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Abstract. It is shown that the steady Boltzmann equation in a slab [0, a] has
solutions x — u, such that the ingoing boundary measures o> oy and s, <o) can
be prescribed a priori. The collision kernel is truncated such that particles with
small x-component of the velocity have a reduced collision rate.

1. Introduction

Throughout this paper, v = (£, 1, {)eR> will denote a velocity vector with x-, y- and
z-components &, 7 and { respectively. x is the (one-dimensional) position in the
interval [0,a]. This interval is also referred to as a “slab.”

For two velocities v,weR® and a collision parameter neS?, we define the
collision transformation

J:(v,n,w)—> (', —n,w)
by
v=v—n(n,v—w),
w =w+n(n,v—w). (L.1)

Here, (n, v — w) denotes the Euclidean inner product in IR3. J is an involution
(J? =1id) and preserves momentum and energy. It is also well-known (and easily
checked) that |[v —w'|| = |[v—w] and |(n,v—w)|=|(n,v" — w’)|, so the collision
kernel B(n,v —w), which in effect only depends on ||v—w| and |(n,v—w)|, is
invariant under the action of J.

We are concerned with the steady Boltzmann equation in the slab 0 < x < q,

for f = f(x,0),
c-§f= ) (12)
X
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with boundary conditions

fO,v)= folv) if £>0,
fla,v)= f,(v) if £<O. (1.3)

The collision operator C(f, f) is
C(f, N)x, )= n{ﬂ sfz B(n,v—w)Lf'f, — ffJdndw

with "= f(x,v'), f, = f(x,w') and f, = f(x,w).

For the time being we impose no restrictions on the collision kernel; we need
some truncations later on.

Problem (1.2-3) models a kinetic layer between two walls at x =0 and x = q,
where the ingoing densities are prescribed. Our objective in this paper is to decide
whether this problem has, in some sense, a nonnegative solution. To this end, we
find it necessary to extend the functions admissible as solutions to measure valued
functions of x,

X2 [y,

[0,a]— M.

Here, M denotes the set of bounded measures on R3.

If x— f(x,v)eL'(R®) were a classical solution of (1.2), we could write
du.(v) = f(x,v)dv, but we will see that (1.2—3) admits a reasonable measure solution
concept which does not require that u, be absolutely continuous for any x. In
particular, this concept permits general finite measures as boundary values.

For mass- and momentum-conserving discrete velocity models for which &, # 0
for all the admissible velocities v; = (¢;,1;,{;), the counterpart to problem (1.2-3),
and also (1.2) with many other boundary conditions, were shown in [1] to always
have a solution. Here we solve the problem for the full Boltzmann equation, but
we truncate the collision kernel in the collision operator such that the particles
with small |£| do not at all interact or have at least a reduced rate of interaction.
This is unphysical, but necessary in our method to prove a priori estimates. The
case where particles are allowed to interact freely even if one of them has a velocity
v=(&n,{) with arbitrarily small |£] is open.

The plan of the paper is as follows. In Sect. 2, we introduce a measure theoretic
formulation of problem (1.2-3). The rationale behind this is that a measure
formulation makes the problem accessible to the simple compactness criteria which
are available in the cone of bounded measures (by the Alaoglu theorem, a set of
bounded measures is weak-* relatively compact if it is uniformly bounded - see
[6]). In Sect. 3, we introduce two truncations to the collision kernel: A rather
crude truncation, which will make the resulting problem accessible to Tychonoff’s
fixed point theorem, and a second, less restrictive truncation, which is our ultimate
target.

In Sect. 4 we review Tychonoff’s fixed point theorem (see [6,8-10]) and apply
it to show that the boundary value problem with the crude truncation has a
measure solution. The discussion includes the introduction of the underlying
function space, a corollary to Tychonoff’s theorem due to Schaefer [8] and the
a priori estimates needed to apply this theorem. Finally, in Sect. S, we use an
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approximation procedure to show that the problem with the less restrictive
truncation also has a measure solution.

A few remarks are in order. First, we note that the analysis here does not
require an entropy functional. In fact, for the steady problem (1.2-3), the H-Theorem
takes the form

;;j.f-f-lnfdvgo,

and because the multiplier £ here does not have a definite sign, we cannot use
entropy to get even weak compactness in L'. It was this lack of weak compactness
in L' which inspired us to look for a measure formulation of (1.2-3).

The results presented here are unsatisfactory for two reasons: The truncations
which we introduce are unphysical, and the solutions obtained may not be unique.
While there is at least some hope to eventually remove the truncations imposed
here entirely, the uniqueness question is much more serious. Not only does
Tychonoff’s theorem not imply uniqueness, the solution for our boundary value
problem may just not be unique.

We mention some related papers on kinetic boundary layers. In [3], the half-
space problem (a = o0) was treated for discrete velocity models. A two dimensional
boundary value problem was solved for the standard 4-velocity model in [2], and
tentative steps to solve general two-dimensional boundary value problems were
taken in [5]. A useful classification of the well-posedness of boundary value
problems for the linearized Boltzmann equation was given by Coron, Golse and
Sulem in [4].

2. Measure Formulation

We return to (1.2-3). To pass to a measure formulation, choose a test function
¢(x,v), bounded and continuous, such that d,¢(x,v)/¢ is continuous and such that
¢ is Lipschitz continuous with respect to v (with a Lipschitz constant not depending
on x) and has compact support. In addition, we require that

00,0)=0 if ¢<0,
o(a,v)=0 if £>0.

We call such test functions “admissible.”

a

Multiply (1.2) by ¢, integrate | | dvdx, integrate by parts with respect to x,
0 R3

apply the collision transformation and use the boundary condition (1.3). The
result is

—?jé- f(x,v)i(p(x,v)dvdx—— [ & foeOv)dv+ | & fa®elav)d
0 0x >0 £<0

= ;'H [ (@(x,v') — @(x,v))B(n, v — w) f (x, v) f (x, w)dndwdvdx, 2.1
OvwS2
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or, in measure notation,

- Hé” —(P(x v)dp(v)dx — | @(0,0)-&dug @)+ | ola,v)-Edp, (v)

E>0 <0
= 1 ] @ = 9)B(n, v — w)dndpu () du,(w)dx. 22)
OvwsS?

ug and p; are, of course, the data at x =0 and x = q, interpreted as measures on
>0 and £<0 respectlvely We can drop the condition that pug and u, be
absolutely continuous — it is not necessary for the sequel.

Let the measure dM (v, n,w) on R3 x S? x R3 be defined by

dM (v, n,w) = dndp (v)du,(w). (2.3)

Because the collision transformation J is involutive (J ~! = J), the right-hand side
of (2.2) can be rewritten as

j‘” [ o(x,v)B(n,v — w)[d(M °J)— dM (v, n, w)dx. (2.4

OvwS?

Definition 2.1. Let M = M(IR?) be the cone of bounded measures on R?, endowed
with the weak-* topology (i.e. p, — p if j¢u,,—>jgodu for each continuous @ with
compact support). A measure- valued function

[0,a]->M(R}),
X = fy

is called a measure solution of (1.2-3) if x — u, is continuous (with respect to the
weak-* topology on M(R?)) and (2. 2) holds for all admissible test functions. We
have automatically that poy.c> 0, = tg aNd Paype<0y = M -

We will assume throughout that puj and p_ are such that all the integrals

J i@, [ 160, [ v and [ (8070 0)

>0 §<0

are ﬁmte.

Remark. We will have to address the problem that the set defined by ¢ = 0, while
a set of Lebesgue measure zero, may not be a null set for the measures u,. This
problem will be solved by the truncations, which assure that the truncated collision
kernel make no contributions to this set.

3. Assumptions on the Collision Kernel and Truncations
For v=(§,n,0)eR?® and neS?, let n be represented by the polar angle @ (with
polar axis along v — w) and the azimuthal angle §. We assume that

B(n,v —w) = v —w|’h(®),

with h integrable on [0, IT] and — 1 < f 0, i.e. soft forces inversely proportional
to the j™ power of the distance, 3 <j < 5. The condition > —1 is dictated by
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the presence of ¢’ — ¢ in the collision term: We must have

[o(x,v — n(n@ — w))) — @(x,v)-[v — w|’
locally bounded as a function of v and w; this is true, due to the Lipschitz continuity
of p,if f= —1.

3.1 A Minimal Truncation. We introduce a factor y (v, w,v',w’) into the collision
term which serves the necessity to eliminate collisions between particles whose
velocities have small x-component. Specifically, let ¢ > 0 be arbitrary but fixed and
let

Lifmin{| &}, [€,), 1E], 1€, 1} 2 &,
X(v, w,v', W) = | such that x,/(¢2¢3) and 1, /(E*E})
are bounded otherwise (e.g., x, = 0).

Here, ¢, ¢’ and £, denote the x-components of w, v" and w’ respectively. We also
assume that y, is invariant under the collision transformation. Let

B,(v,n,w) = B(n, v — w)" x(v, w, v, W),

and let C, be the collision operator with B replaced by B,. Our ultimate target in
this paper is to show that the problem

d
&ty = Cll, ), (3.1)

dx
Holie>0)=Hg >  Haliz<oy= Ky (3.2)

admits a measure solution. We need a cruder truncation in preparation for this
result.

3.2 A Crude Truncation. The truncation parameter ¢ > 0 will be kept fixed once
and for all. Now choose d > 0, and let

=<1, ifo2 4w <872, min{|E)IE,LIEIE}>8 and jp—w]>d
7 \0 otherwise (if one of the three above conditions is violated).

Let B’ = B, k;, and C° be the collision operator with B replaced by B?. The problem
which we first solve is

d
é; Hy= Ca(ﬂm Aux)’ (33)
X

Holig>0y = Mo s  Haliz<oy= g - (3.4

4. Tychonoff’s Theorem and Measure Solutions
of the Crudely Truncated Problem

We begin this section by reviewing Tychonoff’s theorem ([6,10]) and a useful
consequence due to Schaefer [8].
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Theorem 4.1 (Tychonoff). Let A be a non-empty compact convex subset of a locally
convex, complete Hausdorff vector space X. If T:A— A is continuous, then T has
a fixed point.

Lemma 4.2 (Schaefer). Let X be a locally convex complete Hausdorff vector space.
If K< X is convex and closed and ¢:K — K is continuous and such that ¢(K) is
relatively compact, then ¢ has a fixed point in K.

Proof. Let H= ¢(K)c K. The closed convex hull H* of H is compact, and
H* c K, ¢(H*)c H < H*. Therefore, H* satisfies the conditions of Tychonoff’s
theorem. q.e.d.

We prepare to apply these results to the problem (3.3-4). Let X = C([0,a]; M)
be the cone of all continuous functions [0, a] — M. Because the difference between
two measures is in general not a measure anymore (but rather a signed measure),
X is not a linear space. However, Tychonoff’s theorem and Lemma 4.2 can both
be applied to X.

For peM, we write {u, @) = [¢(v)du(v). Elements of X will be written as
X— u,, or simply u. def.

Definition. C_ (IR®) will denote the Banach space of all continuous real-valued
functions which vanish at oo, endowed with the topology of uniform convergence. A
subset E of X is said to be (uniformly) equicontinuous if the set of real-valued functions
{x— s, ©; p.€E} is (uniformly) equicontinuous for each peC (R?).

It is well-known [6] that every continuous functional on C, comes from a
finite measure peM, and the weak-* topology on M is the weakest topology such
that u— {u, @) is continuous for any peC_. By the Banach—Alaoglu theorem,
any bounded subset of M is relatively compact; as C,, is separable, the weak-*
topology on bounded subsets of M is metrizable, and so relative compactness and
sequential relative compactness are equivalent (see, e.g. Royden [7]). This implies
the Ascoli—Arzela Theorem for the current setting:

Lemma 4.3 (Ascoli-Arzela). A uniformly bounded and uniformly equicontinuous
subset E = X contains a convergent subsequence [ — {..

We finally note that X is a locally convex and complete Hausdorff space (a
separating family of seminorms is given by

p¢(u.)=sgpl<ux,<o>l, peCy;

completness is readily verified). Sometimes, we will use the notation

A = du(v).
lil iz sup [dusde)
We return to the setting of Sect. 3.2. The collision operator C° can be written,

in a natural way, as

C(f, )= Q1. /) — fR(S), @.1)

or, in measure notation, as
Copys ) = Q°(iys 1) — ROt ) - (4.2)
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The function R%(u,)(v) is
R(u)(w)= [ | B’(v,n, w)ydndp,(w),
R3S2

and Q%u,, ,), R%(u,)u, are measures defined by
Qs i)y @ = [ [ [ BP0, n, w)@(v)d(M 2 ),

vwn

with dM, = dndyu, x du,, and

(Rt @ = s RO(1)00 ).
B’ is uniformly bounded by construction (B? £ C(d)), so

IR (1)) || < 4n C()fdp(w). 4.3)

Choose R>Osuch that | dul <R, [ dp; <R, and let Bg(0) = X be the set of
E>0 E<0
all continuous measure-valued functions p, such that || u.|| £ R. Bg(0) is convex
and closed.
We will find a solution of the crudely truncated problem (3.3—4) as a fixed
point of a suitably constructed operator on Bg(0), where R is to be large enough.
Analogous to the method in [1], let, for any p.eX, p(x)=p[p.](x)= fdpx(v),
J(x) =j[r](x) = [Edu.(v) and p(x) = p[p.](x) = [&*dp,(v).
For t = 4nC(6), we define operators

T(t):Bgr(0)>X by v,=T(t)u.

" Volesoy = 1> Valig<oy= A7 (4.4)
En=0 for (€55 182 1/8 45)

and
&t LI = Qi ) + L]~ R (4

for & <|&| < 1/4.

We need to discuss whether v, is well defined. Clearly, (4.4) and (4.5) define
Vilye o and Vilgg 2 175 (We simply set v, {& =0} = 0) by, e.g. vilo<z<e = o lio<e<a)-
The right-hand side of (4.6) defines, for any xe[0, a], a measure because R%(u,) <
tp[p.](x) for T = 4nC(5). By our truncation from Sect. 3.2, the measures Q°(u,, u,)
and R°(u,)u, are compactly supported in & < |&| < 1/8, so it is enough to show
that (4.6) defines a measure function v, which is well defined and continuous on
functions peC, which are supported in this set.

Lemma 4.4. The boundary value problem (4.4), (4.6) has a unique solution v,, and
the mapping p, — v, is continuous from Bg(0) into X.

Proof. v, can be constructed explicitly by following the solution method for linear
differential equations. We leave the easy details to the reader.

It is evident that v, = T(t)u.e X. However, T(z) will in general not map Bg(0)
into itself. To overcome this difficulty, we introduce the retract Tg:X — Bg(0),
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defined by

o if Jul| <R
(Trp). =

[

Tge T(7) certainly maps Bg(0) into itself, and we have

po if Jlpll >R

Lemma 4.5. TgoT(z) is continuous on Bg(0). For every t = 4nC(6), Tre T(t)Bg(0)
is a uniformly equicontinuous subset of Bg(0), and hence relatively compact.

Proof. The crude truncation from Sect. 3.2 is such that the measures Q%(u,, i)
and R%(u,)u, are compactly supported in v? + w? <6~ 2. From this and equations
(4.4-6) one easily sees that the family of functions [dv,(v), where v, is any solution
of (4.4-6) with p.eB,(0), is uniformly bounded and uniformly equicontinuous. It
follows that TgoT(t) is continuous. The uniform equicontinuity of T(t)Bg(0) is
obvious, because by (4.4-6), for any peC,_,, we have uniform bounds on the

derivatives — v, ¢ ).
dx

In view of the boundedness and equicontinuity of the set {[d(T(z)u.),; 1€ Bg(0)},
the retract Ty preserves uniform equicontinuity. This implies the second assertion.
q.ed.

Corollary. TgoT(t) has a fixed point in Bg(0).
Proof. This is an immediate consequence of Lemma 4.2 and Lemma 4.5. q.e.d.

Let uf be this fixed point. If || T(t)ul || < R, yf is actually a fixed point of T(z),
because Ty is the identity on Bg(0). From (4.4-6) one readily verifies that u! is
then a solution of (3.3—4). Following an idea by Schaefer [8], we show that if R
is large enough and 7 = 4nC(d), then actually || T(t)u! || £ R. The key step towards
this end is to prove that the set of all fixed points of Ty T(z) is uniformly bounded.

Let TroT(t)uf=ui. Without restricting the generality, suppose that
IT@RN 2R, ie.

T@M=%M, 7)

where

IA

A=———<1.
I T(ucl

To simplify notation, we suppress now the dependence of p on 1. Explicitly, (4.7)
reads

Nol(;> 0= /I#J, /J'al(.§<0) = /1,“; (4.8)

e =0 for |E125, 1E121/6, 49)
dx
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%ux — LRI — Dt Qe ) — paR%1) (4.10)

for 6 <|&| < 1/6.
By the usual conservation laws,

Jo@)d[Q%(us, 1) — R(u)p 1 (v) = O,
where @(v) = 1, v or v? respectively. Therefore, from (4.8-10), we find
dj

—=(A— 1)1:p2, 4.11)
dx
and, by multiplying (4.10) by £ and integrating,
P zpj. (4.12)
dx
In the sequel, we use the notationj* = | &du,(v),j” = j |€|du,(v). From (4.11),
>0 <0
JO) =i )=~ (x)£jT(0)~j(0). (4.13)
For x = a, we get,
JT@+j7(0)<j*(0)+j (a). (4.14)

Let e(x) = [v?du,(v),

q*(x)= Ioévzdux(v), qa ()= | Iglv*du,(),

&> <0
d
and g(x) = q" (x) — ¢~ (x). From (4.9-10), ‘—i—q =(1—1)1pe £0, so also
x

a*@+q 0)=q"0) +q (a). (4.15)

Note that the right-hand sides of (4.14-15) are, by (4.8), a priori bounded. By
(4.11), j(x) is nonincreasing. To estimate p(x), we distinguish 3 cases:

a) if j(x) = 0 for all x, p(x) is also nonincreasing, so p(x) < p(0)=p*(0) + p~(0).
p*(0) is given, so in this case we need to estimate p~(0).

b) if j(x) £ 0 for all x, p(x) is nondecreasing so p(x) < p(a)=p* (@) + p~(a). p"(a)
is given, so here we need an estimate on p*(a).

¢) if j(x) changes sign, it can do so at most once. Suppose that j(x) >0 for
xe[0, x,), j(x) = 0 for xe[x;,x,] and j(x) < 0 for xe(x,, a]. We see from (4.12) that
p is nonincreasing on [0, x,), constant in [x,, x,] and nondecreasing on (x,,a].
Also, p is nonnegative by its definition, so

0 = p(x) < max {p(0), p(a)}. (4.16)

We realize that a priori bounds on p will follow from a priori bounds on p~(0)
and p*(a). By the Cauchy-Schwarz inequality,

p 0)= | &duy(v)

<0
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1/2 1/2
§(§£0‘f]dﬂo(v)> (j ]é|3dﬂo(")>

£<0
(GO +j(@)"*(q" (0) + g (@)

1/2 1/2
=l< §1¢ldu; + éd/u;) (f [Elv2du; + | zuzdug) . (@.17)
<0

£<0 &0 &so

The last two estimates follow from (4.14), (4.15) and (4.8). The same estimate applies
to p*(a). Let

12 12
C(ué',/t;)=( § 1&ldu; + § édu(T) <§ 1Elo*dp; + 502(1#3) :

£<0 E>0 £<0 >0
We have proved
Lemma 4.6. For any solution uf of the equation

Tre T(r)ul = ui,
we have

max [Edu ) < Clug , 1) +p () + p~ (@) (4.18)
Remc‘trks‘ 1. We emphasize that C(ug,p, ) is independent of the truncation
parameter 8. Estimates of p(x) which are §-dependent can be obtained as in [1]
and take the form

pPx)Sp*(0)+p (@) + KO (%) +j (x))

(use that for |£[< 6 and &> 1/ u, is just given by the data). By using the
monotonicity argument from above and the a priori bound (4.14), one obtains a
J-dependent a priori estimate on p(x). Equation (4.15) is not needed for this estimate,
but the result from Lemma 4.6 is more promising because it remains useful as § — 0.
2. The independence of the bounds on p(x) from § is what enables us to prove
a result for the truncation described in Sect. 3.1. We return to this in Sect. 5.
3. If | T(zx)if || < R, the discussion starting with (4.7) goes through with 1 = 1.

Theorem 4.7. For any 6 > 0, the problem (3.3—4) has a measure solution, i.e. a u.€ X
such that

d
é—d the = C(p, 1)
X

and
+ —_
ﬂohg>0)=ﬂo, ﬂa|(¢<0)=#a .

Proof. 1t is clearly enough to find a fixed point of T(z) for some z. By (4.18), for
ut as in Lemma 4.6,

_ 1
llll = sup ( §odug+  f dug 45 é’du;)
xe[0,a] \O<é<d —-0<¢<0 5
1/6<¢ —1/6>¢

= Cy(9).

Here, C,(d) is a constant which depends on the boundary values and on J, but






