx) - a1b2 j uv(vxxx + a3b2uxxx)

—razh, | v, (3.9
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Finally, using the original Egs. (1.1) in (3.4) gives

by d ¢ <b u? + 02+ 2a3bu v, —b u? b,a,u*v — b,a, uv? v ruz>dx—0

2dt—oo 2%x x 3V2%xYx 23 242 2%1 3 ]
(3.5

which says that @, is time-invariant when evaluated on a solution pair (u, v) of (1.1).

Lemma 3.1. Let (u,0)e X (T)x X(T) be the solution to (1.1) corresponding to the
initial data (uy,vy) in H¥(R)x H(R), where s > 2.

(1) Then | (u(z),v(t))|l, is bounded independently of t, with a bound depending
only on || (uo, o) |l »-

2) If |as] < 1/\/b—2, then ||(u(t),v(t)) |l , is bounded independently of t, with a
bound depending only on ||(ug, o)1 2-

Proof. Part (1) follows easily from the time invariance of the functional
@3 = b, || u(t) |5+ by llo@) 113 = by llug |5 + by llvg |13

For (2), use is made of the functional @, defined in (1.5). Using the time-invariance
of @, together with straightforward estimates leads to the inequality

ballucl3 + lvell3 = Clllug s,z lvolls,2) + Cilllugll2, oo ) (et + 1101 )
+2bslas| [lu,ll 2 lloxll2-

Using the elementary bound || /[ < || £ [13/* ]| f«[I3/%, one finds that for ¢ < 1,

ballugl? +llvgll; < C+ Colllu 15 + logl13) + 2by 1 as] lug 2 10,1l

b
S C+Cyllluel3? + vell3) +2/ba(1—¢) /l—jglasl lucllz loxll2

< C+ Cy(lluely” + v [13%)

b,a?
+(b2(1 —&)llu 3+ 12 2 ”Ux”§>'

The last inequality follows from an application of Young’s inequality. It therefore
transpires that

b,a?
byellu |3+ (1 - 12_z>l| ul3=C+ C1<II uell3? + ||vx1|§’2>-
. 2 .. b2a§
Note that if 1 —b,a3; >0, then for small, positive ¢ we have that 1—1——>O.
—¢

Hence, another application of Young’s inequality yields the desired result provided
1—bal>0. W
Remark 3.1. The a priori estimates provided in this section would allows us to

conclude that the local solutions of (1.1) in H*(R)x H*(IR) (the existence of which
will be shown in Sect. 5) can be globally continued for all t = 0 provided |a;| <

1//bs.
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4. Linear Estimates

In this section, the aforementioned estimates established by Kenig, Ponce and
Vega for solutions of the linear KdV equation are extended to solutions of the
linear system
U, + Uyxx + A3Vxxx = 07
1 asb,

Uy = Ugye + = Uy =0,
t bl XXX bl XXX

4.1)

where it is assumed that

1 1 12 b2a2>
=(14+—+ [{1——) +422 )20
e 2( b, \/< bl) b,

Without loss of generality we can suppose that a; # 0, for otherwise the result
follows from the previous theory of Kenig et al. For o, to be nonzero, it is sufficient

to assume that ./b,a; # + 1, an assumption weaker than that imposed in Sect. 3
(the latter condition is equivalent to assuming o, to be positive). Now let

2 2
by by

and note that by assumption A is positive. Introduce the new dependent variables

w, and w, defined as
1 1—-b
w1=—<1— 1>u+g§v,
2 b, A

1 1-b, a,
1+ _4,
w2 2( ib, )“ P

In these variables the system (4.1) can be written in the equivalent, diagonal form

{W11+a+wlxxx=0’ (42)
Wa + A Wioexx = 0.

Since o, and a_ are non-zero, the decoupled, non-degenerate system (4.2) is
easily analyzed using the existing theory, and this analysis leads to the desired
results for the linear system (4.1).

First, we recall the sharp version of Kato’s local smoothing theory for solutions
of the K-dV equation (Kenig et al. 1991a, Theorem 4.1).

Theorem 4.1. Let (w,,w,) be a solution pair of the system (4.2) corresponding to the
initial data (w,q, W20)€L*(R) x L*(R). Then there are constants ¢, and c, such that
for any xeR,

® 1/2
( | |6ij(x,t)|2dt> = ¢jllwo,ll, (4.3)

for j=12. N
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Next the reader is reminded of the following estimate related to the boundedness
of an associated maximal function.

Theorem 4.2. For j=1,2 and w; as above, we have that

<) 1/2
< [ sup ij(x,t)lde> Sci(1+ TP llwg;ls.2 (4.4)

- [-T,T]
for any p and s which are both larger than 3/4. R

Vega (1987) (see also Kenig and Ruiz 1983) showed that this estimate is sharp
in the sense that (4.4) does not always hold for s < 3/4.

By interpolation between the estimates (4.3) and (4.4), one obtains immediately
the following result which will be used in the next section.

Corollary 4.3. For j=1,2 and w; as above, we have that
o T 1/4
< §of1owix, t)|4dtdx> Sc(L+T) lIwojlli,2 (4.5)
—o —T
for any y>3/8and 1>7/8. M

Finally, we will make use of a version of the global smoothing effect of Strichartz
type (cf. Kenig et al. 1989, Lemma 2.4).

Theorem 4.4. For w, and w, as in Theorem 4.1 and for any (6, B)e[0, 1]x[0,1], it
follows that

®© 1/q
(I ||D0’”2wj(‘,t)||gdt> = ¢jllwo;llzs (4.6)

for j=1,2, where (q,p) = (6/6(f + 1),2/(1 —6)). W
Returning to the original problem (4.1), and introducing the notation
W(t)(“o, UO)(x) = (u’ U)(X, t)

1 1 1 1
=(witwp—(——142|w,——(1=——+21 1) (47
(W‘ "2 2a3<b1 )W‘ 2a3< b, )WZ)(’” &7

it is easy to see that u and v satisfy estimates analogous to those presented above
for w; and w,. This remark leads directly to the final result of this section.

Theorem 4.5. The solution of the initial-value problem (4.1) corresponding to initial
data (ug,vy), namely

W(#)(uo, vo)(x) = (u, v)(, 1),
satisfies the following estimates:

© 1/2
S‘ip ( _j [0, W (t)(uo, Uo)(x)|2dt> < Cll(uo,v0) I 25 (4.8)
w 172
<_j [fl;‘l?l‘] [W(t)(uo, vo)(x)lzdx> S C(1 + T) |[(uo, vo) s, 25 4.9)

o T 1/4
( j ,f |axW(t)(uo,vo)(x)|4dtdx> S C(+ T)'|[(ug, vo) 11,25 (4.10)

—o —T
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and

© 1/q
< § D2 W(t)(uo, vo) (x) ||",,dt> = Cll(uo,v0) ll25 (4.11)

- 0

where p>3/4, s>3/4, y>3/8, |>7/8 and (0,B)e[0,1]1x[0,1/2] with (q,p)=
6/6(B+1),2/(1—0). W
5. Global Well-Posedness in H*(R) x H°(R),s > 1

In this section, the results obtained in Sect. 2 concerning the local well-posedness
of the initial-value problem for the system

{u, + Ul + Uy + A3Usry + A, 0, + ay(uv), =0, 5.0)
byv, + 00, + Uy + byaztte,, + byayuu, + bya (uv), =0 ’
will be improved. Temporarily, the system (5.1) will be abbreviated as

(5.2)

Uy + T Usxx + égﬂi'uxxx + fZ(u, Uy, U, vx) = 09
b, b,
with (u, v)(x, 0) = (ug, vo)(x).
Fixing (uq,v,)e H'(R)x H'(R), consider the initial-value problem for the
system (5.2) with initial data (uj,v§) = (p,*ug, p,*vo)eH*(IR)x H*(IR), where

{ut F Uy + A3Vsxx + fl (u’ Uy, U, vx) =0,

p()eFR), p20, | p(x)dx=1and p,(')= s‘1p<->. Notice that we do not ask
e €

for the moments of p(-) to vanish as in Bona and Smith (1975).

We denote by (u% v°)(x, t) the corresponding solution of this problem, defined
on the time interval [0, T,] (with the possibility that T,—0 as ¢ —0) provided by
Theorem 2.1. The first goal is to obtain an a priori estimate for the interval [0, T]
of existence of the solution (u*(-), v*(")) of (5.2) showing that T is independent of ¢
whenever (4, vo)e H!(IR) x H:(R).

Based on the properties put forth in Sect. 4, and following an argument similar
to that given by Kenig et al. (1991b) we shall prove the following result.

Proposition 5.1. With the above notation, there exists T* = T*(||(uq,v0)ll1,,)>0
and M = M(||uy, vo)ll1,2) > 0 such that for all e >0, the solution (w*,v*)(-,t) can be
extended to the time interval [0, T*] where it satisfies the following:

(v, v°)eC(0, T*; H*(R) x H*(R)), (5.3)
sup {|u*()ll1,2+ 1]} =M, (54
[0,T%]

T* 1/6
( (f) (I8,u5 @115, + 1 0,v°(t) II‘;)dt) =M, (5.5)

—o 0

w T* 1/4
(I I(qul“+lvxl4)dtdx> <M, (5.6)
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* 12
sup (j (10%u(x,1)|* + | 0%v(x, t)lz)dt> <M, (5.7
x \0
and
© 1/2
< | (sup lu(x,t)|? + sup |v(x,t)|2>dx> <M. (5.8
- oo \[0,T%] [0,T*]

Remark 5.1. The results of this proposition still hold if one only assumes that
(ug, vo)eH(IR) x H*(IR) with s> 3/4 (with s and s+ 1 replacing 1 and 2 in (5.4)
and (5.7) respectively). However, for simplicity of the exposition, consideration is
given to the case s=1 for which one only encounters derivatives of integer
order.

Proof. Using Duhamel’s formula, the solution (u?,v°) can be written in the form
t
(ue, ve)(_, t) = W(t)(uO’ UO) + j W(t - T)(fl’ fZ)(.: ‘C)dT, (58)
0
where W(') and (f}, f,) were defined in (4.7) and (5.2) respectively.
Since W(t)(uy,v,) denotes the solutions of the linear system (4.1), it is easy to

check that
| W) (ug, v5) |2 = Cll (vG, v9) Il 25 (5.9)

where C depends only on b, and b,.
Combining (5.9) with Holder and Sobolev inequalities, and Fubini’s theorem
shows that for any T<T,<1,

T T
[Sou?] [, 0)(@)l1,2 < Cll(h, v§) 11,2+ C [ 1(f1, £2)ON2dt + C [ 1(f1 f2:)0) |24t
, 0 0
T
< Cll(ugs o) 1,2+ C [ (luelly + lloug |2 + luvell, + [ov, ll5)de
0
T o
+CT”2(§ § Qi * + T ]* 4+ [ouge | + Juv,)?
0 ~o0
1/2
+ uv, |2 + o |* + |vvxx|2)dxdt>
2
= Cll(ugsvo)ll1,2 + CT<[SOU¥)] Il (u, v)(2) "1,2)
o T
+ CT”Z( Fo§ Ouug® + lug|* + |oug |?
- 0

1/2
+ lu v 2+ Juv,, > + o |* + lvvxxlz)dtdx>

2
= Cll(uo, vo)ll1,2 + CT‘“({SOu?] I, v)(2) IIu)
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9] 1/2
+CT”2{< ] (sup|u|2+sup)vlz>dx) X
“w \10,T] (0,71

T 1/2
(S“P § (e + |vxx|2)dt>
x 0

+ ( }0 gl + val“)dtdx)l/z} =D, (5.10)

—o 0

where here and subsequently the subscript ¢ has been suppressed. Next using the
estimates (4.11) with (6, ) =(1,0), it follows from (5.10) that for any T < T,,

T 1/6 T
<§ l0xus@)I2, + 1| 050%() Ilidt> S Cll@gs v5) 11,2+ C [ I(f1x f2:)(O) |l 2dt < D.
0 0
(5.11)
The same argument and the estimates (4.8)—~(4.10) show that for T< T, <1,

T 1/2
Sup(f(luxxlzﬂvxxlz)dt) <D, (5.12)
x \0
© 1/2
( | (sup|u|2+suplv|2)dx> <D, (5.13)
~ \[0,T] [0,T]
and
o T 1/4
(j" j(luxl4+|vx|4)dtdx> £<D. (5.14)
—o 0

Introducing the notation

T 1/2
X(T)= maX{[SOu?] Il (@, 0)(®) 11,5 sup (f (luel® + vaxlz)dt> ;
s 0

X

© 2 /o T 1/4
< [} (sup|u|2+sup |v|2>dx>1/ ;( [} j(lux|4+|vx|4)dxdt> ;
“o \10.T] [0,T] 0 0
T 1/6
(g (OIS + llv.(2) ||?o)dt> } (5.15)

(note that X (T) is a non-decreasing function of T as long as the solution (u°, v*)
remains in the space defined in (5.3)), it is inferred from (5.10)—(5.14) that

X(T) £ Cll(up, vo) 1,2 + CT*(X(T))? (5.16)
with T < T, < 1. Now define T* = min{1; T, }, where T, is given by the identity
X(Ty) =2C||(ug,v0) 1., =M. (5.17)
Thus, from (5.16), it is found that
To Z(2C? || (4o, vo) ll1.2) 2. (5.18)

Notice that both estimates (5.17) and (5.18) do not depend on the value of e.
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If T, < T* we obtain (5.17) with T, replacing T,. Combining this with the
energy estimate (2.5), the definition of X(-) and Hoélder’s inequality yields a bound
which allows one to reapply the local existence theorem (see Theorem 2.1 and
Lemma 2.3) to extend the solution to the time interval [0, T*] where it satisfies
(5.16).

A small modification in the proof allows the removal of the condition T* = 1
and thereby proves that T* = T*(|luy,v0)ll;,) tends to infinity as |(uo,v0)l; 2
tends to zero. However, this point will not be considered here as_ our goal is to
establish global well-posedness (i.e. T* = + oo for any (ue, vo)e H'(R) x H'(R)).

|

Next, we shall prove that the net {(u%,v*)}eC(0, T; H*(R)x H*(IR)) converges
in C(0, T; H'(R) x H*(RR)) for some T < T*.

Proposition 5.2. For some T < T*, the family {(u*,1°)},> o converges on the interval
[0, T in the norms appearing on the left-hand sides of (5.4)—(5.8) to a strong solution
(u,v)eC (0, T; H(R) x H(R)) of the system (5.1).

Proof. The argument is similar to that given in the proof of the previous pro-
position, so, a sketch will suffice. For ¢ > ¢ >0, define (z,z,) = (u® — v, v* — v%).
This pair satisfies
Zyt + Z1xxx + 4323 xxx + uizl - ut’ZIx + al(vizz - Us,ZZx) + {12(0821 - u£’22)x = Oa

b1 2o+ Zomn + 02032 e + 052, — 0% 25 + by a5 (U2, — Uz, )+ byay (v°2; —uz,), =0,
with initial data (20, 250) = (uf, — us, v — vg). .

As in the previous proof, define Y(T) in analogy with X(T) in (5.15), where
(z1,z,) replaces (u,v). Following the same argument exposed in (5.8)—(5.14), it is
discovered that for T < T*,

Y(T) = Cl(z10,220) 11,2 + CTI/ZMY(T), (5.19)
where the constant M was defined in (5.17). Hence, fixing T < T* such that

CT'?M =1,
it is concluded that
Y(T)=o(1)

when ¢ > ¢’ > 0 tend to zero. This completes the proof.

Combining Proposition 5.1 and 5.2 leads to the local well-posedness result
advertised earlier.

Theorem 5.3. The following points are valid concerning the initial-value problem for
the system (5.1).

(i) For any (ug,vo)e H'(R)x H'(IR), there exists T = T(||(uo,v0)ll1.,) >0 and a
unique strong solution (u, v) of the system (5.1) with (ug, vy) as initial data such that

(u,v)eC(0, T; H(R) x H'(R)), (5.20)
(uy, v, )€L8(0, T; L*(IR) x L*(IR)), (5.21)

and

T 1/2
sup < [ (102u(x, )] + | 020(x, t)|2)dt> < . (5.22)
x \o
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In particular, (5.22) guarantees that
(u,v)e*(0, T; H2 (R)x H2 (R)). (5.23)

loc loc

(ii) Moreover, the solution (u,v) in the space given in (5.20) and those defined by
the norm used in (5.21)~(5.22) depends continuously on the data in H*(R)x H'(R).

(iti) Ifin addition (ug, vo)e H(R) x H*(IR) with s > 1, then the solution (u,v) belongs
to C(0, T; H*(R) x H*(IR)).

Proof. The proofs of the parts (ii)—(iii) are similar to that provided in detail for
part (i), and therefore they will be omitted here. Uniqueness is immediate since

T T 1/6
[ Ulu®llo + lox0) | o)t < TS""(I(II U)o + 104(2) ||oo)6dt>
0 0

T 1/6
< cT5’6<I(II u OIS, + loxt) Ili)dt>

0
<cT5X(T). W

Theorem 5.4. (Global Well-Posedness). If |a;] <1 /\/b_z, then the results in Theorem 5.3
are true with T arbitrarily large.

Proof. Theorem 5.4 follows by combining Theorem 5.3 with Lemma 3.1. B

Remark 5.2. (1) The linear estimates in Sect. 4 depend on the fact that the eigen-
values {a.} of the coefficient matrix of the dispersive terms in (4.1) are both
nonzero. If either of these eigenvalues is zero, then the corresponding equation in
(4.2) is hyperbolic and hence no smoothing effect can be derived from it. As a
consequence, we would not have the local well-posedness result (Theorem 5.3).

(2) It should be noted that as long as b, is positive and finite (regardless of its
magnitude), the existence of global solutions in H!(IR) x H!(RR) is assured provided
the condition [a;| < 1/\/52 is satisfied. Indeed this condition is satisfied by the
examples given by Gear and Grimshaw (1984) wherein (i) a; =0.139389, b, =
2.267029, b, =21.513946 and (ii) a; =0.5, b, =b, =2. For (i) 1/./b, =0.2155956
and for (i) 1/, /b, = 0.7071068.

6. Local Well-Posedness in L? and Dispersive Blow-up

In this section use is made of Kato’s original local smoothing ideas to obtain
existence of solutions to the initial-value problem for (5.1) corresponding to data
which lies only in L*(R)x L*(R). This result in turn will be used in the analysis
of a certain type of singularity formation termed dispersive blow-up by Bona and
Saut (1991a).

Let (uo, vo)e L*(R) x L*(R) be a given pair of initial data for (5.1) and suppose
that (ug,,, Vo )€ H?>(R)x H*(R) are smoother data which converge to (ug,v,) in
[*(R)x L*(R) as n tends to infinity. Presuming that |a;| < 1/\/b,, Theorem 5.4
assures that the system (5.1) has a unique solution pair (u,, v,)e C(0, co; H*(R)) x
C(0, o0; H*(R)) corresponding to the initial data (uq_,, vo.,)-
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Dropping the subscript n, and writing (u,v) for (u,,v,), we proceed to derive
bounds on (u,,v,). Let p be a C* real-valued function which is bounded on R
along with its first few derivatives, and which is such that p, >0 for all xeR.
Multiply the first equation in (5.1) by b,pu and the second equation in (5.1) by pv
and integrate the results with respect to x over IR. After several, justifiable
integrations by parts, there appears the relation

b2d°°2 byd T , 3b, T N 3% ’
> " _jw pv* + 5 —500 psuldx + 5 _joo pLv2dx

bz 0 5 1 @ 5 0
=2 [ Pexxlt dx+5 | Paxxt?dx—3bya; | peu.v.dx
+bya; | peuvdx +bya; | puvidx+bja, | putvdx

1% b, %
+§ | va3dx+?2 | pldx. 6.1

If Eq. (6.1) is integrated in time over the interval [0, T] and use is made of the
invariance of the functional @;, and thus the boundedness of || u(-,t) ||, and | v(-, 2) || ,,
independently of t Z0andn=1,2,..., and the properties of p, then one obtains that

3Too

] [ (bypu? + p,v2)dxdt
O —©
T| © T| o
< C(Tp, l|uo||z,||l’o||z)+3bz|aa|f f Pstix Ui dX dt+b2|a1|§ j p,uv*dx|dt
T| © T| o 1
+b2|a2|j jpxuzvdx j' f uddx dt+—f jva3dx dt. (6.2)
- 0 -

Using again the elementary inequality || f']|,, < || f 1311 /"[13/% the terms that are
cubic in u,v in (6.2) may be estimated as follows:

1/2

x| S (1Pt 1372 | Paxtt 152 + 1l Pt 1372 | Pt 1572 13,

0
§ P’ dx| S (1P )13 1 paxt 1372 + 1P 132 1 pevi 13 10113,
—

uvdx| < (1P (132 | paste 1572 + 1Pt 1572 Pt 152) 1013,

w?vdx| S ([P0 132 1Pt 1572 + 1 P20 152 1Pt 152) 10 13- (6.3)

If it is now assumed that b,a3 < 1, then (6.2), (6.3), the invariance of @; and Young'’s
inequality imply that
T o

[ § pult? +v2)dxdt < C(T, p, luoll2, 10 1), (6.4)

0 -
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and therefore, by an appropriate choice of the increasing function p, that
T R
[ § W +vd)dxdt SC(T,R, |uollz llvell) (6.5)
0 —-R

for all finite, positive values of T and R. It is thus concluded from (6.5) and the
invariance of @, that the sequences

{u,}=_, and {v,} , are bounded in L*(0, T; L*(R))n L*(0, T; H'(— R,R)), (6.6)

n=1
independently of n, for finite values of R and T. Using Egs. (5.1) satisfied by (u,, v,),
it is then straightforward to conclude that for each T, R > 0, the sequences

O,u,}_, and {0,v,}>_, are bounded in L?(0, T; H *(— R, R)), (6.7)
n=1

n=1
independently of n. It is then standard to use the Aubin—Lions compactness result
to pass to the limit in (5.1) as n tends to infinity, so obtaining the following existence
theorem.

Theorem 6.1. Assume that |a;| < 1//b, and let (ug,v,)e L*(R) x LA(R). Then the
system (5.1) has a solution (u,v) corresponding to the initial data (ug,v,) such that

u, ve L>(0, 00; L2(R)) " L*(0, T; H(— R, R))
for each T,R > 0. Any such solution has the property that
u,, v, L*(0, T; H . 2(R)),

loc

and hence
u,veC(0, T; H;,*(R))n C,(0, T; H, (R)).

loc loc

The initial values are taken on at least in the sense of the latter space.

Attention is now given to the so-called dispersive blow-up properties which
obtain for the Gear—Grimshaw system (5.1) in much the same way as for the
generalized Kortweg—de Vries equation. For simplicity, the theory is only
developed in the L2-context, though the reader will readily appreciate how a theory
relative to H* can be carried out along the same lines. Indeed, the theorem stated
below encompasses this generalization.

Theorem 6.2. Assume that |a;| < 1/\/172 and let a non-negative integer k and real
numbers T >0, x*e€R and 0 <t* < T be given. Then there exists initial data uy, v,
in HR) N CHR)n C*(R) and a corresponding solution pair (u,v) of (5.1) such that
u,veL°(0, T; H{(R)) N L*(0, T; H{,' *(R)), 0*u, 0*v are both continuous functions of

lo

(x,t) in the domain R x (0, T)\{(x*,t*)}, and
lim |0 u(x, ¢)| = lim |*o(x, )] = + oo, (6.8)

x = x* x—x*
tor* tot

Remark 6.3. By C¥(R) we mean the C*-functions defined on IR whose derivatives
up to order k are uniformly bounded on R. In case k = 1 above, the solution pair
(u, v) is unique and u, v actually lie in C(0, T; H*(R)), as stated already in Theorem 5.3.

Proof. As mentioned above, the proof is sketched here only for the case k=0.
The line of argument follows very closely that appearing in Bona and Saut (1991a).
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The first step in the proof is to obtain an existence result for solutions of (5.1)
in weighted spaces. Consider the special class of weights w=w, which are
non-decreasing C* functions depending on the positive parameter ¢ such that

1 fi <0, d
W) = w, () ={ o rsn (6.9)
(1+x?° for x>1.
The class HXR, w) is the class of H*(R)-function whose derivatives up to order k
are square integrable with respect to the measure w*(x)dx. If k =0, this space is
denoted L*(IR, w).

Proposition 6.4. Assume that |a;| < 1 /\/b>2 and suppose that the initial data (ue,v,)
for the system (5.1) lies in LA(R, w) x L*(IR, w). Then there exists a solution pair (u, v)
to (5.1) corresponding to (ug,vo) as in Theorem 6.1 such that for any T >0, one has
u,ve L0, T; LA(IR, w)).

Proof. The argument is made as in the proof of Theorem 6.1 by working with
initial data which is smooth (e.g. ug ,,, vo ,€CZ(R), n = 1,2,...) and which converges
to ug, vy in LA(R,w). It is then only required to derive a priori bounds on the
associated solution (u,,v,), n=1,2,..., in L*(R,w) in order that, when the limit is
taken as n tends to infinity, the resulting weak solution may be inferred to lie in
L0, T; LA(R, w)) x L°(0, T; L*(IR, w)).

To this just mentioned end, define 4 =uw and B =vw so that A, B satisfy the
slightly complicated system of equations

ww wdow
At+Axxx+a3Bxxx+(A+a3B)<6 xzxx—6%—ﬂ
w w w
W2 Wx wx 1
+ (A, + ang)<6% — 3—f> —3—=(A, +a3B,,) + al<—BBx — 1}2632>
w w w w w

1 1
+ a2<—(AB)x - 2W’2‘AB> +—Ad,— 42 =0,
w w w w

3
byB,+byasA_ + B, +(byasA + B)<6W"M;"" —6Mx W)
w w w
2
+ (byasA, + Bx)(6w—’2‘ - 33’25) —3"%(ba34,. + B,
w w w
1 Wy, baa, Wy
+ —BBx — —2B + —AAx — bzasz
w w w w
1 w,
+bya,( —(4B), —2-24B | =o0. (6.10)
w w

All the coefficients appearing in (6.10) are smooth and bounded, because of the
properties of w, and hence this system admits a local existence theory along the
lines enunciated in Sect. 2. Since for each integer n, the initial data
A(x,0) = w(x)u, ,(x) and B(x,0) = w(x)v, ,(x) lies in H*(R), it will follow that the
initial-value problems for (6.10) possess unique solutions (4, B) = (4,, B,), such that
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A,BeC(0, T; HIR)) for some T >0 and any k. By uniqueness for the initial-value
problem for (5.1), it follows that 4, = wu, and B, = wv,. In any case, we are thus
assured of solutions of the system (6.10) having more than enough regularity and
decay at infinity to justify the quest for energy-type estimates upon which we now
embark.

Multiply the first Eq. (6.8) by b,4 and the second by B, integrate the results
over R, and integrate by parts to reach the relation

L4 ||A||2+ L, ||B||§+3b2 [ Zxazax+3 [ ZxB2ix
2 “dt o W S W
0 Wx 0 Wx 0
=6b,a; | —A,B.dx+3bya; | <—> ABdx + | 0,A%dx
-0 W -0 \ W /xx -

< < 2b, % w, 2% w,
+ _jw 0,B%dx + _jm 0;ABdx + TZ _jw PA%lx +3 _§w PBi*’dx

—ab, | %[ABB,C +(AB).Bldx — asb, | &[(AB),CA + AA_B]dx
+ 3a,b, j' ——"ABzdx+3azb2 j —Azde (6.11)
o Wa

where, due to the properties of w, 6, 8, and 85 are smooth functions which are
bounded, along with all their derivatives. First notice that

<|a3|f< [ea( A2+Bz)dx>. (6.12)

Further integration by parts shows that

6b,a; f A B.dx

0

I [e o)
~aib; | (ABB,+B(4B))dx=—a;b; | %ABzdx

— o0

and similarly
—a,b, j A(AB), + AA,B)dx = —a,b, j —AZde

Estimating straightforwardly in (6.11) thus leads to the inequality

0

1d Wy
SYALE I5+b401BI3)+3 _fm W(bzAi + B))dx

[ “x4,B.dx
w

-

<c A2+ ¢, || BlI2 + 6a,b,

2 f %(b2A3+B3)dx +2b, (6.13)

{ %’zf(alABz+a2AzB)dx .

Proceeding exactly as in the proof of Theorem 3.1 in Bona and Saut (1991a, the
case p = 1), one readily derives that the last two terms on the right-hand side of
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(6.13) are majorized by an expression of the form
o0 Wx
Con(IAIZ+1IBIZ) +n | ;(bzAi + B)dx,

where 1 > 0 is arbitrary and C(#) depends inversely upon #. Combining this with

(6.12) and (6.13), using the hypothesis that |a;| < 1/\/b7, and choosing # small
enough, it is adduced that there is a 4 > 0 such that

1d < W,
Ea(b2||A||§+b1||B”§)+5 ) ;}—(bzAi+B§)dx§C3(||A||§+||B||§),

and this in turn leads to a priori bounds on A and B in the space
L*(0, T; LR))n L*0, T; H}, (R)). In fact, the Gronwall lemma yields bounds on
A and B in L*(0, T; Lz(]R)) and then, by integrating the last inequality over the
temporal interval [0, T] and using the fact that A(-. T) and B(-, T) are bounded
in L2(R), it is concluded that

T o
| j b2A2+BZ)dxdt
0 -

is bounded, and that the bound only depends upon T, the weight function w, and
the L?-norm of the initial data 4, and B,. Since b, >0, it thus follows that for
any finite value of K > 1,

TK
[ § (A2 + B2)dxdt
01

is bounded with a bound that again only depends upon T, the weight function
w and the L?-norm of the initial data. By considering spatial translates of the
weight function, the desired bounds on A4, B in L*0, T; H} (R)) are then easily
concluded. In particular, it is seen that for any T >0, there is a constant
C=C(T,R,0,| Ao, I Bo |l ) depending only on T, R, the value of ¢ in the definition
of w, and the L?-norm of the initial data for 4 and B such that

T R
TAC, Ol + IBC Ol + [ | (A3, 0) + Bi(x, t)dxdt < C (6.19)
0 -R

for 0<¢t<T. Thus in the situation at hand, wherein (4, B)=(4,,B,), but
where the initial data (4, ,, B, ,) remains uniformly bounded in L*(IR) x L*(R), the
entire sequence {(A,,,B,,)} _, is concluded to be bounded in L0, T; L*(R))n
L7(0, T; H},(R)).

Energy-type estimates may be derived in the same way in L®(0, T; H/(R)),
j=1,2,..., since the initial data 4, ,, B, , lies in H*(IR) (cf. again Bona and Saut
1991a, Theorem 3.1). These bounds may be used to conclude that the local solution
guaranteed by Kato’s theory is in fact global in time. However, since
{(Ao . Bon)}2, does not remain bounded in H/(R) for j= 1, nothing can be
concluded about boundedness of the sequence of solutions {(A4,,B,)}, in such
Sobolev spaces. Of course, these cases come especially to the fore when the k in
the statement of the theorem is larger than zero.
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In all events, the bound in (6.14) allows one to pass to the limit as n tends to
infinity and so establish the veracity of the proposition. W

With Proposition 6.3 in hand, attention is refocussed on the proof of
Theorem 6.2. Consider the potential blow-up point (x*, t*). By a translation of the
spatial variable, we may take it that x* =0 without loss of generality.

The idea is to choose initial data (u,,v,) which is such that when the linearized
initial-value problem is solved, the solution forms the desired singularity at the
point (0,t*). Then using Duhamel’s principle, the solution of the full system is
written as the solution of the linearized problem plus an integral term involving
the linear solution-semigroup and the nonlinear terms. The first term in the
last-mentioned sums forms a singularity at (0, t*), whilst the second will be shown
to be well-behaved, thus leading to the desired conclusion.

First consider the decoupled system (4.2) where, since |a;| < 1/\/b72, the
eigenvalues a , introduced in Sect. 4 are positive. According to the theory developed
in Bona and Saut (1991a), if w;(+,0) is chosen as

Ai(—Bix)

Wi(X,O) = (1 +x2)ma

(6.15)

for i=1,2, where % <m <4, then the solution of (4.2), namely

M= | Ai( (:+;ly/2>Ai(—ﬂ1y)(1 +y?)mdy,
Wikt == | Ai(ﬁ)Ai(—ﬂzy)a +y?)"dy,

has the following properties. First the initial data is such that w,(-,0)eL?(IR)n
C,(R)n C=(R) for i=1,2. Secondly, the solutions w; are in C,(0, co; L*(R)) and
are continuous everywhere in the upper-half plane except that the points (0, ¢;),
i=1,2,wheret, = 1/8,a, and t, = 1/B,0_. Thus, it behooves us to choose 8, /t*a ,
and 8, = 1/t*a_ so that both w, and w, loose continuity and blow up at the same
point (0,¢*) in space—time. It follows that if (u,,v,) is constructed from (w,(-,0),
w,(+,0)) and (&, 7) from (w,, w,) via the transformation in (4.7), then

o, Vo€ L’(R; w,) N Cy(R) N C*(R)

for any o <m —%, and @ and & both have the blow-up property in (6.8) for k =0
at the point (0,t*). As m > £, it follows that u,,voe L*(IR; w,) for values of o > L&,
and so according to Proposition 6.4, the solution pair (u,v) of (5.1) corresponding
to the initial data (uo,v,) lies in L*(0, T; LA(R, w,)) x L*(0, T; L*(R, w,)) for such
values of 0. Appeal is again made to Duhamel’s principle to write (u,v) in the form
expressed in (5.8), namely

(u, 0)(t) = (& D)(t) + g W(t —1)(f1, f2)()dr, (6.16)
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where (i, ) is our current notation for W(t)(u,,v,) and recall that W is the linear
semi-group generated by ignoring the nonlinear terms in (5.1).

Attention now focuses upon the second term on the right-hand side of (6.16).
Each component of this integral is a sum of two terms that have the general
form

; X—y
[a(t — s)]""’Al([a(t —s)]1/3>avp(“’ v)dyds,

where Ai is the Airy function again, a is a positive constant and P is a polynomial

in u and v each of whose terms is exactly quadratic. After an integration by parts
in the variable y, we are presented with integrals of the form

i e X—y
=55 ds.
gta(t PYEE ij'([a(t_s)]*“)”"’”)dy g

Because the functions u and v both lie in L*(0, T; L*(IR; w,)) for o = ;% at least, it
follows that the inner integral above is majorized by

" xX—Yy
A ([a(t = s)]”3>

2\1/6
(1+y%) Le(dy)

5

2 2
(llu IIL”(O,T;LZ(IR;W)) +lv “L*(O.T;LZ(R;w»)'

This quantity is easily determined to be a locally bounded function of (x,t) in the
domain R x R*. Hence after performing the temporal integration, we are left with
a continuous function of (x,t) just as in the proof of Theorem 3.1 in Bona and
Saut (1991a).

This latter deduction combined with the already established properties of (i, 7)
completes the proof of the theorem in the case k = 0. The proof for k > 0 follows
very similar lines and so is omitted. W

Remark 6.5. The results contained in this paper are easily seen to hold in a
somewhat more general context, as already hinted in the last proof. In particular,
the global existence of smooth solutions, global existence in H?, existence in L2,
and dispersive blow up are all valid for a class of gradient system of the following
form:

ol o
u,+au, +bv_ + ax[al(u,u):l=

0
v +cu +dv I(uv
t xXxXx xxx ax[a ( )]
where the functional I is given by

I(u,v)= Oj? P(u,v)dx



312 J. L. Bona, G. Ponce, J.-C. Saut and M. M. Tom

and P is a polynomial in u,v composed of terms of degree at most five, and where
it is assumed that (a + d)* + 4(bc — ad) > 0.

References

1. Alkylas, T. R., Benney, D. J.: Direct resonance in nonlinear wave systems. Stud. Appl. Math.
63, 209-226 (1980)
2. Alkylas, T. R., Benney, D. J.: The evolution of waves near direct-resonance conditions. Stud.
Appl. Math. 67, 107-123 (1982)
3. Benjamin, T. B.: Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25,
241-270 (1966)
4. Benjamin, T. B.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech.
29, 559-592 (1967)
5. Bona, J. L., Sachs, R.: Global existence of smooth solutions and stability of solitary waves
for a generalized Boussinesq equation. Commun. Math. Phys. 118, 15-29 (1988)
6. Bona, J. L., Saut, J.-C.: Dispersive blow-up for the generalized Korteweg-de Vries equation.
To appear in J. Diff’l Equations (1991a)
7. Bona, J. L., Saut, J.-C.: The general intermediate long wave equation and related systems.
In preparation (1991b)
8. Bona, J. L., Smith, R.: The initial value problem for the Korteweg-de Vries equation. Phil.
Trans. R. Soc. Lond. A278, 555-604 (1975)
9. Erkart, C.: Internal waves in the ocean. Phys. Fluid 4, 791-799 (1961)
10. Fornberg, R. B., Whitham, G. B.: A numerical and theoretical study of certain nonlinear
wave phenomena. Phil. Trans. R. Soc. Lond. A289, 373-404 (1978)
11. Gear, J. A.: Strong interactions between solitary waves belonging to different wave modes.
Stud. Appl. Math. 72, 95-124 (1985)
12. Gear, J. A, Grimshaw, R.: Weak and strong interactions between internal solitary waves.
. Stud. Appl. Math. 70, 235-258 (1984)
13. Ginibre, J., Tsutsumi, Y.: Uniqueness for the generalized Korteweg-de Vries equation. SIAM
J. Math. Anal. 20, 1388-1425 (1989)
14. Grimshaw, R.: Evolution equations for long, nonlinear internal waves in stratified shear
flows. Stud. Appl. Math. 65, 159-188 (1981)
15. Kato, T.: Quasilinear equations of evolution with applications to partial differential equations,
Lect. Notes in Math. 448, pp. 27-50. Berlin, Heidelberg, New York: Springer 1975
16. Kato, T.: On the Korteweg-de Vries equation. Manuscripta Math. 28, 89-99 (1979)
17. Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Adv.
Math. Supplementary Studies in Applied Math. Vol. 8, pp. 93—128 (1983)
18. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations.
Commun. Pure Applied Math. 41, 891-907 (1988)
19. Kenig, C. E., Ponce, G., Vega, L.: On the (generalized) Korteweg-de Vries equation. Duke
Math. J. 59, 585-610 (1989)
20. Kenig, C. E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations.
Indiana U. Math. J. 40, 33-69 (1991a)
21. Kenig, C. E., Ponce, G., Vega, L.. Well-posedness of the initial value problem for the
Korteweg-de Vries equation. J. Am. Math. Soc. 4, 323-347 (1991b)
22. Kenig, C. E., Ruiz, A.: A strong type (2,2) estimate for the maximal function associated to
the Schrédinger equation. Trans. Am. Math. Soc. 280, 239-246 (1983)
23. Kubota, T., Ko, D. R. S,, Dobbs, L. D.: Weakly-nonlinear, long internal waves in stratified
fluids of finite depth. AIAA J. Hydronautics 12, 157-165 (1980)
24. Lions, J.-L.: Quelques methodes de résolution des problémes aux limites non linéaires. Paris:
Dunod 1969
25. Lions, J.-L., Magenes, E.: Problémes aux limites non homogénes et applications. Vol. 1. Paris:
Dunod 1968
26. Liu, A. K., Kubota, T., Ko, D. R. S.: Resonant transfer of energy between nonlinear waves
in neighboring pycnoclines. Stud. Appl. Math. 63, 25-45 (1980)



Strong Interaction Between Internal Waves 313

27. Liu, A. K., Pereira, N. R.,, Ko, D. R. S.: Weakly interacting internal solitary waves in
neighboring pycnoclines. J. Fluid Mech. 122, 187-194 (1982)

28. Saut, J.-C.: Sur quelques généralisations de I’équation de Korteweg-de Vries. J. Math. Pures
Appl. 58, 21-61 (1975)

29. Saut, J.-C., Temam, R.. Remarks on the Korteweg-de Vries equation. Israel J. Math. 24,
78-87 (1976)

30. Stein, E. M.: Oscillatory integrals in Fourier Analysis. Beijing lectures in Harmonic Analysis,
pp. 307-355. Princeton NJ: Princeton University Press 1986

31. Strichartz, R. S.: Restriction of Fourier transform to quadratic surfaces and decay of solutions
of wave equations. Duke Math. J. 44, 705-714 (1977)

32. Vega, L.: El multiplicador de Schrédinger: La funcion maximal y los operadores de restriction.
Doctoral Thesis Universidad Autonoma, Madrid, Spain 1987

Communicated by S.-T. Yau








