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Abstract. We study the Schrόdinger equation for an electron in a one dimensional
crystal submitted to a constant electric field. We prove the existence of ladders of
resonances, the imaginary part of which is exponentially small with the field.

The Schrόdinger equation for electrons in a crystal submitted to an external
constant electrical field has attracted much attention [13] since it is a first step in
understanding conductivity in solids. A recent review on the subject can be found
in [11].

For several decades, the experimental evidence of resonance states (called also
Bloch oscillators), was questioned. In fact, it was only recently, that their effect
clearly appeared in the electro-optical properties of semiconductor superlattices
(man-made crystals in which layers of two distinct semi-conductors alternate, the
period in the perpendicular direction to the layers can be of the order of hundreds
of normal lattice periods) [4,12]. As it will be shown, resonant states live in regions
whose length is proportional to the spectral band widths of the Bloch Hamiltonian
and inversely proportional to the external field. So, occurrence of small energy
bands near the Fermi energy, as in superlattices, favour their observation.

Mathematically, existence of resonances for the one dimensional Hamiltonian
h2 d2

by Agler and Froese [1] in the case VP(x) is a Fourier series with a finite number of
terms (F is the product of the particle charge by the electrical field). Nothing was
said in this paper about the resonance widths which were expected to be
exponentially small with respect to the electrical field (see the numerical treatment
of the semi infinite Kronig-Penney model [2]).

In this paper, we give a new proof for the existence of the resonances, establish
the link between their widths and the spectral properties of the Bloch Hamiltonian,
and prove their exponential behavior. The localisation of the resonance states is
understood in the scope of the tilted bands picture introduced by Zener. We shall

h d
~~ y~ ~J~ϊ + Vp(χ) + Fx h a s b e e n rigorously proven for large external electric fields
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exploit the similarity of the situation with the one which appears when there are
potential barriers and shape resonances occur. In this case, the wave function, in
classically forbidden regions, has exponential behavior while in the wells it
oscillates. In our problem, in regions where E — Fx belongs to a gap the wave
function has exponential behavior, while in regions where E — Fx belongs to a
band, it oscillates with an amplitude which remains quite stable [see Fig. 1]. By
analogy, we shall call "Zener barrier regions" the first ones and "Zener allowed
regions" the last ones. In the case where the periodic potential is analytic, the
number of gaps is generically infinite and the gap widths decrease very rapidly as
the energy increases, so we are faced with a problem similar to the one with an
infinite number of barriers whose height is decreasing.

In Part I, we describe the transformation under which the hamiltonian is
converted into a non-self-adjoint operator, the eigenvalues of which are the
resonances of the former problem. Subsequently, all the study will be done on this
new operator.

In Part II, we use ideas borrowed from the papers of Briet-Combes-Duclos [4]
and Helffer-Sjόstrand [8] on multiple wells operators and shape resonances. They
introduce single well Hamiltonians obtained by "filling" all the wells, except one.
Each of these operators has discrete spectrum. They, then use a formula which
links the resolvent of the original Hamiltonian with the resolvents of the single well
operators. Thus, they link the resonances of the original problem to the
eigenvalues of the single well operators. Like them, we introduce partitions of
unity, and define new operators, Ht, whose potential coincide with the initial
potential only in a region, outside this region, the potential is simply the periodic
one. We will also define an operator, HN+15 which is the only one to be affected by
the analytic transformation, and which plays a special role in our analysis.

In Part III, we will study the spectrum of the iί f (ί = 1,.. .AT), show that, to the
contrary of H, the Ht have eigenvalues and that the corresponding Green functions
decrease exponentially in the "Zener barrier regions," as does the Green function of
the multiple well problem in the classically forbidden regions.

In Part IV, we shall prove that HN+ ί does not have eigenvalues in some energy
regions and again, that the corresponding Green function decreases exponentially.
Using the formula which links the resolvent of the non-self-adjoint operator to the
resolvents of the Ht, we get the resolvent expansion for the resonances. In
particular, we get an upper bound for the resonance widths.

We have become acquainted with the works of Combes, Hislop [6] and
Buslaev, Dimitrieva [5]. They cover different electrical field regimes and the ideas
behind their proofs are different. Let us emphasize that we are not considering a
multiple well problem as in the Combes-Hislop approach. In particular, even if £ is
larger than VP(x) + Fx, we can be in a "Zener barrier region." In our paper, we are
not performing strictly a semi-classical limit: some of the results are proven

ε2h2 d2

considering the limit ε->0 in — — - —^ + VP(x) + εrFox, r>\ that is taking
ZΛYl (XX

h2 d2 F

simultaneously h-+0 and F-+0 in — -—-—, + VP(x) + Fx, in such a way — -»0.
2m dx2 h

Notice that if h is sufficiently small, F can be taken arbitrarily small. The choice,
r 7> 1, has been done in order to get large "Zener barrier regions" for ε small enough,
since their width is proportional to the gaps, which are, in the energy regions of
interest of order ε or ε( —logε)"1, and inversely proportional to F.



Stark Wannier Ladders γηγ

In Parts I, II, III the discussion is independent of ε. To simplify the notations we
will write:

Hypothesis. VP(x) is a periodic potential (of period a\ symmetric about the origin,
analytic in the strip |Imz| < A9 and for some Eo > VM [maximum value of VP(x)~] and
all E satisίying E0>E>VM, V(x)=E has two simple roots iy(E) and -iy(E%

), which are closer to the real axis than any other roots. (H.I)

I. Local Deformation

We construct an analytic family of operators using the following space
transformation:

; 0<b<A,

where / is a real C3 function whose graph is represented below

f i x )

I
Fig. 1

It is constant outside interval [α l 5α 2] which will be made precise later. We
define a transformation Ub on I}(R) by:

Ub: g(x)^(Ubg) (x) = γl + ibff(x)g(x + ίbf(x)).

d2

Under this transformation our hamiltonian H = — —-̂  + VP(x) + Fx becomes:

H(b):= UbH U^= τφ^) [ j?) ^ φ ^ ^

1 Vtm 3 / ί / r \ 2 Ί
where Sb(x) is the Schwarzian: Sb(x)= - ^ - - ί ̂ J .

Remark. If the support of φ is included in [α2, + oo) then

(H(b)φ) (x)=--^ Φ(χ) + VJίx)φ{x) + Fxφ(x).

H(ί>) is a non-self-adjoint operator whose eigenvalues correspond to the re-
sonances of the original operator.
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II. Partition

As was mentioned in the introduction, the idea behind the partition we adopt, is
based on the Zener picture of the tilted bands. If F is small, it was believed since
Zener that on some small interval centered at xi9 Fx could be approximated by Fx(.

Then, locally, solutions of the differential equation I — -r-j + VP(x) + Fx 1 φ = Eφ

could be well approximated by a linear combination of Bloch waves correspond-
ing to the energy E — Fxb called effective energy.

Recall that Bloch waves are solutions of equation HBψ+=l— —^

xp+=Eψ± with the property: xp+(x + a) = e ± ίk{E)aψ ± (x). If we call A (E) the

trace of the monodromy matrix (see a more complete discussion in Part III), k(E) is

given, modulo —, by 2cosk{E)a = A(E). Consider real E, if —2<Δ{E)<29 k(E) is

real and E belongs to the spectrum of HB; iϊA(E) > 2, k(E) = iκ(E) with κ{E) e R + if

A(E) < - 2, k(E) = - + iκ(E) with κ(E) e R + , in these last two cases E belongs to the
a

resolvent set. The spectrum is constituted generically by an infinite number of
intervals called bands, separated by intervals {Eb £J) of width Γi9 i = 1,2,... called
gaps. E'o will denote the infimum of the spectrum.

i d 2 \
If F is small, it was believed that the solution of ( — —^ + VP(x) + Fx\φ = Eφ,

\ Mx /
at points spaced by a, or they oscillate with an amplitude which is nearly constant if
the "effective energy," E — Fx belongs to a band or they behave exponentially, if the
"effective energy" belongs to a gap. This belief has been confirmed by numerical
computations; Fig. 2 below gives an example. Curves represent the real part of
solutions of the Schrόdinger equation corresponding to different values of E.

Fig. 2
150 300 450

x
600 750

To define the unity partitions we need first to define some intervals on R. We
denote by No the number of bands entirely inside (Fw, VM), where Vm, VM are
respectively the minimum and maximum value of Vp(x). We take now :N = NO + 1.
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We denote by Wp(x\ the saw-tooth-function: Wp(x) = x i
Wp(x) and define,

^ x ^ α , Wp{x + a)

Vp(x).

To simplify notations concerning spectral values for HB we shall forget the ~,
for instance we shall denote (Eb £•) the ίth spectral gap interval for HB. We denote
by E?, ί = 1,2... the values of £ for which the derivative of the discriminant, Δ(E\ is
zero (point Ef is near the middle of the ith gap) and K™ : = τc(£Π

Fig. 3

We denote by [x] the entire part of real number x, and define:

(notice that μf

N<0<μN<...<μ'ί<μϊ<μ'o, see Fig. 4)

Fig. 4

x/α

Tilted bands are framed.
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We denote by:

Sb S\, the values for which, κ{S ) = κ(<?;) = — κ?9

$i9 i\, the values for which, κ$ύ = κ(£'ύ = ~j= K? ,

and such that gx<$X<E?<%\<δ\.
We define:

Fa Γ Vi I Fα

If E<E'O, — — < 0 and J(£)->oo as E-»oo, so for i = 0, we need special

definitions. We define E% such that Δ(Eg) = Δ{E^\ then v'o, VQ, m0 will be defined as
before, while v0, v0 are the symmetric of v'o and v'o with respect to m0.

Notice that:

μf

N<v'N<v'N<mN = O<vN<vN<μN<...

< μ'o < vr

0 < vr

0 < m0 < V0 < V0 (see Fig. 4, where N = 5).

Let χ(I) be the characteristic function of interval /.
Define the following set of operators whose potential coincide, in some

intervals, with the potential in H(b):

d2 ~
# + V

+oo)FvI _ 1 α for i = l,...,]V.

bf'(x) \ dx2j 1 + ibf'(x) 1 + ift/'M 1 + ibf'(x)

- oo, vNα) \Vp{x + i6/

In the same spirit as the method proposed, for the shape resonances, by Briet,
Combes, and Duclos [4] and Helffer and Sjόstrand [8], we want to study the
resolvent of H(b) in terms of the resolvents of Ht (i = 0, 1, ...,iV +1).

We define a partition of unity in the following manner:

JN+ί is the characteristic function of (—00^^ = 0),

Ji is the characteristic function of (m^m^i),

Jo is the characteristic function of (m0, + oo).
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Another set of functions, named Jb are defined in the following manner: J t is a
CQ function which takes the value 1 on (v , a, vf_ ^a), its support is (vjα, v£_ xα) for
i = 1 to N. The support of JN+t is (— oo, v^α), it takes the value 1 on (— oo, vNa). We

JΠ τ / τp\n

impose the following conditions on their derivatives: — ι - < an I — I , n = 1,2 (απ are
constants). ^ x V7"

Fig. 5

Now, we establish the link between the resolvent of H(b) and the resolvents of
if,-. Let us denote:

iV + 1

i = 0

then:

(H(b)
jv+i jv+i Γ <i2 Ί

-z)R= Σ Λ(JΪ(6)-z)ΛίJl+ Σ - ^ , J , « Λ
i = 0 i = 0 L ^ X J

As #(f>) and iί^ coincide on the support of Ji:Ji(H(b) — z) = Ji(Hi — z), using
N+ί _

Σ JiJi = ί we get:
i = 0

(H(b)-z)R =

Γ d2 Ί
Denoting: M f = — —-^ J t and K^M^Ji,

JV+I

ΣQ

JV+1

i = 0

we obtain:

N+ί

Σ (Hi)

To prove that H(b) eigenvalues are at distance e α/F from the eigenvalues of Ht

N+ί
we need to prove that the becomes smaller than 1, as z becomes distant

from eigenvalues of H{ by a quantity which is exponentially small with respect to F.
The kernel of Kt is:

In the subsequent section we shall prove that G^x, y; z) and -—L(x, y; z), when x
ax

and y belong to the same ZBR, contain a term which is exponentially small with
respect to F.
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III. Study of the JET, and Kt

First we will consider the spectra of operators Hf for i = 1 to N. Afterwards we will
consider the operators HN+ ί and Ho, which have a distinct definition and play a
distinct role.

The potential term in Ht is constituted of three parts, it is equal to: Vp(x) + Fv\a,
on interval (—oo,vjα), it is equal to Vp(x) + F[x'] on interval (vĴ Vj-̂ α) and it is
equal to ^,(x) + Fvi_1α, on interval (Vf^a, +00).

Intervals (Ej+Fvjα, Ej+1 + Fvja), 7 = 0,..., 00 are contained in the continuous
part of the spectrum of iff, since continuous part of the spectrum of the operator:

defined on L2(—oo,v;.α), with Dirichlet condition at v[a is:

U lE'j + FvfrEj^+Fϊfl}.

Similarly (JE}+Fvί_1α, Ej+1+Fvi-1a)9 7 = 0,...,00 are also contained in the
continuous part of the spectrum of H, since the continuous part of the spectrum of

defined on ]}(y{_γa, + oo) with Dirichlet condition at Vi-^a is:

j = O

The choice of v's has been done in such a way that:

{ } i j { j j

is not all R, in particular, interval Ii = [E^-(Si^1-Ei^1)9 E^ + iβ^-g'ίβ is

included in the complement of Av Furthermore by construction, / = P) 7£ is
non-void. i=i

Now we look at the spectrum of Hf in interval /.

Proposition 1. In interval I, the spectra of Ht (i = ί,...,N) is composed of
eigenvalues spaced by Fa + 0(F2).

// v[a<x<y<Via and Eel the Green function corresponding to Ht satisfies:
{y) 1

-a £ κ(E-Fai) - — κ™\χ-y\e ''I ^ί1 ώst{E,σ(Hd)

\dGt

\dx

- — κf\χ-y\

where {x} denotes — , c{ and c[ are constants independent of F.
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Proof. Take E inside Ib the Green function is given by:

'^φy if *<„
where i/? + el?(— oo O), φ~ eL2(0; + oo) and satisfy H^ =Eψ±.

In each interval [.(j—ί)ajά]9 ψ+ and ψ~ will be expressed as linear combi-
nations of functions φ) which satisfy:

£?[(/-l)α]=0, M [ ( / _ 1 ) β ] =

and are solutions of:

d2 ~ ,
- ^ 2 +Vp(x)+Faj)φ = Eφ if v;.

> = Eφ if /

d2

+ F (x) + Fv, _ xα I (/»= Eφ if j >
dx2 π '""•

Denoting:

ψ±=a±φl+b±φ2 ( Π L 2 )

and:

j j ' j dx ' J' J ' j dx

it is easy to show that:

We shall denote by Mj_ x the monodromy matrix I j~1 j~x I, its determi-
nant is equal to 1. \CJ~ί DJ~ ^

If j ^ v , Mj is constant and equal to My.,, its eigenvalues are e ± ik(E ~ Fvία> fl

) where
k satisfies 2 cosk(E — Fv'ia).a = Ύr M,., (TrM,.,, called discriminant, was denoted J
in paragraph II). Since by construction, E — Ev\a belongs to a gap,
Im k(E — FvΊa) + 0. Then, on (— oo, vjα), the solution ψ+, which decreases at — oo, is
a Bloch wave and satisfies:

V+(W + J » = * - ί Λ ( £ - F v W > + ( v ; α ) , (Imfc > 0, j < 0).

We normalize it taking \p+(v'ia) = \.
If v^y-cvj-!, eigenvalues of M7 are e

±ik(E~FJa)-a where /c satisfies:
2 cos fe(E - F/α).α = Tr M^ .

If v <7^μ ί 5 E—Fja belongs to a gap, so Imk(E — Fja) + 0.
If μ ^ y ^ μ j -!, E — Fja belongs to a gap, so Imfc(£ — Fja) = 0.
If μ' f_1< i/^v ί_1, E — Fja belongs to a gap, so lmk(E — iyα)Φθ.
If 7 > Vf _!, M; is constant, as £ — Fvt _ x a belongs to a gap, Im k(E — Fvt _ 1 a) =t= 0.
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Then, on (v f_xα, +00), the solution ψ~, which decreases at + 00, is a Bloch wave
and satisfies:

y)~(vi_1+j)a) = e+ik{E~FVί-ia)jaxp~(vi_1a), ( I m f c > 0 , ; > 0 ) .

We normalize it taking ψ ~(vf _ xa) = 1. , +

In Appendix Al we diagonalize M / : M / = S / 1 D j S i and show that ί J

+

= §j[ ,+ I increases exponentially as j goes from vj to vί5 while, -^ remains small,

fa+\ Uj

so the direction of vector ( j

+ J remains approximately constant and furthermore
does not depend on E, ^ j '

The behaviour of ψ~ in the region (v[a, vf«) is more intricate as we have to start
on the right of v _ γa with the Bloch wave which decreases at -f 00, then going to the
left of μ'i-^a, we cross a region where the eigenvalues of My are purely imaginary.

In Appendix Al we show that, if
2

< 1, one can write Mj * ̂

where R θ is the rotation matrix corresponding to angle θ = k(E—Fja).a, and the

vector I {_ ) essentially rotates by an angle θ = k(E — Fja).a every time we apply

My \ fe(E—Fja).a goes from 0 to π as; goes from μ[_! to μt . Furthermore when we
vary E by the quantity Fa the total angle the vector rotates varies by a quantity
near π. This means that in an interval of length Fa, exists a value for E such that

vectors I j_ ) and I j, I get the same direction, then, ψ~ and ψ+ become
\bj J \bj J

proportional. This value is an eigenvalue of Hit

Replacing in (III.l) ψ± by the expressions (III.2) we get for x<y,

and:

a{y)ΰ{y)~a{y)a{y)

+ r+
a{y}°{y} a{y}D{y}

a{y)

a{a { y } a { y }

In this expression the denominator is an analytic function of E whose zeros Et

are spaced by Fa + O(F2). For E close to Eb it has a lower bound of the form:
β\E—Et\ for E in a neighborhood of Eb (β increases as F decreases).

Using the fact that a+ increases exponentially on the interval (v β, vt α), one gets,
{y)

iϊx and y belong to it, that the numerator behaves like e " ,=w * m. The same is

true for — G^x, y; E). Q.E.D.

Now we look for bounds on the norm of Ki = M^7^ Let us remark that the
supports of Mt and Jt are disjoint, but support of K—MfiJi is not entirely
contained in a gap, so we cannot use directly Proposition 1. The natural way would
be to control the behavior of ψ+ in the "Zener allowed region." Unfortunately we
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dont know how to do that and are obliged to introduce a new "decomposition"
of Jϊ,.

Let us introduce:
/* is a CQ function whose support is (— oo, vt α) and takes value 1 on (— oo, v^).
If is a CQ function whose support is (vta, v _ ta) and takes value 1 on (vfα, v| _ γd).
Ij~ is a Cξ function whose support is (v -^a, + oo) and takes value 1 on

(v^α,+oo).
We impose also:

Now define the operators:

d2 ~
Hi ώ? + Fp(

H

+ χ(vi_1α,oo)Fvi_1α.

Hs

t coincide with Ht on the support of 1% s = — h , 0, —.
Denoting:

Rs

i = (Hs

i-E)~1

9 5 = + , 0 , - ,
we get:

Denoting:

Nΐ = lH,,in, Nf = ίHf,i

we obtain:

Rt = ltRΐK + ifRflf + If
+I?R?N?

and:
Kt = MiRji = MJΐRΐlΐJi + MjrR-l- j.

-MJΪ R? N? Rji-Mili Rr N; RJi.

Introduce χf

+ the characteristic function of (vta, vta) which is the support of Nf
and χ;" the characteristic function of {v'^^v'^^a) which is the support of ΛΓf
Then:

ύ WJtRΐKJiW + WiKRtχΐ II \\NίRt\\
+ \\MJ7R-I-J.\\ + WMJfRfχf || ||NΓΛ,II
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Let us consider the first term, K+ : = MiI^R^I^Ji and estimate its norm by:

\\Kf\\< sup $\K?(x,y)\dy+ sup ί\K?(x,y)\dx.
x y

As -r-'-T- = 0 its kernel, Kf(x,y) is:
dx dx

- 0 I+(x)Gt(x,y;E)-2 ^ J+(x) ̂  (x,j;;

Supports of-p-/^ or-r-^/j"*" and J{

+ J f are in the same ZBR and are disjoint. Using

dnJ fF\n

~ττ<an[ψ) > ̂  = 1?2 we remain only with the problem of the estimates of
(XX \L ij

G*(x,y;E) and —γ—(x,y\E) with x and y separated by a distance, larger than:
(XX

lt: = dist ί supp -^ J f

+, supp/{

+ 3t \ = (mt- v'^a.

The estimate is obtained as in Proposition 1, except, it can easily be seen that,
H f

+ has no eigenvalues in a neighborhood of £$. So we get:

where Wn and Wi2 are two constant energies.
The second term in \\Kι\\ contains HMjJ* jR+χ* || which is of the same form as

the previous one and term || JV/ΛJ whose bound is found using the fact -r-^ is
relatively bounded with respect to Ht. So this term is bounded by:

11 IF 1 / 1 F F2\] - τ l

where Wi3, Wi4 are constant energies and cil9 ci2, ci3 are constants.
The following terms in ||1C£|| are estimated in the same way. Introducing,

/,_1: = dist ί supp-^/r,supp/ΓΛJ =(v/_1-m ί_1)α

finally we get:

Proposition 2. Two polynomials P*, Pf of degree four exist in — whose terms of
* i

1
degree zero are absent and whose coefficients all include ———— , and such that,

dist (E σiH))

(jj i/S , (ΠL4)

where l{ = (mf — v|)α and li-ί=(vi-1 — mi-1)a.
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Remark. lt and lt _ x are proportional to -± so ||<KXE)|| becomes exponentially small
as F goes to 0.

IV. Study ofHN+ί and KN+1

We study now the non-self-adjoint operator HN+ λ and in particular, its resolvent
in a narrow rectangular subset of the complex plane which contains £$. The aim is
to prove that HN+ x has no spectrum in this domain, and so, controlling KN+ί to
prove that resonances appear as perturbations of the Hi eigenvalues (i = 1,..., N).

We use once more the technique described in Part III.
α l5 α2 which enter in the definition of function / (see Fig. 1) are chosen in this

way: α1<α2<μjv«.
To study RN+1=(HN+1—E)~1 we introduce again a new partition of unity:

1%+! and Iχ+ x are CQ functions which take value 1 respectively on (— oo, vNa) and
(vNα, +αo) and whose supports are respectively (—oo,vNα) and (vNα, +αo) and
such that (J° + 1 ) 2 + (J^+ 1) 2 = 1.

Now define the operators:

1+bfXx)

+ s'F0(x + ibf(x))+ ί+ilf,{χ) Sb(x)

h2 d2

coincide with HN+ί on the support of/^+1.
Denoting JR^+1 = (HS

N +ί—E)~1,s = 0,—, and doing again the same calculus as
in Part III where i is replaced by N+1, we obtain:

\\M
N+ J

has no eigenvalues at least in a neighborhood of E™.
Using the same technique as in Proposition 2, we get the same kind of result:

where PN+ x is a polynomial of degree four whose term of degree 0 is absent and
whose coefficients all include | |i?N + 1 | | .

To study the resolvent oΐHN+1, we will construct an operator fϊN+1 the Green
function of which is explicitly known, and show that (HN+1 — HN+1) RN+1 is a
bounded operator whose norm is smaller that 1 as long as ε is sufficiently small.
First we use a technique inspired by the one proposed by Herbst and Howland
in [9].
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Definition of HN+ι. Let us recall that

1

( - oo, vNa) (Fp(ίb(x)) + srFotb(x))

oo) (Vp(x) + ε T o v N α ) ,

where tb(x) = x + ibf(x).

Let us now introduce a new space transformation, ί:xe]R->φc)e]R, which
leaves invariant χ(vNa, + oo) and will be defined below. Let us denote U the
transformation on L2(R),

Under this transformation — ̂ -y becomes
d 2

t'(x)

where S is the Schwarzian, and g(x) becomes U(g(x))U~1=g(t(x))9 so
becomes

+ z(-oo,
+ X(vA^+oo)(Fp(x

1 1 / , d

)) ί'(x)

+ χ(vNa, + oo) (Fp(x) + srFovNa).

Let us take an energy in the Nth gap and such that E — εrFovNa—VM>0.
For x e ( - oo,vNa) we will choose t(x) such that:

where Fo is the mean value of Vp. Denoting τ(x) = tb(t(x)), this expression can be
written in the form:

(Vp(τ(x)) + εrFoτ(x) - E) (τ'(x))2 = Vo + εrFox - E.

So for x<vNa, τ(x) will be given by:

J γE-Vp(u)-εrFoudu= J γE-Vo-εrFoxdx

and for x > vNa, by τ(x) = x. So now, ί(x) = tb

 1(τ(x)) and in particular t(vNa) = vNa.
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Let us come back to

t'(x) t'b(t(x))2 ί'(x)

We will write HN+1-E = fiN+ί-E + Q(x), with:

(x)) t'(x)

and

^ T U + χ(vNa, + oo)(Fix) + FvNa), (IV. 1)

1 I . . . „ .. 1

Using the expressions for the Schwarzians, we get:

K_
2m

hi

x -r )-srFotb(x) " 16(E-Vp(tb(x))-εrF0tb(x))2

_ 5ε^f£ E-Vp(tb(x))-εrFotb{x)\ (IV.2)

Let us remark two facts: Q decreases at — oo like — because, E— V™ax

\x\
— εrFovNa>0, Q{x) has no singularities as long as b is sufficiently small, this
remains true even if E has a small imaginary part.

Study of (HN+1-E)~1.

As Airy functions are solutions for - -j-^Φ + (V0 + εrFox- E)φ = 0, from (IV. 1)
we can deduce that:

(dt
t'b(x)Ai

dx ,

Φ)Bi
dx

are solutions for (βN+ί — E)φ = 0 on interval ( —oo,vNα).
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As x-> —oo,

behaves like:

,-1/4

xexpf
• ~ r 0

so it decreases exponentially at — oo, while,

"Bi(β ( - 2 + r :

behaves like

xexpί

so, increases exponentially at — oo.
Call0" theL2(0, +oo)-function,solutionofj^JV+1(/> = £;(/).On(+vJvα, +oo),φ~

is a Bloch function, decreasing exponentially at + oo. It can be written in the form:

where

D(E)-A(E)

B(E)

Notice that: m{E-FvNa)= -y-

For some ΛN e [EN, E'^ 5 ( ^ ^ = 0 (see Eastham [7] p. 3Ί)=>m(ΛN) is not
defined. Denote:

- ^ | > 1() -j, Γ ^ - ^ , EN+— J

and I$ = ΓinΓ*;
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Lemma 1. 3ε0 such that for^ all ε < ε0, such that: DN={ze(C | Rezeί$, |Imz| < srFob}
is in the resolvent set of HN+ί.

Proof The Green function for fiN+i is given by:

G <xvEl- 2m φ+{x)φ~{y) (IV3)

We calculate the wronskian at point vNa, then we divide numerator and
denominator by φ*{vNa) φ~(vNa). As we choose φ~(vNa) = ί we get for the new
denominator,

φ+'(vNά) and φ+(vNa) are explicit since t~1(vNa) = vNa. Furthermore as ε->0, we
can replace the Airy functions by their asymptotic expression. We get that φ+(vNa)
behaves like:

( ίE-V \ 3 / 2

xexp/ \2βB'^2F^ \^± -vNaJ +π/4

and φ+f(vNa) behaves like,

(V—V+5/12 ^ 0 _

\ S M)

/ (F—V \ 3 / 2 \

x expi [iβt-x +rl2Fl>2 ( ^ ^ - vNaJ + π/4).

So it is easy to see that , ., N , contain an imaginary part which increases as
φ+(vNa)

ε-»0. As E is real and belongs to a gap,

A(E) + D(E)V

2 /

is real and so is m(E). Then, w(E) is non-zero.
Furthermore \w(E)\ is larger than M(E)ε~1, where M(E) is a positive constant. If

dw
EeΓβ, A{E\ B{E\ D(E) are analytic functions, the derivative — exists and its

CtJtL

modulus is bounded by M\E)ε"1

9 [where M\E) is a positive constant]. So

w(E + iβ) do not vanish if β is smaller than .„*. Taking βo= inf , the
M (E) EeΓ° M (L)

wronskian is non-zero for all E such that ReEeΓβ and \lmE\<β0.
Since

< sup 7" \G(x, y, E)\dy + sup "f \<Xx> V* E)\dx >
xe(— QO,VNO) —oo y e ( — o o , Viv«) "~ oo
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using the explicit expressions for φ + and φ ~ in the Green formula (IV.3), we get for
|Im£| < εrFob, if ε is sufficiently small in such a way srFob < β0, the following upper
bound:

-oo, v ^ α ) ^ ^ ! - £ ) - ^ ( - a ) , H ̂
bε o

where Cx is a constant.

Lemma 2. 3εo>0 such that if ε<ε0, then DN is in the resolvent set forHN+1.

Proof. HN+ t=HN+! - χ ( - oo, vNa)Q.

We want to prove that

for EeDN and ε sufficiently small. Let us analyze the behaviour of the different
terms with respect to ε. As E belongs to the Nth gap, its distance to the top of the
periodic potential is of order of — ε(logε)~ί. In fact, as ε-»0, Weinstein and Keller
prove in [14] that, in the neighborhood of FM, "bands" and "gaps" have quite the
same width, while the first bands (i.e. near VJ are exponentially narrow and the
first gaps of the order of ε. Recently, Marz [10] improve this result showing that
near VM the gaps and the bands behave like ε(—logε)~ *. Then, the first term in Q
is bounded by a term proportional to —εlogε. Apparently the second term has a
worse behaviour but calculating its maxima it appears that it behaves also like
— εlogε. The third term is of higher order in ε.

behaves like ε"1, since w(E) behaves
ε2h\ φ+(vNa)φ {vNa)w(E)

likeε"1.
The Hilbert-Schmidt norm of χ(-oo,vNα)g1/2

exists but we do not get any decrease as ε->0, because taking brutally the modulus
of G we kill the oscillations of the Airy functions. So, we have to use a clever
technique which consists in considering ΎΪ(AA*AA*\ (this technique was inspired
by [ll,p.23]).

So we get the integral:

v^a vjsra V^VΛ v^α

1 dx j Ay i du J dv
— oo — o o — oo — o o

x Q(x)Q(y)Q(u)Q(v)G(x, ϊϊ

In sector v < u < y < x, for instance, the product of the four Green functions give
us

\Φ ~(x)\2Φ+(y)Φ ~(y)Φ+(u)Φ ~(u)\φ+(v)\ 2/φ+(vNa) 4φ -(

φ+(y)φ~(y) contains a term which oscillates like

expi
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One can use integration by parts and explicit formulas for integrals of Airy
functions to prove that Ύr(AA*AA*) goes to zero as ε decreases.

Now we can collect the sparse results to prove the main theorem.

V. Main Result

Theorem. Given h0 and Fo and r > 1, if Vp satisfies (H.I), ε0 exists, such that if ε< ε0,
h2 d2

there are at least N(ε) ladders of resonances for — ε 2 y ^ - - ^ + Vp(x) + εrF0, where

h2 d2

N(ε) — ί is the number of bands of —£2^-f^ +Vp(x), strictly contained in the

interval (Vm, VM). Their width is exponentially small with respect to Fo and ε.

Proof To look at the spectrum of H(b\ we use formula (II. 1). We want to show
N+ί

that for ε sufficiently small and E not too close to the Hi eigenvalues, Σ K^E) has
a norm which is smaller than 1. I = o

Let us denote by Dt: = (feI}(R) | support (/)C support J )̂. As Kt sends Dt on
Dt + ί Θ D j - ! , we emphasize this fact, denoting Kt: = KiJ+ 1-\-KUi_ί.lt is easy to see
that

N(ε)

.?,
We have first to observe the effects of the introduction of ε in the formulas giving

h2 d2

\\Ki(E)\\. In Proposition2, including ε2 ^- in front of — -r-^ in the definition of Hb

h2

we have to multiply the right-hand term in (III.4) by ε 2 — (which has the
2m

dimension of an energy times a length to the power two). In (III.4) we have also to
replace F by εrF0 and rt by a gap width, Γ^ε) of order ε for small i and of order
ε(- logε)" 1 for ί = N(ε).

Since the eigenvalues of Hi are distant by εrFoa + 0(ε2l*Fo), in an interval
included in Γ$ of width εrFoa, the number of eigenvalues coming from the distinct
Hb (ι = 1.. .N(ε)) is approximately N(ε). As JV(ε) is of the order of ε~ \ [let us write
JV(ε) = dε" 1 ] it exists in this interval an eigenvalue, let us say, λj, from Hp whose
distance to the other eigenvalues is larger than d~1εί+rFoa.

Choosing E on the circle (C) of radius d~1εί+rFoa/2, centered at λ*}, we will
evaluate now IIJ

^y~7^ε2Pi2(^e~Ί^ i = l,...,N(β).

(V.I)

Remember that polynomials Pil9 Pi2 have no constant term and that their

coefficients contain ————777TΓ. As dist(E, σ(H$) = d~1ε1 +rFoa/2 it appears that
dist(£ <y(H))( ι))

terms in front of the exponentials are of the order ε° for small i and of the order
— logε for i = N(ε).
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In Appendix B using the formula given by Weinstein and Keller [14], for the
discriminant, we show (see Lemma Bl) that K? decreases as i goes from 1 to N(ε)

(Em —V)
and κ% behaves like — —. Since gaps and bands near VM behave like

ε(—logε)~ * as ε goes to zero, κ% behaves like ( — log e)~1. So the exponential terms

in (V.I) are bounded by e FO\/T 9 while the polynomial terms are bounded

by quantities of order —logε. Then
N(ε)

Σ KM is consequently of the order of
ί = l

logε e FoV3 , and goes to zero as ε goes to zero.
/N(ε)+ί \/ JV(ε)+l \ - l

Using now (H(b) - z) ~ι = Σ JiRiJi M + Σ ^ J it is clear that the
\ i=o J\ i=o )

resolvent is defined on the circle (C), then we can assert that the resonance exists.
We can take a circle C of radius much smaller, for instance of order

N(ε)+l II

Σ KM < 1 if Ee C, so we can deducelog e FoV3 .It is again true that

that the resonance width is smaller than: cγ logε e Fo]/3

Appendix A

Study of Product of Matrices My. The matrices M, = ί j j) defined in Part III
have determinant equal to 1. \^j j/ A +D

Their eigenvalues λf, λj = (λf)"1 can be real or complex depending on -J——ι,

A -\-D A ~\-D

a) If —^—- > 1 then denoting -J——L =chκμ we get λf =e+Kja.

b) HAJ + Dt < - 1 then denoting A'3V>'3 = -chκ}a we get λf = -e'Kja.

c) If - 1 < J j < 1 then denoting j j = coskfi we get λ] =e+ikja.

In cases a) and b) My can be written as S,- ( ^ + _ x) S/1.

I ) M T ^ f c ^ T Γ ^ h R ί / ) i h i

\ λj) J
In case c) M^T^fc^TΓ,- ^ where Rί/c^α) is the rotation matrix by the

angle kμ.
As Ap Bp Cp Dj depend analytically on E, for small F, My and My+ x differ by a

quantity of the order of Fa and Sj" ^ j - x or ΎJ ιΎj_ ί can be written as the sum of
the identity plus a matrix the norm of which is 0(Fa). In fact:

= 1 + Δ, .
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Lemma Al. The vector My... M ^ o * ί ft) rotates by an angle smaller than δFa as

long as v<j<v' and its norm increase exponentially.

Proof. As v</<v ' we are in case a) or b) then we can write:

Dv

Denote:

o W

By identification:

Now consider the sequence ηj9 As long as *+

+ x — — — < ρ < 1, for all /<y, using
Λ / + 1 ( 1 —or a)

the fact + ^Y ^ ^ < ρ^Fα and η0 = 0, one can prove that ηj+1< . One can

J 7 _
find F sufficiently small in such a way ,J+ /4—r^ < ̂  < 1 for all j such that

/ί i + 1 ( l— oFa)

Remark. The lemma is also valid on the other side of the "band" as μ -1<j<μi-1.

Lemma A2 // M ^ . 1 . . . ] ^ " 1 . . . ] ^ . ^ is applied to a vector; this one rotates by an

angle: X (fĉ α + Fααf), where the αf are uniformly bounded quatities.

Proof. As μiKiKμ'i-i, we are in case c) then:
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Denote

Then:
θi+1 = θi-ki+1a + Faai+l9 where α i + 1 = 0(l).

βi

So the total rotation angle will be θμ.= — Σ (kta
i = μi

When we vary E, θμ. varies by a quantity,

F. Bentosela and V. Grecchi

Suppose the variation is dE = ξFa, 0<ξ<ί, as fc; is a function oϊFai:

£ dk(E-Fai) _ χ rdoi(E-Fai)d θ = ξ a ' l F a + F

As

We notice that this quantity is small and goes to zero as F-+0.
So the total angle variation as E is increased by Fa is near π.

Remark. Adding Fa to E just translate all the indices, so, the only difference
appears at the extremities of the product and we get an extra rotation of π (0 at one
extremity, π at the other).

Appendix B

LemmaBl. // V(x) is real analytic and for some E0>VM and all E satisfying
E0>E> VM, V(x) = E has two simple roots iy(E) and — iy(E) which are closer to the
real axis than any other roots, two constants A and A exist such that:

for , =
εhoayA

Proof. Hypothesis on V is hypothesis (P3) in the work by Weinstein and Keller. In
[14, formula (4.6)], they give the following expression for the discriminant:

and
λίΐm

where: α ( £ ) = - J [FP(x)-£]1/2ί/x with FP(x0)=FP(x1) = £, A =

[/] +: = max(/ 0). Notice that if E < VM, α(E) is positive and that the maxima of
A(E) appear approximately when

[ — a I

_ι_ c i \ Γ J7 T/̂  ^Y^ I I ΠΎ I — 1

2 o J
so we can check that their distance behaves like ε.
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To estimate oc(E) we replace the periodic potential in the integral by the

parabola VM + - ~ (0)x2. Supposing V(x) >VM+ —f- (0)x2, if it is not the case,

d2V
we replace ^ (0) by another constant — A in such a way the inequality becomes

(XX

true we will get a lower bound for α(£™)> for / = 1,2... N(ε) — 1. In fact if x0 and jc 1

are defined by VM~Axl-Ef = 0, VM-Ax2-E? = 0, then:

- ? IVM-Ax2-Enlί2dx= ^β-.
71 *o π]/A

Using the fact: A(E) = 2chκa and A(E?)~2(e2n"im + l)1/2 one obtains:

2γ2m{VM-E«)

For E0>E>VM, by hypothesis the solutions of V(x) = E are pure imaginary
points. Let us denote xo = iyo and x1 = iy1 the solutions of F(x) = £^. It appears

1 yi
that α(£)= j [£ — FP(ij;)]1/2 dy is negative. In the neighborhood of the origin,

πyo

one can choose A' such that V(iy) > VM + ̂ 4'y2. Defining by y0, j/j the solutions of
y

Then one obtains
εhoayA'
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