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Abstract. We consider some natural one-parameter unfoldings f,, of a unimodal
map f, whose periodic points are hyperbolic and whose critical point is non-
degenerate and eventually periodic. Among other facts, it follows from our
theorems that, if the Julia set of f;, does not contain intervals, the relative measure
of the bifurcation set is zero at zero.

Introduction

It is extremely surprising that in such a simple space as an interval, there should
exist important and rich dynamical systems. However many fascinating types of
interval dynamics have been discovered. They are of interest in their own right as
well as being useful mathematical models, and frequently as being part of higher
dimensional systems.

Informally, we think of a dynamical system as a “system in movement;” as time
goes by each point in a phase space evolves according to some deterministic law.
An important feature of a dynamical system is its limit set; the set where the orbits
accumulate. The dynamical behaviour inside the limit set can be “simple” or
“complex.” The results of this article support the view that systems with “simple”
limit set are very frequent.

Here we deal with interval dynamics generated by iteration of unimodal maps.
One simple case, the axiom A case, is when the periodic points are hyperbolic and
the critical value lies inside the basin of a periodic sink. In this case we have a
hyperbolic dynamic which is structurally stable and can be reduced to the dynamic
of simpler symbolic models. There exist other cases in which the dynamics are
described by absolutely continuous ergodic invariant probability measures.

We consider some natural one-parameter unfoldings f, (4=0), of a unimodal
map f, whose periodic points are hyperbolic and whose critical point is eventually
periodic. We have two cases depending on the topological structure of the Julia set
X, of f, (the complement of the basin of the periodic sinks of f): if 2, does not
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contain intervals, among other facts, it follows from our theorems that f, is axiom
A with frequency one at 4=0. If X, contains intervals, it follows from Yakobson
[8] that f, has an absolutely continuous ergodic invariant probability measure
with frequency one at u=0.

Assuming the property of negative Schwarzian, if 2, does not contain intervals
then it is a hyperbolic set and f, is axiom A for all small u. For us the interesting
case is when X, is not a hyperbolic set and does not contain intervals. This
situation may appear for example when we unfold an axiom A map; without
destroying the periodic sinks we move the critical value out of the basin.

For a qualitative understanding of the dynamical complexity of interval maps,
itisimportant to know how frequent the axiom A case is among the members of an
one-parameter family. Many other similar questions have been asked and some of
them answered; we mention Yakobson [8], Collet and Eckmann [1], and
Guckenheimer [2]. Also, Newhouse and Palis [ 5] and Palis and Takens [6] have
answered similar questions in the context of difftfomorphisms of a compact surface.
The tools used in our case are completely different: in [5] and [6] the important
thing is the relative position of two “rigid” Cantor sets, for us what is important is
the relative position of the point f,(0) and the Julia set X, of f,. One of the
difficulties that we have is that the Julia set X, may contain intervals for many
values of the parameter.

1. Main Theorems and Basic Facts

Definition. A C" (r=2) interval map f:[—1,1] o is called unimodal if f(—1)
=f(1)=—1 and f has only one critical point, zero.

Definition. The basin B of a unimodal map f is the interior of the set of points
whose forward orbit converges to a periodic point. The immediate basin B, is the
union of the connected components of B which contain periodic points in their
closure. The Julia set X is the complement of B.

By the kneading theory of Milnor and Thurston [4], we know that the
topological structure of the dynamics generated by a unimodal map f is
determined by the forward orbit of the critical point. The complexity and stability
of the dynamics depends on the relative position of the critical value f(0) and the
basin B. When f(0) is in B the dynamic is well understood and much simpler. We
consider certain one parameter families f, of unimodal maps, and estimate how
frequently £,(0) is in the Julia set 2, of f,.

To state the theorems precisely we fix an arbitrary unimodal map f such that:
all the periodic points are hyperbolic and the critical point is non-degenerate (i.e.
f"(0)=%0) and eventually periodic. We choose the smallest k >0 such that f%(0)=p,
where p is a periodic repeller. We consider the set of C" (r = 2) unimodal maps with
the C? topology and denote by 4°(f), (s> 1) the set of C* families {f,} 0. 1; of C"
(r=2) unimodal maps, such that:

fO =f9 aufuk(o)'u=0='=o and auj;‘tk(o)lu=0='=aupulu=0;

where p— p, (small ) is the function implicitly defined by f}(p,) =p, (/is the period
of p) and p,=p.

Given some family {f,},c(0,1; in %'(f) we denote the Julia set of f, by ~,. We
define the following set:

U:={ue[0,1]; £,0)eZ,}.
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For parameters p in % the corresponding dynamic of f, is “complex.” It will be
easy to see that % contains almost all (in the Lebesgue sense) the bifurcation set of
the family, % contains almost all the set of parameters p such that f, has an
absolutely continuous invariant measure, and % also contains almost all the
set of parameters such that f, is not axiom A. Our theorems about the density
of % have immediate consequences about the density of these sets.

We would like to prove that % is a small set but unfortunately sometimes this is
not the case. It follows from Yakobson [8] that, if X, contains intervals, the
Lebesgue density of % is one at zero. We prove that, if X, does not contain
intervals, the Lebesgue density of % is zero at zero.

We denote the Lebesgue measure of a Lebesgue measurable set 4 by [A4]. Let us
state our theorems.

Theorem A. Let {f,},10.1) be in G'(f) such that the Julia set X, of fo= f does not
contain intervals. Then:
|% [0, ]|
€

g0+

a) The Lebesgue density of U is smaller than one at zero (i‘ e. lim sup

§a<1>.

b) If the critical point of f, is not an accumulation point of X, the Lebesgue density
of U is zero at zero (i.e. a=0).

Theorem B. Let {f,},c10.1; be in 9*(f) such that f, is C* and the Julia set Z of

fo=f does not contain intervals. Then, the Lebesgue density of % is zero at zero | i.e.
. N[0,
lim '__rl[_ﬂ = 0) .
g0+ &

Theorem A is much simpler than Theorem B. The proof of Theorem B is by
induction, Theorem A being the first step. For this first step we need only that the
family is a C* family of C? unimodal maps, but for Theorem B we need a C? family
of C* unimodal maps f,.

Now we introduce some notation and some preliminary facts. They will be
important in the study of the relative motion of the critical value £,(0) and the Julia
set X,

Notation. We consider a C*> unimodal map f all of whose periodic points are
hyperbolic, and whose critical point is non-degenerate and eventually periodic:

a) B, denotes the immediate basin and X denotes the Julia set of f.
b) J denotes a central interval, that is: an interval bounded by a point g and by the
unique point g* symmetric to g (i.e. f(g*)=f(q)). We consider only the points q

such that Jn{ (J f%q) ) =9, and for some m>0, f™(g) is a periodic point. We will
i=1

state explicitly, when necessary, whether J is open or closed.
¢ E,:={xe[—1,1]; fix)¢ BouJ,j=0,...,n—1},n=1.

In fact we are not interested in considering the central intervals J and the sets E,
for an individual map f; but for a family {f,},c(0,1; in ().

Remark. Let {f,} (0,1, be in Z(f).

a) Corresponding to the C* variation f, of f, = f, we have the C* variations J, and
B, of J and B, respectively. They are C' variations in the sense that the boundary
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points of J, and B, are C* functions implicitly defined in some interval [0, §,]. For
this, the hyperbolicity of the periodic points of f,=f is important.

b) B, as defined above may be smaller than the immediate basin of f,.

) E, '—{xe[ 1,11; fi(x)¢ Bo,0J ,, j=0,...,n—1},n=>1. We remark that the
connected components of E, \E( 1, are mapped dlffeomorphlcally by f, onto
connected components of BoﬂmJ Therefore the boundary points of E,, are also
C! functions, defined in the same interval [0, 6,].

Lemma (L1). Let {f,},c(0.1; be in '(f). Given an open central interval J, there
exist 6in(0,,), C;>0,4; > 1,and R, < oo suchthat; forallp<dand xinE,,(n=1)
we have:

o) 101502 o
xxJpu X
R HC

¢) The Lebesgue measure |E, | converges exponentially fast to zero as n goes to
infinity.

Proof. a) First of all we observe that E,, (n =1 and p < 6,) is a decreasing sequence
of compact sets, f, "(E,,”)CE(,, wu (0<k<n) and ﬁ; E;, is a non-empty compact
invariant set of f,. The set ﬂ E;, does not conta{m attractive periodic points nor
non-hyperbohc periodic pomts nor critical points. From Méané [3] we conclude

that ﬂ E;, is a hyperbolic set for f,. Therefore we can choose some k and some
j=1

Z>1 such that |0, f¥(x)| =, for all x in ﬂ E ;. By continuity we can dlmmlsh la

little and take N big enough to ensure |6x fé‘(x)l >/ forall xin Eyy= ﬂ Ejo. Now,

if we diminish 7 a little more, by remark (c) we can choose ¢ in (0, 5 ) such that
0, f¥(x)|=7, for all x in Ey,= ﬂ E;, and u<4. Now, given n>N we write
n— N=jk+1, where 0<I<k. Therefore

10 £ ()] = 10, ¥ FHAFCNNO S0

For x in E,, the first factor is uniformly bounded away from zero and the second is
bigger than (7). Part (a) now follows immediately.
b) We observe that:

D fi) _ 75 1 D lfi)
@O~ 50 8 ST @t IR

and the factor g""ﬁ‘z is bounded in the complement of J,. Now part (b) follows
from part (a). 05/, ‘

c) Let K, be a connected component of E,,. We choose the smallest j =0 such
that

(Bou W )N £l (K,,) +9,

J is uniformly bounded by some M < co. Part (b) implies that f*/ restricted to K,
is almost linear. It follows that the proportion of K,,, mapped by f;*/into B,,UJ,,
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is uniformly positive. It follows that |E, | decreases exponentially with n and part
(c) follows. [

Lemma (1.2). Let {f,},c(0,1; be in %'(f). Given an open central interval J, there
exist R, < oo and 6 in (0, 6,) such that; for all y in J , such that f,([0, y])CE,_ ,, and
U=06 we have:

S'l n n
a) R_:'ylglax u(y)l—_<-R2Snu|y|’ Where Sn,u:zlaxx ”(0)|=’=0

S”# 2 R2 2
Pnp <|fM __fn < 12
L ORI HUES S
Proof. We omit this proof which is a straightforward consequence of Lemma (1.1)
and the non-degeneracy of the critical point. [

2. Bifurcation Frequency

This section is dedicated to proving Theorem A. We will use the notation and
remarks of Sect. (1).

We recall that %:={ue[0,1]; f(0)eZ,}, where X, is the Julia set of f,.
Theorem A has immediate consequences about the bifurcation frequency at zero,
that is; about the Lebesgue density at zero of the bifurcation set of the family
considered. This is the reason for the title of this section.

The main idea in the proof of Theorem A is that we can decompose the phase
interval [—1,1] into two sets: For some special open central interval J,, we
consider the union of the pre-images of B,,uJ, and its complement. When the
critical value traverses the phase interval it meets the union of the pre-images of
By,0J, for almost all the parameters. We will choose some special J, which
contains a piece of basin attached to its boundary. This will force the critical value
to cross the basin every time it crosses some pre-image of B,,UJ,. One technical
fact that we will need is some control over the derivatives of the C* functions of
defined by the boundary points of E,,. This will control the relative motion of the
critical value and pre-images of B,,UJ,, and is the central point of this section.
This is the role of the following lemma. To state the lemma we consider a general
open central interval J, and denote a boundary point of E,, by x},. We recall that p,
denotes the periodic repeller of f, such that f§(0)=p, (see Sect. 1). We also remark
once more that (by the hyperbolicity of the periodic points of f,) x} and p, are C*
functions defined for x in some interval [0, d,].

Throughout this section and the following one a symbol like 0, f,(p,) means the
derivative of f;’ with respect to u at the point p,. The argument of a function will
never be differentiated.

Fundamental Lemma (2.1). Given an open central interval J , there exists 6 in (0, 6,)
such that, for all {>0 there exists ¢>0 such that: if p<0 and |x,—p,| <o, then
0, —0,p,l <.

Proof. The strategy of the proof is simple. We calculate the derivatives J,p, and
0,x, and afterwards we estimate the difference between them. One basic principle
Outi

is that d,p, and 0,x), are related to =%
0xfy
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We recall that | is the period of the periodic repeller p,. Then for any j=1 we
have:

_ _%ufilw)
W10, o)

To calculate d,x), we observe that f,(x,) is some point a,, in the forward orbit of
the boundary of B,,uJ,. Since this forward orbit is finite the derivative d,a, is
bounded in [0, ] for some ¢ in (0, d,). We have:

S Y]
SRR 1 C B e
In order to compare d,p, and 9,x), we rewrite them as:
a P,= axﬁl(Pu) . auf;i’:l(pu)
K l_axf;tﬂ(pu) axf;tﬂ(pu)

DS P W 1 171 W ¥/
K0 0000) O fi) 0L 0L £ ()

where i=n—jl=0.

and

0, fu(x) .

b i : > .
2. /) is bounded independently of x in E,,, t=1 and y in

[0, 6]; this fact is a consequence of Lemma (1.1) together with the boundedness of

M outside J,, and the following formula:

sy

We observe that

0,14%) _ ‘i‘ 1 3, L (i)
0 fu®) k50 0. fi(x) 0. f(fi(x))
Now, given any £ >0 we choose ¢ >0 such that for all x}, such that |x},—p,| <@
we have n very big. Then we can fix j big enough so that ji<n and
6ﬂﬁ ’(pll)
e <E/3,
o s =

Oupy+

and "
Oufi (%)

PR <¢&/3.
Once j is fixed we diminish g >0, if necessary, and by continuity we have

000 _ Bt
0.fp) 0S| =

The lemma follows. [J

Proof of Theorem (A). Given {f,},(0.1;in (), firstly we choose a special open
centralinterval J,,. We have two cases: in the first case the Julia set 2 of f, does not
accumulate at the critical point, and in the second case X, accumulates at the
critical point.

If 2, does not accumulate at the critical point (zero), we choose the smallest j,

0,%,+

¢/3.

Jo 2 . .
such that the closure of B; ,: = i!o fo (Boo) contains zero. B; , has two symmetric



Bifurcation Frequency for Unimodal Maps 639

connected components attached to zero. We take their union with zero to define
our open central interval J,,.

If X, accumulates at zero, given some j, we define the open central interval J;
the smallest open central interval containing the two symmetric connected
components of B; , which are the nearest to zero. We choose j, big enough to have

0
the distance between J, and () fg(0) positive.
i=1

Once B;,, and J,, have been chosen, B, , and J, (u<J,) are respectively the C'
variations of J, and of B, associated to the family considered. We remark that a
uniformly positive proportion of J, corresponds to the connected components of
the basin of f, attached to the boundary of J,,. In the first case this proportion tends
to one as u goes to zero.

Now we define:

E, :={xe[—1,1]; fi(x)¢B;,uJ,j=0,...,n—1}, nx1.

Jou

Though B, was replaced by B;,, in the definition of E,, the facts and lemmas that

we proved are still true, for the same reason. We decompose the phase interval as:

[—1,1]=B;,,vJ,u < Ul (Enumfu_n(-]u))> Y <ﬂl Eju) >
n= J=
and define the set

Uyi= {uc—: [0.83; £0)e (E..uﬂf["(Ju))},

where k is such that f¥(0) is the periodic point p,,.

Now we claim that for some §, U, contains almost all ZN[0,d]. In fact: by
Lemma (2.1) the boundary points of E,,nf,”"(J,) which are near to the periodic
point p,, (C' variation of p,) have almost the same p-derivative as p,, by hypothesis
we have that 0, £(0)|,= =+ 0,p,|, o and by Lemma (1.1) |E,,| decreases exponenti-
ally as n goes to infinity. The claim follows.

Each connected component of E,,n f,”"(J,) is mapped diffeomorphically by f,’
onto a connected component of B;,uJ,. By Lemma (1.1) it follows that the
proportion of E,,n f,”"(J,,) contained in the basin is comparable to the proportion
of J,, contained in the basin. By Lemma (2.1) and the hypothesis that d,, £,5(0)|,= o
% 0,D,l,= 0, W€ can conclude that the proportion of parameters pin [0, §] such that
£X0) 1s in the basin of f, is positive. When Z, does not accumulate at zero, the
proportion of such parameters in [0,¢] tends to one when ¢ tends to zero. The
theorem follows. []

3. More About Bifurcation Frequency

This section is dedicated to proving Theorem B. As in Yakobson [8], Collet and
Eckmann [1], and Guckenheimer [2] we will define an inductive process. In
general it is necessary to eliminate parameters to assure metric control throughout
the induction. In our case we follow closely Guckenheimer [2] in the definition of
the inductive process, but we will exploit the existence of a persistent basin to
improve the process without elimination of parameters.

Theorem B is a direct consequence of Theorem A and Theorem C, stated
below.
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Theorem (C). Let {f,},c(0.1; be in 9*(f) such that each f, is C* and the Julia set X,
of fo=1 does not contain intervals and accumulates at the critical point. Then the
Lebesgue density of U is zero at zero.

Poincaré maps will be the main tool in the proof of Theorem C. To define the
inductive process referred to above, we will choose a special closed central interval
J? bounded by some connected components of the basin. The Poincaré map 2, of
Jy 0 will permit us to decompose the phase interval and afterwards the parameter
1nterval we will choose the central connected component J; of the domain of 2, to
be a new closed central interval, and will consider the union of pre-images of J,
under Z,. For almost all pin N[0, ¢,], some ¢;, we will have 2,(0) in this unlon
Each connected component of this union will have a definite proportion of basin
attached to its boundary. Then when Z,(0) crosses such a component, the
proportion of parameters u for which 2,(0) hes in the basin is uniformly positive. In
a second induction step we will consider the Poincaré map 2, of J and the
analogous procedure. We will need metric control in the phase and parameter
intervals.

Given a family {f,} (0, 1;2s in Theorem C we start our construction. We define
a closed central 1nterva1 J3: it is the closed connected component of the

complement of B; o= UO f5 (Boo) which contains zero. We choose j, big enough

to have the distance between J$ and U f5(0) positive. Now we consider J§ and B;,,
(1<), the C* variation of J and B 10> TESPECtively. We also define:
nu:={xe[_1s1]:f;{(x)¢BjouUJ0aJ 0,. }a nz1.

Then we decompose the phase interval as:
0 )
Jll

[—1,1]1=B;,,uJpu ( U (E® r\fu‘"(JO))> (
As in the proof of Theorem A we define:

U,:= {ue[o el; £0)e U (En ﬂ(f,["(J‘)))}

and for the same reason as in the proof of Theorem A there exists ¢, > 0 such that
U,, contains almost all of N[0, &, ]. We will prove that the density of U, is zero at
Zero.

For pin U, we consider the Poincaré map 2, of J9. Its domain is a countable
union of closed intervals. One of those 1nterva1s Jus 1 contains the critical point
(zero), we call it the central interval. The other 1ntervals LY, we call lateral intervals.

“38

Fundamental Lemma (3.1). Given y>2 there exists a closed central interval JO, ¢ in
(0,&0) and A, M < oo such that for all pin U, the Poincaré map P, of Jo satlsfles

a) 0,2,y and Il 6"" E‘(;),)zl <M, if y belongs to any lateral interval L.

0xxZu2) 1
10.242)  z|10.2,02)

Proof. a) The proofhastwo parts: In the first part, we consider the individual map
fo and define a Poincaré map %, which satisfies part (a). It does not have central

b) <A, for all z=0 in the central interval J.
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interval. In the second part we vary the parameter 4 and prove part (a) for 2,.
When we vary the parameter some central intervals appear but condition (b) is
nevertheless satisfied.

Let J3 be the central interval defined before and &, its Poincaré map. Let L be
a lateral interval where Z,= f;". We consider the maximal interval T which
contains L3 and such that fJ" is monotone in T and fJ(T)nB,y,=0. We observe
that f*(T) contains J and the two connected components of B 0 attached to the

m—1

boundary of J§. By Strien [7] Y |fd(T)| is uniformly bounded, therefore we can
i=0

=
use Kobe’s lemma (see Strien [7]) to conclude that fJ" is almost linear in LY, that is:

10 /") .

"~ is uniformly bounded. Now we observe that for a small Jg,
10 f5" (V)]

the minimum possible m is big and consequently T is small. Then we must have a
point x in T such that |8, fo"(x)| is big. In fact by K&be’s lemma, x is in L3 and we
conclude that [0,%,| can taken to be uniformly bigger than a given y>2.

Now we consider (as before) £,>0, J and the Poincaré map 2, of J (u<¢).
Let us prove part (a): Let y be in some lateral interval L and 2,(y) = f"* fty). Then
by Lemma (1.2) we have:

. . 0
given x, yin L

25, 12

For pin U, the points f,(y) and f,(0) define an interval which contains connected
components of EJ,Nf, "Bj,). These components are mapped by f onto
connected components of B; ,, by Lemma (1.1), with bounded distortion. There-
fore, there exists C>0 such that:

10: L (LML) — 1012 C,

and if mis big we have |0,2,(y)| = y as we want. We are left with finitely many lateral
intervals with small m. But as |0,%,| is bigger than y, we can vary u in a small
interval [0, ¢] and maintain |0,%,| bigger than y in those intervals.

xx'@ u"

(0:2,)*

axx@u - 1 . axxfu + axxf;zmofp
020 0SSy 0:f)*  (Oufief)>

and, by the same argument as before, we have that |0, f," < £,]10, f,|* is bounded
away from zero in L). Then the first term in the above sum is uniformly bounded.
By Lemma (1.1) the second term is also uniformly bounded. Part (a) follows.

b) Let z+0 be in the central interval J, where 2, = fJ*'. Then we have:

To prove the boundedness of in L we observe that:

0242 1| 1 _10uflfR)

10.202)  z|10.2,02) = 18 [ 2)P
I N | S
10.£(2) 2|16 £, 10.£1f, )
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By the non-degeneracy of the critical point we can assume that f, is symmetric (e.g.
f{—2)=f,(2)), and since f, is C* we can conclude that there exists d < oo such that:

|axxfu(z) . 1 1 Sd.
[0:402) 2|10 12 =
Part (b) follows from this and Lemma (1.1). [

Besides the metric control in the phase interval obtained in Lemma (3.1) we
need metric control in the parameter interval. One important point is to estimate
how fast the critical value 2,(0) crosses pre-images of the central interval J,,. For

. . 0,2, )
this we need estimates for a“—g’i and 0,7,. Before we state the lemmas concerning
Ly

these estimates, we introduce some notation:

Notation. a) J9and J! denote the maximal open central intervals such that J9\J9

and J:\J} are contained in the basin of f,.

b) y9 denotes a boundary point of Ji. We remark that |0,2,(y?)| tends to infinity
when p is in U, and tends to zero.

Lemma (3.2). There exist a closed central interval J), ¢ in (0,¢,), T< oo and p>0
such that for all p in a connected component U of U, we have:

02, T 3
10:2, — |aj~?,4(}’2)| U
b) 10,2128 ll—é‘ll, in the central interval J?.
m+k

Proof. a) Let ubein U, (¢, as before) and L) be a lateral interval where 2, = f;
Since 9, f,/(0)|, = o + 0 we can choose J;, small enough to have |0, f,¥| bounded away
from zero in J. We know that

10,2 _ 10,141 <1+ 1 .wmmom)
10:2, = 10,1, 10,101 101 1)’
0ufi"o S
0o i

in each lateral interval Lﬂ.

and by the proof of Lemma (2.1), is uniformly bounded in LY. Therefore

there exists T< oo such that:

0.2, = 10 £

By Lemma (2.1) and the hypothesis that 0, f¥(0)l,= o= ,P,l,=0, We know that
there exists ¢ in (0, &) such that: for all 4 in a connected component U of U,, |0, f¥|
T,

in LY is comparable to ll—l%’ where I, is the connected component of the pre-image
by f, of J$ which contains f0).

0
By Lemma (1.1) we also know that |I',| is comparable to I—a——%.
conclude part (a) we observe that, by the non-degeneracy gf uthe” cr‘ittical point,
0. f,f] in L; is bigger than C |0, ff(y)l, for some C>0. Part (a) follows.
b) Let ubein a connected component U of U, and 2, = f/**in the central interval

Now to
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JL. Since |9, f¥ is bounded away from zero we have:

1 . aﬂftﬂtjj"f;{‘)'
aufuk axfujofuk

au9u=axfuj°fuk : aﬂf“k (1 +
aufuj_‘ofuk

3. 1To 1" in J} is very near to d,p, (see proof of Lemma

(j21.1)). ]iy the hypothesis that d, £0)],, o = 0,,],.— o there exists a< 1 such that in
P W€ nave:

If >0 is small enough,

lauﬂ Ju k|
10,1 o /X [0, fiofH =
therefore in J . We have:
10,2021 —0) |0, fio fik10, £

For the same reason as in part (a) we can conclude part (b). []

10t 1l

o,/ or 10,fH<a B
I fl ',uf;ll— Iaxﬁoﬂcl

We need one more technical lemma concerning mixed derivatives.

Lemma (3.3). There exist a closed central interval J}, ¢ in (0,&0) and ds, dg, ds,
dg < oo such that, for all p in a connected component U of U, we have:

10,2l 5 Wl . 0
a) 0.2 |2 <d, m in a lateral interval L,.
(UP
b) :Z“ ;, l"zl < ||-;]||2, in a lateral interval L.
|aux uI d Iauu pl < . F1
C) m_ 4 and Ia |2 __d6, mn Ju\{()}

Proof. The proof is straightforward and involves no new ideas. We therefore omit
it. [

Now, Lemmas (3.1), (3.2), and (3.3) provide all the information we need to start
our inductive process.

Induction (First Step ). Giveny > 2 there exist a closed central interval J and ¢, >0
such that, for all 4 in a connected component U of U, , the Poincaré map &, of J,
satisfies the following recursive properties:

RP1) In each lateral interval L we have:

1022
a) |0,2,/]=2y and 0.2, = Ugl for some D,<o0,
1047, Wl 102l al?
<D BB <Ds 55, f D;,D .
b) 6.7 =Ps ol and a2, =P or some D;,Ds<o0

RP2) In the central interval J . we have:
0:2u2) 1] 1 < D0
10.2(2)  2|10,2.2)] = 1T

10,2, D, 10uZl . Ds
R < ° and HEE for some D, Dg<oc0.
10,2.10:2. = 1T 10.2* = |J°I we

for all z in J2\{0} and some D,<o0.

a)

b)
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RP3)

02 . T Wl

6.2, = 16,2091 1U]
0

b) 10,212 ﬂllTJTI in the central interval J%, for some > 0.

These properties are the metric control that we need to make a first estimate of
the proportion of parameters in U, for which the critical value Z,(0) lies in the
basin. In the second inductive step we will make a second estimate and so on. We
will need this proportion to be positive independently of the inductive step.

Before making any estimate we define the second inductive step and prove that
the recursive properties in the first inductive step are preserved. Afterwards we will
prove that the proportion referred to above is positive independently of the
inductive step. In order for the induction to continue we need to consider
parameter intervals closer and closer to zero.

in each lateral interval LY, for some T<o0.

a)

Remark. a) We remark that like JJ the central interval, J, has two connected
components of the basin attached to its boundary We have defined J! the
maximal open central interval such that J u\J ! is contained in the basin.

b) Let F, be the set of points in J where 2, is not defined. F, is the union of some
connected components of the basm and a set with null Lebesgue measure. We

define: N
E, :={yeJ),Z)y)¢F,J,,i=0,..,n—1}, n>1.

We denote a boundary point of E,n2,i(J}) by yi, j=1. We remember that y$
denotes a boundary point of J,. Ji
c) Given x, yin the same connected component of E}, it follows from (RP1. a) that:

020 _,
02200 =

We will use many times this property of bounded distortion. One important point
is that the constant D, grows during the induction, but the factor |Z}(x) — Z,(y)| is
smaller than |J, .| and guarantees the control of distortion as the 1nduct10n goes
on.

d) Given z in the central interval J j we have from (RP2. a) that:

| J°I |P7(x) — P (y)I

D, D>
~ 75071 |2 u(2) — 2 ui0) o7 |2u(2) — 2u(0)
wulzle |-’2|| ul(z, I3 I§|axgu(z)|§w,,|zle“3|| ulz u I’

where w,,:=0,,%,(0)|. Hence
2
W, =

2 Dy _
z ewlgu(z) .‘7’“(0)|~

- D215, 2-2,.0

o OO <1 (2) - 2O S 0, %
In the first inductive step the constant D, may be big, and make it difficult to
estimate the size of the connected components of the basin, which are attached to
the boundary of J;,. We will make this estimate using f, directly and Lemma (1.1).
We will be able to choose this constant as small as we like from the second
inductive step onwards.

The following lemma is an obvious consequence of (RP3. a) and gives us control
of the relative motion of the pre-image 2, /(J,) and 2,(0).
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Lemma (3.4). There exist ¢ in (0,e;) f>0 and H<1/2 such that, for all p in a

connected component U of U,, we have:

2l
,J20.

1Y

0
b 0,202 7.

a) |0,yil<BH -

Proof. All the pomts y/(j=1) are mapped by W’ to some point y? in the boundary of
J:. The pomt~y,, is mapped by 2, (in fact by the extension of 2,10 J})to a boundary
pomt x of J)). Therefore we have

0= aux/? (,V)
LT0,2,09 0, ,,(yu

but |0,2,(y9)| tends to infinity when p is in U, and tends to zero, and 9,x? is
bounded. We also have for j=1 that:

e D670
MET0.2Iy) 02Nl

0,y

u"

Now the lemma follows immediatelly from the recursive property (RP3). [

Lemma (3.4) together with the fact that the Lebesgue measure of E,, decreases
exponentially, when n tends to infinity, imply that the set:

Vi= {ue Ui g0 sto( 0 Euriio))}

contains almost all of the set [0, ¢,], for some 0<e¢, <¢, (¢; given by the first
induction step).

For p in ¥,, we consider the Poincaré map 2, of J,. Its domain is a countable
union of closed intervals. One of those mtervals J?, contains the critical point
(zero). We call it the central interval. The other mtervals L,, we call lateral
intervals.

We remark that J7 has two connected components of basin attached to its
boundary We define the central interval JZ; the max1ma1 open interval such that
J2\J2 is contained in the basin. We denote by zJ a boundary point of J2.

Now we state the second inductive step.

Induction (Second Step ). Given 7>2 and D, >0 there exists &, in (0, ¢,) such that
for all in a connected component V of V,,, the Poincaré map 2, of J,, satisfies the
following recursive properties:

RP1) In a lateral interval L} we have:

- 02| D _
a) [0,#,/]27 and 10t "zl <=, forsome D;<c0.
10 2,1* ~ 1.l
10,x 2l 14l 0,2 _ = Vl? 5 i
b 223 <D pum < [
) 6.7 =Dy an 6.7 <D & for some D, Ds<oo.
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RP2) In the central interval .7 2 we have:

0uPw) 1| 1
e F for all w in J?\{0
5 o et w0}
10,2, D, 10,2, _ D = =
b) =2 E__< > and < = forsome D, D;<oo.
' Bsi0Zl = 2 e =T v Ds
RP3)
a) = IB l T =5 oo l ll in each lateral interval L1 for some T< 0.
10,2, = la P(z) vl
1
b) 10,212 B 5 Ml ; in the central interval JZ for some B>0.

14
Proof. Throughout this proof we will consider p in a connected component V of V.
RP1.a): Let z be in a lateral interval L}, where 2, =27*'. From (RP2. a) we have
that:

0.P(2)| 210, Z,(22))| 2w, P (2) — 2, 0)) /> e~ P2,

where w,:=10,,2,(0)|. For uin V,, the points #,(z) and £,(0) define an interval
which contams a connected component of basm This component is mapped by
2y, with bounded distortion by (RP1.a), onto a connected component C; of
J f‘\J ! Then there exists C>0 such that:

10:22)| 2 C(@,|0. NP2 IC.D'?.

Now we estimate ,|C,|: we observe that 2, maps C, onto a connected
component C3 of JO\JS. Then there exists ¢, in C1 such that 10,2t ICal=ICJ)
but if we take j such that P,=fl*"'inJ} we have:

105 JAAO 1051, 0 ICal ‘
0 £ 101,
By Lemma (1.1) and the non-degeneracy of the critical point we conclude that

w,|CL = A,|T2 ", for some A, > 0. It follows from (RP2. a) that there exists 4, >0
such that

w,|C,|=

0. 2,(2)| 2 A0,
since w, tends to infinity when u tends to zero we can choose ¢, in (0, ;) such that
10,2,(2)| 27, for all pin V,,. ~
05xZ,2)
0.2,

10:2.2)| _ 1020 22))] + 1 ( D, 1 >
107, (Z)l2 “ 10 ZHPLN 10 2P I 10:2,2)] 2]

and by (RP2.2a)

As for the boundedness of ==+, for z in L,‘, we observe that:

10:2,2)| 12| 2212,(2) — Z,(0) e Vil
By the same argument as before there exists 4;>0 such that
02PN 10, 2,(2)] |21 2 45]C,]
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by the non-degeneracy of the critical point and Lemma (1.1) we know that ﬁ is
bounded away from zero. Now we can conclude that there exists d < co such that:

Iaxx'@u(z)l < 2l)l + D2 i
10:2,2)1> = |}l Il

Jl
Now we observe that :7q tends to zero when u tends to zero and there exists ¢, in
(0,¢,) such that (RP1. a) is satisfied.

RP3.a): Let z be in a lateral interval L}, where Z,=2n*1,

6#‘%‘:6;4‘@# 1+ 1 _au‘@:"’g’u )
0,2, 0,2, 0,2, 0. PP,

We recall that |0,2,(y9)| tends to infinity when y tends to zero. Then by (RP3) it is
easy to see that there exist &, in (0, ¢;) and H <1/2 such that for all xin V,, we have:

la _(Z)I 10.2.2)]
P2 = 10:2,(2)

By (RP2.b) 8,2,(z) is comparable to 0,%,(0). By Lemma (3.4), when u crosses the
component V the critical value £ (0) crosses a connected component I', of E},,
N, ™J,) and from (RP2.b) we conclude that there exists K < oo such ‘that

x|
IVI
By (RP1.a) we know that |I',|is comparable to |J 3] 10,202 ,(z) ~ ' and by (RP2.a)

we also know that |0,2 (z)I 210,2,(29)e” 2P 1t follows that there exists T < oo
such that:

=(1+H)

10, 22)| =

10206 . T Wil
0.2, = Ia 0.2, VI’
for all z in a lateral interval L) and u in V,,.
RP3.b). Let o be in the central interval J2, where #,=2I*1,
1 0,22,
0,2, 0,Pi-2,)

For the same reason as in the proof of (RP3. a) we know that there exists ¢, in (0, ¢,)
such that for all u in V,, we have:

10,2,()| 2 310, ZAP @) - 10,2 ),
and there exists f>0 such that:

0,2,=0,PiP,-0,2, < 1+

al

0,242
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RP2.a). For w=0 in the central interval J2, where 2,=2{*! we have:

0uZf@) 1| 1 _10.2(2)
8.2,(0) 0| 162,0) = 10202, 0)
[0xx2, (w) 1 1 1
| 0.2(0) | 6,2) 10.2)Z)

D D

} JOI L and the second term is term by —~—| 70 Since : ngl
tends to zero when u tends to zero there exists ¢, in (0,¢,) such that (RP2.a) is
satisfied.

RP2.b). We omit the proof which is straightforward.

RP1.b). In a lateral interval L}, where Z,=27"! we have:
ux?,  0,Pro2, 0,2, + 1 02, + 1 0,272,
(0.2, )2 (6,‘%'709”“)2 0,2, 0Pro?, (0.2) 0,2, 0Pr-2)

The first term is bounded by —5-

We claim that the first term of this sum is bounded by some constant times —- 1l .To

I |
)2’

argument is the same. Let us prove the claim. It follows from the proof of (RP3 a)
that there exists M < oo such that:

0cZi Pl 10,20 . v Dy M |
0.2 2, 0.2 ‘v 11700 16,201 V]~
We also know from (RP2.a) that:
210,22 2 @,|Tale "2,

the

prove the boundedness of the other terms and the boundedness of Ou

and there exists g, in J2 such that:

@, T3 2 ( i |2,(T2)e 1,

once |2,(J%)|2|C}| and w,|C;| is comparable to |71 7! we conclude that there

exists C>0 such that:
C

@, T2 = =5
SR VIV

Our claim and (RP1.b) follow. [J

Now before the proof of Theorem B we remark once again that the constants D,
(i=2,3,4,5,6) can be chosen to be arbitrarily small. In fact, reducing ¢, >0 in the
second inductive step we can make the metric control as good as we want. The
Poincaré map 2, can be made very expansive and linear in the lateral intervals and
very quadratic in the central interval. Another point that we want to make
T IC
7 T
of the second inductive step. It is easy to see that if C} is one of the connected

concerns the properties of w,|C}|, , that we have used during the proof
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components of basin attached to the boundary of J2 and p is in V we have that:
F1

J,
@, |C2| tends to infinity, :—Tll tends to zero and Il = 72

V tends to zero. These facts guarantee that the induction does not stop.

i is bounded away from zero when

Proof of Theorem C. We take a connected component U of U, (some &, >0) and
make a first estimate of the proportion of parameters in U, for which the critical
value lies in the basin.

By Lemma (3.4) there exists {; >0 such that for 4 in U the critical value £,(0)
traverses the interval J{ very fast; at least twice as fast as the boundary points y,’l of
Ej,nP J(J ) with the relatlve speed of #,(0) and y), being almost linear, more
premsely

10,2,012216,yil, jzt1,
and for pu,, u, in U we have:
Iau('gpu(o)_y{t)lu=m| < 1+H e2Ds
|6u(gu(0)—yiz)|u=u2l ~1-H

Since |Ej,| decreases exponentially when j goes to infinity we conclude once again
that

Vo= {uero.ca: 2,000 [ @z

contains almost all the set N[0, ¢,].

Let us make a first estimate of the proportion of % inside U. We prove that the
[UNV,|
Ul
C, of J 1\J ! are contained in the basin. Then we consider connected congponents
V, (/>0) of V;, and the maximal open intervals V', such that for all uin V;\V; we

have 2 ,(0) in E1 NP ATNIY) if j=1, orin T, \J1 if j=0. We have that

proportion is smaller than one. We recall that the connected components

[UnV,, |=|U|— ZI i\Vi
and we define
. JICh
gi= ; V.
m; mf{lJ| uevy
It follows that:

lUNV,|=IUI—

—D
1+H Zmﬂl |

and from the non-degeneracy of the critical point and Lemma (1.1) there exists

1
a>0 such that m; =« I| 7 'l for all yin ¥ 1~ We can assume that Vi =|U| and

therefore:
1

Zmﬂ| l|> f f

U
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from (RP2.a) we know that:
Gy 1GH an
Vil = 4124l
0
By (RP2. b)—17L isan almost linear function in U and varies between one and its

minimum. Then we conclude that

jlca

—-2D;

Iz’

and for some ¢ <1 we have
[UnV, |=elU].

The constants involved in the above estimates do not depend on the component U
of U,,. They depend only on the constants of the metric control in the first
inductive step. We conclude that

II/§1|<QIU¢1| *

One important fact that we have remarked upon is that the metric control
becomes better and better as the induction goes on, so that ¢ is uniformly smaller
than one and the theorem follows. []
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