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Abstract. We show how the Conway Alexander polynomial arises from the q
deformation of (Z2 graded) sl(n,n) algebras. In the simplest 5/(1,1) case we then
establish connection between classical knot theory and its modern versions based
on quantum groups. We first show how the crystal and the fundamental group of
the complement of a knot give rise naturally to the Burau representation of the
braid group. The Burau matrix is then transformed into the Uqsl(ί, 1) R matrix by
going to the exterior power algebra. Using a det = str identity, this allows us to
recover the state model of [K2, 89] as well. We also show how the Uqsl(l, 1)
algebra describes free fermions "propagating" on the knot diagram. We rewrite the
Conway Alexander polynomial as a Berezin integral, and thus as an apparently
new determinant.

Introduction

This paper discusses the role of the Alexander-Conway polynomial [A23, C70] in
relation to quantum groups and statistical mechanics. In particular, we show that
a state model for this polynomial is identical in form to the free-fermion model in
statistical mechanics. This means that the polynomial can be expressed as a
discrete Berezin integral, and through this as a determinant that is distinct from the
classical determinant definition of this polynomial.

A number of significant interconnections arise from our work. The Yang-
Baxter solution in the 5/(1/1) case is seen to arise directly from the Burau
representation of the Artin braid group (via its action on exterior powers). Thus we
provide a direct line from the classical knot theory to the statistical mechanics. The
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algebraic key to this connection is a formula (proved in the Appendix) that
connects determinant and trace by expressing the determinant det(^ + ,s/) as a
trace: det(4 + s/) = tr(£M), where A is the extension of A:V-+V to Ά;Λ*(V)
-+Λ*(V\ where Λ*(V) denotes the exterior algebra of V and ^(v) = skύ when
ύeA*(V) has degree k. A chart of these relationships is shown in Fig. 0.

Graded Quantum Algebras Uq sl(n/m)
"Supersymmetric Case" Uq si (1/1) sect. 1

sect. 2
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Fig. 0. From Burau to free fermions flow chart

The history of statistical mechanics models for the Alexander-Conway
polynomial is an interesting matter. In [K83] (see also [Kl, 89]) the first author
showed how to modify Alexander's original definition to obtain a model for the
Conway-Alexander polynomial as a state summation. This model can be regarded
as the zero-temperature limit of a generalized Potts model, but it does not seem to
have a naturally associated solution to the Yang-Baxter equation. In [K87] and
[K88] the first statistical mechanics models for the Jones polynomial appeared. It
was then seen that these models for the original Jones polynomial were part of a
much wider class of models for knot polynomials based on solutions to the
Yang-Baxter equation [AW87, T88, Jo89]. However, it took a little time before it
became apparent [LCS88, Ja87, K2, 89] that there was a Yang-Baxter model for
the Alexander-Conway polynomial itself. These models [Ja87, K2,89] are
technically distinct from the other models in two ways: As discussed in [K2, 89]
and in this paper, the associated quantum group is not strictly classical and the
model itself is a correlation function rather than a straight summation over states
of the link diagram. This last technicality is related to the fact that for the Con way-
Alexander polynomial Vκ, we have Vκuκ, = 0 when K]JK' is a disjoint union of
links K and Kf. This means that Vouκ = 0, thus the "loop value" in this model is
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zero. In order to avoid the contradiction Vo = 0, we represent links by two-strand
tangles, so that the unknot is represented by an unknotted strand ^ " ^ — with

= 1. In this picture a trefoil has the form

and ambient isotopy is taken relative to the endpoints of the tangle. With these
conventions, it is easy to set up the statistical mechanics models so that

po = 0, F W - = 1 .

It should also be remarked that the Alexander-Conway polynomial (in the form
above) is characterized by the Vκ+ — Vκ = zVKo skein relation, where K+,K_, and
Ko are a triple of links that differ at a single crossing as shown below:

That is, a positive crossing in K+ is switched to form a negative crossing in J£_,
and the crossing is spliced out to form Ko. It was Conway's insight that this
polynomial can be defined entirely by diagrammatic properties, an insight that
paved the way for the blossoming of knot theory through the Jones polynomial, its
generalizations, and interconnections with mathematical physics.

Finally, we must point out that our formula for the Alexander-Conway
polynomial as a fermionic integral:

Vκ = q~rot-e J dψdψ+ Qxp(ψAψ+)

(see Sect. 6.13) raises the question of the relationship of these discrete methods with
the approach of Witten [W89] via quantum field theory. A supersymmetric
extension of Witten's theory may capture the Alexander-Conway polynomial.

The paper is organized as follows: We discuss in Sect. 1 the q deformation of
sl(n/m) graded algebras and the associated R matrices in the fundamental
representation. We show that the resulting link invariants obtained via represen-
tation of the braid group satisfy the skein relation (1.39) with k = n — m. The
Conway-Alexander polynomial is thus (formally) recovered in the balanced
("supersymmetric") case n = m.

The algebras Uqsl(n/m) or Uqgl(n/m) have also been studied in [CO89, CK90].
Link invariants derived from graded algebras appear also in [LCS88]. The
connection between the Conway polynomial and Uqsl(ί/ί) (or "free fermions")
seems to have been noticed independently by several authors [D89, R89, S89].

Section 2 deals with the regularization of Sect. 1 expressions in the balanced
case 5/(1/1). We show how to extract the Conway-Alexander polynomial from the
Uqsl(l/1) R matrix by subtracting a zero mode or considering tangles.

In Sect. 3 we show how the supertrace over the Uqsl(ί/1) braid group
representation expands into a state model involving bosonic and fermionic loops.
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Connection is made with the state model of [K2, 89], which allows extension of
the formalism to arbitrary link diagrams.

Section 4 is an intermezzo in classical knot theory.
Section 5 elucidates the relation between the Burau representation and the

Uqsl(l/\) model. Since the Burau representation describes one particle fermionic
states carried on strands, we introduce a multiparticle model by going to the
exterior algebra. This model coincides with the Uqsl(l/1) model through a simple
det = str identity. Besides the Yang-Baxter property which means factorization of
multiparticle scattering on two particle terms, the Uqsl(ί/ί) R matrix enjoys
factorization of two particle scattering onto one particle terms. This justifies the
"free fermion" denomination.

In Sect. 6 we show that the state model partition function can be rewritten as a
Gaussian integral. The absence of four fermions interaction term is another
manifestation of the free fermion property. The tangle diagram can thus be
considered as a "Feynman graph" in a fermionic theory, and the Alexander-
Conway polynomial as a correlation function. Finally the integral is recast in an
apparently new determinant expression for the Conway polynomial.

1. Quantum sl(n/m)

The superalgebra sl(n/m) [Ka77, Sc79] is the algebra of (n + m) x (n + m) matrices
with vanishing supertrace in a supervector space of superdimension n — m. In an
homogeneous basis (p(i) = 0, i = 1 ... n p(i) = 1, i = n +1 ... n + m) elements of sl(n/m)
read

In m\
A B\n Λ ΛZ = — — , strΛΓ = tΓi4-trD = 0. (1.1)

\C D/ m

Hence sl(n/m) has even part sZ(n)(g)s/(m)(g)l/(l) with n2 + m2 — 1 even generators,
and 2mn odd generators. Its superdimension is

sdimsl(n/m) = (n-m)2-\. (1.2)

The Cartan subalgebra has dimension n + m—1 with the n —1 first generators ht

belonging to sl(n\ the m — 1 last to 5/(m), while hn plays a special role. All /z's are
even. Setting

(E' ) = δ δ - (1.3)

one has

To each hli^ή) corresponds a raising operator e{ and a lowering one ft. Both are
even

eι = £ u + i , fi = Ei+Ui. (1.5)

To ftm corresponds a pair of odd operators

η = En,n+ι, η+=En+Un. (1.6)



Free Fermions and the Alexander-Conway Polynomial

The calculation of super Lie bracket using (1.3-1.6) gives
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(1.7)

[ft,., ej\ = aijβj for any ij(en = η),

IK fj] = - aυfj f o r a n y UΛfn=n+)

where atJ are elements of the Cartan matrix of sl(n/m)

n-ί

Cartan

of sl(n)

0...0-1

0

0

0

- 1

0

- 1

0

0

m-ί

0

1 0...0

Cartan

of sl(m)

n-ί

m-ί

(1.8)

Equation (1.7) defines then the abstract algebra sl(n/m) in terms of simple roots.
The preceding (n + m)x(n + m) matrix representation is then the fundamental
representation of this algebra. Finally we notice the 1/(1) generator

i = i n

m 1 i« ΐ

h- Σ V
ii

m
(1.9)

which reads in the fundamental representation

0

0

= ' •

(1.10)

1
If n = m, Q = - 1. In this case sl(n/ή) is not simple. To get a simple algebra one has to

take the coset by the ideal λί. In Kac notations [Ka77],

A(n,m) = sl(n+ί,m+ί) n + m9

with 5 dim^4(n, n) = — 2.
We then define the quantum deformation Uqsl(n/m) as the associative

superalgebra (with unit) generated by eb fb ftί? η, η + , hn with relations [CK90,
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ij=l ...n— 1, n + 1 . . .n + m— 1,

(1.12)

where

9 - 9
(1.13)

Only [ei5/) ] and lη,η+~]+ are modified with respect to (1.7). Uqsl(n/m) is a
deformation of the universal enveloping algebra Usl(n/m). The fundamental
representations • of Uqsl(n/m) and Usl(n/m) coincide since (±l)q= ±1. The
(graded) tensor product can be defined using the superalgebras homomorphism
A : Uq-+Uq®Uq such that

ί=ί . . . n -

(1.14)

) = q'hi/2
ei-\-ei

q h ί / 2 i =

[Recall that in a graded tensor product (α®fe) (u®w)=(—)p ( b ) p ( υ )α u®6 w,
where α, fc are operators and ι;, w vectors.] A remarkable feature of formulas (1.14)
is that the coproduct of the first n — \ raising or lowering operators is built with q
while the coproduct of the last m— 1 ones uses q~x instead. This contrasts with the
sl(n + m) situation where all coproducts would involve q only, and originates in
that hn = Enn — En+ίn+ίin the sl(n + m) case while hn = Enn + En+ln+ίin the sl(n/m)
case. Of course besides zl the other coproduct A is possible where q is replaced by
q'1 in (1.14). zl and A are related by a universal 01 matrix [D86]

(1.15)

which satisfies the graded Yang-Baxter equation. Introducing the graded permu-
tation operator

0>v®w = {-)piv)p(w)w®v (1.16)

the matrix R = 0>0ί satisfies

^12^23^12 = ^23^12^23 (1.17)

which written in components looks the same as in the non-graded case [KS82,
S90]. Although we do not know the general expression for ^ , it is easy to find the
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expression of R acting in the tensor product of two fundamental representations,
n n 4* tn

i = 1 i = n + 1

This coincides with the graded # matrices of [SC81, DA90]. For 5/(1/1) one gets
(this matrix appeared in connection with 5/(1/1) in [S89, SVZ89])

0

1

0

0

0 \

0

0
(1.19)

graphically

(\p(i)PU) (1.20)

The (-γwpw terms in (1.18) can be replaced by 1 without affecting the Yang-
Baxter equation (gauge transformation). R looks then like the Uqsl(n + m) solution
except that diagonal terms have the value — q'1 instead of q. These two coincide
for q = ί which is a higher symmetry point. We can draw schematically

Uq sl (n/m)

sl (n + m)

If # . Besides (1.17), R satisfies a quadratic relation

R = R-1+q-q~i. (1.21)

Hence working in the tensor product of N fundamental representations and
setting ra = Raa + 1a = ί ...N — ί we get with (1.17,1.21) a representation of the
Hecke algebra HN [J86]

(1.22)

(1.23)

Due to (1.15), R commutes with the quantum superalgebra
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Accordingly R reads for q generic

with

Vn — m
dim Γ Π = •

z

r " ^ 2 4 " " ~ - (1-25)

in the balanced case n = m, the eigenvalues q and — q'1 occur with the same
degeneracy 2n2. As for non-graded algebras, the case q a root of ± 1 requires some
care. If q = i for instance, R is not diagonalizable. All zeros of the characteristic
polynomial are equal to ί but obviously Rή=il. The two representations CD and

Q mix in a larger representation [PS90] that is indecomposable but not

irreducible. In what follows we suppose q generic.
For nφm, introducing the quadratic Casimir eigenvalues [BB80],

2{n-m) '

(n-m)2 + (n-m)-2
_ ,

( n - m ) 2 - ( n - m ) - 2

(1.26)

D n —m

we can rewrite (1.18) as
1

ΠH -2cΠp _gc|lj-2cπp \ /j 27)

This formal expansion coincides with the sl(n — m) one.
In the graded case, since antisymmetrization over even coordinates implies

symmetrization over odd ones, there can be Young diagrams with an arbitrary
number of rows. We therefore do not expect R to satisfy besides (1.17,1.21) the kind
of additional relations encountered in the non-graded case.

Because R obeys the Hecke algebra, a solution of the spectral parameter
dependent Yang-Baxter equation is obtained by [J85, J86]

y-'Uq-'-R), (1.28)

where y = eiu and

Rί2(u)R23(u + v)R12(v) = R23(v)Rl2(u + v)R23(u). (1.29)

We introduce a set of vectors Λbi=\ ...n + m — 1 and the Weyl vector ρ with

ΛrβJ^f^i=l,...,n, (1.30)
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The super ^-dimension of a representation r is then defined as

2ρ Γ Σ hiΛi-n + Σ ^ i^ i l

s q d i m r = strrq
 Lι = 1 ί=n+1 J

d ί f s t r r ^ 5 (1.32)

In the fundamental representation

sqdim[J=(n-m)q. (1.33)

Formula (1.32) is reminiscent of sl(n/m) one. In the graded case we take a supertrace
instead. Moreover hί9 ί = 1 ... n come with a factor q while hi9 i = n +1 ... n + m — 1
come with g~\ as in coproduct formulas (1.14).

One has

sir qHR = qn-m(n-m)q,

R-1q-^-m\nm) l j

For nφ nwe introduce the super Markov trace [WDA89]

(1 3 5 )

where X is an operator in the HN algebra. It satisfies the Markov properties

sTrXΓ =sΎrYX

sΎτXrN =τsTrX , (1.36)

where τ = qn~m/(n-m)q. The proof of formulas (1.32-1.36) is a bit lengthy. It will
appear in [KS91]. In the following we use results for n = m = 1 only. In this case
the validity of (1.32-1.36) is easily checked using the state model.

The ra operators (1.22) provide a representation of the braid group

Recall that BN is generated by elementary braids σί9 σ2,..., σN_ x and their inverses,
with σa corresponding to a positive crossing of the ath and (α + ί)th strands of an
otherwise undisturbed braid. We shall represent braids with an upward orien-
tation. Thus σ1σ2σ1 is shown as

σ2

with braid strands labelled 1, 2, 3 for three-strand braids. With the super Markov
trace we therefore have at hand all ingredients to build link polynomials. Consider
a link B closure of some braid BonN strands. (The closure of a braid is obtained by
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attaching the top and bottom strands in parallel fashion as is shown in Fig, 1.) An
invariant is obtained as

(1.37)

Fig. 1. Closure of the braid B = σ1

 1σ2σ1

 1σ2σ1

where rN(B) is the braid operator in the Uqsl(n/m) fundamental representation case
and e(B) is the sum of exponents. Using (1.21) one gets the Skein relation.

f\l/2

(1.38)

or

Many properties of Uqsl(n/m) have the same algebraic form as those of
Uqsl(n—m). This thus provides a natural framework to give a meaning to "s/(l),
sl(O) or sl( — rif\ For instance an explicit braid group like calculation of the
Conway-Alexander polynomial should be possible using any of the Uqsl(n/ή)
algebras. Without the introduction of fermions one would need to make the
calculation for the general Uqsl(N) case, and then continue analytically to N = 0.

As a first example of application consider the link polynomial built with
Uqsl(2/i). In this case the fundamental representation has a super q dimension
equal to 1. • ®N decomposes onto a sum of representations each having zero super
q dimensions except for I I I I I I which has super q dimension 1. On the latter
obviously s TτB = qe(B\ Using (1.37) we get P — 1 for any link. This agrees with the
analysis of [LiM87] based on the Skein relation:

qPy -q~1Ps* =(q-<i~1)P\< (i.4O)

In the case n = m each representation in the decomposition of \Z\®N has the same
number of odd and even vectors, hence a zero super dimension. This actually
becomes a vanishing super q dimension. For any X in HN, strqHX is thus equal to
zero, and we cannot get a non-trivial link invariant by the method used for n φ m.
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2. Quantum s/(l/l) and the Alexander-Conway Polynomial

For simplicity we now discuss in more detail how the Conway-Alexander
polynomial can be obtained from Uqsl(l, I) 1. The defining relations (1.12) read in
this case

[//,//+]+=Λl, η

2 = η + 2 = 09 (2.1)

where the normalization factor λ is at our disposal. If λ = 1 in the fundamental
representation, the coproduct formula (1.14) gives λ = (N)q in Π®N We label the
even state of • by 0 and the odd state by 1. Then in 0,1 basis the fermion number
operator is

In • ®N, F = £ Fω where Fa acts as (2.2) on the ath representation and 1 otherwise.
α = l

In • we have

/0 l\ + /0 0\

H o o ' * = i o (2 3)

with F = η+η. Setting λ = \ in (2.1) we then have for

a tN l)/2 * - !

α = l

ri+=\mί/2 Σ <TV, (2.4)
(Nyq

12

 a=i

where >/α = l(g)l...(g)f/®l.... Notice that ^ being odd, ηa does not act trivially on
the representations other than ath. It is possible to forget about the grading of the
tensor product by adding strings of operators in (2.4) that reproduce the proper
signs in commutation of odd objects. Equation (2.4) reads then 2

-(N-D/2 jv-1

W Σ <t-lΠa<ά-Y'ηt, (2.5)

where now ηb acts as η in bth representation and identity otherwise.
For any X in HN

lη,X]=0, [ί/+,X]=0,

We refer to η, η+ as zero mode annihilation and creation operators. Finally we
notice that

(2.7)

1 It would be more correct to call the algebra ί/^g/(l, 1) in this balanced case
2 Throughout this paper ( - ) F stand for (-1)F
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Any operator X in H^ has eigenvalues twice degenerate due to (2.6). These
occur once in the sector with F odd, once in the sector with F even. Hence str X = 0.

Fig. 2. N = 6

A first way to get the Conway polynomial is - inspired by physics - to subtract
the zero mode. We hence define for the link B closure of the braid B on N strings

str rN{B)ηη +

(2.8)

where B is some word on the σ's and ra acts as (1.19) on the ath and a + lth

representations, and 1 otherwise.
A way of proving that VB (2.8) equals the Alexander-Conway polynomial of B is

to compute it in the HN algebra in a recursive way that parallels the usual
geometrical calculation based on Conway axioms. We notice that V vanishes for
any braid corresponding to a split link since str XYηη+ =0 when X, Y have no
spaces in common onto which they act non-trivially. The numerator of (2.8) can
then be rewritten using (1.21, 1.22) as a polynomial in z times strr x ...rN_1ηη + .
Equation (1.21) in particular acts like the skein relation in Conway axioms. Finally
the denominator of (2.8) ensures that V is 1 for the unknot, which is represented on
N strings as the closure of σγσ2 ...σN_1 (Fig. 2).

One can also show that the right-hand side of (2.8) actually enjoys the
properties of a Markov trace with τ = τ = 1, thanks in particular to commutation of
η,η+ with HN. Since the correct skein relation holds, V coincides with the
Alexander-Conway polynomial.

We notice for further purposes

str v Y YΪYI "*" = (N) (2 9)

Example. Consider the trefoil knot represented by B = σ3—In Π®2- We have

/ O i l 0\

q-V2 | 0 0 0 1
n- <„, .-i)i/21 0 0 0 _q

\0 0 0 0/

0

q

1

0

0

0

0

1

0

0

0

-q

0

0

0

0
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0 0 0

-q'1 1 0

1 -q 0

0 0 0

0 0 0

- < Γ 3 q~2 0

<Γ2 -q'1 0

0 0 0

Hence

Using (2.1) we have as well

strrN(B)η η

We shall come back to the interpretation of η as a zero mode.
Besides (2.8) a more standard way to get the Alexander-Conway polynomial is

to proceed via tangles

v = strrN(B)ηNη£ = -strrN(B)η+ηN
B stτrι...rN_1ηNη£ -stτr1... rN_^ηN '

η^ (respectively r\^ηN) enforces the last representation of [J®N to carry 0
(respectively 1) state only.

Example. For the trefoil one has

and

We notice the normalisations

strf j . . . r Λ

strη1ηϊr1...rN_ί = q (Λί 1 } .

3. State Model

We now come to the state model for braids. While (2.8), (2.11) look like a
"Hamiltonian" formulation since a str is taken, it is easy to make a "Lagrangian"
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version by expanding terms in the trace. We thus define on the two-dimensional
four-valent graph obtained by projection of the tangle a statistical mechanics
model whose degrees of freedom are associated to edges and take values 0 or 1
[LW71]. We refer to 0 as the bosonic state and to 1 as the fermionic state. The
interaction occurs at vertices with the following Boltzmann weights:

(3.1)

where a bosonic (fermionic) state is represented as a dashed (full) bond. Dashed
(full) bonds draw possibly self-intersecting non-contractible loops on the graph.
The Conway polynomial reads

(3.2)

X
X

q

q'1

X
q-q~X

0

X
1

1

H 4

X
1

1

w3

X
0

q-'-q

X
-q-1

-q

w2

'loop ?

where

Aoop — Σ (
loop configurations
last strand carrying

a bosonic or fermionic state

crossings
βoltzmann weights (3.3)

and a fermion loop is a loop made of fermionic (full) bonds.

Example. Consider once again the trefoil

Loop configurations last strand being bosonic:

I)\\

- 1

Fτ = g 2-l+g- 2 = l + z
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Loop configuration last strand being fermionic:

307

-q~3 (q-q~Ψ q-q'1 q-q
- 1 1 1 1

Vτ=l+z2.

Define the rotation number rot (2?) as the sum of rotation numbers of all Seifert
circuits in the decomposition of B (last strand being open). Rotation numbers for
elementary circuits are shown below.

The link diagram is decomposed into Seifert circuits by replacing each crossing by
oriented parallel arcs as in X h> ^

Example.

rot = 1

Then (3.1) reads

vB — q ^loop- W TJ

In fact a version of this model for arbitrary link diagrams appears in [K2, 89,
Ja87]. What is called here bosonic (respectively fermionic) loop corresponds in
[K2, 89] to a loop carrying label 1 (respectively —1). q was called t in [K2, 89],
Finally the reader may notice some sign differences in q exponents with [K2, 89].
They just occur from different convention in writing the R matrix (compare (1.20)
with the diagrammatics in [K2, 89]).

Using proofs of [K2, 89] we therefore know that formula (3.4) generalizes to an
arbitrary tangle diagram.

We shall not comment more on state model details here but will take them up in
a sequel to this paper (Jaeger, Kauffman, Saleur in preparation). Nevertheless,
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using for a short while notations of [K2, 89], it is worth mentioning that the basic
form of these models is that of a partition function <K> = £ {K\σ) ΛJI<7", where σ

σ

runs over the states of the diagram, (K\σ} denotes the product of local vertex
weights and ||σ|| is a global state evaluation (involving the state labels, loop counts,
etc.). The key difference between the Alexander-Conway polynomial and other
models is that λ is a scalar, and that the model must be restricted to a subset of
states (e.g., by fixing the value of an edge).

4. Quandles, Crystals and the Burau Representation

As it happens, much of classical knot theory can be summarized by describing an
attempt to generalize the idea of coloring the arcs of a link diagram to form a
colored state whose properties are invariant under the Reidemeister moves. This
colored method is elementary and shows that most of classical knot theory can be
seen as statistical mechanics. By using this approach, we shall be able to make
identifications between the two subjects from the very beginning. In particular we
shall see that the classical Burau representation directly describes a free fermion.
The simplest example of such a coloring is the coloring of the trefoil knot. In this

figure the representation shown for the trefoil is colored in three colors: red (r), blue
(b\ and purple (p). The diagram is composed of three arcs - one of each color. Thus,
we have a color space %>(K) consisting of three elements. In order to see that this
color space gives rise to a topological invariant for the trefoil, we adopt a rule of
one or three: Any crossing must have either three distinct colors incident to it or only
one color incident to it.

With this assumption, it is easy to see that a knot diagram (one component) that
is tri-colored, can remain tri-colored under any Reidemeister move (via a local
change in the coloring of the diagram). On the other hand, there is no way to
induce a tri-coloration of an unknotted diagram-starting from the unknot and
following these rules (i.e., making local changes at each move). Thus we conclude
that the existence of a tri-coloration obeying the rule of one or three is a
topological property of a knot diagram, and thus the trefoil knot is indeed knotted.

How can one generalize this coloring scheme? One direction is to assume that
each arc of the diagram K is labelled from elements of a set ^(K) that we shall call
the color space of K, and that there is a rule for composing colors so that the arcs
incident to a crossing obey this rule. We shall assume that for colors a, be^(K)
there is a third color ab\ eV(K) and also another third color aϊbe^(K). The
notation ab\ connotes a non-commutative binary operation between a and b (it is
associative), where 51 is a symbolic unary operation performed on b making b into
an operator on the color space. That is, for each be^we have 51,15 : #-># and the
evaluations 51 (χ), ϊb(χ) for χ e ^ are written
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Associativity of the composition of functions makes this mixed algebra of
operators and operands associative. We let <f denote the set of compositions of
operators derived from <β.

With ^ and <$ given we can define the local color rules:

c = abl = a(b

Then, we assign the color ab\ or a ϊb (according to orientation) to the out-going arc
at a crossing. Here b is the over-crossing line and a is the in-coming undercrossing
arc. The operator 51 is assigned to a positive crossing, while the operator ί5 is given
to a negative crossing.

We now examine the properties of this operator algebra on the color space in
regard to the Reidemeister moves. First consider move II:

ablE

We see at once that db\\b —a for all a. Hence we must assume that

£115 = 1 and (551 = 1, (4.2)

where 1 is the identity transformation of #. This means that the set of operators %>
forms a group.

Each crossing in the diagram JΓ gives rise to a relation in the group ^. In order
to see this, consider the following version of the type III Reidemeister move:

m*

In this version of the type III move, the strand taking a journey through two
regions is replaced locally by a journey through the other two regions.

The move III* can be accomplished via a combination of moves II and III.
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u m

Thus, we can (in the presence of II) replace the move III by III*.
Now observe the effect of III* on the algebra of operators:

χlbalbl

-» b

ΠI* χlbil Γ χlb
/ a

This diagram shows, that, to preserve coloring, we need to assume that

c\ = \ba\Έ\

whenever c = db\.
In other words, as operators we have

at the crossing.

-> b

And c= ϊb ^ [5 at the crossing of opposite type.

c

b

More generally, we must assume the rules

(4.3)

These rules describe how the operator algebra interacts with the color space. The
pair (% <$) will be called the crystal [Kl, 87] and [K91] of the knot or link K. It is a
generalization of the fundamental group. In fact the group *$(£) is, by itself,
isomorphic with the fundamental group of K. From the crystal one can derive the
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quandle of Joyce [JY82]. Hence it follows from Joyce's work that the crystal
classifies unoriented knot types up to mirror images.

There are other possibilities for generalizing color states for knot and link
diagrams, but the crystal/quandle/fundamental group is one generalization that
makes direct contact with the classical knot theory.

In order to bring these relations down to earth, and in order to see how the
Burau representation of the braid group makes its appearance in this theory, we
now consider linear representations of the crystal operations. That is, let us assume
that ab\ and a ϊb are given by linear formulas

aIb=R'a + S'b, v ' '

where R and S are invertible elements in a commutative ring & and the color
space ^ is a module over this ring 3ί.

In order for ab\ and alb to satisfy the crystal relations for the Reidemeister
moves II and IIP, it is necessary that a linear representation (as described above)
takes the form

where t is a unit in the ring 01.

Proof. Omitted. See [K91].
The universal version of the linear crystal representation in this proposition

ensues when we take the ring 01 to be the integral group ring of the infinite cyclic
group generated by the powers of a transcendental variable t. That is, we take
^ = Z [ ί , ί - 1 ] , where Z denotes the integers. The elements of 01 are finite Laurent
polynomials in t. Call this the Alexander Crystal of the link K.

It is useful to verify the crystal properties for this representation. Thus

ab\ lb={ta + {\-t)b)b

= a,

while

Thus aB\ = ίfoαlFl. The other instances of IIP follow similarly.
The module structure of ̂ {K) over Z [ί, t ~x] is called the Alexander module. It is

generated by one symbol for each arc in the diagram Jf, and one relation.
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Example. Consider the trefoil with relations in the Alexander module

b = cal =

a — bc\ =

c = ab\ =
"

The relation matrix is

M(K) =

Note that we have labelled the rows and columns of this matrix by the arcs in the
diagram. (The arcs are in 1 — 1 correspondence with the crossings by associating
the crossing at the base of an arc to the given arc.) Each row gives the coefficients of
the relation corresponding to a given arc. Note that in this example the three rows
are linearly dependent. This is generally the case, and leads to the definition of the
Alexander polynomial as the determinant of a minor of M(K):

a

b

c

a

1-ί

- 1

ί

b

- 1

ί

1-ί

c

t

1-ί

- 1

where det'(M) is the determinant of any (N — 1) x (N — 1) minor of M(K\ and =
means equality up to multiplication by ± t\i e Z). Thus we have, in the case of the
trefoil

: , ' _ - ;

= - ί - ( l - 2 ί + ί

The significance of the Alexander polynomial with respect to the color space ^(K)
lies in the fact that Δκ(t) is a generator of the annίhilator ideal of ^(K) ί n Z ^ ί " 1 ] .
This is, Aκ(t)-χ = 0 for all χe^(K), and Δκ(t) generates the ideal of Laurent
polynomials with this property. It is of interest to see how the Alexander
polynomial arises directly in terms of this property. Take the case of the trefoil as
shown above. If a = 0 then c = ab\ = ta + (1 - t)b = (1 - t)b. Hence 0 = a = be] = tb

2

Since the Alexander polynomial is a determinant, it can be expanded
combinatorially in various ways. Furthermore, there are various ways to obtain
determinantal expressions for this polynomial. An expression that is very closely
related to the Alexander module/matrix arises for braids in the form of the Burau
representation of the Artin braid group. The Burau representation derives directly
from the linear representation of the crystal as follows: Consider a crossing as
shown below.

to + (l
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We have labelled the arcs incident to this crossing in accordance with the rule
ab\ = c = ta + (ί — t)b. Now regard a and b as basis elements for a vector space V9

and define ρ: V-> Vby (a)ρ = b, (b)ρ = ta + (1 — t)b. Thus, as a matrix with respect to
the basis {b, a], we have (ρ acts on the left.)

Q =

1-ί ί

1 Oλ

For the inverse crossing we have ρ 1= i _ί _1). The matrices ρ and ρ 1

\t I —t )
then form the building blocks for the Burau representations ρN:BN

->MN(Z[t,t~ί'])9 where BN denotes the iV-strand braid group and MN(Z[ί, ί"1])
denotes the ring of N x N matrices over Z[ί, ί~ *].

Letting VN denote the free module over Z[ί, ί"1] with basis {vί9v29..-,%} (va

corresponds to the ath braid strand), we let ρN:BN ^Aut{VN) denote the Burau
Representation:

'(l-t)vb + tvb+l9 a = b

a otherwise

In other words, ρN(σa) is the Burau matrix σ on the subspace {va,υa+1} and the
identity elsewhere.

It is easy to see that ρN is a representation of the braid group: The braid group
has relations σaσa+iσa = σa+ίσaσa+1, σaσ~ί = ί and σaσb = σbσa(\a-b\^2). These
correspond to type III, type II and background Reidemeister moves. Hence our
work in verifying the linear representation of the Crystal translates directly into a
proof of the well-defϊnedness of the Burau representation. With the Burau
representation in hand, we can return to the color space and Alexander module
<g(E) for the closure of a braid word B e BN. The basic fact is that ifBeBN then M(B)
= ρN(B) — I is a relation matrix for the Alexander module (color space) ^(B).
Furthermore, the Alexander polynomial is given by the formula

A-B(t) = dot'(M(B)),

where detr denotes the determinant of any (N — 1) x (N — 1) minor of M(B). (See
[B74] for proofs of these facts.)

Example.

B=T

1-ί Γ

1 0,

ί-t + t2-t3 t-t2-
1-t + t2

-t+t2-t3

t-t2

t-t2+t3

1-t + t2 -1+t-t2

Thus det'M(B) = (\+t-t2) and Δ-B{t) = t2-1 +1.
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This last model of the Alexander polynomial is the one that translates directl
into the Uqsl(ί9ί) state model (Sect. 3) via the formula det(A + sI) = tr(SfΆ)
(Appendix). We shall discuss this translation in the next section (Sect. 5). For now it
is appropriate to return to our original version of the Alexander matrix for an
arbitrary link diagram, and to point out some further connections both with state
models, and with some classical aspects of knot theory. First of all, the same
formula det{A + sI) = tτ(&Ά) applies to the first Alexander matrix. We see that
M(K) = — J + N(K% where N(K) is the matrix of relations at the base of each arc in
the diagram. For example, in the case of the trefoil, we find

1

0

0

0

- 1

0

0

0

- 1

+
1-ί 0 ί

0

ί

t 1-ί

1-ί 0

This gives yet another expression for the Alexander polynomial as a super-trace
that is apparently different from our other models.

Finally, it is worth pointing out that the crystal version of the Alexander matrix
is identical to that obtained using standard techniques on the fundamental group
of the knot complement. These standard techniques involve the free differential
calculus of Fox [F63]. We give a quick sketch of this relationship below, because it
is significant that at least in the case of the Alexander polynomial, one can derive a
solution to the Yang-Baxter equation from the fundamental group of the knot
complement. Let G be a group (written multiplicatively). Let Γ = Z [G] denote the
group ring of G. That is, Γ consists of all formal sums n1g1 + n2g2 +. . . + nkgk, where
nt e Z is an integer and gf is a member of G. A (Fox) derivation D: Γ-+Γ is a linear
mapping that satisfies the formula D(gh) = D(g) + gD(h) for g,heΓ.

This notion of derivation is motivated by the fact that the formula for lifting
elements of G = πί(X) (π1 denotesjhe fundamental group of a space X) into the
universal covering X is given by gh = (g) + g(/z). Here g/z, g, K denote path lifts, and
the multiplication by g connotes the action of G = π1(X) on the space X.

Given a presentation of a group G = (χ1? χ2,..., χjrl9 r2,..., rm) we can form the
Jacobian matrix

where -^— denote derivations of this kind, and

ίl i=J

If G is the Wirtinger presentation of the knot group then we can take m — n and
there is a homomorphism </>:Z[G]-»Z[ί, ί"1] naturally associated with G. Fox
proved [F63] that the Alexander polynomial was given by a formula:
Λfφ^det'G'ac*), where jac denotes a Jacobian matrix for a presentation of the
fundamental group of K, φ takes the entries of jac to Z [ί, ί ~1] and det' denotes the
determinant of any (N — 1) x {N — l) minor of jac^.

In fact, for the Wirtinger presentation the Jacobian matrix jac^ is exactly our
first matrix of relations M(K). It is illuminating to see how this comes about:
0. The Wirtinger presentation for the fundamental group of the knot complement is
obtained from the crystal by replacing ab\ by b~γab and alb by bob'1.
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1. Note that if D.Γ-^Γ is a Fox derivation, then

D(g~ι)= -g-ιD(g) (O = D(gg-1) = D(g) + gD(g-ί)).

2. Let ab\ =b~1ab,aϊb= bab'1, where α, beG a given group. Then

and

D(a ϊb) = D(b) + b(D(a) + a{ - b ~γ

= bD(a) + (l-ab-ί)D(b).

3. Thus if φ(ά) = φ(b) = Γ1 and Ό = φD, then

It is in exactly this way the Fox calculus produces the Alexander module and basic
crystal representation from the fundamental group of the complement of the knot.
This relationship is of interest in the context of the Uqsl(ί,ί) model of the
Alexander polynomial since it shows how the vertex weights for a solution to the
Yang-Baxter equation can arise from the combinatorial group theory of the knot
group. We expect deeper connections with the classical topology to emerge in this
line.

5. From the Burau Representation to Quantum 5/(1/1)

The boson-fermion approach we used so far can be formulated in an interesting
way using exterior products. To each basic state of [j®N we associate in Λk a
formal product vai A ... Λ vaic of basic elements vγ... vN with the rule

(0...010...010...01...)

where α's label the positions of elementary fermions. We may think as well of 1 as
(0... 0) = Ω or as a ground state and of υai A va2 A ... Λ vak as η^^ WarP- Wedge
products are associative, anticommutative, and linear. The exterior algebra
associated with \J®N is Λ * = Λ°φ Λ *© ...® AN.

Now consider some operator in Π® 2 conserving F

1 0 0 0

^ = L Λ (5-2)
0

0

0

W5M

W4/MΊ

0

W6/Wi

0

0

0

wJw,

Basis states read in the wedge product language (00)->l, (01)->ι;2, (10)->f l 9 (11)
>υ1 A v2. If the weights (5.2) satisfy moreover the "free fermion" relation (as (3.1))

4 = w5w6 (5.3)
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it is possible to express X in terms of another operator X that acts on one fermion
states only. Indeed set in v2, vx basis

\wjwί wjwj

and lift the action of X from Λ ί to Λ * by

1X = 1,

(vί A v2)X = vγX A v2X

w5w6-w3w4
= —2 V1AV2. (5.5)

X coincides with (5.2) due to (5.3). The "free fermion" name of (5.3) stems from the
fact that action of X on multifermion states can be factorized onto its action on one
fermion states only without multiparticle interaction terms. We shall come back to
this in Sect. 6.

In general for any operator X defined by its action on basic states v1...vNoϊ A 1

we introduce the lifted operator X in Λ * by

(υaι A ... Λ vjt = vaιX A ... Λ vakX. (5.6)

We introduce also the free fermion number operator

(t?βlΛ ... Avai)F = k (5.7)

(of course (—)F is the simplest example of a free fermion operator). Then a useful
result is

= (-)»strX

which connects the determinant of a N x N matrix to the supertrace of a 2N x 2N

one. This is proven in the Appendix.
We can now show how theK-matrix for the Alexander-Conway polynomial (as

described in Sect. 2) arises from the linear crystal representation by going to the
exterior algebra: We have

lρ, aρ = b, bρ

(aAb)ρ = (aρ) A (bρ) =-t(aAb).

Hence for the small exterior algebra basis we have

0 0 0

| . <5.9)
1 0 0 ' V

\o o o -ti
The basis ordering {l,b,a,aΛb} corresponds to the coding adapted above
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On the other hand

0

0 0

,0 0 0 -q-χj

Hence q~λR can be identified with ρ after the renormalizations t->q~2,

»2-V/2(01), ι ^ < Γ 1/2(10). (5.10)

Such a change of basis does not affect the supertrace, allowing us to write

dette^WM-yV^str^B). (5.H)
Both sides of (5.11) are actually zero. We met this difficulty for the str in Sect. 2. As
far as the det is concerned, it vanishes because ρ(B) leaves the vector vγ +. . . + vN

with all coordinates equal invariant.
An easy way to regularize the determinant is to suppress the zero mode. If

λί...λN are the eigenvalues of ρ(B) with λγ = 1 we define

det'(ρ(β)-/)d= fί (4-1) (5-12)
a = 2

which equals the sum of diagonal minors of ρ(B) — I. Writing

A1=kQΐ(ρ(B)-I)®Aί\

det' is the determinant of the operator ρ(B)~I restricted to A1'.
After lifting to Λ *, the existence of λ1 = 1 translates into the double degeneracy

of r(B) eigenvalues. Introducing the linear operator in Λ *,

Z+:υaiA ... Λυak-+(v1 + ...+vN)Λ(vaιΛ ... Λt J , (5.13)

and writing

Eq. (5.8) becomes

d e t W β ) - J ) = (-)"~V β ( l ϊ ) str A*,rN(B)

We introduce

Z:vaiΛ...ΛΌaic-+ Σ vaiA ... AυakA... Aυah{~f~\ (5.15)

where v means the vector is omitted in the wedge product.
One checks

[Z,Z + ] + =AΓ, Z 2 = Z + 2 = 0. (5.16)

zz+

The projector on Λ *' is , hence (5.14) reads
/ ZZ+\

^ J (5.17)
Performing the right change of basis such that ρ^β) becomes q~e{B)rN(B\ we see
that the normalized Z,Z+ operators become identical to the η,η+ zero mode
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operators introduced in Sect. 2. For the unknot (5.17) reads

and

in agreement with [Jo87].

Example. For the trefoil

ρ(B) =

tdet'(ρa(fl)-i)
(N)q

l_ g -2 + ?-4 q-2-q~A

det'(ρ(B)—I)=Σ diag. minors = —q~~6 — ί,

q + q
- 1

For the link

Q =
q —q

q-2

(5.18)

(5.20)

Instead of det' defined by (5.12) we may focus on say the Nth diagonal minor of
ρ(B) — I. Then by an easy generalization of the above

and from (2.12),

/) . (5.22)

6. Free Fermion Description

We now come to a reformulation of the state model where the tangle diagram will
play the role of a Feynman graph for a fermionic theory.

To each crossing i of an oriented tangle diagram we associate 4 Grassmann
variables ψUu; ψ£u; ψitd; \pϊd. The labels u and d refer to edges going up and down
with respect to the direction of the crossing as shown below.
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All ψ's anticommute

tf.JΨy].β=-ψy].βΨΪ.a> *>β = u o r d x,y = noneor + . (6.1)

In particular a ψ squared is always zero,

OP?,«)2 = 0. (6.2)

Functions of the ψ's are determined by their Taylor series. The Berezin integral is
defined by

J Π dΨu udψuudψi, ddψtd Π Ψί, uΨuuΨu dΨud = 1 (6.3)
i i

The integrals which involve the same variables in a different order equal ± 1, where
the sign is calculated through (6.1). Any other integral vanishes.

The measure of integration (6.3) will be noted \d\pd\p +. Notice that the sign
convention (6.3) is invariant under permutation of the site labels as well as
exchange of u and d labels.

We now want to consider the state model expansion Z l o o p (Sect. 3) as the
graphical expansion of the integral

jdψdψ+e^, (6.4)

where sd is some action to be determined. Each state in (3.3) should then
correspond to a term in the Taylor expansion of e^ with non-vanishing Berezin
integral calculated through the above rules. For this purpose each fermionic edge
state of (3.3) (represented by a heavy bond) is interpreted as arising from a
"propagator" term. If following the link orientation the edge starts at vertex i and
ends at vertex j , the propagator term will be ψ£aψjtβ9 where labels oc,β = u or d
depending on the particular configuration

.X^ψΐaΨi,,

thus has a first part

* propagator - Σ ΨuaΨj.β
oriented edges

<iJ>

(6.5)

Example. Trefoil
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We have

Π (5.6)

where the order does not matter since products of an even number of fermions
commute. Each term in expansions of (6.6) thus gives rise to a graph with some
dashed and some full bonds.

We now come to interactions. First we factor and g # n e 8 a t i v e - * p°sit ive crossings
( = q~e) to get the vertex weights

x q2

q~2

X
q2-!

0

X
n

q~x

X
q

q-1

X
0

< Γ 2 - 1

X
- 1

- 1
(6.7)

A vertex like

or

d u j j

is associated in the propagator expansion to

ΨΪ,aΨi, uΨuuΨk, β o r ΨUΨU dΨudΨk, β -

These terms contain only two of the four Grassmann variables associated to the
vertex i. To get a non-zero result after Berezin integration we must then
supplement s/ by an interaction part that contains ψUdψΐid (respectively ψitUψΐ^.
These terms come naturally with weight w4 (respectively w3).
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In a similar way the vertices

u d k k

or

d u j j
are associated in the propagator expansion to

ΨUΨU uΨudΨu, β or ψ£aψu dψtfUΨk, β,

again containing two of the four i fermions only. Hence we must add to J / another
interaction part with ψt,uΨi,d (respectively ψ£dψifU). These terms come with weights
w5 (respectively w6). So far we have collected

înteraction = ^I=Σ ^sΨi.uΨUu + ^4Ψi,dψt,d + ^sΨUuΨi.d + ^βΨudΨUw (6-8)
i

For a positive crossing

s*τ = q(ψuψu + Ψdψΐ) + (q2 -VψϊΨd, (6.9)

and for a negative crossing

Now look at the purely bosonic vertex

u d

which arises from terms in s^ι only. There are two ways to get the 4 Grassmann
variables at site i, either by combining the two first or two last terms of (6.8),

due to (5.3) the prefactor is correctly wv

Let us forget for a while the purely fermionic vertices. Then collecting (6.6) and
(6.8) the terms with non-zero Berezin integrals are in one-to-one correspondence
with the states of the state model such that no loop intersection occurs. The right
weight at each crossing is reproduced by the prefactors in stfv The only thing we
have to worry about are global signs. The fully empty state comes with

hence contributes qe to Z l o o p as it should. Now suppose we have one loop. For each
vertex that does not touch the loop we have q±2Ψuuψt,uxPi,dΨud- For a vertex like

d k k

or
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we get

or

taΨu uΨudΨk, βψtuΨi, d = Ψι, uΨuuΨi, dΨudΨΪ*Wk,

taΨi,dψΐ.uΨk,βΨudΨi,u = ΨUuΨUuΨi,dΨudWhaΨk,β

For a vertex like

d k

or

we get

ψtaΨi, uψtuΨk, βψi, dWtd = Ψi, uΨUuΨi, dψtdψtaΨk, β

or

ψΐ,*Ψi,dΨudΨk, fiΨi.uΨuu = Ψi,uΨUuΨi,dψtdψUψk,β -

Going along the loop we thus factorize out ψitUψt,uΨi,dΨtd with the right
Boltzmann weight. If we started the loop analysis at some vertex i we get in the end

X:

ΨUdΨi, uΨuuΨu d ψϊuΨί, dΨudΨi, u WtuΨi, uΨi, dψΐd ΨudΨi, dΨi, uψΐ,u

equal to —ψitUψ£uΨi,dΨud- Hence the one-loop diagram comes with

- Π Ψi,uψtuΨi,dΨΪ,d Π Boltzmann weights, (6.11)
i

reproducing the right sign of the state model. The argument generalizes
immediately to a diagram with several non-intersecting fermionic loops each
carrying a factor (—1).

Let us finally come to the case where there are fermionic crossings. The vertex
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arises from sip only

ψtaΨu dΨudΨm, βΨk, yΨi, uΨUuΨl, δ = Ψi, uψ£uΨt, dΨudΨΪ.*Ψm, βWk, γψl, δ

with respect to the term that would arise from two independent loops (6.11) we get
an extra minus sign. This nicely provides the desired value of w2 = — 1. Thus we
have

r
= q efdψdψ+exp< £ ΨuaΨu

(oriented edges

+ Σ qiΨuuΨuu+ψί,dΨud)+(q2-VψϊuΨu
itipositive

crossings

Σ ί
negative

ones

(6-13)

Σ' sums over all edges except the one opened to get a tangle. The opened edge
carries a boson (0). Writing the action

-**= Σ Ψi,ai,cAj,βψΐ,β>
a,β=u,d

where A is (2 x #crossings)0 2 we get

Zloop = q

and

(6.14)

(6.15)

(6.16)

Example. For the trefoil we have

ί = l

3

-i) Σ

Hence

A =

q

- 1

id

l-q2

q

2M

— 1

q

Id

- 1

\-q2

q

3u

- 1

q

3d

- 1

i-V
q

r o t ( L ) = - l
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Another way of looking at the trefoil is

A =

q \-q2

q

- 1

- 1

q

- 1

i-q2

q - 1

q

- 1

l-q2

q

Unknot

rot(L) =

2 2

i=q~γ Σ Ψi,uψtu+Ψi,dψ?,d+(q~2-i) Σ wtdΨuu
i l i l

q~ι

i-q-2 q'1

- 1

- 1

q-1

i-q~2

- 1

9-1

rot(L) = 2

Conclusion

It has been the purpose of this paper to place the Alexander-Con way polynomial
in the context of the sl(n/ri) quantum groups and the free-fermion model. This has
led to a new description of this link invariant as a determinant for free fermions.
Many questions remain for the relationship of these concerns both with the theory
of knots and links, and with mathematical physics. A significant hint of deeper
relationships is the fact .that the Alexander polynomial is a form of Reidemeister
torsion for the link complement [M62], and that Witten's theory [W89] includes
Reidemeister torsion of the associated three-manifold in the large k limit. This is
not a direct connection, but rather an indication that the key question here is the
relationship of Reidemeister torsion and mathematical physics.
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Appendix

Determinant and Trace. It is the purpose of this Appendix to prove the formula

where A denotes the extension of A: V-+V to the exterior algebra Λ *(V):

A: Λ * ( F ) - Λ * ( F ) .

To this end, let {vl9 v29..., vn) be a basis for V and define ^ : Λ *(F)-> Λ *(V) by
£f(vn ΛU, 2 Λ ... Λ %) = skvn Λ ... Λ %. We are given that

Now Λ *(V) has for a basis the elements % Λ ι>i2 Λ ... Λ vik with i\ < ι2 < < K
(including 1 for the case fc = 0).

Let Γ= (ί1? l29..., ίfc) for /x < /2 < ... < lk and let π( /) denote the set of permutations
of the set {lul2> •• 54} Given πeπ(7), let ε(π) denote the sign of this permutation
relative to the convention that ε(/1? /2,..., /k) = 1 when /t < /2 < ... < /k.

Recall that ^ : Λ *(F)^ Λ *(V) is defined via the equation

A(vnΛ ... Λϋifc) = μi? i l)Λ ... Λ(Avik).

Lemma 1

w/iβrβ Γαnd Γαrβ multi-indices as described above, and

Aff= Σ.ΦMπ^ ^ .
πeπ(i)

Proo/

i ( ϋ α Λ ... Λ%) = (^ ί l)Λ(^i; i2)Λ ... Λ(Avik)

= Σ

lπeπ(l)

This completes the proof.
Thus we see that the diagonal elements of the matrix A take the form

ΆfΓ= Σ^β(πM«iZi 4t k i k
πeπ(1)

In other words Λffis the determinant of the kxk block in ̂ 4 that is obtained by
dropping out the complement of the set of indices {lu Z2,..., lk}.

Now compare this observation with the form of the determinant for

detμ + 5/) = Σ ε(π) Π (Akπk + sδkj.
π k=l
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It is easy to see, by directly expanding the products in this formula, that

det (A + 5/) = £ s | Γ | ΛιΎ,

where |/f=fc when Γ=(/1?/2> -- Λ) with Z1</2< ... <lk. This is equivalent to the
statement that

Hence we are done.
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