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Abstract. Following Woronowicz's proposal the bicovariant differential calculus
on the quantum groups SUq(N) and SOq(N) is constructed. A systematic
construction of bicovariant bimodules by using the Rq matrix is presented. The
relation between the Hopf algebras generated by the linear functional relating the
left and right multiplication of these bicovariant bimodules, and the g-deformed
universal enveloping algebras is given. Imposing the conditions of bicovariance
and consistency with the quantum group structure the differential algebras and
exterior derivatives are defined. As an application the Maurer-Cartan equations
and the ^-analogue of the structure constants are formulated.

1. Introduction

Recently a class of non-commutative non-cocommutative Hopf algebra has been
found in the investigations of the integrable systems. These Hopf algebras are
<?-deformed function algebras of classical groups. This structure is called "quantum
group" [Dri].

The structure of the quantum groups suggests the possibility of investigating a
geometry where we can even consider discarding the commutativity of the algebra
of coordinate functions. It is interesting to ask whether one can find applications of
this new class of symmetry to some physical systems other than the integrable
models.

Following this idea, the first step one has to make is to provide the appropriate
tools for this investigation. To this end we take the usual application of the group
theory as a guiding principle for the generalization of the g-deformed quantities.
This is also useful since in the limit q-*l we wish to reproduce the results obtained
in the ordinary classical group case.
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In this paper we formulate the differential calculus on quantum groups to
investigate their geometrical aspects. This also gives an example of the non-
commutative geometry. The framework of such a non-commutative differential
calculus has been developed by Woronowicz following the general ideas of Connes
[Connes]. In a series of papers, introducing the bimodule over the quantum group
various theorems concerning the differential forms and exterior derivatives were
presented. Generalizations of the construction of bicovariant bimodules to other
quantum groups are also investigated in [Rosso]. However, the concrete
constructions of the differential calculus must still be developed. For the SUq(2)
case, two types of differential calculi called 3D [Worl] which is not bicovariant
and the bicovariant 4D+ calculus [Wor3, Stach, PW, Weich] have been given.
[The 3D calculus has been extended to the case of GLq(\\V) [SVZ] and GLp q(2)
[SWZ].]

In [Wor3] the author presented the bicovariant differential calculus for
quantum groups where the differential forms transform under both left and right
transformations covariantly. This is a natural g-deformation of the differential
calculus on classical groups.

The aim of this paper is to develop the concrete bicovariant differential calculus
for various other known quantum groups following Woronowicz's programme in
[Wor3] applying the formulation of the quantum groups proposed by Faddeev et
al. [FRT, Takh].

The paper is organized as follows. In Sect. 2 we introduce briefly the quantum
groups and the concept of bicovariant bimodules following Woronowicz to
establish our notations. In Sect. 3 we construct the fundamental bicovariant
bimodules which provide the building block for constructing any bicovariant
bimodules. We also show that the algebras of the functionals defining the relation
between the left and right multiplication are equivalent to the universal enveloping
algebras. The bicovariant bimodule including the adjoint representation is
constructed in Sect. 4. In Sect. 5 using the result of Sect. 4, we construct the first
order differential calculus using the idea of the extended module of [Worl, Wor3].
In Sect. 6 the higher order differential calculus is constructed. As an application in
Sect. 7 we write down the ^-analogue of the Maurer-Cartan equation and the
structure constants.

2. Quantum Groups and Bicovariant Bimodule

In this section we introduce briefly some necessary concepts in order to formulate
the differential calculus on the quantum groups.

2.1. Quantum Groups

The quantum group ̂  is a non-commutative non-cocommutative Hopf algebra
generated by JV2 elements Mi

j (ij= 1, ..., AT). The algebra si has a unit element
which we denote by 1. The coalgebra of the quantum group is defined by the
following maps.

The coproduct A of the quantum groups, a multiplicative algebra homomor-
phism A : j/-»j/®j/, is defined for the generators M} as

y (2.1)

where the summation over repeated indices k runs from 1 to N.
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The antipode (coin verse) K of jtf is a linear antimultiplicative map κ\st-*$i
which is defined for the generators by

δi

jl. (2.2)

The counit ε, an algebra homomorphism ε : d ->C, is defined for the generators
aS ε(M<><$<7, (2.3)

These maps defining the coalgebra on ̂  satisfy the standard axioms of a Hopf
algebra [Abe].

The quantum groups are a class of Hopf algebras obtained by the ^-de-
formation of the algebra Fun(G), the algebra of the functions on the group G.
[Strictly speaking it is developed on the polynomials of the generators Ml

j9 a
subset of C°°(G).]

In these algebras the non-commutativity is controlled by the Rq matrix which is
a solution of the Yang-Baxter equation

^ΛVr*fW' = *ft A*' i r^r r

The commutation relation between the generators M^ is then given by

Rίj , ,Mj v,Mί'.,, = Mί.,M /'./K ί' 7'' .„.„ (2 5ΪN?/ί j 1V± i 1VJ i11 jιxq j i ' \^ J)

In this paper we consider mainly the quantum groups SUq(N) and SOq(N)
which were introduced with the help of Rq matrices [FRT, Takh, Rosso], and the
parameter of the deformation, q is in general a positive real number.

The SUq(N) is a ^-deformed Fun(Sl/(JV)) and its generators satisfy the
unimodularity condition

detM = l . (2.6)

We also consider the quantum group SOq(N). The SOq(N) is a ^-deformed
Fun(SO(N)) and instead of the unimodularity condition (2.6) the generators Mlj
satisfy the orthogonality condition

CyMVMV = CίT, (2.7)

where Ctj is an N x N matrix corresponding to the metric.
Furthermore in order to define these quantum groups we have to consider the

*-structure [Wor2]. The *-structure is defined by an antilinear ^-operation:

(2.8)

such that Vα, bestf and V A e C :

(Aαft)* = A*6*α*, (2.9)

ιc(φ*)*) = α, (2.10)

where A* is the complex conjugate of λ. The coproduct and counit are
*-homomorphisms. We call the Hopf algebra with *-structure a *-Hopf algebra.

The conjugated element is denoted as

(Mij)* = M*ί

j = Mυ

i. (2.11)

Note that we introduce the Mf in order to keep the manifest covariance as in the
commuting case, i.e. a lower suffix transforms as a co variant and an upper index as
a contravariant quantity.
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Then the unitarity condition is represented as

M^ — ̂ M^. (2.12)

The *-operation is a generalization of the complex conjugation. Therefore it is
convenient to consider the bigger algebra generated by M1

7 and M fί

7 with the
commutation relations (2.5) and

'kl , (2.1 3)

and

^kΊM^,Mk'k = MW'Wu. , (2.14)

or

R- ίί'\.lM^ί,M
k\ = MWfc lij'u, . (2.15)

Then the unitarity condition reduces the bigger algebra to the original stf. The
commutation relations (2.13)-(2.15) are simply defined so that they are equivalent
to (2.5) when one substitutes the unitarity condition (2.12).

2.2. Bicovariant Bimodule

The differential 1 -forms on a Lie group manifold are sections of the cotangent
bundle. The space of all sections on the cotangent bundle C°°(T*(G)) is a bimodule
over C°°(G). On this space there is a natural action of the group G which is
expressed by the coaction of C°°(G) in the Hopf algebra terminology. In order to
construct the differential calculus on the quantum groups we employ these
algebraic structures. Therefore we introduce the bimodule-bicomodule over jtf.
We consider here especially the case that those bimodule-bicomodules are
bico variant, i.e. bico variant bimodules over j/ [Wor3].

On the bico variant bimodule Γ there exist left coaction ΔL and right coation ΔR

of j/

(2.16)

(2.17)

Following the general definition of the bicovariant bimodule [Definitions 2.1-2.3
in [Wor3]] we require that the coactions have the following properties:

After identifying coactions and coproduct on $# the coactions are bimodule
homomorphisms

) = A(a)AL(ρ)A(b), (2.18)

) = Δ(a)ΔR(ρ)Δ(b), (2.19)

and they satisfy

(ε<g)idμL(ρ)=ρ, (2.20)

(id®ε)zlR(ρ) = ρ. (2.21)

Furthermore we require that the left coaction and the right coaction commute:

. (2.22)
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We call an element ρ e Γ left invariant if

(2.23)

and right invariant if

AR(ρ) = ρ<8)l, (2.24)

where 1 is the unit of the algebra s/.
The *-structure in the algebra si can be extended to the bicovariant bimodule Γ

in a natural way. There exists a unique antilinear antimultiplicative map [Wor3] :

(2.25)

such that Vα, b e j t f :

(aρb)* = b*ρ*a*. (2.26)

The * -operation commutes with the coactions

ΔL(Q)*=ΔL(Q*}> (2.27)
AR(ρ)* = AR(ρ*). (2.28)

In any bicovariant bimodule, one can find a linear right invariant subspace Γinv.
Let the basis of this subspace be ηJeΓinv. Then any element ρeΓ can be
represented in the form

ρ = Σ < V f J > (2-29)
/

where the index J runs over all elements of the right invariant basis and the
elements ase^ are determined uniquely (Theorem 2.3 in [Wor3]).

The left coaction on right invariant elements is defined by

4L(ι/J) = T/

J(8)ιjJ, (2.30)

where T/

JEJ/ is uniquely determined when we fix the basis ηj. Note that
throughout this paper we use the upper case indices such as /, J, K to distinguish
the right invariant basis and we also abbreviate the summation symbol over upper
case indices if it is apparent.

The left invariant basis ωj E Γ can be introduced as

ωJ = κ(ΎJ

κ)ηκ, (2.31)

with the TJj being the matrix defined in Eq. (2.30). It is easy to confirm that ωj is
left invariant using the above definitions. The ωj form the left invariant basis of Γ
since any element of Γ can be represented as in Eq. (2.29). The right coaction on ωj

is given by

ΔR(ωJ) = ωκ®κ(ΊJ

κ) . (2.32)

The bicovariant bimodule is characterized by the following functional which
relate the right multiplication to the left multiplication of α 6 js/ on ρeΓ.

Let ηj be the basis of the right invariant subspace Γinv, there exist linear
functional //

J,

(2.33)
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such that Vα, 6ej/:

η'9 (2.34)

κ)> (235)
J

where the indices J, J run over the full basis of right invariant elements. The
convolution product of an element α e si and a functional / is defined as [Wor3] :

(2.36)
s

where A(ά)= £ α^®^.

The functional introduced above satisfy Vα,

(^fκ

J(b), (137)

and

/'ΛIH SV (2.38)

The main problem of the explicit construction of the differential calculus is
therefore to find the explicit form of the f1 j. The functional f*j introduced above
are elements of the linear functionals on Ja/, Hom(j3f, C). In Hom(j/, C), one can
define a product, the convolution product [Wor3]: for two functionals /ls

/2 e Hom(j2/, C) and aejtf

/ι*/2Wst/i®/2)J(Λ). (2.39)

Definition. j/' is the unital Oalgebra generated by the functionals fl

3 with the
convolution product (2.39).

The Hopf algebra structure of si induces a Hopf algebra structure on si1. From
Eqs. (2.37) and (2.38) we can read off how the coproduct Δ' and the counit εx of stf'
are acting on the functionals f1/.

)=fIκ®fKj, (2.40)

*(/J/) = *V (2.41)

We can also prove that they satisfy Vαej/:

Σ/V(/V^)=4Φ), (2.42)
j

and therefore the antipode κr of the algebra si1 is

κ'(/',H/Vκ. (2.43)

This means that the functionals f * j are a special set of elements of j/r such that
their coproducts are represented by matrix multiplication and the antipode is
given by the inverse of the matrix.

Since si is a *-Hopf algebra, one of the important properties of the algebra si' is
that one can find an induced ^-structure:

Proposition 1. Let χe<si'. Define the ^-operation of j/' as

)}*. (2.44)
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Then this *-operation in stf' is an antimultiplicative involution and satisfies

*cWn = *. (2.45)

Proof. 1) The operation is an involution of jtf' since for all elements αεa/ it
satisfies:

(**)*(«)= {**(«(«*)))*
= χ(fc(φ*)*))

= χ(α). (2.46)

2) The operation is antimultiplicative: Let ξ, χesf', then

(χ *£)*(«)= {(χ*£)(Φ*))}*

= (ξ**χ*)(«), (2-47)
where

3) The coproduct Δ' commutes with the ^-operation: For any element α,

Λ'ω*(α®ί>), (2.48)

where 4'(χ)=
S

4) Equation (2.45) can be shown using Eq. (2.10):

= χ(κ;(κ:(α*)*)) = χ(α). Q.E.D. (2.49)
From this it follows that

(X°ιc-1)* = χ * o κ . (2.50)

In the following section we explicitly construct the functionals flj for various
bicovariant bimodules. Given the definitions above we write down the defining
conditions for /Jj.

Condition ί. Bico variance: The bicovariance of Eq. (2.34) requires that the
functionals fl

3 must satisfy

AR(η')Δ(b)= Σ AWJΔ^rft, (2.51)

I

J)ΔL(rf). (2.52)
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By the definition of the convolution product b *fl

3 the right co variance (2.51) is
trivially satisfied. The condition for fl

3 required from the left covariance is
obtained by the following considerations:

In order to define the functionals fl

3 it is sufficient to define the values of
/^APj), i.e. when its argument is a generator. Therefore in Eq. (2.34) we take the
element b = M ̂  Using the definition of the convolution product we get

MV. (2.53)

The left coaction on the left-hand side of Eq. (2.53) gives

Mm

in

K . (2.54)

The left coaction of the right-hand side gives

= fI

J(Mk

n)(Mn

mΎJ

κ®Mm

lη
κ). (2.55)

The condition (2.52) requires that (2.54) and (2.55) are equivalent. Therefore
comparing these two equations, we get an equation for /J

J(Mί

J ):

^IjM\fJ

κ(M\} = fI

J(M\}Mn

mΊJ

κ. (2.56)

(This is the analogue to the Eq. (2.39) in [Wor3].)

Condition 2. Consistency with the quantum group relations:

a) The consistency with the commutation relations of the generators M^ given in
Eq. (2.5) leads to the following condition:

r) *f*κ}ηK ' (157)

The left-hand side is zero due to Eq. (2.5). The right-hand side is obtained by using
the commutation relations (2.34). Because of the uniqueness of the expansion of
Eq. (2.29) the coefficients on the right-hand side have to vanish. This leads to

b) Other quantum group relations such as the unimodularity (2.6) or orthogo-
nality (2.7) must also be compatible with the bimodule structure.

3. Fundamental Bimodule of SUq(N) and SOq(N)

The construction of the bicovariant bimodule can be performed in an analogous
way to the construction of the representations of classical groups. In this section
we construct the fundamental bicovariant bimodules ofSUq(N) and SOq(N). They
are the analogues to the sections in the bundles of the fundamental representations
over the groups SU(N) or SO(N). Other bicovariant bimodules can be constructed
using them as building blocks.
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3.1. Fundamental Bimodule of SUq(N)

We use the Rq matrix for the SUq(N) given in [FRT]. As for our convention see
[CSSW]. The commutation relations of the generators M^ are given in Eq. (2.5).
Another condition for the SUq(N) is the unitarity which is formulated by using the ε
tensor, the g-deformed antisymmetric tensor. Since we need some properties of this
antisymmetric tensor for the construction of the bimodule we first give its
definition and its relation to the Rq matrix. For later discussion we also introduce
the graphical representation which clarifies the relation to the braid group.

The definition of the Nih rank antisymmetric tensor ε is

JV(JV-l)

ε f l... i N = <? 4 (~<if(a\ (3.1)

where σ denotes the permutation of the suffices (z'1?..., iN) = σ(l, 2,..., N) and £(σ) is
the minimal number of inversions in the permutation σ [Dri, Wor4]. The overall
constant is chosen such that the formulas below become simple. To keep the
manifest covariance we also introduce the ε tensor with upper indices as:

JV(JV-l)

^•••^ = (-lf-^ 4 χ(__^(σ). (3>2)

In Fig. 1 we gave the graphical representation of these fundamental quantities
[Res, Wor4].

Rijki =

X

Fig. la-e. Thegraphicaj^ representation of the basic quantities oϊSUq(N). a The unit operator, b, c
the matrices β%kl and R~lίj

kb d, e the ε-tensors ε1'1 •••''* and ε f l ίjv defined in Eqs. (3.1) and (3.2)
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Fig. 2. The graphical representation of the relations among the Rq matrix and the ε-tensor. The
multiplications of the Rq matrices and the ε-tensors are represented by drawing the diagrams one
below the other and connecting the lines corresponding to the indices which are summed

Some important properties for the construction of the modules are

i2k2
isks q

(see Fig. 2) and

,̂ is the projector to the Ith order antisymmetric tensor representation (see Fig. 3)
and

1]... ίl], (3.6)

(3.7)

with the definition of the ^-number [x]

<?-q-*

q-q

Especially the projection operator to the second rank antisymmetric tensor &2

and the one to the second rank symmetric tensor play an important role in the

.

Jl J l

Fig. 3. The graphical representation of the projection operator for the /th rank antisymmetric
tensor representation ^ in Eq. (3.5). We write the [Γ| at the intermediate line to express the
corresponding representation


