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Abstract. Some mathematical and physical aspects of superconformal string
compactification in weighted projective space are discussed. In particular, we
recast the path integral argument establishing the connection between Landau-
Ginzburg conformal theories and Calabi-Yau string compactification in a
geometric framework. We then prove that the naive expression for the vanishing
of the first Chern class for a complete intersection (adopted from the smooth
case) is sufficient to ensure that the resulting variety, which is generically
singular, can be resolved to a smooth Calabi-Yau space. This justifies much
analysis which has recently been expended on the study of Landau-Ginzburg
models. Furthermore, we derive some simple formulae for the determination of
the Witten index in these theories which are complimentary to those derived
using semiclassical reasoning by Vafa. Finally, we also comment on the possible
geometrical significance of unorbifolded Landau-Ginzburg theories.

1. Introduction

During the past year much progress has been made in understanding the
previous mysterious connection between minimal model string vacua [1] and
geometrical compactification on manifolds with trivial canonical bundle [2, 3].
The unifying link between the two is a Landau-Ginzburg description of the
minimal model theories which gives rise, with little difficulty, to a nonlinear
sigma model with Calabi-Yau target space. In particular, an orbifold of the
Landau-Ginzburg theory lies in the same universality class as a string
propagating in a Calabi-Yau background embedded in weighted projective
space. Weighted projective space, unlike ordinary projective space, has quotient
singularities. Hence, a generic Calabi-Yau manifold embedded in such a
background has such singularities as well.
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An important and well known property of string propagation in singular
backgrounds [4] is that the string probes the topology of the desingularized
counterpart of the original space which shares the property of trivial canonical
bundle. Physically, this property manifests itself, for example, in the fact that it is
the cohomology of the desingularized manifold (as opposed to that of the
singular space) which determines the spectrum of massless excitations. In the
context of minimal model vacua, this feature has been used to verify in explicit
examples that the general arguments of [2] correctly pair these minimal model
theories with geometrical backgrounds. That is, the minimal model spectra have
been compared and shown to agree [2, 5, 6, 7] with the cohomology of the
desingularized Calabi-Yau manifolds dictated by [2, 3].

All of these analyses, though, make one crucial assumption: the singularities
encountered in these Calabi-Yau constructions are such that a desingularization
exists. Under this nontrivial assumption, the authors above have made use of the
procedure described in [2] as adapted from [8] to compute the properties of the
resolved space. Physically one expects this assumption to be true, as emphasized
in [9] and [3], since the Landau-Ginzburg theories give rise to well defined
string vacua and the latter, if singular, admit smooth resolutions [4]. It is one
purpose of this letter, to rigorously prove that in the cases under consideration, a
smooth resolution to a smooth manifold of trivial canonical bundle always
exists.

In addition, there are three other issues we shall discuss. First, we shall briefly
rephrase the analysis of [2] in a way that makes the geometrical underpinnings
of the arguments more apparent. Second, we shall derive some general formula
for the Euler number of the resolved weighted projective space Calabi-Yau
constructions under consideration. This provides a more general and systematic
method of computation compared with the procedure described and applied in
[2]1. Finally, we shall briefly describe a possible geometric interpretation for
Landau-Ginzburg theories in contradistinction to Landau-Ginzburg orbifolds
which correspond to strings propagation on Calabi-Yau manifolds. This is a
question which deserves further study.

2. Landau-Ginzburg Effective Theories and Geometric String Propagation

In this section we briefly review the results of [2] and [3] regarding the
connection between Landau-Ginzburg effective Lagrangians and string propaga-
tion on Calabi-Yau manifolds. We rephrase the treatment in [2] in a way that
exposes the underlying geometrical nature of the constructions utilized.

The connection between N = 2 minimal model vacua and geometric string
propagation, as conjectured in [1] and established in [2, 3], is based upon the
observation [11] that the pth minimal model has a Lagrangian description with
superpotential Φp+2. The field Φ is a two dimensional chiral superfield. A tensor

1 Recently, Vafa [10] has employed a semiclassical argument in the Landau-Ginzburg
formalism to derive similar formulas for these Euler numbers. As will be shown elsewhere, the
results of the present paper can be extended to prove Vafa's result and hence establish a precise
connection between blow-up modes and resolved cohomology classes
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product of r minimal models, (Pl9...9Pr) is thus described by a superpotential

W f = Φ ί ' + 2 + ... + φf' +2. (2.1)

The Lagrangian for this theory can thus be written

f d2zd4ΘK(Φi, Φ<) + (ld2zd2ΘW(Φi) + c.c). (2.2)

As described in [12] the renormalization group flow for such a theory is driven
by the superpotential, W, as the D terms supply irrelevant perturbations. In fact,
W is not renormalized and hence provides us with an invariant of the renor-
malization group flow with which to characterize such 2 -dimensional theories
[12]. Following [2], we move to a point on the renormalization group trajectory
with infinitesimal D-terms and hence describe the theory with the path integral

ί[rfΦ1]...[ί/Φ5]exp{iJrf2zd2θ(ΦH Φ55)}) (2-3)

where for defmiteness we have restricted our attention to five complex variables
and set l{ = Pt + 2 for ease of notation. Now, notice that if we consider an orbifold
of this Landau-Ginzburg theory

(Φ, , . . . , Φ5) - (e2-^ Φ19...9 e2™/1* Φ5), (2.4)

we are justified in performing the nonlinear change of variables from (Φ1 , . . . , Φ5)
to (ξι,...,ξs) where

In terms of these new variables, we can write the path integral (2.3) as

$ldξΛ tdξ5lΩπp{i$d2zd2θξ1(l + ft + •>•&}, (2.6)

where Ω is the Jacobian for this coordinate transformation. In particular, this
/ 5 ι \

Jacobian is easily seen to be proportional to Φ{ where j = 1 - / t + / t I Σ T I The

crucial point is that j vanishes precisely if

u
When this condition is met, we can perform the ξ1 integration in (2.6) to yield a
multiplicand

δ(l+ξlϊ+- ξlj). (2.8)

Interpreting the scalar component of the superfields as background spatial
coordinates, we thus see that the above delta function constrains classical motion
of the string to lie on the hypersurface defined by the vanishing locus of the
argument of the delta function2. As shown in [2], (2.7) is precisely the
requirement that this hypersurface has vanishing first Chern class and hence is

The θ component of the delta function constrains the fermionic superfield components to be
tangent to this manifold
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5

the Calabi-Yau manifold £ z[f = 0 in WCPfdlh)tmf.ί(dlls). Thus, we see that an
i = l

orbifold of the original Landau-Ginzburg theory lies in the same universality class
as string propagation on a Calabi-Yau manifold.

An important element of the above reasoning involves ensuring that the
change of variables does not introduce a nontrivial Jacobian. This suggests that
the argument can be rephrased as the existence of some global geometric
structure since the triviality of a Jacobian reflects the fact that there is a trivial
transformation law for an object from one coordinate patch to another. We now
rephrase the above argument making use of such ideas.

To be concrete, we will phrase our argument through the simplest example
the Calabi-Yau manifold Y4;5 defined by zf + zf + z^ + z;j + zi = 0, in CP4,
although our remarks are quite general.

Suppressing superspace dependence, the chiral fields z l 5 . . . ,z 5 span C5 — [0].
We can think of the latter as being the line bundle H ~1 - [0] over CP4, where H
is the usual hyperplane bundle. In our argument above, the orbifold operation
we perform is (z1? . . . , z5)->(Λ,zl9 . . . , Az5), where λ is a nontrivial fifth root of unity.
Thus, we are mapping the configuration space C5 — [0] to (C5 — [0])/Z5 by this
action. The latter is equivalent to the line bundle // ~5-[0] over CP4. To be
concrete, let us spell this out in a bit more detail. We choose to work over the
patch z1 /O in CP4 which has local coordinates (ξ2, . . . , ξ5). Local coordinates on
the bundle H ~ 1 - [0] over CP4 can be taken as (zx; ξ2, . . . , ξ 5 ) with z1 being the
fibre coordinate. Now, the Z5 action on these coordinates is simple (z^^,...,^).
-+(λz^ξ2, . . . , ξ 5 ) . Thus, (C5 — [0])/Z5 has local coordinates (μ; ξ2,. . . , ξ 5 ) with μ = z\.
Following the notation of [2], we relabel μ = ξλ. Clearly, then, (C5 - [0])/Z5 is
equivalent to the line bundle f /~ 5 — [0]. Note also that nothing prevents us from
extending the fiber over our line bundle to get H~5 over CP4. We thus see that
the latter is the true configuration space for the orbifolded Landau-Ginzburg
theory.

Having identified the correct configuration space, let us return to the issues
involved in the path integral. After changing variables as described above [2],
the integration measure we use is dξί Λ ••• Λ dξ5 and the important point is that
the Jacobian from the zf to the ξt is a constant. To understand the significance of
this, let us work, again, in the patch z^^O and consider the measure on the total
space of line bundle #~5-[0] over CP4. This is simple dξ1 A ••• Λ dξ5. Now,
what form does this measure take if we move on to the patch, say, where z2 Φ 0?
It is simple to see that in this patch the measure still takes the form
dξ1 Λ ••• Λ dξ5. In other words, the fact noticed and utilized in [2], regarding
constant Jacobian change of variables, is the geometric statement that the total
space of the bundle H ~5~[0] over CP4 admits a global measure. We call this
total space TH ( — 5). Now, with this global measure we can consistently consider

f dξ^ Λdξ^ (2.9)
TH(~5)

so long as /eΓ(CP4, H5). Explicitly, then, f = aξ^ + ξι(P5(ξ2, , ξ s ) ) , where P5 is
any fifth order polynomial. For example, we can take /=^(1 + <J| + '" + £5)*
thus reproducing the argument in [2]. Notice that were we to try this procedure
for TH(-ri) with ft/ 5, we would not be able to construct a global measure, and
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the argument would fail. Thus, the condition for vanishing first Chern class is
equivalent to the existence of a global measure. This in turn allows for a simple
evaluation of the path integral.

Clearly, this argument is quite general. Complete intersections can be
expressed as the zero section of (tensor products) of hyperplane bundles over
(weighted) projective spaces. Such sections can be integrated over the total space
of the dual bundle provided we have a global measure on the latter. The
existence of such a measure is precisely equivalent to the complete intersection
having vanishing first Chern class - i.e. being Calabi-Yau.

This, then, is the geometrical content of the method proposed and utilized in
[2].

3. Varieties in Weighted Projective Space

In this section we shall investigate the conditions under which a singular Calabi-
Yau variety in weighted projective space can be resolved to a smooth Calabi-
Yau manifold. To orient the discussion, two remarks are in order. First, we recall
that a similar question has been studied in [8]. In these works it was shown that

Theorem. If X is a (possibly singular) algebraic variety of dimension two or three
with (at most) abelian quotient singularities, and the canonical sheaf ωx of X is
trivial, then there exists a resolution X of X with X a smooth variety with trivial
canonical bundle.

In other words, if X has trivial canonical bundle away from its singularities,
then these singularities can be repaired without spoiling the triviality of the cano-
nical bundle. Our task, therefore, will be to determine when a complete intersection
in a product of weighted projective spaces satisfies this requirement.

Second, to be concrete, we remind the reader of the origin of singularities in
these spaces. In WCP%ίttmfJtN+l, we make the identification [z1,...,zN+1] =
[λklzl,...9λ

kN+1zN+i']. If any of the kt have a nontrivial common factor, say for
IE I, then there are clearly fixed points under the above equivalence relation of
form Zj = 0 for je/, and λq= 1 for q dividing the fef, ie/. It is these cyclic quotient
singularities which shall be our interest.

As in the case of complete intersections in products of ordinary projective
spaces, it is useful to introduce a handy piece of notation called the configuration
matrix [13]. This is a matrix of dimension / by fc, where / equals the number of
weighted projective spaces whose Cartesian product forms the ambient space and
fe equals the codimension of the variety being described. The (ij) entry of this
matrix, dtj is the degree of the /* equation in the ilh weighted projective space.
For the case of nonsingular varieties in products of ordinary projective spaces,
the condition on the configuration matrix for it to describe a manifold of
vanishing first Chern class is for all i: [13].

7=1

This is easily proved from the adjunction formula. The corresponding formula
for smooth complete intersections in products of weighted projective spaces,
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again easily derived from the adjunction formula, is for all i:

7=1 j=l

where the ith weighted projective space is WCPN

(l) <,•> . (When there is no loss

of clarity, we suppress the (i) index.) For complete intersections of complex
dimension two or three in products of weighted projective spaces which intersect
the ambient space singularities and hence are not smooth, we now prove:

Theorem. IfX is a complete intersection in a product of weighted projective spaces
which meets condition (3.2), then there exists a desingularization X of X which is
smooth and has vanishing first Chern class.

As discussed above, the results of [8] reduce the proof of this statement to a
computation of the canonical bundle of X — Σ, where Σ is defined to be the set of
singularities of X, a computation to which we now turn.

Let M be an (n+/) dimensional complex manifold, and Jet G be an /
dimensional algebraic torus (C*)', acting on M. For each yeM, we assume that
the isotropy subgroup Gy (that is, the set of all geG such that g(y) = y) is finite
and there is a G^ invariant n-dimensional subspace Wy of M such that y is a
smooth point of Wy, and Wy meets the G-orbit G(y) of y transversely at the point
y. (As we shall see later on, / will correspond to the number of weighted
projective spaces composing the ambient space, and M will correspond to the
afϊϊne variety associated with the projective variety under consideration.) Let
X = M/G and let p:M-+X denote the natural projection. X is clearly a V-
manifold (that is, locally of the form (smooth manifold)/(finite group action)),
with (at most) abelian quotient singularities. In fact, for xeX and x = p(y)9 (X9x)
is isomorphic to (Wy/Gy9y) as germs of analytic spaces. As an example, let /= 1,
n = 3 and M = {z e C5 — {0}\z\ + z2 + z3 + z\ -f zf = 0}. Consider the G-action
G x M->M given by (z l 9..., z5)->(/ί2z1, Λ,2z2, /I2z3, λz4, λz5). Then, for y of the form
(3;1,y2,y3,0,0), we see that Gy = Z2. For all other y, Gy = L For the former case,
we can take Wy= {(_y1,z2,z3,z4,z5)nM} (y^ fixed), while for the latter we can
taken Wy = {(z1,z2,z3,j;4,z5)nM}(y4 fixed). The idea is that if Gy acts freedly, we
can simply collapse the G-orbit of Wy to arrive (locally) at the variety X. If,
however, Gy does not act freely, there are further global identifications on Wy

which must be made.
There is an important point which we should presently introduce. If (Gy)0 is a

subgroup of Gy which is generated by all elements in Gv which fix some (n — 1)
dimensional submanifold of Wy near y, then wy(Gy)0 is smooth. That is,
(Wy/(Gy)θ9y) = (Cn

9origin). In other words, as far as singularities go, we can
disregard the subgroup (Gy)0. The reason for Wy/(Gy)0 being nonsingular is quite
simple, and is most easily understood by considering a simple involution
g:z-> —z in C1 as compared with C2. In the former case we can introduce the
coordinate w = z2 on Cl/g, and thereby see that the latter is nonsingular, even
though the origin is fixed by g. In the case of C2/g we can try the coordinates
(w1,w2) = (z2,z2), however it is clear that these are not a good choice as both
( — z1?z2) and (zl9 — z2) are identified with (zί9z2). We are thus led to distinguish
the latter points with a third coordinate w3 = z1z2. We now see that C2/g is
isomorphic to w2 = w^w2 in C3, which is clearly a singular space. This simple
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example captures the essential reason why group actions leaving a codimension
one fixed point set do not lead to singularities. Hence, we see that for each x e X,
(X,x) = (Cn/y, [0]), where y is a "small" finite abelian subgroup of GL(n,C\
where "small" means that no element has 1 as an eigenvalue of multiplicity
exactly n—l. X is therefore normal which implies Γ(X,OX) = Γ(X — Σ,OX_Σ\
and Σ has codimension at least two.

We define the dualizing sheaf of X (which in the smooth case simply refers to
the canonical bundle of X] as the pushforward of the dualizing sheaf on X — Σ,
that is

o>x = i*<»x-Σ, (3.3)

with i:X - Σ^X and ωx,Σ=Ωn

x_Σ.

Lemma 1. ωx = (p ωM)G, where the latter denotes the natural projection of the G-
invariant part of the canonical bundle on M.

We remark that this lemma will give us a simple means of determining when
the canonical bundle of X is trivial, the goal we have set out upon.

Proof. Let M' = M — p~i(Σ). Because X is a K-manifold we only show that

MX-L = (P*MM')G- (3-4)

Given xeX — Σ and yeM with p(y) = x, we have

(X, x) EE (Wy/Gy, y) = (CY(μrι , . . . , μr J, [0] ) = (C", [0] ), (3.5)

where μ7 ={zeC*|z /= 1} and (μ r,...,μ r) acts diagonally on Cn. The final
equivalence is due to our working on the nonsingular subspaces. For a small
neighborhood U of x in X — Σ, we have

(3.6)

where p ~ 1 ( U ) / G y is non-singular and is acted upon freely by G/Gy = (C*)1. From
(3.6), we have a principle bundle over U

G/Gy^p'l(U)/Gy^U (3.7)

with fibre p~ί(U)/Gy (over yεU) and structure group G/Gy, which acts freely and
transitively on the fiber by the adjoint action. Associated to such a principle
bundle is the well known Atiyah exact sequence of vector bundles over U

O-^LV^QV^TU^Q, (3.8)
where Tυ is the tangent bundle over U, Qυ is the vector bundle whose fibre at
the point xeC/ consists of the G/Gy invariant vectors tangent to p~l(U)/Gy, that

is Qu,x

 = Γ(p~l(x)/Gy9Tp-ι(U}IGy)
GIGy, and Lυ is the vector bundle whose fibre at

the point xeU is the subset of Qv x consisting of vectors which are tangent to
p ~ l ( x ) / G y , that is Lυ^ = Γ(p~l(x}IGrTp^(x)IGf

IG\ It is immediate that

Qυ,x^Γ(p-l(x\TM,}G (3.9)

and

Lυ.x = Γ(p-i(x\Tp-^G. (3.10)

By patching the sequence (3.8) over a covering {ί/J of X-Σ, we arrive at the
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Atiyah exact sequence associated to the fibration p:M'-+X — Σ

Q->L-+Q-+TX_Σ-+Q. (3.11)

Now, since G is abelian, L = (X-Σ)xCl. Hence Λn+1Q = ΛnTx- Σ and we have

(p*ωM,)G ΞE 0(Λ" + 1Q*) = 0(/1"T*_Σ) = ωx_Σ, (3.12)

as was to be shown.
With this lemma in hand, we can now compute the canonical bundle for the

cases of interest, so long as they meet the assumptions described earlier. We now
show that algebraic subvarieties of a product of weighted projective spaces do in
fact meet these requirements.

To do so, consider a linear action of the algebraic torus G on an N-dimen-
sional C-vector space V

p\G-+GL(V\ (3.13)

We denote by χ7 e Hom(G, C*) for j= 1, . . . ,JV the eigenvalues of G (counting
multiplicity), which we call the weights of p. Regarding V and CN, we may describe
the action of g G G by

(z1? z2, . . . , zN)-^(χ1 (g)zί9 χ2(g)z2> , IN(Q)ZN\ (3.14)

Let S be a G-invariant algebraic sub variety of CN such that S - [0] is nonsingular
and Gy is finite for each yeS — [0]. Set M = S — [0]. In this expression [0]
denotes a union of linear subspaces of CN whose stabilizer is infinite. To be
concrete, take for example, N = 4 and 1 = 2 with (z l5Z2,z3,z4)->
(λzί9λ

2z29μz39μ
3z^). Then, [0] = (0,0) x C2uC2 x (0,0) and M/G=WCP\^

WCP\ 3. We now show that M satisfies the assumptions given earlier in order to
prove the lemma above.

Let y — (y\,"',y^) be an element of M, and assume that y/^0 for j^m with
meZ and m^/. (Since G = (C*)1, we are going to be considering an ambiant
space composed of the product of /-weighted projective space factors. The y are
coordinates on the product of aίfine patches of these weighted projective spaces,
and hence at least / of them must be nonzero.) We directly see that
Gy= n™= 1ker#j. In particular, we can find / elements among χι,...,χm, say
χ !,..., χh with | n j = 1kerχy|< oo. Denote by Vy the affine subspace of CN defined
by z1 = y1,...,Z| = yί. Then, Vy is G^-invariant and is transversal to the G-orbit of
y at y. Hence, Vy intersects M transversely at y. If we define Wy= Vyr\M, we see
that Wy satisfies the assumptions underlying Lemma 1.

We now turn to a determination of the structure of the canonical bundle of a
complete intersection in a product of weighted projective spaces. To do so, we
assume from now on that the ideal JS = 1S0S of S in CO^...^] is generated
by a regular sequence of k G-eigenfunctions/1?...,/k in C[z l5...,zN] with fe being
the codimension of S in CN. If δj is the eigenvalue of/}, then we say that S is a
complete intersection of degree δί9...,δk. By the adjunction formula,

tf. (3.15)

Now, Γ(CN,ωCN®(ΛkJ^s)~1) is a free C[z l9...,zN] module of rank 1 with the
ί/Zi A ••• Λ dzN , . , . - . . .

generator — - — - - - — , which is an eigenfunction with eigenvalue
Jl9J2'"Jk .
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Xι(g)'"%N(9}(δ\(9}'"δk(y}) *• The G-structure of ωM therefore corresponds to the
trivial line bundle M x C with the G-action G x ( M x C ) - > M x C given by

\ (xϊ1':'XNίδί" δk)(g)ξ). Our intent, of course, is to determine the
canonical bundle on X = M/G. By Lemma l,ωx = (p ωM)G, and hence we have

Lemma 2. ωx = 0x[χί"1 χ^151 ίk], where O[χ] for χeHom(G, C*) is ί/ie
coherent Ox-sheaf corresponding to the G-equivarίant line bundle MxC over M
with the element gεG acting by (y,ξ)^(g(y)9χ(g)ξ)for (y,ξ)εM x C.

We can now immediately apply this result to varieties in weighted projective
space. Consider a complete intersection in a single weighted projective space
WCPN

q~
 l

 qN. In the notation we have been using, this means that we take G = C*,

K=C*l'and the G action G X F-»F given by (λ,(zί9...9zN))-+(λ«ιzi9...9 λ«»zN).
(We note that we may assume that the qt do not all have a nontrivial common
factor.) We take Is to be the ideal in C[zl9...9zN'] generated by a regular
sequence of homogeneous elements with degrees dί9...,dk, with k being the
codimension of S in CN. The algebraic variety X = (S— [0])/G is called a
quasismooth weighted complete intersection of multidegree (dί9...9dk) in the
weighted projective space WCP*"1 ^= CN/G. By our results above, the
canonical sheaf of X is given by ωχ = Ox(Σdi - Σqj).

The situation for a variety in a product of weighted projective spaces is
conceptually equivalent, just a little notationally unwieldy. To describe a variety
whose configuration matrix was described at the beginning of this section, we
take G = (C*y and the characters χmeHom(G,C*)ΞΞZ*, for m = (m1,...,m ί) are of
the form χm(λ) = λ^λtξ^ λ^ for A = (A 1 , . . . ,A f )eG. In particular, since our
embedding space is

WCP"' x . - . x WCPN (3.16)
<?1 ί . f lΛ^ + l <?1 > »<?\ +1

(with the {^SJ)}ί=^+1 not all having a common factor) we take N=*
(N1 + 1)+ •-• + (JVj+ 1) and the linear action of G on CN to have eigenvalues m
given by (0,0,..., 0, <#>,(),..., 0) for l^i^N^l and Igj^/. With these

definitions, f] (CN^+1-0)/G equals (3.16). Now consider a G-in variant cone 5
Λ = l

in CN with ideal /s in C[z 1 9..., ZN] generated by a regular sequence of
/c eigenfunctions with eigenvalues (dll,d2^>..,dn\...,(dlk,d2k,. .,dlk). The

/ i \ I
algebraic variety X = I Sn f] (C^+ 1 - 0) I / G is called a quasismooth weighted

\ -i / / / f c

complete intersection in (3.16). Reasoning as before, we have ωx = 0xl £ du~
tfι+1 \ \ i = l

Σ .̂.
. t

Having determined the structure of the canonical bundle of these varieties, we
can finally invoke the results mentioned earlier to determine when we can resolve
the singularities of these spaces to arrive at smooth varieties with vanishing first
Chern class. In particular, if the dimension of X is two or three and ωx = Ox,
then there is a toroidal desingularization of X having trivial canonical bundle
[8]. For dimension two this is the minimal resolution; for dimension three this
desingularization can be characterized as one of the minimal objects among all
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the toroidal desingularizations of (X, x). These local minimal desingularizations
of the singularities of X can be patched together to obtain a desingularization X
of X with ω% being trivial, which will be called a minimal desingularization of X.
Finally, by the criterion of the ampleness of invertible torus-invariant sheaves for
a toroidal embedding [14] there is a line bundle over X which is ample along the
fibre direction of X-^X near the exceptional divisors. Therefore X is project!ve
algebraic for projective algebraic X. Hence we have obtained the result:

Theorem. Let G be an l-dimensional algebraic torus acting linearly on CN with eigen-

values χs, l^s^N, where the χs's are defined by χl+

J^(NΛ+{) = (0,0,...,q(/\0,...,Q).

Let S be a complete intersection in CN defined by k eigenfunctions of G with eigen-

( l \values δj with 1 ̂  j ^ k. Assume that S is nonsingular on I Sn Y[ (CNj+1 — 0) 1. //
\ j=ι /

N — I — k is two or three and χ^ --χN = δ{ - δk, then the minimal desingularization
( l \ /

X of X = I Sn Y[ (CNj+1 - 0) / G has trivial canonical bundle. Furthermore, X is
\ n=l Jl

projective algebraic whenever X is projective algebraic.

For a quasismooth weighted complete intersection X in a product of
weighted projective spaces (of dimension 2 or 3), so long as

Σ<*y = *ΣV. (3 17)
J = l J = l

then the minimal desingularization X of X is a smooth projective Calabi-Yau
manifold.

4. Resolved Cohomology

In the previous section, we have determined the conditions on a complete
intersection in a product of weighted projective spaces to admit a
desingularization to a manifold of vanishing first Chern class. Of course, as far as
string theory goes, it is well known that we do not have to resolve such singular
spaces for string propagation to make sense; on the other hand, the string
nonetheless probes the resolved topology. In particular, the spectra of the
massless states is determined by the cohomology of the resolved manifold. For
example, the Euler number (for threefolds), as originally shown in [15],
determines the number of massless generations of particles. In this section we
study the desingularizations invoked in the last section in a bit more detail in
order to extract a simple formula for the Euler number of the resolved space. We
also compare our result with that found by Vafa using semiclassical arguments
applied to Landau-Ginzburg models. This serves to illustrate the correspondence
between twisted sectors and blowing-up modes.

For concreteness and simplicity we shall restrict attention for the moment to
three-folds which are hypersurfaces in a weighted projective four space. Even for
this relatively restricted set of possibilities, there are thousands of examples
which meet the Calabi-Yau condition, as we shall make more clear in the next
section. (One should compare this with the fact that when one restricts to
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Calabi-Yau hypersurfaces in ordinary project! ve space CP4, there is only one
example.) We shall also restrict our attention, for now, to examples which are
completely quasismooth. This means that Xn{zi = Q\ieI} are quasismooth for
/£{/!#/> 1} (i.e. meet the transversality constraint). It is not hard to show that if
we denote by π the map π : CP4-> WCP4

q^ „ then X in WCP4 is completely
quasismooth if and only if Y=π~1(X) is nonsmgular in CP4. For example, all
Fermat hypersurfaces meet this constraint. The formula we shall derive is the
following:
Let X be a completely quasismooth hypersurface in WCP4 with degree
d = Σqt and assume (#ι , . . . , f l /- ι ,g j + ι,...,g5) = 1 for all i/ Let' Y=π~1(X),
YJ= Yn{ζj = 0}9 where (, is a homogeneous CP4 coordinate and let Y 7 = y i f
I = φ and r\ieIYi for /c= {1,2,3,4,5}. Assuming that Y} are codimension one
submanifolds of Y and intersect transversely, we have

= Σ ( - D m Σ (
/ , y / * 0 \ j c /

Γk
In this expression, c1 = g.c.d. ( q λ j φ l ) and w7 = - - if YI φ 0 and zero otherwise.

Ci
Notice that this formula gives the Euler number of the resolved space in

terms of Euler numbers of subvarieties of ordinary projective space. The latter, of
course, are readily computed using standard methods. To prove this, we need
one simple lemma.

Lemma. Let M be a compact complex manifold and M1,...,M ί be pure
codimension 1 submanifolds of M such that any finite number of them meet
transversely. Let π:M->W be a proper holomorphic map (i.e. the inverse image of a
compact set is compact, thus ensuring that the fiber of this map is compact) from M
to a normal analytic space IV, with finite fibers. For a subset I o/{ 1,2, . . . ,£} denote

Mj = Π Mf, and Wl = π(M7). Assume that for each /, π ~ l ( W j ) = M7, Wl - \J W}

ieί I^J

are smooth and that π res t:M7— \J M7->PF7- (J Wjisanmrfoldunramifiedcover.

I^J I^JThen

(4.2)
Kcl

where

bκι = (—l)\1\ V ( — I J I ̂ m/1. (4.3)

The proof of this lemma is a straightforward exercise in induction on \K\
(from \K\ = t to |/C| = 0); we will not write out the details.

Wejiow use this to derive (4.1). Denote the birational morphism from X to X
by σ:X^X. Set χ(0) = 0. We regard X as the quotient of Y by the diagonal
action (μ^,..., μ^). Since the Yl are all invariant under this action, the natural
projection π: Y-+X and the 7/s satisfy the assumption of the lemma above with
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. Now, if p is an element of Y/ — (J Yj, it is easy to see that isotropy
Ci j?ι

subgroup at p is isomorphic to *[\μqι x μcι. Therefore π r e s t:Y7- \J Yj-^Xj-
iel J^I

\J Xj is a principle bundle with group having order \\ qjlcl. Furthermore,
J^i jφi

(X, π(p)) * (Cl"/μcι x C3 - 1", [0] x 0). (4.4)

In this expression, ηeμcj acts on C ! / l diagonally with eigenvalues ηq\ iel.
Since (^1,...,^ ί_1,ςf ί + 1,...,^5)= 1 for all l^ i^5, and ωx is trivial, then X is
singular at π(p) and [̂ '̂ = 1 when c 7 >l. By the construction of toroidal

desingularization X, we can conclude that: χ(σ~l(x)) = cl for xεX1 - \J X j [ $ ] .
J^I

Hence,

χ(\Jσ- '(*,)) = Σ *(ff~ ' (*/ - U χj}} (4-5)
1*0 \ \ J^I //

which equals

= Σ c/ t fx/- U Xj\ (4 6)
1*0 \ J^I /

After a bit of algebra, this yields

From this we therefore have

χ(X)=χ(X)+ Σ ((-D |κ|+ Σ ( - " χ ( X j (48)
2^1X1 \ 0 ^ / £ X I Λ V ^ X / V W

Now, by our previous lemma and (4.8), we therefore have

*w = Σωr/)+ Σ ( Σ ((-D lκ l+ Σ ί-D'"-'"^)^).
/ 2 g | J | \ 2 g | K | , K c j \ 0 ^ = / £ X / /

(4.9)

From this expression our theorem follows directly.
To illustrate our formula, consider the corollary which follows by restricting

attention to the special case of a hypersurface X in WCP* , with the degree
d of X satisfying the condition d = Σqt. Let Ybe the hypersurface π"1^) in CP4,
where π:CP4->^CP4 ^ is the map

(yq

1\...9y
q

5*). (4.10)

If Y is nonsingular and the set of all y^ = 0 intersect Y transversely, then our
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theorem reduces to the following simple formula for the Euler characteristic of
X:

χ(χ} = d ( -d%qiqffj+ X qafrcfΛ (4.11)
#l> ί#5 \ i<J ί<j<k /

Again, c1 = g.c.d.(^|^^/). Notice that as a consequence, the Euler number depends
only on the qt.

The reader can check that this simple formula reproduces all of the results of
[2,6,5,7,9].

5. Conclusions

In this letter we have put the analyses surrounding Calabi-Yau vacua con-
structed in weighted projective space on a more firm mathematical footing. The
general argument of [2] in conjunction with the extensive numerical verification
in [2, 5, 6, 7] left little room to doubt the veracity of the results and it is satisfying
to see that our mathematical analysis provides further confirmation. Further-
more, our Euler number formula provides an efficient means of analysing specific
examples.

It is important to note that the analyses of [2] and [3] associate a Calabi-
Yau manifold with an orbifold of a Landau-Ginzburg theory as reviewed in the
first section of this letter. An interesting and unsolved question is whether a
geometrical interpretation can be ascribed to the Landau-Ginzburg theory itself.
We have no firm result in this area, but would like to state some evidence which
leads to a natural candidate. More precisely, we now give a geometric inter-
pretation to the whole chiral ring of primary fields in a Landau-Ginsburg theory;
this goes beyond the known interpretation for the integrally charged members of
this ring.

In [16], the author investigates the geometrical significance of rings of the
form

(5.1)

where W i$ a quasihomogeneous function on Cn+1.
Notice that this is nothing but the ring of chiral primary fields of a Landau-

Ginzburg theory [17]. In particular, let the conformal weights of the fields zf be
called ht = Wi/2 and their 17(1) charges be wt. To understand the result of [16] we
need a few definitions. Let V c Cn+1 be the affϊne variety defined by the euation
W= 1 and let w£ = u^ with (ui9 vt) = 1 and d = l.c.m.(t?0, . . . , υn). We denote qi = dwi9

with qteZ. Let the monomial in the ring (5.1) zgoz^....z*» (with the α f all natural
numbers) be denoted by zα, where α = (α0, . . . , αn). Finally, we define a function /(α)

H

by ^(α)= Σ(αί+l)wί Notice ^at up to integer shifts, /(α) computes the £7(1)
i = 0

charge of zα.
With these definitions, we then have the result that

H*(V9 C) * [z0, . . . , zA/tfW/dZi) (5.2)
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and

Hn ~ \X, C)0 £ Subspace of (5.2) with integer /(α). (5.3)

In this latter equation, X = {[_z]eWCPn

q^ ^ |W([z]) = 0}, i.e., X is a variety in
weighted projective space. (We note that the" subscript in Hn~l(X, C)0 refers to
the primitive part of the cohomology; in the case n = 4 for example, this subscript
can be dropped.)

In other words, (5.2) gives a cohomological interpretation to the whole chiral
primary ring of the (unorbifolded) Landau-Ginsburg theory in terms of a
noncompact afϊϊne variety. Furthermore, (5.3) gives the familiar cohomological
interpretation to the integrally charged members of the chiral ring in terms of a
compact algebraic variety in weighted projective space.

For example, consider the simplest example of the quintic y4;5 in CP4. The
chiral ring (5.1) then consists of elements of the form '

(l;P1([z]),P2([z]),...,P15([z])), (5.4)

where Pn([z]) is an nth order monomial in the zf in which no individual zt occurs
with a power exceeding three (since in (5.1) we quotient by the fourth powers of
the monomials). Some time ago3 [18] it was elegantly shown that the subset of
elements consisting of (l,P5([z]),P10([z]),P15([z])) are representatives for the
third cohomology group H3 (Γ45, C). Notice that these elements are precisely
those which have integral 17(1) charges and hence integral /(α). Thus, we see the
interpretation found in [18] also emerging from (5.3). These elements of (5.1) are,
of course, precisely those which survive the orbifolding operation discussed in
Sect. 1 which takes us from the original Landau-Ginsburg theory to string propaga-
tion on a Calabi-Yau manifold.

Now we can go further. All of the elements of (5.4), not just the zeroth, fifth,
tenth and fifteenth order terms, can be interpreted as the fourth cohomology
#4(F,C), where Fis the affine variety

z? + zi + zi + zl + zi = lc=C5. (5.5)

This description is unified by the observation that our compact algebraic variety
may be viewed as the boundary of the noncompact affine variety V at infinity.

This reasoning leads to the speculation that the original Landau-Ginsburg
theory has a natural geometric interpretation in terms of V\ work along these
lines is in progress.

Acknowledgements. We thank C. Vafa for many useful discussions.
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