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Abstract. Fock space representations of affine Lie algebras are studied. Explicit
forms of correction terms adding to the currents Ft (z) are determined. It is proved
that the Sugawara energy-momentum tensor on the Fock spaces is quadratic
in free bosons. Furthermore, screening operators are constructed. This implies
the existence of generalized hypergeometric integrals satisfying the Knizhnik-
Zamolodchikov equation.
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Introduction

Studies of integral representations in conformal field theories are initiated in
[DF1,2]. Following the earlier paper [FeFul, 2], Dotsenko and Fateev found that
conformal blocks in the minimal models introduced in [BPZ] can be represented
by generalized hypergeometric integrals. (Throughout the present paper, conformal
blocks are those in genus 0.) The paper [TK1] is closely related to this result.
Recently, Felder [Fel] has constructed Fock space resolutions of irreducible
representations of the Virasoro algebra and made the physical argument in
[DF1,2] precise. His work is also based on the very deep results in [FeFul, 2]
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on representations of the Virasoro algebra. The above studies start from the
existence of Fock space representations and screening operators for the Virasoro
algebra. In the Wess-Zumino-Witten models, the following problems are funda-
mental for integral representations:

(a) Construction of Fock space representations of affine Lie algebras.
(b) Realization, by free bosonic fields, of the Sugawara energy-momentum tensor
on the Fock spaces.
(c) Construction of screening operators.
(d) Construction of generalized hypergeometric integrals satisfying the Knizhnik-
Zamolodchikov equations.

In [KZ], the Knizhnik-Zamolodchikov (KZ, for short) equations are obtained
by rewriting the Sugawara construction of an energy-momentum tensor in the
setting of conformal field theory. This is the reason why it is necessary to consider
the problem (b). It is widely known that appropriate solutions to the first three
problems lead to that of (d) by standard deduction. In the present paper, we solve
these problems for the affine Lie algebra attached to an arbitrary simple Lie
algebra.

We shall now briefly review some known results about integral representations
in the Wess-Zumino-Witten (WZW, for short) models. For the first time, in [CF],
Christe and Flume succeeded in writing down certain integrals satisfying the sl2

KZ equations for four point functions. The integrals in [CF] are the special cases
of the generalized hypergeometric functions studied in the pioneering works [Al, 2]
and [VGZ]. This part has been recently generalized in [DJMM, Mat and SV].
The case for sl2 N point functions has been obtained in [DJMM] and the case
for sln N point functions in [Mat]. In [SV], Schechtman and Varchenko have
succeeded in constructing generalized hypergeometric integrals satisfying the KZ
equations attached to arbitrary Kac-Moody algebras as well as arbitrary simple
Lie algebras. These results are obtained without Fock space representations of
affine Lie algebras, which are treated in the following studies. Fock space represen-
tations of s/2^were constructed by Wakimoto [W]. Constructing screening
operators for s/2, Marshakov [Mar] has given another proof of the results in
[CF]. Fock space representations of sp2 = $°5 as well as of sln are constructed in
[GMMOS]. Recently, in the remarkable papers [FeFrl,2], Feigin and Frenkel
have proved the existence of Fock space representations of arbitrary affine Lie
algebras. In particular, for s/π, they have explicitly constructed Fock space
representations and screening operators. Note that, using this, we can also solve
the problem (b) for sln. Hence the results in [Mar] and [FeFrl,2] imply those
in [DJMM] and [Mat], respectively. Fock space resolutions of irreducible repre-
sentations of affine Lie algebras are treated in [BF, FeFrl,2 and BMP]. These
are related to integral representations in higher genus Riemann surfaces and
quantum group structures in the conformal field theory. However, these parts are
not treated in the present paper.

As mentioned above, the problem (a) has been already solved in [FeFrl,2].
However, in order to solve the other problems (b), (c) and (d), we need more precise
analysis of Fock space representations of affine Lie algebras. The most important
points are the following:
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(i) Explicit expressions of current operators by free bosons will be very complicated
in general. Avoid direct computations using them. Manipulate only general relations
obtained by general arguments.
(ii) In all steps, treat not only an affine Lie algebra but also the Virasoro algebra
simultaneously.

Of course, (i) is important for finding what is essential. Under the treatment (ii),
we can also use the same method in [FeFrl, 2]. Thus we can construct Fock space
representations of the affine-Virasoro algebras attached to simple Lie algebras.
However (ii) is crucial for our argument. Because the Virasoro algebra is very
useful not only for solving the problems (b) and (c) but also for determining the
explicit expressions of correction terms for current operators.

In the present paper, for simplicity, if we say A is an algebra or a vector space,
then A is one over the field C of complex numbers. However, all the results,
in the present paper, except for those about integral representations also hold
over an arbitrary field of characteristic zero. We shall often use the notation
IN = {0,1,2,...} and Z = {0, ± 1, ±2,...}. We denote by £/(α) the universal
enveloping algebra of a Lie algebra α.

0.1. First we shall prepare the notation of a simple Lie algebra and its represen-
tations. Let g be a finite dimensional simple Lie algebra, {Hi,Ei,Fi\i = l,...,r} its
Chevalley generators, and {α l 5...,α r} the set of simple roots of g. Let t),n+ and
n_ denote the subalgebras of g generated by {//J, {Ej and {Fj, respectively. Put
b± equal to the subalgebras ί)® n± of g. Let λ be a Lie algebra homomorphism
from b_ to the 1-dimensional Abelian Lie algebra (C. The set of all such A's can
be identified with the dual vector space fy* of fy. We identify I) and ί)* by the Killing
form ( | ) of g. Denote by G the algebraic group corresponding to g and let B±

and ΛΓ+ be the subgroups of G corresponding to b± and n±, respectively. Denote by
F the flag manifold β_\G and put o = B.eF. Let Δ+ ={βί9...,βs} be the set of
positive roots of g and {eα |αeZi + } a root basis of n + . Then we have the isomorphism
/from Cs onto the open cell oN + in F defined by (za)oceΔ+1—>o Qxp(Zβleβl) exp(z^se^s).
Denote by x = (xΛ)ΛeΔ + the coordinate system of oN + given by the inverse of/.
Thus the structure ring of oN + is identified with the polynomial algebra <C[x].
Let Rλ be the left representation of g given by the right infinitesimal action of
g on oN + and the character λ. We use the notation MJ for the left g-module
(€[>], Rλ). (In the Sect. 1, we shall denote by vλ the element 1 in M* = C[x]). We
remark that Fock space representations of affine Lie algebras will be defined as
an afβnization of MJ. It is easy to show that MJ is isomorphic to the dual of the
right Verma module M\ of g. Therefore, if we put λ = λl + λ2 for λί9 A2eί)*, then
we have a canonical g-homomorphism from MJt ® MJ2 to MJ. An affinization of
this homomorphism is nothing but the bosonic vertex operator. For A'eg, we
can represent Rλ(X) by a differential operator R(Xm, x, dx9 λ) of first order, where

we set dx = ( — 1 . Then R(X;x,dx9λ) is a polynomial in (λ(Hί))r

i=1, as well as
\dxJ*eΔ+

in X9 x and dx. We define a left action of N+ on oN+ by n-(oa) = ona for α, neN + .
This action defines another left representation S of n+ on <C[x]. Similarly, for
Xen + 9 we can represent S(X) by a polynomial vector field S ( X ; x 9 d x ) in x. We
shall define screening operators as affmizations of S(Ei) for i = 1,..., r.
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0.2. Next let us introduce free bosonic fields and Fock spaces. Fix a non-zero
complex number K. We shall introduce an algebra si = ̂ κ as follows. Let j/ be
the algebra with generators

{xMδΛlmlPilm-]\meZ,otEΔ+J=l...,r} (0.1)

and the following commutation relations:

il.0, (0.2)

and other commutators are trivial. Define j/ as a certain Z-graded topological
algebra including #/ as a dense subalgebra. (For detail, see Sect. 2.) Formally we put

xβ(z):= Σ *"mx.lX|, 5β(z):= Σ ^""^.IM
meZ meZ (0.3)

Λ(z):= Σ z~w"1Pi[«].
meZ

which are called bosonic free fields or free bosons. For //el), writing H in the form
r r

Σ flfHi for some αt 6C, we put p(H',z):= Σ #iPi(2) and define p[//;m] by the
i = l ί = l

expansion p(//; z) = Σ z~ m ~ xp[//; w]. Let /I be in f)*. The Fock space ̂ λ is defined
meZ

as a left ^-module generated by |A> with the following properties:

m] |A>=0 for m > 0 and i=l , . . . , r ,

=0 for m>0, n ^ O and αe4 + . (0.4)

These conditions uniquely determine 3Fλ up to isomorphisms. Furthermore stf
naturally acts on 3Fλ.

0.3. Under the above preparation, let us construct Fock space representations of
affϊne Lie algebras. In general, we denote by Lα the loop Lie algebra attached to
a Lie algebra α defined by Lα:= oOCCtjί" 1]. We denote by b the Lie algebra

C^f"1]— of polynomial vector fields on the circle. Then we have the natural
at

semi-direct product Lα 0 b as a Lie algebra. We define the affine- Virasoro algebra
g 0 Vir attached to g as the central extension of Lg © b by C/C © CC with the
following relations:

IX® /, y ® g] = [X, 7] ®fg + (X| Y)Re*(f'gdt)K9 (0.5-1)

/— ,X®^ = 0 for X,reg, and /^eC^ί"1], (0.5-3)

where the prime ' denotes the derivation with respect to t. An eigenvalue of K
(respectively C) on a representation space is called a level (respectively a central
charge). Now we shall define current operators and an energy-momentum tensor.
Roughly speaking, the current operator attached to XGQ shall be defined by a
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substitution of x(z) = (xα(z))αe4 + , δ(z) = (δa(z))ΛeΔ + and p(z) = (Pi(z))ϊ= v for x, dx and
λ in R(X;x,dx,λ). Denote by {ΛK=ι the dual basis of (#J =1. Put 2p\= £ α

αeJ +

For brevity, we often denote by dA(z) the derivation of A(z) with respect to z.
Formally we put

X(z):=:R(X',x(z)9δ(z),p(z)): for X = Hi9Ei and i = l , . . . , r , (0.6)

F,.(z): = :R(Ft; x(z\ δ(z\ p(z))\ + γ.dx^z) for i = 1, . . . , r, (0.7)

1 Γ r

— ' (o.s)

where | | denotes a certain normal product (see Sect. 2) and {7i}'=1 is a set of
constants which will be fixed in the following theorem. For X = Hh Eh Fi9 the
operator X(z) is called the current operator attached to X and T(z) is called the
energy-momentum tensor written by free bosons. Then we can define X[rn]ej/
for X = H i 9 E ί 9 F i and Lmej/ by the following formal expansions:

X(z)=Σz~m~lχW and T(z)=Σz-»-2Lm. (0.9)
meZ meZ

Theorem A (Theorem 4.1, Proposition 4.2). There is a unique^set (yj' = 1 of constants
such that the Lie algebra homomorphism from g©Vir to j/ can be defined by the
following:

yh-*-Lm,
at

/ A' (° 10)

/cdimg

= Hί5 £j, Ff, meZ, and g* denotes the dual Coxeter number of g. Moreover
the vector \λye^λ satisfies the highest weight condition for g©Vir:

H i[0]|λ>=(λ|H ί)|λ>, L0\λy = Δλ\λ), ,

Lm\λy = Q for X = Hi,EhFi and m > 0, ( * J

where Δ λ : - (2κ) ~ 1 (λ \λ -f 2p). Π

Denote by π the Lie algebra homomorphism given by this theorem. Then we have
a family {(^λ,n)}λel)* of left g φ Vir-modules, which are called the Fock space
representations of the affine-Virasoro algebra. (Explicit expressions of the constants
{yt}'=1 will be given in Remark 4.3.) As mentioned earlier, the existence of Fock
space representations of g has been already obtained in [FeFrl,2]. However, in
[FeFrl,2], the explicit expressions of the current operators are described only for
g = sln. In order to determine the correction terms for F^z] by yfdxαι(z), we shall
use the Virasoro operators {Lw}meZ (see the proof of Proposition 4.2). Let Θ be
the closed subalgebra of j/ topologically generated by {xα[w]|αezl + ,we2£}. For
the proof of Theorem A, we shall need certain results about the Lie algebra
cohomology of Lg 0 b with coefficients in Θ in order to follow the method in
[FeFrl,2]. However, in the present paper, we shall not deal with the result Lie
algebra cohomology itself. Instead we shall introduce a certain subcomplex of the
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standard complex so that the homotopy operator η in the proof of Lemma 3.2
will be well-defined.

0.4. A solution to the problem (b) is stated as follows. For any ^eg, put X\rn]\=
n(X®tm] and X(z):= Σ ^"m~1^M Let {Jp}d™? be an orthonormal basis of g

meZ

with respect to the Killing form. The Sugawara energy-momentum tensor TSUG(z)
is defined by

ι dim g

TSUG(z):=- Σ lJp(z)J*(z)l, (0.12)

where ° ° denotes a normal product for currents (see Subsect. 4.4). We write the
expansion of this in the form ΓSUG(z) = Σ z ~ m ~ 2 L™G. Then L^UG is well-defined as

meZ

an operator acting on the Fock spaces.

Theorem B (Theorem 4.5). The energy-momentum tensor T(z) written by free bosons
is equal to the Sugawara one on the Fock spaces:

Lm = L™G on^λ for λel)* and me£. Π (0.13)

This is deduced from Theorem A and the fact that, for generic Λef)*, the Verma
module of g with highest weight λ is irreducible and isomorphic to J .̂

0.5. We can construct screening operators as follows. Let λ and μ be in I)* = fy.
There is a unique linear isomorphism eq[λ] from J*μ onto ̂ λ + μ with properties

= μ + μ>, M//;m, m l ' J

for Heΐ),aeΔ+ and meZ. For brevity, put p[λ;m]:=fc~1p[λ;m] for meZ. The
bosonic vertex operator K(/ί; z) is defined by

~m

K(/l;z):=exp Σ -p[A;m] ^z^^exp Σ _p[λ;m]. (0.15)
U<o -m ) U>o — w )

For i=l , . . . , r , put

S .̂̂  .Sί̂  jcίz),^)): and φ\.= ^z]V(-^z\ (0.16)

If Sj(z) is formally expanded in the form eq[λ] Σ sf[m]z~m + βμ 01, then each st[m]

is well-defined as an element of j/. meZ

Theorem C (Theorem 5.1). For i = 1, . . . , r, ί/ze operator sf(z) satisfies the following:

lLm9si(z)l = ~{zm+lsi(z)} (0.17-1)
3z

[-Xΐw],sί(z)] = 0 /or AΓ6b + , (0.17-2)

[FJ[m],sί(z)]=-ιc5iJ|-{zl"K(-αί;z)} /or j = l , . . . , r , (0.17-3)
oz

where
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We call {sf(z)}'= ί the set of screening operators. The first two properties immediately
follow from Theorem A. The last property can be deduced from Theorem A and
the first two properties.

0.6. Now we have the solutions to the problems (a), (b) and (c). Hence we can
obtain certain integrals satisfying the KZ equations. First let us define the KZ
equations. Recall that M* denotes the dual of the right Verma module MΪ. Let

λ N N λ

Ί = (λ1,...,λN) be in $*)N. Put M\\= (g) M\a and M\:= (g)M*β. Denote by <|>
a=l α o = l

the natural pairing of M\ and M*. For Xe$ and a=l,...,N, put

4^):= 1®-.®1® A : ® ! ® - - - Olel/ίg)^, (0.18)

where X is placed at the αth component. Put Δ(X):= £ ^αPO f°Γ ^69 Let ^oo
α = l

be in fy*. We define the weight subspaces of M\ and M* with weight λ^ by

for Heί)}, (0.19-1)

(0.19-2)

Then Mjλ is finite dimensional and identified with the dual vector space of Λf 7 , .
Λ»Λoo . Γ ",*ao

Note that M 7^ does not vanish if and only if there exists an m = (w^ 1 eNr such
that

Thus we suppose this in the following. We define the space of singular vectors (or
highest weight vectors) in M^ by

.) = 0}. (0.21)

For α, b = 1, . . . , N, the operator Ωa b is defined by

Ωa,» =- Σ W)Δb(J>). (0.22)
K p=i

Note that each Ωab preserves the subspace S\ (M\) of M\. The Knizhnik-
Zamolodchikov equation of type (λ,λ^) is written in the following form:

—F(z)= Σ ir^ i for α=l, . . . ,N, (0.23)

1>*Λ

where z denotes (z1 ?... ,ZN) and F is a function of z with values in S\ (M^).
r

0.7. Next we refer to integration of certain multivalued functions. Put M:= ]Γ m,

and ί:= (ί1?..., tM). Define τ - (τ(l),..., τ(M)) by i=1

τ: =(!,...,l,...,r,...,r). (0.24)
mi times m rtimes
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For brevity, we use the following abbreviations:

w = (w l 5 . . . , WL):= (z, t) = (z1? . . . , ZN, tί9 . . . , ίM), (0.25)

μ = (μ l5 . . . , μL):= (λί9...,λN,- ατ(1), . . . , - ατ(M)), (0.26)

where we put L:=N + M. In general, for any rceN, put 17" := {(£1,...,ζ I I)e<C l l |
ζa Φ ζb if α Φ b}. We define the projection p from L/L onto UN by w = (z, t)\->z. The
multivalued function /(w) = /(z, ί) in £/L is defined by

/(w) = /(z, t):= Π K ~ wb)
(^b)/«. (0.27)

l ^ α < f t ^ L

Let j£? be the 1 -dimensional local system on UL defined by /(w) and & z its restriction
on the fiber p ~ i ( z ) at zεUN. Denote by (9(UL) the space of rational functions of
w = (z, r) regular in UL. For short, we put dt:= dt^ Λ •••. Λ dtM. For zeUN, let Γ(z)
be an M-cycle in p~^(z) with coefficients in the dual local system &* of <£z. Then,
for zel/N and a rational function /(ί) regular in p~ 1(z), the integral J /(z, t)f(t)dt
is defined and satisfies the following: Γ(z)

ϊ -j-(l(z,t)f(t))dt = 0 for α=l , . . . ,M. (0.28)
Πz) ̂ α

We suppose that, for every rational function /(z, ί) regular in [/L, the integral
F(z) = } (/(z, ί)/(z? t)dt is a multivalued holomorphic function of z and satisfies

Πz)

the following:

/-**(*)= f -j-(l(z,t)f(z,t))dt for Λ = 1,...,JV. (0.29)
dZfl Γ(z)OZa

Note that, in general, for the existence of a non-trivial global family (Γ(z)}, we
have to admit Γ(z) to be multivalued in z.

0.8. Now, under the above notation, a solution to problem (d) can be stated as
follows. Recall that, for each Aeί)*, we identify MJ with the polynomial algebra
C[x] as vector spaces. Thus, for Ia = (/α(

α))αe^+

 e^J+

?

 we can regard xla as a vector
in M*α, where we use the notation xla = Y[ x^α(α) of multi-indices. For

N aeΔ +

I = (/α)^= 1 e(N4+ f, put ι/:= (X) x/αGMf . Then the weight subspace Mf ̂  has the

basis given by α = 1

Σ Σ /„(«)=

Define the M|A -valued function P(z, ί) by

ί)|ιO:=<0|Π Π ^fe)/α(α) Π ^)(^)|0> for i^eΰf^, (0.31)

where we use the notation of correlation functions of free bosons (for details, see
Sect. 5). Then <P(z, ί)|ι;7> is a rational function regular in UL.
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Theorem D (Theorem 5.9). Under the above notation, define the M\λ^-valued
function F(z) by

<F(z)\vy:= J /(z,ί)<P(z,t)|f?>A for ueMf^. (0.32)
Γ(z)

Then F(z) is valued in S\ (M\) and satisfies the KZ equation of type (λ,λ^\ Π

Before finishing this section, we should mention some remarks.

1. There are more essential objects than solutions of the KZ equations. They are
conformal blocks far the Fock spaces, the restrictions of which give solutions of
the KZ equations. The above theorem is obtained as a corollary of the existence
of integral representations of conformal blocks for the Fock spaces. See Theorem 5.6
and Lemma 5.7.
2. The origin of the multivalued function /(w) = /(z, t) consists in the following
formula for the bosonic vertex operators:

L

<μ» I Π v(^ w f l)|0> = Π (wβ - Wfc)"-""'"' up to phase factor, (0.33)

L

where μ^:- £ μa.
α = l

3. Denote by L\ the simple right g-module with highest weight λeϊ)*. Put L\\=

(X) L\a. Then L\ is naturally a quotient g0N-module of M\. We can consider the
a= 1

KZ-equation for the space of singular vectors in L\. Let G(z) be the projection of
F(z) in L|, where F(z) is defined by (0.32). Thus we obtain a solution G(z) of the
KZ equation for the simple g-modules.

1. Representations of Simple Lie Algebras

1.1. The notation follows 0.1 in Introduction. For example, g, ϊ), Δ+ = {j?ι,...,J?s},
and etc. denote a simple Lie algebra, its Cartan subalgebra, the set of positive
roots of g, and etc. In addition, we suppose that the Killing form ( | ) is normalized
by (θ\θ) — 2, where θ denotes the highest root of g (see [Kac, Chapter 7]). Denote
by Δ the set of roots of g in ϊ)*. For oceΔ9 let eΛ be a root vector attached to α.
We assume, for simplicity, that eΛι = £f for / = 1,..., r.

1.2. Let us define x = (*α)αe4+> ^A and S. For Aerj*, let K\ be the right ideal of
U(Q) generated by n_ and {H+- λ(H) 1 |Heί)}. Define the right Verma module M\
of g with highest weight λ by ΛfJ:= C/(g)/Kj and put υ\\= ImodKjeMJ. By R'λ
we denote the right representation of g on M\:

vR'λ(X) = vX for *eg and veM\. (1.1)

Since M\ is canonically isomorphic to ί/(π+) as right π +-modules, we can define
the right representation S' of n+ on M\ by

for Xen + and nel/(n + ). (1.2)
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Putting M\μ:={veM\\vH = (μ\H)v for Heί).} for μeϊ)*, we obtain the weight
space decomposition M\ = @ M\ μ. Define the dual M J of M\ by

μef)*

O, (1.3)
μeϊ)*

and denote by <|> the natural pairing of M\ and M*. Then we can define the left
representation Rλ of g on MJ by

(u\Rλ(X)υy = (uR'λ(X)\vy for weMj, t eM* and *eg, (1.4)

and the left representation S of n+ on MJ by

<ιι|S(l>> = <ttS'(y)|t>> for iieMj, ϋ6M* and Yen + . (1.5)

We have the basis {v \E! 1 7eNs} of M J, where we use the following abbreviation:

£J = #^ <t./('ι!'2! /,!) for / = (/$βleN'. (1.6)

Denote by {xΊ J/eN5} the dual basis of {vlE^Ieti5}:

(υ\EI\xJv^ = δlj for /,JeNs. (1.7)

Then the natural g-homomorphism from M\ + μ to Mj®Mj induces a g-homo-
morphism from MJ(χ)M* to MJ+μ. Thus we obtain the natural algebra structure
in M* = (+) M*, which is characterized by

λet)*

*V*\ = x/ + X + μ

 for /,^eN5 and /l,μet>*. (1.8)

In other words, the algebra M* is identified with the tensor product of the
polynomial algebra in (xΛ)ΛeΔ+ and the group algebra attached to ί)*. Hence we
can write MJ = C[x]t;Λ.

1.3. In this subsection, we shall summarize some results on the forms of the
operators Rλ(X) for XEQ and S(Y) for Yen + . Under the above identification,
Rλ(X) and S(Y) can be written in the following forms:

Λ r

Rλ(X)= Σ RJίX;x)—+Σptχ >x)(Wt) for *eg and Ael,*, (1.9)

= Σ S β ( y ; x ) - for 7en+ (1.10)

where Rα(X;x), pt(Ji;x) and 5α(7;x) and polynomials in x = (^α)α64 + Note that
RΛ(X',x\ pt(X',x) and 5α(Y;x) do not depend on λ. When #α(^;x) and ρ£(X;x) are
written in the forms

RΛ(X;x)= Σ flXJQx7, where ^WeC, (1.11-1)
JeNs

p, (X;x)= Σ b/Wx1, where b/POeC, (l H-2)
7eNs

the coefficients aj(X) and fe/(X) are computed by

R0(X',x)xΛv0\ (1.12-1)

|ΛΛ i W^ I >. (1-12-2)
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The coefficients in SΛ(X) are also determined by the similar formulas. Using them,
we can prove the following lemmas.

Lemma 1.1. For Xεn + and αe/4+, the following results hold on the form of Rλ(X)
and S(X):
(1) p£(X;x) = 0 / o r i = l , . . . , r .
(2) RΛ(X;x) and SΛ(X',x) are polynomials in {xβ\βeΔ + and α> /?}, where u>β

means that α Φ β and α — β = ]Γ micni for some m l 5 . . . , wreN.

(3) Kβ(*α;x)=-Sβ(*β;x)=l.
(4) Kαί(έ?α; x) = SΛι(eΛ; x) = 0 wwfess α = α,.. Π

Lemma 1.2. For ί j=l , . . . , r αw/ αezl + , we ftαue /?α(/f , ; x) = — (α | Hί)xα

pJ(Hl ,x) = δlJ:

Rλ(H)=- ^ (a\H)x, — + (λ\H) for /lei)* αru* Hefy D (1.13)

Lemma 1.3. For ij = 1, . . . , r, we feαuβ pj(Ft-; x) = ̂ .(

Lemma 1.4. For /let)*, we ftαt e the following commutation relations:

[ΛA(A-),S(r)]=0 /or ^,76n + , (1.14-1)

[ΛA(fO,S(eJ] = (α|H)S(eβ) /or αe^+ am/ Heί), (1.14-2)

[ΛA(Fί),S(£7)] = δίJ(λ|Hί) + (aJ|Hί)xβlS(£J) /or U=l, . . . , r . Π (1.14-3)

2. Bosonic Free Fields and the Wick Theorem

2.1. Let $4 be an algebra with generators (0.1) and relations (0.2). We define the
subsets AQ and A± of ̂  by

(2.1-1)

=l,...,r}, (2.1-2)

=l,...,r}. (2.1-3)

Let j/o and stf± be the subalgebras of $ί generated by AQ and A±, respectively.
The normal product ." ." is the linear isomorphism from j*L ® j/0 (g) eC/+ onto si
defined by

|α_ ®α 0 (χ)α + ; :=α_α 0 α + for α0ej/0 and α±6^±. (2.2)

From now on, we omit (x) in the left-hand side of this.

2.2. Now let us define a topological Z-graded algebra sί including si as a dense
subalgebra. Let D be the derivation of stf with the following property:

Da[m\ = malm] for α[m] = xα[m],^α[m],pί[m]. (2.3)

For meZ, putting

and ja/±[m]:=Λ/±πj3/[m], (2.4)
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we obtain the decompositions jtf = 0 j/[m] and jtf± = 0 j/±[±m]. Further-
more we obtain meZ m = °

ί]j^o^+[Q for meZ (2 5)
ieZ

We introduce the decreasing filtration {jtfn[_m]}neZ of j/[m] by

+[CI for meZ and

Let j/[m] denote the completion of s$\m\ with respect to this filtration:

: = proj lim d [m}/^n [m] for m eZ. (2. 7)

Define the vector space «s/ by

Λ/:= 0 «Φn]. (2.8)

Since j^M1[m1]j/M2[m2] is included in j/nlmί + w2] with ^^max^ +w2,n2},
the multiplication map from ^[mj x J/[m2] to ̂ [m! + m2] is continuous under
the topologies given b^the filtrations. Thus we can obtain the topological Z-graded
algebra structure of jtf. Recall that, for Ae^*, the Fock space 2F λ has been defined
in 0.2. The natural representation of stf on 2? λ is induced by that of ̂  on J*Λ.

2.3. We shall recall the Wick theorem for free bosons. We have defined, by (0.3),
the following free bosonic fields:

xα(z),δα(z),p/(z), where ccεΔ+ and i = l , . . . , r . (2.9)

Let each of a(z\ b(z\ am(z) and bn(z) be one of the operator in (2.9). Put
M W

A(z):=: Yl am(z): and B(w):=I Π MZ)!- (2-10)
m= 1 π= 1

When A(z) is expanded in the form ^ z~m~/ I>lm, each Am is well-defined as an
meZ

element of j/. Set (M+,d_):=(0,l,0),(l,0, -1) ^r 0,1,-!) according as
α(z) = xα(z), 5α(z) or pt(z) for some αe/d+ or i = 1, . . . , r. Expanding α(z) in the form
£ z"m~hα[m], we define the annihilation part α(z)+ and the creation part α(z)_

meZ

of α(z) by

fl(z)+:= Σ z-m-ha[nϊ] and φ)_:= X z-m-*α[w]. (2.11)
m ^ d + m^d-

The contraction <α(z)6(w)> of α(z) and b(w) is defined by

<α(z)ί>(w)>:=[α(z)+,fo(w)_]. (2.12)

Note that <α(z)b(w) > is a formal series with coefficients in C. In fact, we have the
following formulas:

<^(z)x»> = ̂ [z-w]-1, (2.13-1)

<x«(z)a,(w)> = - <5M[z - w]-1, (2.13-2)

<P, (z)p/w) > = κ(//; I Hj) [z - w] - 2, (2. 1 3-3)
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where we put formally
/ oo y+i 1 / Λ y GO

[z-w]-''-1^! V z~m ' 1wm =- -- V z-m~1wm for ίeK (2.14)I ^̂  I .1 I Λ I ^_^ \ /

Note that [z- w]

Lemma 2.1 (ίAe Wick theorem). Under the above situation, we have
M N

A(z)B(W)=:γι am(Z): :i\bn(Wγ.
m= 1 n— 1

= Σ Σ Π <*Λ*>>: Π «»(*) Π *„(*):, (2.15)
v = 0 ί = 1 l ^ m ^ M l ^ n ^ N

m<£/ n<£J

(v)

where we put <(mπ>:= <0m(z)£n(w)> α«ί/ ί/ze 5wm ]̂ rw«5 oi er the following data:

ί I = {ml,...,mv} with 1 ̂ w i j < ••• < mv ̂  M,

j J = {n l 9 . . . ,n v } with l^n^-^π^N, (2.16)

I σe Sv = {permutations of l, . . . ,v}. Π

The proof is straightforward. Roughly speaking, the Wick theorem says that the
product of the two normal products of free fields can be calculated by summing
all contributions from the possible combinations of contractions. It is found by
(2.13) that the expression for B(w)A(z) is obtained by replacing [z — w]~ / - 1 in
(2.15) by (-ly^Cw-z]-1 '"1.

2.4. Let us explain operator product expansions. Let C(z, w) be a formal Laurent
series of (z, w) with coefficients in <$# such that, for zeN, the expression

<3 Y Ί
- K(z,w) is
dz/ JΣ = W

well-defined as a formal series of w with coefficients in «a/.
M N

For example, it is the case for C(z, w) =". f] αm(z) f] frπ(w)'. under the notation in

2.3. Formally we put m=l n=l

Res —.—:= -( — )C(z, w) for /eN.
z = w( z _ w ) l + 1 |_/!\δzy J2==vv ^ '

Let A(z\ B(w) and Ct(z, w) be formal Laurent series in z, w and (z, w) with coefficients
in j/. Suppose that each Cf(z, w) has the same property of C(z, w). Expand y4(z) in
the form J] z"m~Mm. If we have

meZ

^ zm + Λ ~ 1 Γίz vλdz
' } for meZ, (2.18)

then we write

and say that the operator product expansion (OPE, for short) of A(z)B(w) is equal
to the right-hand side of this.
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Lemma 2.2. Under the notation in 2.3, if Λ(z) and B(w) is defined by (2.10), then
there is an OPE of A(z)B(w). Π

This is easily deduced from the Wick theorem. In fact, an OPE of A(z)B(w) can

be calculated by substituting [z — w]"'"1 in (2.15) for
(z-w) ί + Γ

Example. For α, βeΔ+ and w, neN, put A(z): = \xaL(z)mδβ(z)\ and B(w):=\xβ(w)nδa(w)\.
Then, using the Wick theorem (Lemma 2.1), we obtain

A(z)B(w) = :xΛ(zrδβ(z)xβ(w)nδΛ(w): + n[z - w] - 1 :xβ(*Γ*Γ '(wJδΛw):

-m^-wr1:^)™-1^^^
(2.20)

Hence the OPE of A(z) and B(w) is written in the following form:

(221)

Λ( w \Λ\Z)D(W) ~
z — w

(z - w)2

2.5. Let Θ be the closed subalgebra of j/ topologically generated by {xα[m] |αeZl + ,
weZ}. The Lie algebra Lg©b has been defined in 0.3. We shall introduce an
action of Lg 0 b on Φ and certain 2-cocycles of Lg φ b with coefficients in Φ. Put

r

ί(z):= X :Λβ(Jf;x(z))^):+ Σ P,(^;x(z))p,(z) for XeQ, (2.22)
αe4+ i = l

where we use the notation x(z):= (xΛ(z))aeΔ + . Define the energy-momentum tensor
T(z) by (0.8).

Lemma 2.3. We have the following OPE's:

-t&M + ZeV ,„

z — w (z — w) (z — w)

(2.25)
z — w (z — w) (z — w)

where we put

κ(ίf1|HJ)pl(Λ ;x(z))/!»/y;x(w)X (2.26)
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Ω2(X W):= X : R χ ( χ x(w)):+2 Σ pχx x(w)), (2.27)
aeΔ+ OXa j=ί

c : = dim g - 1 2(p I p)/κ. Π (2.28)

The proof is straightforward by the Wick theorem (Lemma 2.1). We remark that
c = (K — g*) dim g/κ because of the strange formula g* dim g = 12(p|p), where g*
is the dual Coexter number of g.

The linear map π from Lg0b to sί is defined by the following expansions:

X(z) = £ z-m'lπ(X®tm) for *eg, (2.29)

Γ(z)= Σ z-- 2 π-r + 1 (2.30)
meZ \ αί/

Owing to the Wick theorem, we can define the representation of Lg ® b on 0 by

α /:=[π(α),/] for αeLgφb and /e0. (2.31)

We define the linear map ω from Λ2(Lb + ©b) to j/ by

π([fl,fc]) for α,fceLg©b. (2.32)

By definition, ω satisfies the cocycle condition. Since Ωl and Ω2 are formal series
with coefficients in Θ, the 2-cocycle ω is valued in 0. Thus we obtain the 2-cocycle
ω of Lg © b with coefficients in &. In addition, we define the standard 2-cocycle c2

of Lg © b with coefficients in <C c φ by the following:

c 2 ( X ® f , Y®g) = k Res(f'gdt),

,
dt dt

= ° for X'7e and

where we put k:=κ — g*. The standard 2-cocycle c2 is nothing but the 2-cocycle
given by the level k affine Lie algebra and the Sugawara construction of the
Virasoro operators. In Sect. 4, we shall prove that ω and c2 give the same cohomology
class.

2.6. Let us summarize some results on ω immediately following from Lemma 2.3.

Lemma 2.4. The restriction of ω on Λ2(Lb+ ©b) coincides with that of c2.

Proof. It follows from (2.25) that ω = c2 on Λ 2b. Applications of Lemmas 1.1 and
1.2 to (2.23) show that ω = c2 on Λ 2Ln + . It is deduced from Lemma 1.1 and (2.24)
that ω = c2 on b Λ Ln + . By Lemma 1 .2 and (2.26), we obtain that, for i, j = 1 , . . . , r,

+ ιc(ίίi|HJ) = (ιc-^*)(Hί|lίy). (2.34)
Λ,βeΔ +

This means that ω = c2 on Λ2Lί). By Lemma 1.2 and (2.27), we obtain that, for



526 G. Kuroki

(2.35)

Thus ω = c2 on b Λ LI).

Lemma 2.5. For every Xe§ and Het), the formal series ^ (#, ̂  z, w) does not
contain the formal variable z. Π

This is immediately deduced from Lemmas 1.2 and 2.3.

3. Lie Algebra Cohomologies

3.1. In this section, we shall introduce a certain cohomology H'(&,V) of a
Z-graded Lie algebra J£? with coefficients in a Z-graded ^-module V. We' shall
define Hp(<£, V) as the pth cohomology group of a certain subcomplex of the
standard one. We define the Z-gradation of Lg 0 b by

(Lg0b)[m]:=g®r0Cim+1- for meZ, (3.1)
at

and the Z-gradation of Θ by

0[m]:=0nj/[w] for meZ. (3.2)

We shall mainly deal with H\L§®^&\

3.2. Let us recall the definition of the usual Lie algebra cohomology. For a Lie
algebra & and an S£ -module V, the group of p-cochains is defined by

C* = C%^,F):=Homc{Λ^,K) for p^Q. (3.3)

We put Cp : = 0 for p < 0 in convention. The differential d : Cp -> Cp + 1 is defined by

for /eCp and /jeJSf, where the hats denote the eliminations of the arguments. The
group of p-cocycles and that of p-coboundaries are defined by

and Bp:= lm(d:Cp~l -+CP). (3.5)

The pth cohomology group of <£ with coefficients in V is defined by

Hp(&,V):=Zp/Bp. (3.6)

3.3. Now let us introduce a cohomology H°(&, V). Assume that & = 0 jSf [m]
meZ

is a Z-graded Lie algebra and V= @ V[m] is a Z-graded <& -module. Let
meZ

M = (J) M[m] and N = (J) N[m] be Z-graded vector spaces. Then a linear map
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/ from M to N can be uniquely represented in the following form:

/= £ /[m], where /[m](M[n])cN[m + n]. (3.7)
meZ

In this notation, we put

Homc(M, N):= {/eHomc(M, N)|/[m] Φ 0 only for finitely many w's}. (3.8)

We define the Z-gradation of Λp^ by

(ΛpJSf)[m]:= Σ J S f C m j Λ - Λ J ί f C w J for meZ. (3.9)
mi H ---- + mp = wi

The subgroup Cp of Cp is defined by

Cp = Cp(^, V):= Homc(Λp&9 K). (3.10)

Since (d/)[m] = d(/[w]) for /eCp, the direct sum 0 Cp is closed under the action
~ meZ

of rf. Thus we can define the cohomology H'(&, V] by

,V) for peZ, (3.11)
where we put

Zp(j^,F):-Ker(d:Cp->Cp+1) and Bp(3>, V):=lm(d:Cp~l -+CP). (3.12)

Lemma 3.1. The 2-cocycle ω defined by (2.32) belongs to Z2(Lg0b,(P). Π

For the proof, it suffices to see that ω belongs to C2(Lg0,(P). But then this is
obvious by Lemma 2.3.

Regarding C as a Z-graded vector space by

<C[0]:=C and C[m]:=0 for m^O. (3.13)

we obtain the following.

Lemma 3.2. Let ϊf be a Z-graded subalgebra o / L b _ φ b . Put £ ':= Ln + © ¥ '.
Suppose that j£? is a subalgebra of Lg © b. Then there is a canonical isomorphism
from H\<£,&] onto H'(£f,<C). (In the proof, we can find the explicit form of this
isomorphism.)

Proof. Step 1. In order to apply the theory of spectral sequences to the complex
C\&, Θ\ we shall introduce certain filtrations as follows. Define the increasing
filtration of ΛΠJ^ by

"-αycz Λ"J^ for fl = 0,l,...,n. (3.14)

Put Grfl(Λn^):-(Fα ^^)/(Fa_i l\n<e\ Then we have

Grα(Λ"J^)^ f\a(y/y)® Λn 'αy for α = 0,l, . . . ,w. (3.15)

Define the Z-gradation and the decreasing filtration of Θ by

G°(9:= Σ ΣGxάm} <=<!), (3.16)
\aeJ-). meZ /

FaΘ:=φGaO for αelN. (3.17)
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Then we have FQΘ = Θ and FaΘ = Ga(9^Fa+1(9. Put

GaΘ'=(Gaθ)\ FaΘ'=(Fa(9)\ and Gr0:=Fβ0/F f l+10, (3.18)

where ( )Adenotes the closure in 0. Then we have F°d = G and FaS = Ga(9 ® Fa + 1 0,
hence

Grfl 0 ̂  Gα0 as topological vector spaces. (3.19)

In the following, we identify GraS with G f l0χWe remark that Gr°0 ̂  G00 = C.
We define the decreasing filtration of Cn(£P, 0) by

:= {feC"(&, 0)|/(Fα Λ"^) c F*-fl<9 for α = 0, 1, . . . , n}. (3.20)

It is obvious that this filtration is compatible with the differential: dFp'"~pcιFp'n + 1 ~p.
Step 2. Let us consider the spectral sequence E™ attached to the filtration

Fp'q. The E0 terms shall be determined as follows. Putting

^^Gτp-a), (3.21)

we obtain
p

EP)>»-p = Fp>n-p/Fp+1>n-p'~1 £ 0 E$n~p(a). (3.22)
a = Q

By definition of 5£ and ,̂ we have

y-FP-'dcF"-*-^ and ^-Fp~ad ^Fp~aΘ. (3.23)

Thus we obtain the following induced maps:

σ_1(/):Grp" f l0->Grp"β~10 for ίeJ^, (3.24)

for se^. (3.25)

For /eJ^, let ί denote the class in ^1^ represented by /. Then σ-Λ/) depends
only on le&/&. In the above notation, the induced differential dp

Q of Eg is written
in the following form:

(3.26)

where/e£'"~'',/ ie^7 and
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Step 3. Let us calculate the E1 terms. The group EP

1'"~P is the nth cohomology
group of the complex (E%'~p, dp

Q). As a special case of the results in Step 1, we

have obtained E° n ̂  Homc(ΛΛ^,C) - C"(^,<C). This implies that

E° * = H"(#>,(C) for nεΈ. (3.27)

In the following, we shall show that E\n = 0 if p ̂  0. For this purpose, we
introduce the linear map η from Ep

0'
n~p to E%n~l~p by

!, . . . ,/,-!,s l 9 . . . ,s n - a ):= Σ x«0n]/(*e®f m,/ι,...,/β-ι,s1,...,s l l.β), (3.28)
OC6/4 +

where feEp-n pJtE^ and s^-e^. In order to check the well-defmedness of η, we
have to prove that the right-hand side of (3.28) converges in Grp~a +1(9 = Gp~a+1&.

Because of the definition of Horn, we can suppose that / = /[M] and ίj Λ ••• Λ
/ f l _! Λ s t Λ •-. Λ sπ_ f l6(Λ l i" 1

βSf)[JV] for some M and ΛΓ. Putting

^..m-/^.®^1"^!--'--!^!,...,^-,,), (3.29)

μ(m):= max{m, M + N - m}9 (3.30)
we obtain

xα[w]Ar

αίm6Gp-α+1^nj/' l(m)[M + Λlr]. (3.31)

The subspace Gp~a + 1& is closed in j/. Hence, by the definition of j/[M -h N], it
follows that the right-hand side of (3.28) converges in Gp~a+1Θ.

From Lemma 1.1 and the definition of π, we can write

σ-ι(eα®rm) = - for αe/4+ and me2. (3.32)

Furthermore, we find that

[σ_1(0,σ0(s)] = σ-1([/,s]) for /GJ^ and 56^. (3.23)

We can deduce from (3.32) and (3.33) that, for

Σ {[σ0(s),xα[m]](χ)(eα<χ)ί m) + xα[m](χ) [s,eα(x) rm]} =0. (3.34)

Tedious calculations using (3.32) and (3.34) show that

on Eg--*. (3.35)

Thus, if p Φ 0, then p~1η is a homotopy operator joining the identity map of Ep' *~p

with the zero map. Consequently we find that

EP>»-P = Q for pϊQ and neZ. (3.36)

Step 4. We obtain from (3.27) and (3.36) that

Hn(^,Θ)^E^n^E^n^Hn(^,€) for neZ. Π (3.37)

Lemma 3.3. Hl(Lb+@ύ,β) = 0.

Proo/. Applying Lemma 3.2 to the case ̂  = Lί)® b, we obtain

#H^+θb,0)^#M^Q = Z^,C). (3.38)

But it is obvious that [̂ , 5 ]̂ = if, hence Z1^, C) = 0. Π
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Lemma 3.4. H°(Ln + , 0) = C. Π

Proof. An application of Lemma 3.2 to the case <7 = 0 yields that

//°(Ln+, 0) s #°(0, <C) = Hom€(C, C) - <C. (3.39)

But then it is easy to see that H°(Ln+, 0) = #°(Ln+, 0). Π

3.4. In the next section, we shall need the following lemma.

Lemma 3.5. The inclusion map from Lfy © b into Lb _ ® b induces the isomorphism
from Hp(Lb _ ® b, C) onto HP(U) ® b, <C). Π

This is the special case of the following lemma.

Lemma 3.6. Let & be a Z-graded Lie algebra and h an element of <£ . Suppose that
the adjoint action ofh on & is diagonalizable. Put &a:= {/eJS?|[Λ, /] = al} for αe(C.
Define the (C-gradation of f\p& and that of Cp = CP(JS?,<C) by

(Λ' <?).:= Σ J*? α ι Λ. . .Λ^ α p , (3.40)
αi H ----- \-cip~a

(Cp)a:={feCp\f((Λp&)b) = Qforbϊa} for αeC. (3.41)

Then (C')a is a subcomplex of C'. Furthermore Hp(<£, (C) is isomorphic to the pih

cohomology group of (C*)0.

Proof. Since the first assertion is obvious, it suffices to show the second assertion.
We can define the linear map i(h) from Cp to Cp~l by

...Jp. !):=/(*, / ! , . . . ,/ ,_!) for l^X. (3.42)

Then i(h)(Cp)a a (Cp~1)a for^αeC. Moreover a straightforward computation shows
that i(h)d + Λ(Λ) = aid on (C')a for aeC. Hence, if a / 0, then a~li(h] is a homotopy
operator joining the identity mapping of (C')a with the zero map. It follows that
HP((C\) = 0 for a Φ 0. Hence we conclude that

#'(#, C) = H'(C') = 0 H'((C')e) = Hp((C')0). D (3.43)
αe(C

4. Fock Space Representations of Afflne Lie Algebras

4.1. The results of the previous section allow us to prove the following theorem,
which is a starting point of the theory of Fock space representations of the affine
algebras.

Theorem 4.1. There is a unique element Γ ofCί(LQ®1)90) satisfying the following
properties:

dΓ = c2-ω w£2(Lg0b,0), (4.1)

Γ = 0 onLb+θb. (4.2)

Proof. Existence. From Lemma 2.4 and 3.1, it follows that ω and c2 define the
same cohomology class in H2(Ll)©b,(C). On the other hand, Lemmas 3.2 and 3.5
yield the following isomorphisms:

). (4.3)
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Hence there is an element f of Cx(Lg © b, S) such that df = c2 - ω in B2(L$ φ b, S).
Because of Lemma 2.4, it is found that df = 0 on Λ2(Lb + © b). Thus, by Lemma 3.3,
it is possible to find aeS = C°(Lb+ © b, <C) so that f = da on Lb+ © b. Put

). (4.4)

Then it is obvious that Γ satisfies (4.1) and (4.2).

Uniqueness. Suppose that Γ' is an element of C 1 (Lg © b, &) satisfying the conditions
similar to (4.1) and (4.2). Put u:= Γ - Γ. Then du = 0 in B2(L$ φ b, (9) and u = 0
on Lb+ ©b. By Lemma 3.3, it is possible to choose bed so that u = db on Lb+ φb.
Hence, from Lemma 3.4, it follows that b is in C. Thus u = db = 0. Π

Definition. In the notation in Theorem 4.1, we can define^ the Lie algebra homo-
morphism π from the affine-Virasoro algebra gφVir to j/ by

π(X®f):=π(X®f) + Γ(X®f) for *eg and /eCfrr1], (4,6)

d

π(K):=k = κ-g* and π(C):=c = fcdimg/K. (4.8)

We call Γ the correction for currents. (For the definition of π, see (2.21) and
(2.22).) Recall that j/ acts on the Fock space J^Λ, where /ίeί)*. Thus we obtain a
representation of g φ Vir on J^A, which is called the Fock space representation of
the affine-Virasoro algebra.

It is easy to see that the vector \λye^λ satisfies the highest weight condition

(0.11) for gφ Vir. For *eg and meZ, put X[m]:=π(X®tm) and Lm:=πί -ίm+1 — \

Formally we define the current operator X(z) for XEQ by (0.9). ^ ^

4.2. Let us determine the explicit form of Γ. The condition (4.1) is equivalent to
the following:

Γ([/1,/2]) = ω(/1,/2)-c2(/1,/2) + /1 Γ(/2)-/2 Γ(/1) for /^eLgφb. (4.9)

Hence, because of (4.2), the correction 7" is uniquely determined from the set
{Γ(Fi®tm)\i=l,...,randmεZ}.

Proposition 4.2. There is a unique set {yj[=1 of complex numbers such that

ΓiiFt (x) tm) = - ^mxαι [m] for i=l,...,r and m ε%. (4.10)

Equivalently we have

Fi(z) = Fi(z) + yidxΛi(z) for i=l, . . . , r . (4.11)

Proof. We fix i= l,...,r in the following. Put Γ£[m]:=Γ(F£®ίm) for meZ and
Γf(z):= Σ 2"w~1Γ/[m]. Let H be in f). Then Lemmas 2.3 and 2.5 imply the

meZ

following OPE:

~ri5WW + J!M
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where α(w) is some formal Laurent series with coefficients in &. This implies that

[H[0],Γi[Λ]]=-(αl|H)Γi[n] for Heb and neZ. (4.13)

In addition, Lemma 2.3 admits us to obtain the following OPE:

.
z — w (z — w) (z — w)J

where we put b(w):= Ω2(Fi;w). Denote the expansion of b(w) by £ z~mbm. Then

(4.13) is equivalent to the following commutation relations: meZ

=-nΓi[_m + n^ + bm + n for m,nεZ. (4.15)

As a special case of this, we obtain

[L0,Γi[n]]=-nΓί[n] for neZ. (4.16)

From (4.13) and (4.16), it is found that Γ[tϊ] can be written in the following form:

^[n] = αΛi[n] for neZ, (4.17)

where {an}neZ is some set of complex numbers. Using this, rewrite (4.15) in the
following form:

- - - bm+n = (nam+n-(m + n)an)xΛi[m + n] for m,ne£. (4.18)

Substituting m= - 1 into (4.18), we obtain (n- i)an = nan_1 for neZ. Hence the
case for m = 1 implies bn+1 = 0 for neTL. Furthermore, by the case for m= — 2
and n= 1, we obtain a1 = — a_±. Thus we conclude that an = —na_1 for neZζ.
Putting yi'.= α_ 1? we finish the proof. Π

Remark 4.3. For ί = 1, . . . , r, the constant yt can be determined by the OPE of Et(z)
and Fj (z). The result is the following. Define the constants {NΛtβ} by

l>α> e/?l = Na,βCa+β> where α, jS and α -f j? are in A. (4.19)

For convenience, we put NΛίβ:= 0 unless α, /? and α + /? are roots of g. Recall that
positive roots have been numbered by a fixed order: Δ+ = {/?!,..., βs}. We define
the total order •< in Δ+ by

(4.20)

In this notation, for i = 1, . . . , r, the constant y{ can be written in the following form:

2k
?ί = 7-Πi+ Σ N^N.^,^. D (4.21)

l α ί l α f j «€^ +
α X α i

4.3. For lei)*, the Fock space ̂ λ decomposes into the weight subspaces. Putting,
for deN and μel)*,

(4.22-1)

« for tfeϊ)}, (4.22-2)
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00

we obtain J^A = 0 ^λ[_d] and &λ{_ά~\ = © &λ\d,μ\. We remark that 3?λ[d,μ]
d = 0 μef)*

is finite dimensional. Define the dual Fock space ^\by
00

^I:=®^iM, (4-23)
d = 0

where we put

. (4.24)
μeϊ)*

Then 3F\ possesses the natural right g0 Vir-module structure. Denote by < | > the
natural pairing of 3F\ and 3Fλ. Note that [̂0] is a g-submodule of 3Fλ and

spanned by < f] X0[0]//?|(/0)064+elH4 + >. Using this and the definition of π, we
(βeΔ+ )

can prove the following.

Proposition 4.4. As ^-modules, [̂0] and [̂0] ar^ isomorphic to MJ and M J,
respectively. Π

4.4. Let {J^p1™!9 be an orthonormal basis of g with respect to the Killing form.
For p = 1, . . . , dim g and m, neZ, put

if «^
ι ' f ^ 'U n m if m>n.

The Sugawara energy-momentum tensor TSUG(z) is defined by (0.12). Then,
expanding ΓSUG(z) in the form £ z^^L^0, we obtain a set {L^UG}meZ of

meZ

operators acting on the Fock spaces. Let π' be the linear map from gφVir to
EndcJ^A given by

X®tm^X[m], r + 1-h->-L^UG, K,-»fcid, Ch-^cid, (4.26)
dί

where XGQ and meZ. Then π' is a representation of gθ Vir on ̂ λ. The vector
satisfies

LfQ\λy = Δλ\λy and L^UG|A> = 0 for m>0. (4.27)

Theorem 4.5. For every K ̂ 0, Aβί)* and meZ, w^ na^

Lm = L^UG as operators acting on ̂ λ. (4.28)

Proof. For Ael)*, the algebra automorphism τλ of <s/is uniquely characterized by
the conditions

= o,

]) = δα[m],

where wιeZ,α 64+ and ί= l,...,r. Then the representation of g 0 Vir on J^Q given
by the composition τλ°π is isomorphic to that on J^ given by π. For m,ne2? and

the operator πΛ(eα(gHm) polynomially depends on λ as a linear map from
] to J2Γ

0[-m + n,α + ̂ ]. Similarly, for m,neZ and αe4, the operator
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+ ι _ | polynomially depends on λ as a linear map from J^oIX**] to

at)
n>α] Hence, for the proof of the theorem, it suffices to show (4.28) for

generic /Γs. It is easy to see that the character of 3Fλ is equal to that of the Verma
module Jίk^λ of g with level k = κ — g* and highest weight λ. Hence, for a generic
/lei)*, the Verma module Ji^λ is irreducible and isomorphic to 3Fλ. It suffices to
prove the theorem for such a λ. It is obvious that [Lm — L^UG, -Y[w]] = 0 for Xe§
and m,neZ. By the definition of L*UG, it follows that [Lm-L^UG,Lf G] = 0 for
m, neZ. This implies that [Lm - Ls

m

UG, Ln - 1™ G] = [Lm, LJ - [Ls

m

UG, Lf G] for
w, neZ. Hence the representation of Vir on ̂ λ with central charge 0 can be defined

by -ίm+1— h^Lm-L^UG for meZ. But the Schur lemma implies that
at

Lm — L^UG = αmid as operators acting on 3Fλ for some αme(C. Thus, a bit com-
putation shows that Lm - L^UG = 0 for meZ. Π

5. Screening Operators and Integral Representations

5J. In the previous section, we have defined the Fock space representations of
the affine-Virasoro algebra and determined the explicit form of the correction for
currents. Additionally, we have proved that the energy-momentum tensor written
by free bosons are equal to the Sugawara one on the Fock spaces. In this section,
we shall construct screening operators. Consequently, we shall obtain integral
representations of correlation functions in the WZW model.

5.2. Let λ and μ be in ϊ)*. The linear isomorphism eq[λ] from ^μ onto ^λ+fl is
uniquely characterized by the condition (0.14). Formally we put zp[H;0]v = z(λ\H)v
for υe^λ and /ίeί). We extend the normal product \ \ to them by

\a_eq[λ]zp[λ>0]a0a+::=a_eq[λ]zpίλ<0]a0a+ for α0£^0 and α±e^±. (5.1)

Then the bosonic vertex operator V(λ z) defined by (0.15) is formally written in
the form

V(kz) = :<*™:, (5.2)
where we put

(5.3)
m*o -m

We have the following OPE's:

p(H; z ) K ( Λ ; w ) ~ - K μ ; w ) for #et), (5.4)
z — w

,5.5,
z — w (z —

Recall that, for 7en+ and αe4+, the polynomial Sα(7;x) in x = (xα)αe4+ has been
defined by (1.10). For i = 1, . . . , r, put

S,(*):= Σ :SΛ(Ei;x(z))δΛ(z):> (5-6)
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><?(-α';2);, (5.7)

(5.8)

where we use the notation x(z) = (xa(z))ae/1 + . We remark that St(z) commutes with
Ki(w). If we expand st (z) in the form £?«ίΛ] £ 5ί.[m]z~m+^ι;ι'0], then s£[m] is well-

defined as an element of j/. meZ

Theorem 5.1. For i= l,...,r, £/ιe operator s<(z) satisfies the following OPE's:

(5.9-1)

jr(zχ.(w) ~ 0 for Xeb + , (5.9-2)

F/φΛw)--^.^!^} /or j=l , . . . , r . (5.9-3)
(7w (z — w j

(These OPE's are equivalent to the commutation relations (0.17).)

Definition. We call {sf(z)}J=1 ίhe seί of screening operators.

dV (w)
Proof of Theorem 5.1. Since ΔΛ = 0, it follows from (5.5) that T(z)Vt(z) -- — .1 2 _ I*;
Lemma 1.1 and the Wick theorem (Lemma 2.1) yield that

. .
z — w (z — w)z

Therefore we obtain (5.9-1).
For Xen+, the OPE (5.9-2) follows from Lemmas 1.1, 1.4 and the Wick theorem.

Let H be in ί). Using Lemmas 1.1, 1.2, 1.4 and the Wick theorem, we can obtain

\ Lemma 1.2 and the OPE (5.4) imply that
z — w

HMK.M-pίflr zίKΛw)- _ W^W (5.n)

z — w

Thus we obtain the OPE (5.9-2) for X = H.
Using Lemma 1.4 and the Wick theorem, we can show the following OPE:

, f
T 2 , (J.LZ.)

z — w (z — w)

where A(z)= ^ z~ m A m and B(z)= Σ z~mβm for some Am,Bme&. This is equi-
meZ meZ

valent to the following commutation relations:

[F,.[m], st.(w)] = - κtfuwwdK ί(w) + w^AίwJFfίw) + mwm~ ̂ (wJF^w), (5.13)

for meZ. Take an element E of n+ and an integer n. Then £[/t] commutes with
Sj(vv) by (5.9-2). Hence, calculations of the commutators of E[ri] and both sides of
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(5.13) show that

(w)] =0. (5.14)

The case of m = 0 implies [£[n], A(w)] — 0. Hence we also obtain [£[n], £(w)] = 0.
Thus it follows from Lemma 3.4 that

/lmeC and £meC for weZ. (5.15)

Compute the commutators of Ln and the both sides of (5.14). Then, owing to (5.9-1)
and (5.15), we find

wm+n + 1dA(w) + (n+ l)wm+nA(w) + mwm+ndB(w) = 0. (5.16)

Considering the special cases for (w,n) = (0, —1), (0,0) and (1, —1) in order, we
successively obtain dA(w) = 0, A(w) = 0 and dB(w) = 0. Thus (5.13) is rewritten in
the form

+ B()mwm-lVi(w). (5.17)

Let H be in ί). Then (5.11) implies that

[H[n], Kf(w)] = - (αjl/Ow'KM (5.18)

Using (5.15) and (5.18), compute the commutators of H[n\ and the both sides of
(5.17). Then we obtain

J3o(αI |H)wwn + w-1 = -κδu(u,j\H)n\f+m'-1. (5.19)

Since we can assume (αt | H) Φ 0, we obtain B0 = — κδitj. Therefore (5. 1 7) becomes

[F. [m], Si(w)] = - Kδi ,— (wmKί(w)} for meZ, (5.20)
' δw

which is equivalent to the OPE (5.9-3). Π

Definition. Expand S^z) in the form £ z " m " : S£ [m], w/iβr^ St [m] e j/. For i = 1 , . . . , r,

de/ϊne f/ie i βcίor s£ in ^"_βι by meZ

SΓ.= S,[- 1]| - at-> = [s£(z)|0>]zβ0. (5.21)

We call {sJi = 1 ίΛe seί of screening vectors.

Corollary 5.2. For i= l,...,r, the screening vector st has the following properties:

L05I = 5/ and Lmst = 0 for m>0, (5.22-1)

XCmJs^O /or Xeb+ and m^O, (5.22-2)

^[0>,= -K^.L^I-O, F7.[l]5ί= -^l-a,), (5.22-3)

FjCmJs^O for m^2 and ;=l,...,r. Π

From L_ ! |0> = 0 and Theorem 5.1, we can easily find the proof of this.

5.3. Till now, we have regarded z and w as formal variables. But, in the following,
we have to consider z and w as complex parameters. Let V be a vector space
and λ in ί)*. For m = (m1,...,mN)eZ;v, let Am be a linear map from V to 3?λ.
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Put A(z):= Σ z~mAm, where we use the notations Z:=(Z I , . . . ,Z N ) and z~m:=

z~m ι - z~mN. We say that A(z) converges at zeC^, if the following infinite sum
converges at z for every UE^\ and vεV:

<u\A(z)vy: = Σ ^m<«Mmι;>. (5.23)
meZ"

Then A(z) is regarded as a linear functional on ^\® V. Of course, the operators
introduced in the present paper converge in C x = {ze<C|z ^0}, for example,

xα(z), δΛ(z)9 Pi(z)9 X(z\ T(z\ V(k z\ S,(z), s,(z), etc., (5.24)

where αeZl + , Xεg, λefy* and i = l , . . .,r. However we should pay attention to the
fact that V(λ;z) and sf(z) are multivalued in z. Put w:=(w l 5 . . . ,w L ) and
ί/L:= (we<CL |w f Φ w^ if i 7^;}. For i= 1,...,L, let j4f(z) be one of the operators in
(5.24). Then the composition A^w^- Ά^^ converges in { j w j > -•• > |W M | >0}
and is analytically prolongable to w in UL. We denote the result of this prolongation

by fl A^Wi). Furthermore, if {A t(z)}f=1 contains neither K(A z) nor st (z), then

Yl Ai(Wi) is single-valued in w and independent of the order of the composition.
i = l L

On the other hand, if {^t(z)}f=1 contains V(λ\z) or s^z), then f] ^(w,-) is, in

general, multivalued in w and is independent of the order of the composition if
we ignore its phase factor.

5.4. Let us define conformal blocks, which is the most fundamental objects in
conformal field theories.

N

Definition. Let λί9...,λN and λ^ be in ί)* and Φ a linear map from J^|χ ® (X) J5\a

α= 1

to the space of multivalued regular functions on UN. Then Φ is called a conformal
N

block (of the WZW model on IP1) for ^\Λ® (X) ̂ λa, if it satisfies the following
conditions: α-1

(Bl) Let A(ζ) be one of the operators T(ζ) and X(ζ) for XEQ. For a fixed z =
(z!,..., zN)eUN, let /(() be a rational function regular in {£e<C|C^z l 5 . . .,zN}. For

r\m and a= 1 , . . . ,ΛΓ, put

ra:= Res(/(OX(ζ - za)dQua, (5.25-1)

_ (5.25-2)
ζ=00

---(8)r e®--(8)MN, (5.25-3)

I ® WN, (5.25-4)

where ra in υa is placed at the αth component. Then we have

φ Σ va + va>;z = Q. (5.26)
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(B2) For wα6JΓ

λa,wJoeJ2Γ|χ and a= 1,...,N, we have

\ (5.27)
zfl

where we put u\— u^® u^ ® ••• ®UN and

(5 28)

Note. Physicists maybe prefer to use the following notation for conformal blocks:

<ul(co)u1(z1) 'UN(zN)yφ,= Φ(ul®u1®. ®uN;z\ (5.29)

where uae^λa and u\^€&\^

Lemma 5.3. Let μ l 9 . . . , μL and μ^ fee m ί)*. Lei Ψ be a conformal block for J^ ®
L ί< 1

0 ^Vβ and M' m 2?\^® ® 3*^ Suppose that μL= - αf /or some i = 1, . . . , r. For
α = ι x

 f l=ι
a fixed wel/L, let f(ζ) be a rational function on C regular at ζ = WL. Then we have
the following:

(5.30-1)

(5.30-2)

ί J - - L - i /or j = l , . . . , r ,
OWL

(5.30-3)
where we put

/V= Res (/(f)T(ί - wJdOsj, (5.31-1)

r2(y):=Res(/(OX(ζ-wL)dζ>,. /or Yeg. D (5.31-2)
ζ = WjL

This follows from Corollary 5.2 and the definition of conformal blocks.
L

Forμ l 5...,μLeί)*, put ~μ:=(μί9...9 μL) and μ^:= ^ μa. The operator V(~μ\w)

defined by fl = 1

L

):=;Π ^(μβϊWβ)'. Π (wα-wb)
(μα|μb)/κ, (5.32)

converges in UL. The following formula is widely known:
L

Π V(l*a9 wα) = ̂ (ίi w) up to phase factor. (5.33)
α = l

Using the method in [TK2], we can prove the following two lemmas.

Lemma 5.4. Under the above notation, there is a unique conformal block Ψ of the
L

WZW model for ^\^® (X) ^%α

 wιί^ the following properties:
a=l
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(1) Putting v0:= \μ^® •• <g) |μL>, w 0:=|0> and Mj o :=<A 0 0 | , we hαt e

; vφ0> = f] K ~ wb)^^\ (5.34)

(2) The condition (Bl) fl/s<? /z0/ds, even if A(ζ) is equal to one of the operators xΛ(ζ),
(5α(C) and p^ζ) where αe/4+ and i = 1, . . . , r. Π

Lemma 5.5. Under the same situation as in Lemma 5.4, suppose that L = N + M
μN+b= — Uφ) f°r some τ(fc)eN #ra/ <2«y £= 1,...,M. L ί̂ 7α(α) fe^ zw IN for
l,...9N and

«β:= Π **[0]/a(a)l/O far fl=l,...,JV, (5.35)
αeJ +

υ:=u 1<g) (g)WjV®s τ ( 1 )® ®sτ(L), (5.36)

(w):= Π Π xJί*>.y w Π S«(»,K+6) Π ^( ;̂̂ ) (5-37)
b= 1

T/ien, /or w^eJ^J^, the conformal block Ψ in Lemma 5.4 satisfies the following:

^(wlo ® u; w) = <u^ I ^(W)MO >
 UP to phase factor. Π (5.38)

N

5.5. Let us construct integral representations of conformal blocks for !F\^ (x) (X) « λ̂α .
α = l

For this purpose, we shall freely use the notation in 0.6 to 0.8. For example,
N r r

(/l1,...,A]V)e(ί)*)N and λ^ = ]Γ A f l — £ w^ for some m^N. Put M:= ]̂ m^ and
α = 1 i = 1 i = 1

L:=N + M. Define w = (z,ί) by (0.25) and μ by (0.26). Let Ψ be the conformal
L

block for ^\^® (X) ̂ Vα in Lemma 5.3. Define the multivalued function /(w) by
α = l

(0.27). Then (5.32), (5.33) and Lemmas 5.4 (2) implies that, for each
α = l

the function Ψ(v; w) can be represented in the form Ψ(v; w) = /(w)/(w), where /(w)
is some rational function regular in UL. Let {Γ(z)} be a family of M-cycles with

N

properties (0.28) and (0.29). Define the linear map Φ from ^\x® 0 ^λa to the
α = l

space of multivalued function on UN by
N

Φ(w;z):= j Ψ(u®s\z,t)dt for ue&\n® (X) ^Λα, (5.39)
Γ(z) α = l

where we put

5;— sτ(i) ® * * ® 5τ(M) (a tensor product of the screening vectors), (5.40)

under the notation (0.24).

N

Theorem 5.6. Under the notation, above Φ is a conformal block for ^\^ (x) 0 ^λa.
a=\

Proof. It is easy to see from (0.29) that Φ satisfies (B2). Let A(ζ) be one of the
operators T(ζ) and X(ζ) for Xe$. For a fixed z = (z1,...,zΛr)eί/]V, let f(ζ) be a
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rational function regular in {ζ ^z1,...,z]V}. Under the notation (5.25), define the

vectors u and v in <F\^ ® (g) &λa by
a=l

w : = w L ® w ι ® ® w ΛF> (5.41-1)
N

f = = Σ ». + »«• (5 41-2)
Λ = l

In addition, we put, for ft = 1, . . . , N9

rb(tb):= Res(/(CM(C - ta)dζ)sτ(b}, (5.42-1)
ζ = ία

eb(tb):= 5τ(1) (x) - - (x) rb(ίb) ® - ® st(M), (5.42-2)

where rδ(ί6) in e6(ί6) is placed at the fcth component. Define the vector e(t) in
M

b=1 Λf

^(t):= Σ ^ω- (5-43)
b=l

L

Since ?P is a conformal block for ^\^® (X) ^Va, we find that
α = l

*P(ι; (x) 5 + u ® e(t)\ z, t) = 0. (5.44)

On the other hand, Lemma 5.3 implies that

J Ψ(u®eb(tώz9t)dt = Q for fe=l,...,M. (5.45)
Πz)

Thus it is proved that Φ satisfies (Bl): Φ(v\ z) = 0. Π

5.6. Now we shall show that the integral representation (5.39) of a conformal block
implies that of a solution of the KZ equation (0.23). Owing to Proposition 4.4, we
can identify ^λ[ϋ] and 3F\\G] with M* and M J, respectively. Thus the operator

ί2a>ί, defined by (0.22) acts on (g) J^JO] and (g) J^Iα[0].
α = l α = l

Lemma 5.7 [KZ]. Let λl9...9λN and λ^ be in ί)* and Φ a conformal block for
N

^L® (8) <^V Then, for uae&λa[0] = M*a and w^e^^CO] = M[χ, tfte conformal
β = ι

b/oc/c Φ satisfies the following conditions:

(1) For Xeg, putting
N

(5 46)

we obtain Φ(υ\ z) = 0.
(2) For a = 1, . . . , N, we have

,z)= Σ , (5Λ1)
Za~Zb

where we put u':= u^ ® --®UN.
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Proof. Let X be in g and put A(ζ):= X(ζ). Then applications of (Bl) to the cases
f(ζ) = 1 and f(ζ) = (ζ — za)~ 1 respectively imply (1) and the following:

V ι ' - b ' N,

i^b^N Za — Zb

bφa

By Lemma 4.5, we obtain
ι dim 9

L-ι«. = - £ J"[-l]^[0]ua. (5.49)
K p=ι

Thus, by (B2), we obtain
dimg

K i^b^N p=l Za — Zb

b*a

(5.50)
Rewriting this by Ωa,b, we find (2). Π

Recall that the weight subspace M\tλ has been defined by (0.19). Lemma 5.5
implies the following.

Lemma 5.8. Under the same notation as in 5.5, we have

^(<λJ®ι>®s;z,ί) = <P(z,ί)|t?> up to phase factor /ori eMf^. Π (5.51)

Theorem 5.9. Under the notation in 0.8, if F(z) is defined by (0.32), then F(z) is
valued in S\m(M^) and satisfies the KZ equation (0.23).

Proof. Let Φ denote the conformal block defined by (5.39). Then, by Lemma 5.8, we
obtain

| i7> for ueΛff^. (5.52)

Therefore the theorem follows from Lemma 5.7. Π
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