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Abstract. We prove that C ̂ persistently expansive geodesic flows of compact,
boundaryless Riemannian manifolds have the property that the closure of the
set of closed orbits is a hyperbolic set. In the case of compact surfaces we de-
duce that the geodesic flow is C1-persistently expansive if and only if it is an
Anosov flow.

Introduction

In this paper we present some results concerning geodesic flows possessing
certain topological properties which persist under small perturbations. Recall
that if (M, g) is a complete Riemannian manifold and TXM is its unit tangent
bundle, the geodesic flow φt\ T^M-* TtM is defined as follows: given a point
(p,υ) e TγM, φt(p,v) = (y(t)9 γ'(t))9 where γ(t) is the unit geodesic of M such
that y(0) = p and /(0) = v. Let us denote as κk(M) the set of geodesic flows
of Riemannian metrics of M endowed with the Ck topology. Given any one
parameter family of homeomorphisms ψt: N^> N acting on a metric space N,
we say that it is expansive if there is an ε > 0 such that every peN satisfies
the following property: if qeN and there exists a continuous surjection
fq: R -> ]R with d(ψt(p), ψfq(t)(q)) ^ £ for every / e R, then there exists t0e R
depending on ε, p, q, with to->0 if d(p,q)-*0 such that q = ψto(p) When
t e TL for every t we just take/g(ί) = t and t0 = 0.

The persistence of expansivity is closely related with hyperbolicity and sta-
bility of dynamical systems. Let Ek(M) be the subset of κk(M) of expansive
geodesic flows. An Anosov geodesic flow of a compact manifold M is expan-
sive, and since it is C^structurally stable [1] it belongs to int(Eί(M)) - the
interior of E1(M) in ^(M). Axiom A systems are expansive near the closure
of the set of periodic orbits, and since they are Ώ-stable [10, 12] this property
persists under C 1 perturbations. On the other hand, Mane [6] proves that the
interior of the set of expansive diffeomorphisms in Diff i(M) (i.e. the set of
C00 diffeomorphisms of M endowed with the C 1 topology) coincides with the
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set of Quasi-Anosov ones. (A diffeomorphism f'.M-+M is called Quasi-
Anosov if for every pe M and V e TPM we have that || Dfn(V) || >~*oo when
either «>-• + αo or «>-> — oo.) Mane shows in particular that such diffeomor-
phisms are Axiom A systems. We obtain in this work analogous results for
persistently expansive geodesic flows. If ψt is a flow acting on a Riemannian
manifold N we say that an invariant set X £ N is hyperbolic if there exist
constants C > 0, 0 < λ < 1, and a splitting Es

p® Eu

p® Ep= TpN for every
peXsuch that

i) Ep, Ep are invariant by dψt and Ep is the direction of the flow at p. (If p is
a singularity take Ep = 0.)
ii) WdψΛE-JZCλ'Vt^O.

When X — N the flow is called an Anosov flow. Denote as A (M) the set of
Anosov geodesic flows of the manifold M.

Theorem A. Let M be a compact manifold of dimension two. Then int (E1(M))
= A{M).

This theorem will follow from the fact that periodic orbits of expansive
geodesic flows of surfaces are dense (see Sect. 3) together with the following
result:

Theorem B. Let (M, g) be a compact Riemannian manifold of dimension n. If
the geodesic flow φt belongs to int (is1) the set P(φ) - the closure of the set P(φ)
of periodic orbits of φt - is a hyperbolic set.

The method used to prove Theorem B combines some classical results
concerning symplectic dynamics - the so-called Birkhoff-Lewis fixed point
theorem - with the general theory of persistent invariant bundles. Indeed,
we deduce that if φteE1(M) then the closed orbits are C1-persistently
hyperbolic, and from [6] this implies that there exists an extended, continu-
ous invariant bundle defined in P(φ) - which coincides with the hyperbolic
splitting along each periodic orbit-satisfying what is called the domination
condition (see [6] and also Sect. 2). It is important to remark that the ab-
sence of a closing lemma for geodesic flows determines essential differences
between the arguments used here and those of [6] for difisomorphisms.
Roughly speaking, Pugh's closing lemma [9] says that for every diffeomor-
phism / : M -> M defined on a compact manifold M we can approximate
"almost" periodic parts of orbits of/by periodic orbits of C 1 perturbations
of/

On the other hand, we shall show that the splitting mentioned above
satisfies an algebraic property associated to the symplectic structure of
the geodesic flow: it comes to be a Lagrangian splitting. Invariant splittings
of Anosov geodesic flows are easily seen to be Lagrangian, while the re-
ciprocal statement is not necessarily true. What we prove is that a con-
tinuous, Lagrangian, invariant splitting defined on a compact invariant set
for the geodesic flow is hyperbolic if and only if it satisfies the domination
condition.
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1. Generic Properties of Poincare Maps of Closed Orbits

Let (M,g) be a complete Riemannian manifold, and let TXM be unit tan-
gent bundle. The metric g induces a Riemannian structure on TXM given by
the metric g, which we define as follows: Let π: TM-+M be the projection
π(/7, t?) = /?, where (p,v) is a point of TM in local coordinates ί/xR", U an
open subset of M. Let

K: T(TM) -> TM

where V: TM x TM-^ TM is the Levi-Civita connection of (M9g)9 and

dπ(Y)q is any differentiable vector field defined in an open neighborhood of p

such that dπ{Y)p = dπ(Y)p. Then, if F, We Tξ(TM), define

g(V, W) = g(dπ(V), dπ(W)) (

It is easy to see that Ker(^) 0 KQv(dπξ) = Tξ(TM), where the sum is orthog-
onal with respect to g, and dim[Ker(^)] = dim[Ker(ί/πξ)] = n. Now, let us
consider the restriction of this metric to TIM, which we still denote as g.

Let φt\TγM-+TγM be the geodesic flow of (M9g). Consider Nξ =
{ve Tξ{TxM)\g{υ,Eξ) = 0}, where Eξ is the direction tangent to the flow at
ξeTγM, and let Hξa Nξ, Vξ c Nξ be the horizontal and the vertical sub-
spaces respectively, where

Vξ = Ker (dπξ)nNξ.

Note that dim(Hξ) = dim(Fξ) = n - 1 and Nξ = Hξ 0 Vξ. Define

Observe that 3 2 = — h and that there exists a canonical symplectic structure
on Nξ induced by /. Recall that a symplectic form ω on R 2 m is an alternate,
non-degenerate two-form on R 2 m . We call the pair (IR2m,ω) a symplectic
structure. Now, for each ξ e TγM consider the following form:

Ωξ(V, W) = g(V9 3(Ψ)) VF, ΪFeΛ^.

It is clear that Ω̂  depends differentiably on ξ, and since 3 is both an isomor-
phism and an involution we get that Ωξ is in fact a symplectic form Vξ. We
shall denote as Ω the two-form in A2(TXM), the space of two-forms of TXM,
defined by Ω(ξ) = Ωξ.

A simple, but important remark is that the geodesic flow of (M,g) pre-
serves both Nξ and Ω, i.e., dφt(Nξ) = Nφt{ξ) VξeTίM and

where the map F*: Λ2(TF(p)X) -+ Λ2(TPX) is defined as
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for every diffeomorphism F:X->X on a manifold X, with Λk(TpX) being
the space of k forms on TpX. This implies in particular that g(dφt(V), and

(</%)*» 3 »(#«) = 3,

where {dφ^)* is the adjoint operator of dφt. A diffeomorphism F: R 2 "-»R 2 " ,
F(0) = 0 which preserves a symplectic form is called a symplectic diffeomor-
phism.

Now, let φίO/) be a periodic orbit, and let Sη c TtM be a local transversal
section containing η. Recall that the Poincare map Sβη:Sη-* Sη of the orbit as-
sociated to Sη assigns to each point qeSη the point ?βη(q) = φto(q), where
t0 = inf {φt(q) n Sη ή= 0}. By the above comments, if Sη is normal to the

ί>0

direction of the flow at η9 the linear part of the Poincare map is a symplectic
isomorphism. Poincare maps corresponding to different sections containing
η are conjugate, so we can suppose that there is a unique Poincare map
when talking about properties which are invariant under conjugation. Also,
up to a change of coordinates we can suppose that Ω is the canonical form

m

ω = Σ dx{Ady{. So let Jk(2m) be the set of fc-jets of symplectic automor-
ί=ι

phisms of (ω, R 2 w ) which fix 0 e R 2 w . Let Q be any subset of Jk(2m) which
is invariant under conjugacies by every σ e Jk(2m). Then Takens and Klingen-
berg in [4] show the following theorem:

Theorem 1.1. Let Q a Jk(2m) as above be generic. Then the following property
PQ is Ck-generic in κk(M): the geodesic flow of Q has the property PQ if the Poin-
care map of every closed orbit belongs to Q.

In other words, generic properties of symplectic automorphisms of R 2 " are
generic for Poincare maps of closed orbits of geodesic flows. We now show
that:

Proposition 1.1. Let g e int(E1(M)). Then every periodic orbit is hyperbolic.

For the proof we recall a classical result describing local invariant sub-
manifolds of symplectic diffeomorphisms near periodic points [3]:

Lemma 1.1. Let t/g]R 2 m be an open neighborhood of 0 e R 2 m , and let
P.U-*Ubea symplectic diffeomorphism with P(0) = 0. Let P = dPφ) and
let

Vs 0 Vu Θ Vce

be the direct splitting of R 2 m into the stable, unstable and central subspaces
with respect to P. Then there exist local imbeddings W\ Wu\ R p->]R 2 m and
Wce:IR2«-*]R2m such that TOWS = Vs, TOWU = Vu and T0W

ce = Vce. They
are called stable, unstable and central manifolds respectively. If P is of class
Ck, these manifolds are of class Ck and while Ws and Wu are unique, Wce is
not unique in general.

So for the Poincare map of a closed orbit there exists a central manifold
(which could be a point) of the same differentiable class as the map. Let us
call Pce = P\Wc, the restriction of P to Wce.
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Definition. P: R 2 m -> R 2 m , P(0) = 0 is of twist type if

(a) The corresponding linear map P is not hyperbolic.

(b) P is elementary (i.e., all the eigenvalues are different).

(c) P is 4-elementary (i.e., if ρ l 5 ρ 2 , . . . , ρfc is the set of eigenvalues of P with
modulus less than 1 and λk+l9..., λm is any subset of eigenvalues of modulus
1 then for every m-tuple (al9a29.-., am) of integers we have

(βi) β l (<?*)βk ( 4 + i ) α k + 1 • (λj°» * 1).

(d)If

(z*)fe = zk exp 2πi(ak - Σ if z'z" 1) + wk(z,f)
i

is /λe Bίrkhoff normal form of Pce, then det(ft*) φ 0.

Remark that properties (a), (b), (c) are C 1 generic, and property (d) is C 3

generic (see for example [3, 8]). As a consequence of Theorem 1.1 we have the
following result:

Lemma 1.2. Let φt(ξ) be a periodic orbit of φt\ TγM'-> TXM the geodesic flow
of (M,g) and let y(t) = π ° φt(ζ) be the underlying geodesic. Let 3̂ be the Poin-
care map. Assume that the linear part P has 2q eigenvalues on the unit circle.
Then, in an arbitrarily small tubular neighborhood of γ(t) a M there exist ar-
bitrarily small perturbations of g supported on these neighborhoods such that,
for the perturbed metrics y (t) is still a geodesic, the associated Poincarέ map is
C3-close to Sβ and its restriction to Wce(ζ) is of twist type.

On the other hand, we have the following generalized version of the so-
called Birkhoff-Lewis fixed point theorem, which is due to Moser [8]:

Theorem 1.2. Let P:ΈL2n^WL2n, P(0) = 0 be a locally symplectic diffeomor-
phism of twist type with no hyperbolic part {i.e., Vs = Vu = 0, where Vs and Vu

are given in Lemma ί.ϊ). Then in every neighborhood ofO there exist infinitely
many closed orbits. The number of closed orbits of period ^ k is finite for
every k e N.

The proof of Proposition 1.1 is as follows: let g eint Ek(M) and let φt(ξ)
be a closed orbit of the geodesic flow. If the Poincare map is not hyperbolic,
its linear part has some eigenvalues in the unit sphere. Thus, we can apply
Lemma 1.2 to the restriction of the Poincare map to the central manifold Pce

and deduce that there exist arbitrarily small perturbations gn of the metric
and sequences {nφt(ξm)} of closed orbits of nφt: (TXM, gn) -* (TXM, gn) - the
geodesic flows of gn - such that φt(ξ) is a closed orbit of nφt for every n e N
and:

lim sup dgn(
nφs(ξm), nφs(ξ)) = 0 V/i 6 N.

m-»- + oo seR

This means that the metrics gn$ E1(M) which clearly contradicts the fact that

Following [7] let 3Fk{M) <= κk{M) be the set of geodesic flows of Riemann-
ian metrics of M satisfying the following property: for every φ e !Fk(M) there
exists a neighborhood V(φ) a κk{M) of φ such that if φ e V(φ) then every
closed orbit of φ is hyperbolic. Then:

Corollary 1.1. int E1 (M) c &x (M).
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2. Invariant Splittings on Persistently Hyperbolic Sets of Periodic Orbits

Let φe^1(M), let ξ e TtM be a closed orbit. From the last section there
exist a stable subspace E\ c Tξ TXM and an unbstable subspace E\ c Tξ 71M,
the former being contracted by dφt, t ^ 0, and the later being contracted by
dφt, t^O. Mane proves in [7] that the bundles ξ±-+Eξ and £*—•££ defined
on P(φt) admit continuous, φΓinvariant extensions to bundles on the whole
P(φt) with special properties, which are very close to hyperbolicity. For in-
stance, these properties imply the hyperbolicity of the extended bundles [7]
in the case of structurally stable diffeomorphisms. This is one of the more
difficult, elaborated steps toward the proof of the C1-stability conjecture for
diffeomorphisms.

Definition. Given a symplectic form β in R 2 " a Lagrangίan subspace C of R 2 π

is defined as:

(a) V F e X , β(V,W) = 0*->We X.

(b) dim(Z) = n.

Definition. Let φt be the geodesic flow of (M, g) and let Ωξ be the associated
symplectic form of Nξ for every ξeT^M. If A c TγM a Lagrangίan bundle
over A, ξ-*Lξ, is a map which assigns to each ξeA a Lagrangian subspace
Lξ of Nξ. A splitting *Sξφ Uξ = Nξ over Λί is said to be Lagrangian if both
ξ -> Sξ and ξ -+ Uξ are Lagrangian bundles over A.

Let us make precise the extension theorem [7]:

Theorem2.1. If φteint(E1(M)) there exist a neighborhood U of φt in
int(£ 1(Af)) and constants K>0, D > 0, 0 < l < l such that:

(a) If φί: (7iM,#') ~ * ( T i ^ # ' ) belongs to U and φr

t(ζ) e P(φ't) has minimum
period w^iD, then

and

where E'ξ
s ® E'ξ

u © E'ξ = T^M) is the hyperbolic splitting for ξ in the orbit

(b) There exists a continuous splitting for T^M) = Gs

ξ®G%®Eξ, ξeP(φt)
with

\\(dξφD)\Gi\\ ° UdφDiξ)φ-D)\G«DJ\ tϊ λ

and Gs

ξ = Es

ξ, Gξ = E\ if ξ e P(φt).

If ψt: Σ -• Σ is a differentiable flow acting on a manifold Σ, and X is an in-
variant subset of Σ in which the flow has no singularities, an invariant split-
ting Sξ® Uξ® Eξ= TξΣ defined on every ξ e X is said to be dominated if there
exist constants 0<δ<l, m>0 such that || dψm\Sξ \\ || dψ^m\Uφ ( ζ ) || ^ ^. The
space Eξ is as before the direction of the flow in ξ. Statenlent (b) in the last
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theorem says that Gξ®Gξ®Eξ = Tξ TλM, ξeP(φ) is dominated. Hyperbolic
splittings are clearly dominated. The converse of this assertion is not true in
general. However, we shall prove that in the case of Lagrangian splittings the
domination condition is equivalent to hyperbolicity.

Lemma 2.1. ξι->G| is Lagrangian for ζ e P(φt).

Proof. Since the bundle is continuous on P(φt) it suffices to show that
is Lagrangian for ξeP(φt). So let φt(ξ) be a periodic orbit and Jt(g
= Gφtiξ) φ Gφt{ξ) © Eφt(ξ) be the corresponding splitting. Let T > 0 be the min-
imum period of ξ. Recall that there exist K{ξ) > 0, 0 < λ(ξ) < 1 such that if
VeGs

ξ = Es

ξ then

\\dφt(V)\\ £

First of all, E\ and E\ are perpendicular to EξVξe P(φ): indeed, let us sup-
pose that Vε E\ is written as V = a + β, where aeNξ, βe Eξ. Since dφt pre-
serves Nξ and Eξ, and || dφt(W) || = \\W\\ for every We Eξ we have

^ lim \\dφt(V)\\=0.

So Eξ c Λ .̂ Similarly, £ | c Nξ.
Since 3 is an isometry we have

Hence if V, We E\ we have

\Ω{V,W)\ = \Ω(dφt(V), dφt(W))\ = \g{dφt(V),Z° dφt{W))\

\Ω(V,W)\ = lim K(ξ)2 λ(ξy2' \\V\\o || W\\ = 0.
+

Similarly, Ω(V,W) = QVV,WeEu

ξ. Now, recall the following property of
Lagrangian subspaces:

Sublemma. A subspace X o/(lR2w, ω) is Lagrangian if and only if

i) ω(Z, F) = 0VZ, VeX.
ii) ίftm? exzto α subspace Y of R2 n ŵcΛ ίteί I © 7 = R 2 " α«J ω(V,W)

Therefore, Lemma 2.1 holds from the sublemma applied to X = E\, Y = E\
and(Nξ,Ωξ). •

Proposition 2.1. Le/ 5^ 0 Uξ = Nξ be a continuous, invariant Lagrangian split-
ting defined on a compact, invariant set X £ TXM. The splitting is dominated
if and only if it is hyperbolic, where Sξ is forward-contracted by φt and Uξ is
backward-contracted by φt.

We prove first two lemmas.
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Lemma2.2. Let Sξ® Uξ = Nξ be a continuous Lagrangian splitting defined on a
compact invariant set X^TXM. Then lim \\(dξ φm)k (β)\\ = + oo VjSe Uξ9

k^> + oo

V£ e X if and only if lim || (dξ φm)k\sξ II = 0. Similarly, Sξ is backward-expand-
k-> + oo

ed by φm if and only if Uξ is backward-contracted.

Proof (=>) Consider the family of linear operators

defined by Tv(w) = Ω(v, w). Since the splitting SξφUξ = Nξ is both continu-
ous and Lagrangian and X is a compact set this is a compact family of lin-
ear, non-trivial operators. So for every ξeX and veSξ the kernel K(v) of Tv

is a codimension 1 subspace of Uξ and there exists w = w(v) e Uξ such that

and

This dual vector w = w (v) depends continuously on ξeX and v e Sξ and there
exist constants 0 < Cx ^ C2 such that

for every pair (ξ, v) e So = {(ξ, υ), ξ e X, v e Sξ, \\v\\ = 1}. Remark also that

dφt(K(v)) = K(dφt(v)) = K\ , ) because Ω is invariant by the flow φt.
\\\aφt{v)\\J

So take a vector (ξ9v) e So and consider w = w(v) e Uξ. From the hypotheses
we get that

lim \\dφn

m(w)\\ = + oo,
n-* + oo

and from the compactness of *S0 the vectors w (v) are uniformly expanded by
the positive iterates of φm. Then we have

ί = Ω(v,w)=Tv(w)

= Ω(dφn

m(v), dφn

m(w))

= Tυn{\\dφn

m{v)\\.dφn

m{w)),

viously {φn

m{ξ), vn) e So V«,

ity we deduce that there exists a vector zn e K(vn) such that

where vn = ^ . Obviously {φn

m{ξ), vn) e So V«, and from the last equal-

Since K(oc) is φr-invariant V/ there exists kne K(v) such that dφn

m{k^) = zn.
This implies that

w(vn) = II dφkj"\v) || dφkj"\w) - dφ
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The vectors \\dφ*£n)(v)\\ w — kn belong to Uξ, so by the hypotheses they
must be expanded by the positive iterates of φm. But since Cγ ^ || w(ϋΛ) ||
^ C2, this means that

if n goes to + oo. Since w = w(v) and K{v) are perpendicular this implies that

lim \\d(pkJ»\v)\\-w = 0,
n-+ + oo

and therefore lim || dφ^n)(v) \\ = 0 which proves the assertion.
«->• + oo

(<=) If there exist w e Uξ, a sequence k(n) -> 4- oo and D > 0 such that
II dφ%n)(w) || ^ D for every k ^ 0, then for every v e Sξ we have

by hypotheses. This implies that Ω(v,w) = 0 Vve Sξ. But since *Sξ is Lagran-
gian this means that w e Sξ n Uξ = {0}. The proof of the second statement of
Lemma 2.2 is completely analogous. D

Lemma2.3. Let Sξ® Uξ = Nξ be a continuous, dominated Lagrangian splitting
defined on a compact, invariant set X £ T^M. Then lim 11^^(^)11 = + °°

fc + oo

VweUξ, VξeX. In a similar way, lim \\dφk

m(v)\\ = + oo Mve Sξ, VξeX.
k-+ + oo

Here, m> 0 is the constant appearing in the domination condition.

Proof. If lim Wdφ^iv) || = 0 \/ve Sξ the statement is a consequence of
fc + oo

Lemma 2.2. So let us suppose that there exist ξeX, ve Sξ, δ > 0 and a se-
quence k(n) -• + oo such that \\dφ^n)(v) || ^ δ. Without loss of generality we
can take δ = 1. From the domination condition we get

\\dφϊlH)\sξ\\ * \\dφ-k{n)\Uξ\\ ^ ί f II dφm\Sφi {ξ) \\

where >le(0,1) gives the domination in the splitting. On the other hand, if
A: 1R" -* RM is an invertible linear map, we have that || υ \\ = || A ~i ° A (v) \\

^ W A - ' W ' W A i v ) ] ] , w h i c h i m p l i e s t h a t \v\ ^ WA'1]] VυeΊR", a n d i n
particular MWII

inf

The contradiction assumption and the last two inequalities imply

1

inf \\dφmkin)\u
Ml = i

inf
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Now, from the compactness of X and the continuity of the bundle ξ -• Uξ

it is easy to check that

lim \\dφk

m(w)\\ = + oo

for every weUξ9 and every ξeX. Analogously we can prove that
lim \\dφk

m(v)\\ = + ooVveSξ,VξeX. D

Proof of Proposition 2Λ. From Lemmas 2.2 and 2.3 we have that

lim \\dφk

m(v)\\=0VveSξ, VξeX,

lim || dφk

m(w) || = 0 Vvc e Uξ, V£ e X.
k-+ - oo

Now, recall the following lemma due to Eberlein [2]:

Lemma. Let f: R + ->]R+ be a continuous function satisfying

i) lim f{t) = 0.

Then there exist L > 0, 0 < 0 < 1 such thatf(f) ^ Lά.

We can apply this lemma to the function fξ(t) = \\dφt\s \\ for each ξeX
and deduce that there are constants L(ξ)>0, 0 < α ( ζ ) < l such that
|| dφt\Sξ || ^ L(ξ) a(ξY Vί ^ 0. From the compactness of X and the continuity
of the bundle Sξ it is straightforward to deduce that there exist E > 0 and
0 < α < 1 such that

By the same reasoning we get constants D > 0, 0 < v < l such that

DΪVt*0, VξeX

Taking C = sup(i?, D) and λ = sup(α, v) we have that the set X is a hyperbolic
set for φt with splitting Ŝ  © Uξ = 7^M and constants C and 2. This concludes
the proof of the proposition.

3. Density of Periodic Orbits of Expansive Geodesic Flows

We shall expose first some canonical facts of the theory of expansive systems.
Our main references are [4, 10]. Throughout this section N will be a compact
manifold.

Definition. Let ψt: N->N be a continuous flow acting on TV. For a given
ε > 0, let C^ip) be the set of points q of N with the following property: There
exists a continuous, surjective map α: 1R+ -• R + with α(0) = 0 such that

for every t ^ 0. Analogously, let C"(^) be the set of points q in N such that
there exists a continuous, surjective function J 8 : 1 R " - > ] R ~ with β(0) = 0
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such that

for every /elR~.
Notice that Q(/?) is forward invariant by ψt in the following sense: for

every t ^ 0 and qeCs

ε(p) there exists t0 ^ 0 such that ψt0(g) e Q(ψ,(/?)). If
the flow ψt were an Anosov flow the set Q(/?) would be the result of inter-
secting the weak stable submanifold of p (i.e. the saturated stable submanifold
of/?) with some neighborhood of/? and then taking the connected component
of this set containing p. Similarly, for every t ^ 0 and q e C"(/?) there exists
tx ^ 0 such that ψtl(q) e Q(φt(p)).

Theorem 3.1. Let dimiV= 3 and let ψt: N -> N be an expansive flow without
singularities with expansivity constant ε > 0. Then the following assertions are
true:

a) There exists δ > 0 such that Cl(ξ), Cl(ξ) ore connected, non-trivial sets
Vξ e N (i.e., they do contain points which are not in the orbit of ξ).

b) Let Σξ = expξ {w e TξN\\\ w \\ < ε, <w, X(ξ)} = 0}, where <, > is the metric
of N. Then there exist periodic points ηt, i = 1,2,..., n such that for every
point ξeG = N — (J {φti^d} there exists an open neighborhood V of ξ with

ί,teU
g

diameter less than - such that the sets

are connected curves satisfying a local product structure: There exists a homeo-
morphism

such that

(ϋ)F,(z) = CJ(F(x,z)),
(iii) F*(x) = Q(F(x,z)),

for every x, z in (0,1), where Fx: (0,1) ->Σ, Fz: (0,1) -> Σ are the maps Fx(z)

(c) Cg(ξ) contracts uniformly as t goes to + oo (respectively C%(ξ)) con-
tracts with t -» — oo). In other words, for every t > 0, v > 0 there exist T > 0
such that

for every t ^ T and every ξ e G.

In particular, Cj(ξ), C<ftξ) are connected curves with intersect only at ξ,
and they depend continuously on ξ e G.

Recall that a point p is non-wandering for a flow ψt: N -> N if for every
open neighborhood V of p there exists a sequence {/„} of real numbers with
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Proposition 3.1. Let ψt: N -> N be expansive in N, where dim TV = 3. If the set
of non-wandering points ofψt is dense in N then the set of periodic orbits ofφt

is also dense.

Proof Let ξeG, V(ξ) and Σ as in Theorem 3.1. From Theorem 3.1 (b) there
exist projections

Πu:ΣnV-*Q(ξ),

defined by Πs(ζ) = Cs

δ(ξ)n Cjf(Q, Πu(ζ) = Cu

δ(ξ)n Cj(Q for every ζeΣnV.
Remark that by Theorem 3.1 (b), F[(0,1)2] = VnΣ is homeomorphic to
Cδ(ξ) x Cδ(ξ): for every ζeVnΣ there are well-defined coordinates

Suppose that ξ is a non-wandering point. Let P : ί n F - > Σ π K b e the Poin-
care map of the flow ψt. There are sequences {ξn} of points in Σ such that
ξn-*> ξ, and {kn} of integers with \kn\ -> + oo such that Pkn(ξn) -> ξ. We can
suppose that kn}>0\fn without lost of generality. They correspond to se-
quences ξn -> ξ of points and tn -• + oo such tha^ ψtn(ζn) = Pkn(ζn) Consider
an open neighborhood Va of radius α of ξ with Va c K From Theorem 3.1 (c)
we can deduce that there exist Q > 0 such that

(i) |

(ii) rfίP^ίCJίW), PHD) < J V/i ̂  β,

(iii) Q ( 0 c Pkn(Q(O) Vn ^ β, VC not belonging to the orbit of any η{

(Theorem 3.1 (a)). From (i) and (ii) we get that

for every n^Q. Let us consider the restriction Πs of Πs to C|(^M). From
this last statement and (iii) the map Πs is well defined in the set
PHQ(ξn)) = PHfi^iCftξ))) and

This implies that the map Πs° Pkn ° Π'^.CKξ) -> Cj(ξ) has a fixed point
that, according to the construction, satisfies

Q(ξ0) = Cu

δ(Pk"(ξo)) = Pk"(Q(ξ0))

by (iii). But this means that the map

has a fixed point ξx. Since α is arbitrary, and non-wandering points are dense,
the periodic orbits are dense as well D
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Corollary 3.1. If the geodesic flow of a compact surface is expansive, then the
closed orbits are dense.

This is due to the fact that every point of TXM is non-wandering, so
Proposition 3.1 applies with N = TXM and ψt = φt.
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