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Abstract. Following Woronowicz's proposal the bicovariant differential calculus
on the quantum groups SUq(N) and SOq(N) is constructed. A systematic
construction of bicovariant bimodules by using the Rq matrix is presented. The
relation between the Hopf algebras generated by the linear functional relating the
left and right multiplication of these bicovariant bimodules, and the g-deformed
universal enveloping algebras is given. Imposing the conditions of bicovariance
and consistency with the quantum group structure the differential algebras and
exterior derivatives are defined. As an application the Maurer-Cartan equations
and the ^-analogue of the structure constants are formulated.

1. Introduction

Recently a class of non-commutative non-cocommutative Hopf algebra has been
found in the investigations of the integrable systems. These Hopf algebras are
<?-deformed function algebras of classical groups. This structure is called "quantum
group" [Dri].

The structure of the quantum groups suggests the possibility of investigating a
geometry where we can even consider discarding the commutativity of the algebra
of coordinate functions. It is interesting to ask whether one can find applications of
this new class of symmetry to some physical systems other than the integrable
models.

Following this idea, the first step one has to make is to provide the appropriate
tools for this investigation. To this end we take the usual application of the group
theory as a guiding principle for the generalization of the g-deformed quantities.
This is also useful since in the limit q-*l we wish to reproduce the results obtained
in the ordinary classical group case.

* Address after 1 Dec. 1990, Institute of Theoretical Physics, University of Mύnchen
** On leave of absence from Department of Physics, College of General Education, Tohoku
University, Kawauchi, Sendai 980, Japan
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In this paper we formulate the differential calculus on quantum groups to
investigate their geometrical aspects. This also gives an example of the non-
commutative geometry. The framework of such a non-commutative differential
calculus has been developed by Woronowicz following the general ideas of Connes
[Connes]. In a series of papers, introducing the bimodule over the quantum group
various theorems concerning the differential forms and exterior derivatives were
presented. Generalizations of the construction of bicovariant bimodules to other
quantum groups are also investigated in [Rosso]. However, the concrete
constructions of the differential calculus must still be developed. For the SUq(2)
case, two types of differential calculi called 3D [Worl] which is not bicovariant
and the bicovariant 4D+ calculus [Wor3, Stach, PW, Weich] have been given.
[The 3D calculus has been extended to the case of GLq(\\V) [SVZ] and GLp q(2)
[SWZ].]

In [Wor3] the author presented the bicovariant differential calculus for
quantum groups where the differential forms transform under both left and right
transformations covariantly. This is a natural g-deformation of the differential
calculus on classical groups.

The aim of this paper is to develop the concrete bicovariant differential calculus
for various other known quantum groups following Woronowicz's programme in
[Wor3] applying the formulation of the quantum groups proposed by Faddeev et
al. [FRT, Takh].

The paper is organized as follows. In Sect. 2 we introduce briefly the quantum
groups and the concept of bicovariant bimodules following Woronowicz to
establish our notations. In Sect. 3 we construct the fundamental bicovariant
bimodules which provide the building block for constructing any bicovariant
bimodules. We also show that the algebras of the functionals defining the relation
between the left and right multiplication are equivalent to the universal enveloping
algebras. The bicovariant bimodule including the adjoint representation is
constructed in Sect. 4. In Sect. 5 using the result of Sect. 4, we construct the first
order differential calculus using the idea of the extended module of [Worl, Wor3].
In Sect. 6 the higher order differential calculus is constructed. As an application in
Sect. 7 we write down the ^-analogue of the Maurer-Cartan equation and the
structure constants.

2. Quantum Groups and Bicovariant Bimodule

In this section we introduce briefly some necessary concepts in order to formulate
the differential calculus on the quantum groups.

2.1. Quantum Groups

The quantum group ̂  is a non-commutative non-cocommutative Hopf algebra
generated by JV2 elements Mi

j (ij= 1, ..., AT). The algebra si has a unit element
which we denote by 1. The coalgebra of the quantum group is defined by the
following maps.

The coproduct A of the quantum groups, a multiplicative algebra homomor-
phism A : j/-»j/®j/, is defined for the generators M} as

y (2.1)

where the summation over repeated indices k runs from 1 to N.
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The antipode (coin verse) K of jtf is a linear antimultiplicative map κ\st-*$i
which is defined for the generators by

δi

jl. (2.2)

The counit ε, an algebra homomorphism ε : d ->C, is defined for the generators
aS ε(M<><$<7, (2.3)

These maps defining the coalgebra on ̂  satisfy the standard axioms of a Hopf
algebra [Abe].

The quantum groups are a class of Hopf algebras obtained by the ^-de-
formation of the algebra Fun(G), the algebra of the functions on the group G.
[Strictly speaking it is developed on the polynomials of the generators Ml

j9 a
subset of C°°(G).]

In these algebras the non-commutativity is controlled by the Rq matrix which is
a solution of the Yang-Baxter equation

^ΛVr*fW' = *ft A*' i r^r r

The commutation relation between the generators M^ is then given by

Rίj , ,Mj v,Mί'.,, = Mί.,M /'./K ί' 7'' .„.„ (2 5ΪN?/ί j 1V± i 1VJ i11 jιxq j i ' \^ J)

In this paper we consider mainly the quantum groups SUq(N) and SOq(N)
which were introduced with the help of Rq matrices [FRT, Takh, Rosso], and the
parameter of the deformation, q is in general a positive real number.

The SUq(N) is a ^-deformed Fun(Sl/(JV)) and its generators satisfy the
unimodularity condition

detM = l . (2.6)

We also consider the quantum group SOq(N). The SOq(N) is a ^-deformed
Fun(SO(N)) and instead of the unimodularity condition (2.6) the generators Mlj
satisfy the orthogonality condition

CyMVMV = CίT, (2.7)

where Ctj is an N x N matrix corresponding to the metric.
Furthermore in order to define these quantum groups we have to consider the

*-structure [Wor2]. The *-structure is defined by an antilinear ^-operation:

(2.8)

such that Vα, bestf and V A e C :

(Aαft)* = A*6*α*, (2.9)

ιc(φ*)*) = α, (2.10)

where A* is the complex conjugate of λ. The coproduct and counit are
*-homomorphisms. We call the Hopf algebra with *-structure a *-Hopf algebra.

The conjugated element is denoted as

(Mij)* = M*ί

j = Mυ

i. (2.11)

Note that we introduce the Mf in order to keep the manifest covariance as in the
commuting case, i.e. a lower suffix transforms as a co variant and an upper index as
a contravariant quantity.
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Then the unitarity condition is represented as

M^ — ̂ M^. (2.12)

The *-operation is a generalization of the complex conjugation. Therefore it is
convenient to consider the bigger algebra generated by M1

7 and M fί

7 with the
commutation relations (2.5) and

'kl , (2.1 3)

and

^kΊM^,Mk'k = MW'Wu. , (2.14)

or

R- ίί'\.lM^ί,M
k\ = MWfc lij'u, . (2.15)

Then the unitarity condition reduces the bigger algebra to the original stf. The
commutation relations (2.13)-(2.15) are simply defined so that they are equivalent
to (2.5) when one substitutes the unitarity condition (2.12).

2.2. Bicovariant Bimodule

The differential 1 -forms on a Lie group manifold are sections of the cotangent
bundle. The space of all sections on the cotangent bundle C°°(T*(G)) is a bimodule
over C°°(G). On this space there is a natural action of the group G which is
expressed by the coaction of C°°(G) in the Hopf algebra terminology. In order to
construct the differential calculus on the quantum groups we employ these
algebraic structures. Therefore we introduce the bimodule-bicomodule over jtf.
We consider here especially the case that those bimodule-bicomodules are
bico variant, i.e. bico variant bimodules over j/ [Wor3].

On the bico variant bimodule Γ there exist left coaction ΔL and right coation ΔR

of j/

(2.16)

(2.17)

Following the general definition of the bicovariant bimodule [Definitions 2.1-2.3
in [Wor3]] we require that the coactions have the following properties:

After identifying coactions and coproduct on $# the coactions are bimodule
homomorphisms

) = A(a)AL(ρ)A(b), (2.18)

) = Δ(a)ΔR(ρ)Δ(b), (2.19)

and they satisfy

(ε<g)idμL(ρ)=ρ, (2.20)

(id®ε)zlR(ρ) = ρ. (2.21)

Furthermore we require that the left coaction and the right coaction commute:

. (2.22)
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We call an element ρ e Γ left invariant if

(2.23)

and right invariant if

AR(ρ) = ρ<8)l, (2.24)

where 1 is the unit of the algebra s/.
The *-structure in the algebra si can be extended to the bicovariant bimodule Γ

in a natural way. There exists a unique antilinear antimultiplicative map [Wor3] :

(2.25)

such that Vα, b e j t f :

(aρb)* = b*ρ*a*. (2.26)

The * -operation commutes with the coactions

ΔL(Q)*=ΔL(Q*}> (2.27)
AR(ρ)* = AR(ρ*). (2.28)

In any bicovariant bimodule, one can find a linear right invariant subspace Γinv.
Let the basis of this subspace be ηJeΓinv. Then any element ρeΓ can be
represented in the form

ρ = Σ < V f J > (2-29)
/

where the index J runs over all elements of the right invariant basis and the
elements ase^ are determined uniquely (Theorem 2.3 in [Wor3]).

The left coaction on right invariant elements is defined by

4L(ι/J) = T/

J(8)ιjJ, (2.30)

where T/

JEJ/ is uniquely determined when we fix the basis ηj. Note that
throughout this paper we use the upper case indices such as /, J, K to distinguish
the right invariant basis and we also abbreviate the summation symbol over upper
case indices if it is apparent.

The left invariant basis ωj E Γ can be introduced as

ωJ = κ(ΎJ

κ)ηκ, (2.31)

with the TJj being the matrix defined in Eq. (2.30). It is easy to confirm that ωj is
left invariant using the above definitions. The ωj form the left invariant basis of Γ
since any element of Γ can be represented as in Eq. (2.29). The right coaction on ωj

is given by

ΔR(ωJ) = ωκ®κ(ΊJ

κ) . (2.32)

The bicovariant bimodule is characterized by the following functional which
relate the right multiplication to the left multiplication of α 6 js/ on ρeΓ.

Let ηj be the basis of the right invariant subspace Γinv, there exist linear
functional //

J,

(2.33)
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such that Vα, 6ej/:

η'9 (2.34)

κ)> (235)
J

where the indices J, J run over the full basis of right invariant elements. The
convolution product of an element α e si and a functional / is defined as [Wor3] :

(2.36)
s

where A(ά)= £ α^®^.

The functional introduced above satisfy Vα,

(^fκ

J(b), (137)

and

/'ΛIH SV (2.38)

The main problem of the explicit construction of the differential calculus is
therefore to find the explicit form of the f1 j. The functional f*j introduced above
are elements of the linear functionals on Ja/, Hom(j3f, C). In Hom(j/, C), one can
define a product, the convolution product [Wor3]: for two functionals /ls

/2 e Hom(j2/, C) and aejtf

/ι*/2Wst/i®/2)J(Λ). (2.39)

Definition. j/' is the unital Oalgebra generated by the functionals fl

3 with the
convolution product (2.39).

The Hopf algebra structure of si induces a Hopf algebra structure on si1. From
Eqs. (2.37) and (2.38) we can read off how the coproduct Δ' and the counit εx of stf'
are acting on the functionals f1/.

)=fIκ®fKj, (2.40)

*(/J/) = *V (2.41)

We can also prove that they satisfy Vαej/:

Σ/V(/V^)=4Φ), (2.42)
j

and therefore the antipode κr of the algebra si1 is

κ'(/',H/Vκ. (2.43)

This means that the functionals f * j are a special set of elements of j/r such that
their coproducts are represented by matrix multiplication and the antipode is
given by the inverse of the matrix.

Since si is a *-Hopf algebra, one of the important properties of the algebra si' is
that one can find an induced ^-structure:

Proposition 1. Let χe<si'. Define the ^-operation of j/' as

)}*. (2.44)
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Then this *-operation in stf' is an antimultiplicative involution and satisfies

*cWn = *. (2.45)

Proof. 1) The operation is an involution of jtf' since for all elements αεa/ it
satisfies:

(**)*(«)= {**(«(«*)))*
= χ(fc(φ*)*))

= χ(α). (2.46)

2) The operation is antimultiplicative: Let ξ, χesf', then

(χ *£)*(«)= {(χ*£)(Φ*))}*

= (ξ**χ*)(«), (2-47)
where

3) The coproduct Δ' commutes with the ^-operation: For any element α,

Λ'ω*(α®ί>), (2.48)

where 4'(χ)=
S

4) Equation (2.45) can be shown using Eq. (2.10):

= χ(κ;(κ:(α*)*)) = χ(α). Q.E.D. (2.49)
From this it follows that

(X°ιc-1)* = χ * o κ . (2.50)

In the following section we explicitly construct the functionals flj for various
bicovariant bimodules. Given the definitions above we write down the defining
conditions for /Jj.

Condition ί. Bico variance: The bicovariance of Eq. (2.34) requires that the
functionals fl

3 must satisfy

AR(η')Δ(b)= Σ AWJΔ^rft, (2.51)

I

J)ΔL(rf). (2.52)
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By the definition of the convolution product b *fl

3 the right co variance (2.51) is
trivially satisfied. The condition for fl

3 required from the left covariance is
obtained by the following considerations:

In order to define the functionals fl

3 it is sufficient to define the values of
/^APj), i.e. when its argument is a generator. Therefore in Eq. (2.34) we take the
element b = M ̂  Using the definition of the convolution product we get

MV. (2.53)

The left coaction on the left-hand side of Eq. (2.53) gives

Mm

in

K . (2.54)

The left coaction of the right-hand side gives

= fI

J(Mk

n)(Mn

mΎJ

κ®Mm

lη
κ). (2.55)

The condition (2.52) requires that (2.54) and (2.55) are equivalent. Therefore
comparing these two equations, we get an equation for /J

J(Mί

J ):

^IjM\fJ

κ(M\} = fI

J(M\}Mn

mΊJ

κ. (2.56)

(This is the analogue to the Eq. (2.39) in [Wor3].)

Condition 2. Consistency with the quantum group relations:

a) The consistency with the commutation relations of the generators M^ given in
Eq. (2.5) leads to the following condition:

r) *f*κ}ηK ' (157)

The left-hand side is zero due to Eq. (2.5). The right-hand side is obtained by using
the commutation relations (2.34). Because of the uniqueness of the expansion of
Eq. (2.29) the coefficients on the right-hand side have to vanish. This leads to

b) Other quantum group relations such as the unimodularity (2.6) or orthogo-
nality (2.7) must also be compatible with the bimodule structure.

3. Fundamental Bimodule of SUq(N) and SOq(N)

The construction of the bicovariant bimodule can be performed in an analogous
way to the construction of the representations of classical groups. In this section
we construct the fundamental bicovariant bimodules ofSUq(N) and SOq(N). They
are the analogues to the sections in the bundles of the fundamental representations
over the groups SU(N) or SO(N). Other bicovariant bimodules can be constructed
using them as building blocks.
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3.1. Fundamental Bimodule of SUq(N)

We use the Rq matrix for the SUq(N) given in [FRT]. As for our convention see
[CSSW]. The commutation relations of the generators M^ are given in Eq. (2.5).
Another condition for the SUq(N) is the unitarity which is formulated by using the ε
tensor, the g-deformed antisymmetric tensor. Since we need some properties of this
antisymmetric tensor for the construction of the bimodule we first give its
definition and its relation to the Rq matrix. For later discussion we also introduce
the graphical representation which clarifies the relation to the braid group.

The definition of the Nih rank antisymmetric tensor ε is

JV(JV-l)

ε f l... i N = <? 4 (~<if(a\ (3.1)

where σ denotes the permutation of the suffices (z'1?..., iN) = σ(l, 2,..., N) and £(σ) is
the minimal number of inversions in the permutation σ [Dri, Wor4]. The overall
constant is chosen such that the formulas below become simple. To keep the
manifest covariance we also introduce the ε tensor with upper indices as:

JV(JV-l)

^•••^ = (-lf-^ 4 χ(__^(σ). (3>2)

In Fig. 1 we gave the graphical representation of these fundamental quantities
[Res, Wor4].

Rijki =

X

Fig. la-e. Thegraphicaj^ representation of the basic quantities oϊSUq(N). a The unit operator, b, c
the matrices β%kl and R~lίj

kb d, e the ε-tensors ε1'1 •••''* and ε f l ίjv defined in Eqs. (3.1) and (3.2)
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Fig. 2. The graphical representation of the relations among the Rq matrix and the ε-tensor. The
multiplications of the Rq matrices and the ε-tensors are represented by drawing the diagrams one
below the other and connecting the lines corresponding to the indices which are summed

Some important properties for the construction of the modules are

i2k2
isks q

(see Fig. 2) and

,̂ is the projector to the Ith order antisymmetric tensor representation (see Fig. 3)
and

1]... ίl], (3.6)

(3.7)

with the definition of the ^-number [x]

<?-q-*

q-q

Especially the projection operator to the second rank antisymmetric tensor &2

and the one to the second rank symmetric tensor play an important role in the

.

Jl J l

Fig. 3. The graphical representation of the projection operator for the /th rank antisymmetric
tensor representation ^ in Eq. (3.5). We write the [Γ| at the intermediate line to express the
corresponding representation
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. .
5 .71./2

'2

Fig. 4a, b. The projection operators to the second rank tensor in Eqs. (3.8) and (3.9): the
antisymmetrizer 8PA in a, and the symmetrizer £PS in b

following. We denote them as

and

^S=J

(3.8)

(3.9)

where Γ^ = <%<5/. The graphical representation of these projectors is given in
Fig. 4.

Using the projectors, we can represent the Rq matrix as [Res, Wor4, FRT]

The unimodularity condition is represented by using the ε-tensor:

The antipode is given by

1

^M^"[JV-1]!° '" fel"

and the inverse of the antipode is

_ . 1
κ (M^-p7^ϊ|!^-^-MV

(3.11)

(3.12)

''. (3.13)

Now we can introduce the fundamental bicovariant bimodule of SUq(N) as
follows:

Definition of the Fundamental Bicovariant Bimodule. The fundamental bicovariant
bimodule is the bimodule where the right invariant subspace is an N dimensional
linear space with the basis η' (i = \,...,N). The left coaction on η1 is defined by

(3.14)



616 U. Carow-Watamura, M. Schlieker, S. Watamura, and W. Weich

Therefore we can identify the matrix TJj in Eq. (2.30) with Mlj. Then Eq. (2.34)
implies the existence of functionals fi

j such that

jb = (b*fW (3.15)

holds for any element b e j/9 and i, j = 1, . . ., N.
As we described in the previous section, to define the functionals /^ it is

sufficient to find their values on the generators Mk

l9 i.e. to find the tensor

From Eq. (2.53) we get as the defining equation of the tensor /'

^M^/'/M^MV (3.16)

We impose Conditions 1-2 given in the previous section.

Condition i.
(3.17)

This means that the tensor fl

}{Mk^ must be represented by a linear combi-
nation of Rq and jR"1.

Condition 2.

a) The consistency with the commutation relation of the generators is

^/Γ/UM'V)Λ^ (3.18)

b) Another requirement for SUq(N) is that the determinant of M^ defined in
Eq. (3.11) commutes with any element ρeΓ.

This implies that

)e'' "'- = ̂ . (3.19)

From these requirements we get two solutions. We call them f±j .

/ί/M^-^R'V (3.20)
and

V (3.21)

^-Conjugation of the Fundamental Bimodule. For a complex representation of the
ordinary SU(N) there exists the complex conjugate representation with the same
dimension. In the case of the quantum group SUq(N) there are also the modules
conjugate to the above fundamental bimodules.

Applying the ^-operation on both sides of Eq. (3.14) the coaction on the
conjugate representation is obtained

ALW)* = (Mlj)*®W)*. (3.22)

Since the coaction commutes with the ^-operation this defines the coaction on the
conjugate module. Denoting the conjugate module as

(ηγ = η*t = ήt9 (3.23)

we can rewrite Eq. (3.22) as

AL(fjt) = M^iφήj = κ(MJi)(g)ήj . (3.24)
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We denote the functional which defines the commutation relation between any
element b e s$ and ή as /*,-

rjib = ( b * f j i ) ή j . (3.25)

As we shall show below, there is a one to one correspondence between the
functionals /'7 and /'; . And therefore, we have two functional Corresponding to
/ί j in Eqs. (3.20) and (3.21). We denote these two functionals as fl

±j. Their relation
is as follows:

Proposition 2. The functionals fl

±j corresponding to the right invariant bases rf±

defined in Eq. (3.15) and the functionals Jl

±j corresponding to the bases ή±ί defined in
Eq. (3.25) are related by

fίj=f$j^fϊj (3.26)

with the ^-operation defined in Eq. (2.44).

Proof. From Eq. (3.15) and using the general properties of the functionals / we get

*V=Σ^/>(4*M*, (3-27)

s
Applying the *-operation on both sides of (3.27) and using the definition of the

*-operation on j/' given in Eq. (2.44), we get

ι/*Λ (3.28)

Therefore, using the definitions (3.23) and (2.44) we obtain

ήfl = (a*f*'j)ήj. (3.29)

Comparing (3.25) and (3.29) we get the relation (3.26). Q.E.D.

Using the unitarity condition (2.12), we can find a further identity between f^
and f+j for SUq(N), which allows us to relate them by using ft'"1.

Proposition 3.

fϊί = fϊj = *-\fίj) (3.30)

Proof. We apply the *-operation on both sides of Eq. (3.16). Since the Rq matrix is
real we can write the result as

(331)

Substituting the unitarity condition (2.12) into M*'j; we get

(3.32)
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where we have used the definition of / (3.25). This equation gives a condition for
the value of the functionals / and /:

. ^ . (3.33)
S j

The symmetry of the Rq matrix R"kl = Rk

q

l

ip implies that

. (3.34)

Since this relation can be generalized to any element αej/ using the proper-
ties of the functionals / we get the relation between the / and /* given in
Eq. (3.30). Q.E.D.

Since we have two independent functionals which define the relation between
the right and left multiplication, we obtain two types of fundamental bimodules
and their conjugates. Therefore we distinguish their bases ηl and rf by the suffix ±
corresponding to these functionals fl

±j respectively. We specify the bico variant
bimodule by a pair consisting of a basis and the corresponding functionals (ηl

+9

f+j). Then the relations under the *-operation are

*:tf+M^(ή+»nj = (ΐ+M), (3.35)

*:(ιf

ί-,/^Mfj.ί,7iJ) = (ij_ί,/^). (3.36)

Due to Eq. (3.30), the fundamental bicovariant bimodules and their conjugates
are completely defined by Eqs. (3.20) and (3.21).

In order to analyze the structure of the product representation it is convenient
to use the quantities with upper indices instead of the ones with lower indices such
as ή±i. This also enables us to use the graphical representations.

The representation with upper index of ή is defined by using the ε tensor given in
Eq.(3.2).

^ι-^-1] = ̂ ±. εϋι...jN-ι j (337)

where the symbol [...] is introduced to remind that the indices are antisym-
metrized. To simplify the notation we denote N — l antisymmetrized indices
collectively as [/] :

m = [/ι..JN-ιL (3.38)

Using this notation Eq. (3.37) becomes

f/^-±ίε^. (3.370

Then the coaction is

= M\...MJ'N-V1®»/±I ί N~ l l (3-39)

The corresponding functional /is defined by Vαe ί/:

^fl=(α*j™DΊ)jp, (3.40)

where the relation to the fl is given by



Bicovariant Differential Calculus 619

Using Eq. (3.30),

f¥m=f?-'j»-,* •-•*&»* fϊj^-ιiN-^.^-> (3-42)
This shows the following equivalence of the two right invariant bases:

/̂'-•'"--̂ ^ (3.43)
Clearly, this relation among the bimodules is the analogue of the well-known
relation between the fundamental representation and its complex conjugate in the
ordinary SU(N). [For the definition of the product of modules in the right-hand
side of (3.43) see Eq. (4.4).]

3.2. Fundamental Bicovariant Bimodule of SOq(N)

We take the Rq matrix and the metric given in [FRT]. [As for our convention see
also [CSW].] The commutation relations of the generators M^ are the same as in
Eq. (2.5). The extra condition for the SOq(N) is the orthogonality condition which
is given by the metric Ctj as in Eq. (2.7).

The antipode is

j) = CiitMJt

i.CJΊ9 (3.44)

and the inverse of the antipode is

K-\M^ = CjrM^fC'\ (3.45)

where Cij is the inverse matrix of Cί>7 .
We also need to consider the following projection operators: The symmetrizer

ŝ, the antisymmetrizer &A and the projection operator to the singlet ̂ . Using
them the Rq matrix is represented as

(3-46)

For the graphical representation see Fig. 5.
The Rq matrix and the metric satisfy the following relations (see Fig. 6):

?„ = #£*, (3.47)

e'v&l'pf^fv^C*. (3.48)

As in the case of SUq(N) we construct the fundamental bico variant bimodule.

Definition of the Fundamental Bicovariant Bimodule. The fundamental bico variant
bimodule of SOq(N) is the bimodule where the right invariant subspace is an N
dimensional linear space with the basis ηl (i = l, ..., N). The left coaction on ηl is
defined by

ΔL(rf} = Mi

j®ηί. (3.49)

Therefore we identify the matrix TJ

7 in Eq. (2.30) with M *,-. Equation (2.34) implies
that there exist functionals flj such that Vfce j/:

ί ife = (fe*/<;)^, (3.50)

where the indices i,j run 1, ..., N.
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ύ *2

C*1'2 = 1 j

cu . Γ\
ll 22

10*1*2 . . _
1 r JU2 —

Pi = Q-1

Fig. 5. a The graphical representation of C/I ί2 and Cίlί2, the analogue of the metric in the usual
SO(N) group. The graphical representation of the Rq matrix for SOq(N) is the same as for the
SUq(N) case, b The projection operators 0*s and &A corresponding to the antisymmetric and the
symmetric traceless product of two N dimensional representations, respectively. The index r
represents either S or A. c The projection operator to the singlet representation corresponding to
the trace part of the product of two N dimensional representations. Q^1 is a normalization
constant

/ i ./

SKv
j i k j i k j i k

Fig. 6. Some graphical relations including the metric and the Rq-matm

As in the case of SUq(N) to define the functional flj it is sufficient to find the
tensor flj(Mk^ appearing in the relation:

The defining condition for the /'/M^) are Eqs. (3.17) and (3.18) replacing the
generators M^ by those of SOq(N):

Condition i. . .
MljMk

nf\(Mn

m) = f^(M\}Mn

mM\. (3.52)

This means that the tensor /ί/Mfc

/) must be represented by a linear combin-
ation of Rφ R~ S and ̂ .

Condition 2.

a) The requirement of consistency with the commutation relations of the
generators leads to

A^ri,. (3.53)
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The difference between the quantum groups SUq(N) and SOq(N) appears in
Condition 2b). Instead of the condition on detM we require.

Condition 2b') The orthogonality condition (2.7) must be consistent with the
bimodule structure. This implies that

/'/CWΛf *>'',) = Ck.vf\,(Mk'k) /'"/A/'',) = δ'jCu . (3.54)

From these requirements we again get two solutions. We call them /+ :

=,β*,., (3.55)
and

= W (3.56)

We also distinguish the two right invariant bases corresponding to the two
solutions /+ as ηl

± like in the case of the SUq(N). This result as well as (3.20) and
(3.21) agrees with the one obtained in [Rosso] which has been constructed from
the quasitriangular structure of ^-deformed universal enveloping algebra.

Reality Condition. For the quantum group SOq(N) we also consider the
*-operation since by construction we have to distinguish Mlj and M '* like in
SUq(N). This means that in order to get the g-deformed SOq(N) we have to divide
by a Z2 symmetry which identifies an element with its conjugate to reduce the
number of degrees of freedom. This identification corresponds to the reality
condition which restricts SO(N,C) to SO(N,R) in the limit <?->!.

The ^-operation in the SOq(N) can be defined in the same way like in the SUq(N)
and we can also prove

/?/ = /£, = K"1^;). (3.57)

The reality condition for the generators M^ of SOq(N) is given by the unitarity
condition (2.12):

(3.58)

The operation * on the element of the bimodule is defined by the action on the
right invariant basis ηl

± and the condition (2.26).
Then the reality condition for the fundamental bimodule is

~ Mt r* (i CQ\
'l±j — Ί^^ij \J.jy)

with the definition

tf±i = foτ)* (3.60)

Note that Eq. (3.59) means that the fundamental bicovariant bimodule of
SOq(N) is not real since the *-conjugation maps η+ into r\- and vice versa.
However, we shall see that the bicovarianί bimodule corresponding to the adjoint
representation constructed by using these fundamental bimodules becomes real.

3.3. Relation to q-Deformed Universal Enveloping Algebra

Before we finish this section, let us establish the relations between the functionals
f±j and the generators of the g-deformed universal enveloping algebras given in
[FRT].
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As a consequence of the above results, we can show the following relations
among the functionals:

^WW^/VAJζ'1'*. (3-62)
^A*/W^*/t^V (3-63)

To prove this it is sufficient to prove the equivalence of the value of both sides
when we apply those functionals on the generators M ̂  and 1. For 1 it is trivially
satisfied. To show the equivalence on the M^ we apply the left-hand side of (3.61)
on Ms

t and get

= ̂ fi^k^'tl. (3.64)
On the other hand the right-hand side of (3.61) gives

=^s,l,^'tk,R
k

q

l'lk, (3.65)

where for SUq(N) we have substituted the value of the f+ /(M ̂ ) given in Eq. (3.20)

and a = q N. For SOq(N) we use Eq. (3.55) and α = l. Therefore both sides of
Eq. (3.61) are equivalent due to the Yang-Baxter equation for the Rq matrix. The
proof of the other relations (3.62) and (3.63) can be performed analogously.

Using the same method as above we can also prove for the case of SUq(N)

βil...ίN/^*.-.*Λ1Λ = 8J,...,Nε. (3.66)

For SOq(N) the functionals satisfy

C,*/£Λ*./ΪΛ-CΛΛ« <3-67)
The relations (3.61-63), (3.66) or (3.67) and the *-operations on the functionals

(3.30) or (3.57) are equivalent to the relations which were imposed on the
subalgebra of Hom(j/,C) by Faddeev et al. [FRT]. Therefore, the algebra <$/'
generated by the functionals fl

±j with induced *-operation and imposing the
relations (3.61-63), (3.66) or (3.67) is equivalent to the one introduced by Faddeev
et al. with the identification:

ήj = U±j> (3.68)

where Lf±J is the one in [FRT]. Therefore, in this way the algebra generated by the
functionals which relate left and right multiplication of the bimodule coincides
with the g-deformed universal enveloping algebra in [Dri, Jim].

4. Bimodule with Adjoint Representation

The right or left invariant one forms in the ordinary differential calculus on the
group manifold belong to the adjoint representation. Therefore to construct the
differential calculus on the quantum group which coincides with the commuting
case in the limit g-»l, we need the bico variant bimodule which contains the right
invariant basis of the adjoint representation.
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To generalize the transformation of the adjoint representation to the quantum
group one can use the left cpaction adL and right coaction adκ [Wor3]. Their
actions on the generators M^ is

adL(M';) = Mi

ifκ(Mj'j)®Mί'jf , (4.1)

M^ . (4.2)

In our construction therefore we need consider the right invariant basis on
which the left coaction acts like adL in Eq. (4.1). We denote such a right invariant
basis as 0^ and the corresponding bicovariant bimodule as ΓAd.

Then the left coaction on the basis θlj must be

AL(tfj) = Λf Vκ(M^)® θl ' y . (4.3)

One easily sees that such a right invariant left covariant basis θlj can be
obtained by simply multiplying the two fundamental modules defined in the
previous section.

The product of the two bimodules Γl and Γ2 can be defined by the tensor
product over d\ For Q^eΓ^ and ρ2eΓ2 we have

Γl®jΓ2*Qiρ2ΞΞQι®s/Q2, (4.4)

where ®<fi/ means that Vαe<s/:

(4.5)

In this way the product Γi ®^Γ2 becomes a bimodule as well. The coactions on
this bimodule are defined by

, (4.6)

, (4.7)

where the product on the right-hand side is defined as Vα, be^\

(a® ρj (fe® ρ2) = (ab® ρίρ2) , (4.8)

(Q1®a)(ρ2®b) = (ρίρ2®ab). (4.9)

The *-operation is generalized on the bimodule Γ1(χ)^Γ2 as

(ίfιβ2)* = ίf!βί. (4.10)

In order to define the bicovariant differential calculus with the ^-structure we
have to require that the *-operation is a bimodule antiautomorphism:

(J~Ad)*=^Ad. (4.H)

With this requirement we can find two different types of right invariant bases
containing the adjoint representation. They are given by ηl+ή+j and rf-ή-j. For
example we know for the first choice

tf+ή+jΓ^ηJ+ή+i. (4.12)

Consequently the bimodule generated by this basis is closed under the *-operation
and thus (4.11) holds.
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According to (4.6) the left coaction is

(4.13)

Comparing (4.13) with (4.3) we can identify

θ'; = >?U+;, (4.14)

to get the bimodule ΓAd as the product of two fundamental bimodules.
The other choice, i.e. ηl-ή-j can be also taken as the right invariant basis. It has

a different bimodule structure; however the following constructions are performed
in a completely parallel way. In the following we choose the first possibility (4.14)
to construct the right invariant basis of ΓAd.

The basis θlj given in Eq. (4.14) corresponds to the basis of the tensor product of
the two bundles of the fundamental and its conjugate representation in the limit
#->!. Therefore this basis of ΓAd is reducible. We impose no constraints to make
them irreducible as a representation of the quantum group and thus the basis θlj
has N2 components. To extract the irreducible components belonging to the
adjoint representation we may multiply the corresponding projection operators
(see below). However considering the bimodule generated by the basis projected to
the adjoint representation one sees that such a projection does not close with
respect to the left and right bimodule structure. In other words ΓAd is the smallest
bicovariant bimodule containing the adjoint representation. Consequently to
construct the bicovariant bimodule which contains the adjoint representation it is
necessary to keep the basis with ΛΓ2 components.

The induced bimodule structure of ΓAd is given as follows:
For any element α e j/

^« = («*/AdV)^, (4-15)
where

and where the convolution product of the two functionals χ and ξ is defined as

(4.17)

Proof of Eg. (4.15). Using the representation of the basis θlj by fundamental
modules in Eq. (4.14) the left-hand side of Eq. (4.15) is

(4.18)

Using the property of the convolution product we get Eq. (4.15). Q.E.D.

In order to analyze the structure of the functional /Ad it is convenient to use only
upper indices.

1) SUq(N) case. Using the tensor ε we introduce the following basis:

θJoU] = θs°j,ε
ί'υ]

9 (4.19)

where the notation [ ] is the one introduced in (3.38).
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In this basis the left coaction is now

AL(θjo[j]) = Mjo

koM
jί

kl . . . MJN ' ̂  _ * ® θko[k] . (4.20)

The relation between the left and right multiplication is

(4.21)
with

{ ίo[ί] — a f io j'pi'[i]
/Ad Mfl — |Γ/V_1]| ! 6LΠjVAd i'jo ε

where we have used the definition of jP'1^ given in Eq. (3.42).
The value of this functional acting on the generators is

N-2

The structure of this equation can be seen more easily by the graphical
representation. See Fig. 7a.

2) SOq(N) case.
For SOq(N) we consider the basis

ffiιί2 = θiijCjί2. (4.24)
Then the coaction is given by

AL(θilh) = M^M'X'(g)^. (4.25)

The relation between the left and right multiplication is

where

= /V/V (4.27)

Using Eqs. (2.39), (3.55), and (3.56) we obtain

See also Fig. 7b.

O l N-l

f iiii . . i γ/fc \ ._ X. ̂
JAd J l j 2 \ - V 1 I I .XT

d / jι h

Fig. 7. The graphical representation of the value of the functionals /Ad: a SUq(N) case
corresponding to Eq. (4.23). b SOq(N) case corresponding to Eq. (4.28)
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Note that for SOq(N) the two bases rf+ή+j and rf-ή-j yield the same bico variant
bimodule. This is due to the following fact.

Consider the basis θ'ilί2 which is a linear combination of the second choice of
basis rf-ή-j'.

θfi^ = g^\k2r^ή_JC
Jk2. (4.29)

Then we can construct the bico variant bimodule ΓAd' using the basis θ'. For this
bimodule ΓAd' the relation between the left and right multiplication is given by the
same functional / as for the bimodule ΓAd, i.e.

^hh)θ'^, (4.30)

due to the relation (3.63). Therefore the two bimodules ΓAd and ΓAd' are equivalent.

5. Differential Calculus

In the differential calculus on the ordinary classical group G we can consider the
exterior derivative d as a map from the space of smooth functions over G onto the
space of the sections of the cotangent bundle C°°(T*(G)):

d:C"(G)-+C«>(T*(G)). (5.1)

In order to generalize the differential calculus to the quantum group j/ we
adopt this picture. As the algebra s/ corresponds to the algebra C°°(G) the
bicovariant bimodule over jtf corresponds to C°°(T*(G)). Since we want to
formulate the differential calculus which coincides with the one on the group
manifold in the limit g-»l, we take the ΓAd constructed in the previous section as
the bimodule of 1 -forms. Thus we introduce the exterior derivative d on the
quantum group as a map from the algebra <$# to the bicovariant bimodule ΓAd

following [Wor3]:

d:.«/-*ΓAd. (5.2)

We also require that the derivative d satisfies the Leibniz rule

Vα, ί? e <*/ : d(ab) = (da)b + a(db) . (5.3)

Therefore, once the bicovariant bimodule is defined it is rather straightforward
to develop the first order differential calculus on the quantum group. Since the first
order differential calculus has the same structure for SUq(N) and SOq(N) we
consider both cases simultaneously.

In this paper we are constructing the bicovariant differential calculus and
therefore the left and right coaction and the derivative d have to satisfy the
relations [Wor3]

, (5.4)

AR(da) = (d®id)A(a). (5.5)

Using the right invariant basis introduced in the previous section we can find an
explicit form of the exterior derivative which satisfies the above requirements, i.e.
Leibniz rule (5.3) and bico variance (5.4) and (5.5) as follows:

As already remarked the right invariant basis θ^ constructed in the previous
section is not an irreducible representation. Among its representations there is a
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singlet representation which is both left and right invariant. We denote this
element by X which is defined as

X = eloraβ
<°™, (5.6)

for SUq(N) and

X = Cili2θ^9 (5.7)

for SOq(N). The left in variance of X is apparent. This left right invariant element X
plays the role of the additional scalar element introduced in Woronowicz's
extended module.

We define the exterior derivative as

|_̂ ~, VKJ _ yo.v*' #ΛJ , W'*/

where Λ^εC is the normalization constant which will be defined later.
By this definition of the exterior derivative, the Leibniz rule is trivially satisfied.

It is also easy to show that the left and right coaction on da satisfies the properties
required in Eqs. (5.4) and (5.5) due to Eqs. (2.18) and (2.19).

As discussed by Woronowicz we also preserve the *-structure so that the
resulting calculus becomes a *-differential calculus. For example, for SUq(2)

X* = X, (5.9)

we take the normalization constant as pure imaginary:

Λ/-*=-ΛΛ (5.10)

In this way, with the appropriate choice of the normalization constant, we can
always achieve that the following relation holds

(dα)* = d(α*). (5.11)

Since the difference between the multiplication from the left and right is defined
by the bimodule structure the commutator on the right-hand side of Eq. (5.8) can
be evaluated in terms of the functional /Ad.

Right Invariant Vector Field. In order to obtain the concrete relation between the
derivative and the functional /Ad we introduce functionals χf

X ι : *f->C, (5.12)

where the suffix / denotes / = (i0, [/]) for SUq(N) and / = (il9 i2) for SOq(N). They are
defined as

1

for SUq(N) and

*/ = to* = ~^ (Chh /Ad jU2M2 ° K - C<ll2ε), (5.14)

for SOq(N).
Since the exterior derivative of a e j/9 da defined in Eq. (5.8) is an element of ΓAd,

it can be represented by using the right invariant basis θ1. It is rather
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straightforward to show that such a representation is given by

(5.15)

with the functional χ/ defined above.

Proof. We give the proof for the SUq(N) case. Using Eqs. (5.8) and (4.21) we can
show:

= - θ^\a * (βjblflε- βwα /Ad^;o[Λ o *)) . (5.16)

Comparing with Eq. (5.15) we obtain Eq. (5.13). Q.E.D.

For SOq(N) the proof is performed analogously.
Xj corresponds to a generalization of the right invariant vector field and defines

the derivative on the quantum group. Therefore denoting

P,α=(α*χ,), (5.17)

we can consider P7 as differential operators on the quantum group. These
differential operators satisfy the following generalized Leibniz rule:

F/{αfc}=(F/α)6 + (α*/Ad

J

/

0»c)(F'Jfe). (5.18)

In order to define the constant Jf let us compute the values of χI(Mk

l). These are
the derivatives of the matrix elements evaluated at unity:

-^s - (5.19)

Using the definition of the derivative we get for SUq(N)

v (Mk\— Π!/N(^~^ ) J * p & _U *\Nnl/N-Nsk „
XMJ](M ι)--Q — T; — 1 1 TJ εjow° l + \ ~ *> q όjoεi

JM (̂  |[_i\ J

and for SOq(N)

luίtf* = ̂ f^ (9l ~N^CJ2l-R- M'jlJ2Ck,) . (5.21)

We give the graphical representation of Eq. (5.21) in Fig. 8. In Fig. 9 we give also
the graphical representation of the Leibniz rule (5.18) for the SOq(N) case.

If we want to get nonzero values in the limit q -> 1 the normalization constant Jf
must be proportional to (q — q~l). Consequently we define

(5-22)

where the constant ^Γ0 has a nonzero value in the limit q-*l.
In the commutative differential calculus on the ordinary group manifold a basis

of the right invariant 1 -forms can be constructed with the entries of dUU~ * with
the matrix representation U. Thus to see further relations to the usual differential
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*

Fig. 8. The graphical representation of the differential operator when acting on the generator M^
for the SOq(N) case corresponding to Eq. (5.21)

k s k s

\ O
ji h l t Ji h

k s k s

-1

h

n
Ji h I i Ji J2 I t

Fig. 9. The graphical representation of the Leibniz rule (5.18). We only give here the derivative of
the product of the generators for the SOq(N) case

calculus on the group manifold it is instructive to consider the following new right
invariant basis S:

ffĵ dM^M'j). (5.23)

Using the definition of the derivative d the relation between the basis θlj and 9*7

can be easily found
9*, = ΘJ(M\ * χj)κ(Ml'ύ = β'χΛM*,) . (5.24)

Therefore the basis S is simply the linear transform over C of the basis θ.
Substituting the value of //(M^) in Eqs. (5.20) and (5.21) into Eq. (5.24) we get

the explicit formulas for SUq(N) and SOq(N), respectively.

1) SUq(N).

l XeW*ι+(-lf [JV-lJl^^θ**1, (5.25)
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2) SOq(N)

•^-ί-^^+ίί̂ -^-2)̂ 1* .̂
•"o (5.27)

Equation (5.26) shows that there exists the singlet component in the basis θ of
SUq(N) therefore in the differential calculus on SUq(N) the 1-form basis $ has also
JV2 components. The projector expansion given in Eq. (5.27) shows that the basis 8
also has N2 components for SOq(N).

In the limit q-+\ the components belonging to the adjoint representation
remain nonzero. On the other hand the additional components drop. Therefore $
coincides with the usual right invariant 1-form in the limit q-*\.

6. Higher Order Differential Form

6.1. Exterior Product

Automorphism σ. In this section, we define the higher order differential calculus
introducing a ^-deformed Λ -product and /?-forms. For this aim we consider the
freely generated algebra with the ® ̂ -product of the bimodule ΓAd:

Then we divide it by the ideals corresponding to the symmetric product in the limit
q-+\ keeping the bico variance. Therefore the basic operation to define the higher
order differential calculus is the bicovariant bimodule automorphism

(6.2)

such that V a, best and Vτ e Γf£ :

σ(aτb) = aσ(τ)b. (6.3)

This map σ generalizes the permutation operation to the case of the tensor product
of two bicovariant bimodules [Wor3].

We can find the bimodule automorphism σ which is bicovariant by using the
basis θ1 as

σ(α/® ̂ ΘJ) = ΘJ® ̂ ω1 . (6.4)

ω1 is the left invariant basis defined by

ωJ=κ(ΎJ

{)θr, (6.5)

where the indices /, J represent a set of indices / = (ϊ'0, [i]) for SUq(N), and / = (il9 /2)
for SOq(N). The matrix T^ is defined from the left coaction on θ1 as in Eq. (2.30):

For SUq(N) we get from Eq. (4.20),

T/ __ ΠΓioli] — Λ/f io Λ/f1'! , MiN~l, ύpjΊ'-JN-i
1 J- 1 -M M "M - N - 1 . . . - '
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and for SOq(N) from Eq. (4.25),

T^T' '^M'VM'V (6.7)

Due to the property (6.3) the map σ is then defined completely by the action on
the basis of Γ,fd

2 given in Eq. (6.4).
The bico variant symmetric and antisymmetric ® ̂ -product of two bimodules

are determined by this automorphism σ. The wedge product is defined by using the
antisymmetric ® ̂ -product of bimodules. Therefore it is necessary to analyze the
structure of this operator σ in detail.

Using Eqs. (6.3) and (6.5) the definition of σ (6.4) is

)θjt. (6.8)

From this we get

^J). (6.9)

This equation provides the matrix representation of σ on the basis θ1®^3.
Since this matrix representation is given in terms of a combination of the Rq matrix
it is easy to show that σ satisfies the Yang-Baxter equation

(id®σ23)(σ12(x)id)(id®σ23) = (σ12(x)id)(id®σ23)(σ12(8)id), (6.10)

where (id®^σ23) and (σ12®id) act on Γ^fd

3 and σ23 (σ12) acts on the second and
third (first and second) elements of the Γ d̂

3. (The relation of σ with the ^-matrix
has also been pointed out in [Rosso].)

As we expect, the property of the σ discussed above shows that it is a generalized
Rq matrix of the tensor representation corresponding to the right invariant basis
θ . Therefore to define the antisymmetric product defined by the operation σ we
must find the expansion of the matrix /A/rMT7/')) in terms of the projection
operators to the irreducible representations.

Using the matrix representation of the operator σ derived above we first
consider the characteristic equation satisfied by σ.

1) For SUq(N) the Rq matrix representation of σ in Eq. (6.9) gives

fr— { M/l (if(Mio , Mlί MiN~l
σ-J\d ϊ0[i'](K\M JOM h' 'M 1N

Using the Hecke relation

®lvι>®ίl\ι = («-«" Ww + δiδ{ , (6.12)

we obtain

(σ-id)(σ + <z2id)(<7 + <7-2id) = 0. (6.13)

In order to derive this equation we had to know the Rq matrix corresponding to
the conjugate of the fundamental representation, i.e. //,-. Since to analyze the
structure of the matrix σ in Eq. (6.1 1) we use the N—i rank antisymmetric tensor
ή[i\ We have to jntroduce the Rq matrix of the N — 1 rank antisymmetric tensor
representation Rq}{J\k][i] which is defined by

p p
j'ί'βk'[k]βl'[!]
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Jl Jn-l

W

[k](l] =

.,-.

Fig. 10. a The graphical representation of the βg matrix corresponding to the commutation of the
two (N— l)th rank antisymmetric tensor representations, b The Rq matrix corresponding to the
commutation of a fundamental representation and a (N — l)th rank antisymmetric tensor
representation. We use the wavy line to represent the N — 1 antisymmetrized lines

This can be represented by a product of (N — I)2 oϊR^kι which is given graphically
in Fig. lOa. χ

The factor in the definition of the matrix Rq is chosen such that it also satisfies
the Hecke relation:

The proof can be easily performed by using the Hecke relation (6.12) for R^kl.
We also have to introduce the Rq matrix for commuting the fundamental

representation and the (N — l)-rank antisymmetric representation:

and its inverse ^"^^^m The graphical representation of R[q}j

k[l] is also given in
Fig. lOb.

Using these quantities the matrix representation of the σ operation on the basis
θr®^θj in Eq. (6.11) can be represented as

f iofi]
/Ad joϋ

k°[*] Yi_ p-lfcoiό p-l[fc]io
ίoW" — -̂  joko^β iόtk'Λ U]ίoΛ4 [Π[/]

With this representation of σ in terms of Rq and /^ and the graphical
representation given in Fig. l la we can easily derive the characteristic equation
(6.13).

2) For SOq(N) the Rq matrix representation of σ in Eq. (6.9) is (see Fig. lib)

σ== Λ .JιJ2.l.,ίιcίMίl.'Mί2 Λ) = J?" l ί l k l , J^" lίz/1, i JRhίC2 ' • JR
ί2 /\ - (618)ϋ 7Ad in^V^V^1 Jιjvι J2// 9 iih^q kih^q i2ji^q k2j2 ' W 1";
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Fig. lla, b. The graphical representation of the σ: a The SUq(N) case given in Eq. (6.17). b The
SOq(N) case given in Eq. (6.18)

In this case the Rq matrix satisfies instead of (6.12)

((^-^l)(^ + ̂ -1l)(^-^-Λrl))^ = 03 (6.19)

where ¥*kl = d\fi{. Therefore we get the characteristic equation for σ of SOq(N)

(6.20)

Definition of p- Forms. The 2-form for the SUq(N) case has been defined by
Woronowicz as

(σ-id)] . (6.21)

This means that the basis of the 2-forms satisfies the following equation:

(σ + q2 id) (σ + q ~ 2 id) (0<'o[''] Λ θjoίj]) = 0 . (6.22)

On the other hand for SOq(N) from the structure of the characteristic Eq. (6.20)
we can read off that the definition of the symmetric ® ̂ -product is not simply
given by ker(σ— id). Since acting with the operators (σ — q±N) on θ®^θ also
reproduces a symmetric product in the limit g-»l. For the ^-deformed antisym-
metric product we have to impose the additional conditions that ker (σ — qN id) and
ker(σ — g~Nid) vanish. Consequently we define the Λ product in SOq(N):

Γ£d

2 = ΓAd®^ΓAd/[ker(σ - id), ker (σ - qN id), ker (σ - q ~N id)] . (6.23)

To define the space of p-forms ΓA/, we generalize the action of σ on the ith and
the (i + 1 )th component of Γf/ for i = 1 , . . ., p - 1 as

— f / ί+1 (v(Ύl1 \\fillfa fa ft1' fa QJ'— /Ad Γ\κ\l J'))U V9d>- WrfV Q9j^t/ (

Then we can define the space of p-forms by

P [ker(σίi+1 -id)] , (6.25)
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for SUq(N) and by

^AAdP = ̂ dP/"n [ker(σ,+1 -id),ker(σ l ί+,-qNid),ker(σ ί/+,-<T "id)],(6.26)

for SOq(N).

6.2. Exterior Derivative of p-Forms

The action of the exterior derivative d on sΛ can be generalized on p-forms as in the
usual differential calculus. Similar to the definition of the first order derivative in
Sect. 5 we define the exterior derivative acting on the p-form as the map

(6.27)

which is defined by VΩeΓA

Λ/:

where we introduced the graded commutator [•>•]+. Apparently the map d
defined above respects the bicovariance. It is also easy to show that the map d
satisfies for any elements Ω^eΓ^l and Ω2eΓ£/'

d(fl 1 Λfl 2 ) = (dί21)Λί22 + (-l) lΌ1Λ(d02), (6.29)

which is the Leibniz rule of the exterior derivative acting on the (p + p')-form.
Furthermore as we shall prove in the next section, the map d satisfies the

nilpotency:

d2 = 0. (6.30)

This completes the definition of the exterior derivative of the p-forms, since we
can calculate the graded commutator on the right-hand side of Eq. (6.28) using the
definition of the Λ -product given in Eqs. (6.25) and (6.26). However, practically it
is not so easy to perform these computations. In the next section we present the
explicit expression using the graphical representation. Then the Maurer-Cartan
equation and the structure constants are derived.

7. Maurer-Cartan Equation

7.1. SUq(N) Case

In order to analyze the structure of the Λ-product we^need the projector
expansion of σ. Due to the Hecke relation (6.12) the matrix Rq can be represented
by the projectors to the antisymmetric and symmetric representations.

Z^q&s-q-^A, (7.1)

with
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Fig. 12. The graphical representation of the projectors in Eq. (7.2)

where r = A, S. We also use the graphical representation of them (see Fig. 12).
Using the projector expansion of Rq and Rq we get

(7.3)
where

_D-l[ iUo
-

and R^wi is the one introduced in Eq. (6.16).
Here r, r' are either S or A. One can understand the structure of this operator

(̂ r, ̂ .') better through the graphical representation given in Fig. 1 3a. Especially it
is easy to see that each operator is a projector and they are orthogonal to each
other, i.e.

(7.5)

Then the conditions given in Eq. (6.25) are equivalent to set the following

— relations to zero:

(7.6)

ί0 I JO [j]

Fig. 13a, b. The graphical representation of the projectors of the tensor representation: a SUq(N)
case corresponding to Eq. (7.4). b SOq(N) case corresponding to Eq. (7.23)
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and

(&A, ̂ ^Mwηίβ**1® ̂ <°M) = 0 . (7.7)

To evaluate the exterior derivative using the definition (5.8) and (6.28) we
rewrite these relations in terms of the irreducible components.

For this purpose we introduce the following projectors

and

^Ad jolj] = (1 "~ y^X) ° JoU\)

where llo[n/oL/] is the identity matrix.
With these projectors we can decompose the right invariant basis θίo[/1 into the

irreducible components corresponding to a singlet

/ Ί \ Λ Γ - I

and the adjoint representation

] _ <^ίo[ί] α/oϋ]
— ̂

Then the relations (7.6) and (7.7) can be rewritten for these irreducible components
as

]) Λ (θfeP + W = 0 , (7.12)

where r is either S or A. The relations which contain the element X among the
N2(N2 + 1) Λ . ^ . ,
- - - relations can be written in a convenient form:

1) Applying 3PX to the indices i0p] andj'0[/] on the left-hand side of Eq. (7.12) we
get

XΛX = O. (7.13)

2) Applying &x on the indices i0[z] and ^Ad on ;0[/] on the left-hand side of
Eq. (7.12) we get after some tedious calculation:

X Λ ΘW + θ&β Λ X = (q - q - ̂ F^^ΘioU} Λ fljoj*] f (ΊΛ 4)

where

_ v - ι (7 '5)

IN]
and

fco[*]lΠfco -

The rest of the conditions gives the relation among the θffl Λ θffi such as

. (7.17)
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By using the above results we prove the nilpotency of the exterior derivative
defined in Eq. (6.28):

The first Eq. (7.13) means that

dX = 0, (7.18)

and consequently

= 0. (7.19)

The Maurer-Cartan equation can be formulated by using Eq. (7.14):

dβ'oW _ _ po[ί] A/Όϋ]ασAd — jy ΓjoL/]fco[fcrAd

Therefore the quantities f^L/ifcoW are t'le ̂ -analogues of the structure constants.
The graphical representation of these structure constants is given in Fig. 14.

6'o[i] = / %

Fig. 14. a The graphical representation of the projection operator to the adjoint representation
given in Eq. (7.9). b The graphical representation of είo - { ] V _ 1 using the wavy line for N — 1 lines
corresponding to the indices [G = {ii...i^-i}- c We give the graphical representation of the
structure constants of SUq(N) using the graphical representations in a, b
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Applying the exterior derivative on both sides of Eq. (7.20) we get the
g-deformed Jacobi identity of the structure constants:

7.2. SOq(N) Case

For the case of SOq(N) we use the projection operators introduced in Eq. (3.46).
Then we get the projector expansion of the σ matrix in Eq. (6.18):

^
-q~\^s^A)-q^A^s)-qN'\^^A)-q2'N(^^) (7.22)

with

(OΆ (ft \ίιί2JιJ2 _ D - U 2 J i άpiiji (φhh Όl'\k'2
\yf

r9J
fr') kfalih-Kq fii^r fei/Ί^r' k2l'2

Kq k2lι '

where r, r' = S, A or 1, respectively. Note that as in the SUq(N) case, all the terms of
Eq. (7.22) are projectors orthogonal to each other:

(̂ ^M^ u^ .̂̂ ^ (7.24)

This can be proven easily using the graphical representation of these operators
given in Fig. 13b.

Then the conditions given in Eq. (6.25) are equivalent to the following
N2(N2 + 1)
- - - relations:

(^^r)
ll<^1Jk2ιll2(flkl*a®J/βIlla) = 0, (7.25)

with r = S, A, 1 and

(OP dp \iihj i J2 (ftkiki(9\ ftlll2\ — 0 Π Ί£\\—

We also decompose the right invariant basis into the irreducible components
using the projection operator 3Pr with r = A, S, 1 as

where

f)ilΪ2 _ ^)ilί2 . . QJ1J2
ΌA ~^A jj2σ '

ΩίιΪ2 — έ&ίih ΩJ1J2
US — Ά jiji^ '

and

= Q^C^X, (7.31)

3fi+sl3.
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To write down the Maurer-Cartan equation we again substitute the decompo-
sition (7.28) into Eqs. (7.25)-(7 27). We list here some of the essential relations in
these bases.

1) Applying ̂  on the indices i±i2 andjJ2

 on the left-hand side of Eq. (7.25) we get

X Λ X - O , (7.32)

Ckίl2Ck2ll(θk

A^Aθl^) = 0, (7.33)

CWaCWl(βS1*aAβ& l2) = 0. (7.34)

2) Applying the antisymmetrizer βPA on the indices ivi2 and ̂  onjJ2 of Eq. (7.25)
we get

ΘT Λ X + X Λ ΘT = (q-q-l}^P^2kίkϊ(θ^ Λ 0*'*'). (7-35)

where Jf t is a g dependent constant

The structure constants F^fa^ are given by

3) Applying the symmetrizer ̂ s on the indices 1^2 and ̂ \ onjJ2 of Eq. (7.25) we
get

(7.38)

where the constant JΓ2 is

[ r T lί2

1 are given by
Γ2r3jjιMιλ2

Γ r Ίl'lί2

/7 1 — ΰϋi\.i2 , , ΰύi'ύ'ϊ <3ϋk\ί'2
r r ~ rι ίiίz^ JijaΆa

L r2 r3jju2kιfc2

|
Lr2r3j

where r1? r2, and r3 stand for the representations A or S. The tensors G are
Lr2r3j

the ^-analogue of the Clebsch-Gordon coefficient of the fusion of two represen-
tations: r2®r3->r1. The structure constants F in Eq. (7.37) are equivalent to

<MΓUJG . [See also Fig. 15.]
[_AA_\
We also get the following relations
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\ Tl Γ =
]~r2r3lj1j2kίk2

Jl J2

Fig. 15. The graphical representation of the constants G in Eq. (7.40), where rlt r2, and r3

are either A or S. The structure constants of SOJN) are given by G
I Av4

and

(7.42)

The first relation (7.32) proves the nilpotency of the exterior derivative defined
in Eq. (6.28) analogously to (7.19). The Maurer-Cartan equation can be read off
from Eq. (7.35). Using the definition (6.28) we get

From Eq. (7.38) we also get the exterior derivative of the bases θs,

(7.44)

Knowing the explicit form of the Maurer-Cartan equations we can also
investigate the structure of the algebra of the differential operators χf defined in
Eqs. (5.13) and (5.14). Then we get the definitions of the g-analogue of Lie brackets
for SUq(N) and SOq(N). Due to the result of Sect. 3.3, these algebras of χ, give
different formulations of the ^-analogue of the universal enveloping algebras
which is now under investigation.
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