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Abstract. Constraining the SL(3) WZW-model we construct a reduced theory
which is invariant with respect to the new chiral algebra W3. This symmetry is
generated by the stress-energy tensor, two bosonic currents with spins 3/2 and the
U(1) current. We conjecture a Kac formula that describes the highly reducible
representation for this algebra. We also discuss the quantum Hamiltonian reduction
for the general type of constraints that leads to the new extended conformal
algebras.

1. Introduction

It was recently observed [1,2] there are hidden relations between the Virasoro
algebra and the SL(2, %) current algebra, and in general, between the W, -algebra
and the SL(n,#) current algebra. The W,-algebra is an extension of the Virasoro
algebra with additional chiral operators of spin n [3,4].

The relation between the current algebras and the extended conformal algebras
is given by Drinfeld-Sokolov [5] reduction. One may regard the space dual to the
loop algebra as the phase space endowed with a natural symplectic structure. This
phase space possesses a certain symmetry and one may consider the reduced phase
space under this symmetry. The Poisson Brackets on the reduced phase space are
given by Drinfeld—-Sokolov reduction [5] and coincide with the classical limit of
extended conformal algebras.

Quantizing such theory one must replace the Poisson Brackets by commutation
relations and classical phase space by an irreducible representation of the algebra.
The irreducible representation spaces of the Virasoro algebra are extracted from
those of the SL(2, #) current algebra by imposing a certain constraint on the latter.
Consider an irreducible representation space of the current algebra. In classical
mechanics, we put a constraint J (z) =1 to reduce the phase space of the loop
algebra. Quantum mechanically, we introduce a set of ghosts and define the
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Becchi-Rouet—Stora—Tyutin (BRST) operator associated with this constraint. An
irreducible representation space of the Virasoro algebra is isomorphic to a quotient
Ker (Qprst)/Im (Qpgst)-

This construction may be used in order to construct the chiral algebras. For
example, starting from SL(n, %) current algebra and constraining the currents from
the Borel subalgebra one ends up with the W, algebra [2]. In this paper we discuss
the following general type of constraints. Define the weight 6 =) w;, where w; are

J
the fundamental weights for SL(n, #). For any integer 1 <I/<(n— 1) and for all
positive roots e define the constraints as follows:

J_e(z)={1’ if (be>=1, (1)

0, otherwise.

Let us call these constraints of degree . We constrain the currents from the ['*
upper diagonal to be equal to one. The rest of the currents from the Borel subalgebra
are equal to zero. For I = 1 we recover the standard constraints that yield the well
known W, algebras. For [ > 1 some constraints are of the second class so one must
be careful quantizing such systems. We claim that in general these constraints lead
to new extended conformal algebras W.. There is a lot of evidence that these
algebras possess highly reducible representations that correspond to minimal
models. We present here the discrete values of the conformal anomaly for the W2
models:

(p—q) .
pq

For simplicity we consider the SL(3, #) WZW theory. There are two possibilities
of constraining this model

1
c=1—-(n®—
2(" n)

@

* 1 0 * 0 1
* * * * * *

The first possibility gives the W, algebra, while the second leads to the new chiral
algebra W3. Both these theories possess a hidden SL(3,%) symmetry which is
gauged and hidden, but it is gauged differently. It would be very interesting to
understand if there is direct relation between W, and W3. The generalization for
the SL(n,#) WZW model is straightforward.

In understanding various aspects of conformal field theories, it has proved
fruitful to explore the interplay between the Virasoro algebra and the complex
geometry of Riemann surfaces. Is there also some geometrical structure behind
these algebras? To answer this question, we must understand what kind of
symmetry these algebras imply. The Virasoro algebra is the consequence of
reparameterization and Weyl scaling invariance of a field theory, and the structure
of these symmetries is encoded into the geometric action of the Virasoro algebra.
Thus the first step would be to construct a geometric action for these algebras.
Quantum Hamiltonian reduction makes it possible to define a natural generalization
for the geometric action.

The paper is organized as follows. In Sect. 2 we study the geometric action for
the algebras in question, discuss its symmetries and construct the nilpotent Qggsr
operator. In Sect. 3 we consider the simplest example: SL(3, %) constrained by the
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constraints of degree 2. The nilpotent BRST operator acts on the total space which
is the product of the representation space of SL(3, %), the Fock space of the auxiliary
fields and the appropriate ghost Fock space. We reduce the SL(3, %) screening
operators by the Qg that impose the constraints. Then we work out the explicit
structure of the chiral algebra as the commutant of reduced screening operators
and discuss the bosonization rules. The original suggestion by Polyakov [6] that
this algebra may be related to N =2 superconformal algebra by statistic trans-
mutation turns out to be wrong. Nevertheless these two algebras have many
similarities. In the last section we discuss some generalizations for the W2 algebra.

There is another interesting issue. The reduction of degree one (standard)
corresponds to the KdV hierarchy, which is very popular today in the context of
two-dimensional gravity [7, 8]. We suspect that each type of reduction has its own
hierarchy of nonlinear differential equations which may be relevant to two-
dimensional physics. We hope to return to this question in one of our future
publications.

2. Geometric Action

In this section we consider the Constrained Wess-Zumino—Witten model and
construct the geometric action. For simplicity we consider the W% case. The
generalization for W2 (or for W) is straightforward.

Before starting our discussion let us introduce some notations. The SL(3, #)
current algebra is generated by six charged currents J§,J5,J5 and two neutral
currents H,, H,. The basis is chosen in such a way that these currents correspond
to SL(3) generators as

010 000 0 01
Jfe{ 0 0 0 Jye{ 0 0 1 Ji—{ 0 0 O
000 000 00O
1 0 0 00 O
Hel0 -1 0 |, He{0 1 0 ) 4)
0o 0 -0 00 -1
Classically one has to impose the constraints
Ji@)=J:(2)=0, J3(@)=1. )

In order to make these constraints consistent with conformal invariance one has
to modify the Sugawara stress-energy tensor for the SL(3, %) current algebra in
such a way that the current J; acquire zero dimension

Timprovea(2) = Tsp3) — 30(H 1 (2) + H,(2)). (6)

With respect to this stress-energy tensor the fields Ji, have weights 1/2. The
constraints (5) are of second class. In the previous paper [9] we gained some
experience how to treat second class constraints. To obtain first class constraints
let us introduce a pair of conjugate auxiliary fields x(z) and x*(2)

1@ (W) ~ , Q)

(z—w)
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and consider the quantum constraints

Ji@=x@), J;@=1"@), Ji@)=1 ©)

The total stress-energy tensor is the sum of three pieces: the modified stress-energy

tensor (6), the stress-energy tensor of the auxiliary system and the ghost stress-

energy tesnor. The ghost fields naturally emerge if we impose the constraints (8)

using the BRST formalism. The central charge for this total stress-energy tensor is

8k 24

———6k—1= 5—————6k+3 9

“Tk+3 ki3 OkH3) ©)

The third term —1 is the contribution of the auxiliary fields y,y*. The ghost

conformal anomaly turns out to be zero. It is convenient to parameterize the level
k + 3 =2p/q. Then the formula for the conformal anomaly becomes

__pe=9 (10)
pq

Now we are ready to formulate the constrained WZW-model coupled to the
auxiliary fields y, x*,
d’z .
Sgauged(g, ’X’ ) kSwzw(g j8—X0X+
n
d*z 1H(71- T+H(1- T+(1- +
+f§;[A3 (s —D+A7Ur =0+ 4202 —¢)] (D

The fields A; are the Lagrange multipliers that impose constraints. The gauged
WZW action Sg,,eeq(g, A, ... ) possesses a gauge symmetry. Under the multiplication

1 0 O
g—-Ug, U={u 1 0 (12)
uy u, 1

the field A* transforms as a gauge field
At S U YA U -UY0U), ox=—u,, ox* =u,. (13)

The action (11) is also invariant with respect to residual symmetry g —gV(2).

Now let us count the degrees of freedom. The initial theory possesses 8 +2
degrees of freedom. The action Sg,u4ing(9, A*,...)is invariant under a 3-parameter
gauge group and there are also 3 constraints. Therefore the resulting theory
possesses 4 degrees of freedom.

Quantizing this theory via the BRST formalism one needs to introduce the
ghost fields: a (b,c) system of dimension (0,1) and two sets of (£;,7;) systems of
dimension (3,3). By adding the appropriate BRST exact operator to the action
one imposes the gauge fixing conditions A;" = 0. Therefore we obtain the relation

[ [g~'dg,dA*,dy,dx*]
(gauge volume)

i : . odz o
= j[g ! dg’ cee ] €Xp (lkswzw(g) + nghost(c’ b9 éia ’11) - l[ g%@(ﬂt > (14)

€Xp (isgauged(g9 Z+5 X X+ ))
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The BRST transforms of g and y,x* are defined by replacing the parameters
uy,u,,u; of the infinitesimal gauge transformation by the ghost fields #,,7,,c (see
(12)-(13)). The on-shell BRST transformations of the ghost-antighost fields are
Oprsté1 =0, Oprsré2 =0, JprsrC =¢85,
Oprsth =J3 — 1, Oppsrtty =J1 —x—b&,, stz =J; —x* +b&y. (15)

These transformations are generated by the nilpotent BRST operator

QBRST=I%[C(J§~1)+€1(J{—X)+€2(Jz'—x+)+béléz]' (16)

We postpone the discussion of the properties of Qg to the next section.

To construct the geometric action we follow the procedure developed by
Alekseev and Shatashvili [10]. Starting from the path integral (14) one can first
integrate over 4™,

j[g“dg,dx,df]

(aatige volumg) V3 (€)= DAUT (@)= 06U ()~ 1) exp iS(6, 67 (17)

It is easy to show that the above path integral still has the Borel gauge invariance

g—Ug, 6y= —u,, 6y" =u, that enable us to impose the gauge conditions
oy =06x* =0, H; =0. Using the Gaul decomposition
1 0 O A0 0 1 F, F,
g=l ¢, 1 O)J{ O n 0 10 1 F,| (18)

o3 ¢, 1 0 0 A 1tu!? 0o 0 1
we may rewrite the constraints (8) and the gauge condition H; =0 as follows:
Ji =" 0F — ¢, =0, J; =Au*0F,+ ¢, =0,
J3 = A*u(0Fy— F,0F ) =1,
Hy=21""0A+u "ou+ ¢, —2¢5=0. (19)

By solving them with respect to 4, u, F, and ¢, and substituting them into the
WZW action, we obtain the effective theory for F,, F5, ¢, and ¢,. The geometric
action is

Sgeometric(Fla F3,01,¢5)=Swzw(9) (20

evaluated under the constraints (19). The dynamical variables we choose do not
require any additional Jacobian factor in the path integral. The choice of dynamical
variables is not unique. One may for example choose 4, u, F,, F5 as the dynamical
variables. The measure of integration is the reduced Haar measure for the SL(3, %).
The effective theory (20) has the left moving SL(3,#) current algebra while the
right sector is invariant under the W3 algebra. The origin of this symmetry is the
following. The constrained WZW model is no longer invariant with respect to the
current algebra. An infinitesimal gauge transformation spoils the constraints. But
one may project back into the gauge slice. The combination of gauge transformation
and the projection will be precisely the symmetry of the reduced theory. The chiral
algebra W? is generated by two bosonic fields G ~(z) and G*(z) of weights 3/2, the
stress-energy tensor T(z) and the U(1) current H(z). Roughly speaking, G*(z) = J{ (2),
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G7(z2)=J3 (z) and the stress-energy tensor T(z) is a linear combination of J3 (z)
and H?(z). One can easily deduce the classical bosonization rules in terms of free
fields 6(2), P(2) = ¢,(z) and ¢™ = ,(2),

2
H(z) = 4(32 —€,)0¢ + ¢(2)¢* (2),

G*(2) = 09" +/2(¢,09)p* (2) — (¢ *(2)*(2),
G™(2) = 3¢ + /2(6,09)$(2) + ¢ (2)*(2), (1)

2
T(0) =3[(¢,09) + (€,06)° + (¢,36)(€,09)]

1 . o1
+ —\/—2(61 +¢,)0%6 + 5(%*4) —0p9™),
where €, €, are simple positive roots of SL(3, %). The two-dimensional scalar field
@(2) bosonizes the Cartan subalgebra

R ey e e ) e

The existence of this chiral algebra was originally suggested by Polyakov [6]. In the
next section we construct the quantum bosonization rules.

3. Operator Algebra

To quantize the system with the constraints one may either quantize the system
and impose the constraints afterwords or enforce the constraints first and then
quantize the reduced system. Provided there is no anomaly these two procedures
lead to the same quantum theory. In this section we employ the first possibility.
We consider the Hilbert space of the SL(3,#) WZW-model and impose the
constraints via the BRST formalism. The total Hilbert space before imposing the
constraints is the product of the representation space of the SL(3, %) current algebra
level k, auxiliary Fock space and the ghost Fock space,

e%total = '#SL(:%) ® ”x,x* ® %ghost' (23)

Let us start with the free boson realization of SL(3, %) current algebra level k in
terms of two scalar fields ¢ =(¢,,®,) and three sets of bosonic ghosts, (8;,7;),
(B,,7,) and (B5,75), with weights (0, 1),(0, 1) and (— 1, 2) respectively,

1 0;; ..
0uD)Ps0) ~ 50108z = W), B0~ (@b=1.2ij=123). (24
This realization may be found in ref. 2. Here we only remind the reader of the
bosonization rules for the currents from the Borel subalgebra,

Ji =B1+v2B3 Jy =B J3=P;.... (25)
There are also four screening operators for the SL(3, #) current algebra that play
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an important role in the representation theory,
lIl(le’(%)) =(B1(2))"* exp(a+ €, ¢(2)),
Y5 = (B2(2) +71(2)Ba(2))"* exp (a1 €, 6(2)), (26)
with
n,=—(k+3), n_=1, 27

where k is the level of the current algebra. In spite of the fact that two of these
screening operators ¥y} and W3] are ill defined, we would like to think of them
as operators that can be defined meaningfully. Actually we need them to guess the
form of the reduced screening operators. It is plausible that the construction of
irreducible representations for SL(2, %) using the screening operators [11] extends
to the case of SL(3,#). The total Hilbert space can be decomposed into the
subspaces with definite charges with respect to d¢. Using the screening operators
w2 (i=1,2) one can define a complex which has a rather tricky structure and
whose cohomology should yield the irreducible representation of SL(3, Z). We are
not going to go deep into details and refer the reader to the original papers [12-15].
Denoting this cohomology as Hg, 3, one may write

H rota1 = HSL(3)(®i°#ﬂ.,yi®‘%a®‘%ﬂx,x* ®%ghost)' (28)

The nilpotent BRST operator (16) acts on the total Hilbert space # .,
Therefore one can immediately define the reduced Hilbert space of the constrained
system as the cohomology space

Hrea = H garst(H tora1) = Ker(Qpgsr)/Im (Qprst)- (29)

To describe the reduced Hilbert space let us represent the BRST operator in a form
Qgrst = Qo + 01, Where

d
Qo= [5-Te(Bs = )+ &4(By + 72— 1)+ EalBo = )]

d
Q1 =[5 [bé:&s +&rpa(s — D]. (30)

Both Q, and Q, are nilpotent and anticommute. The crucial point is that Q, is
Q, exact, namely Q, =[Q,, R], where R is also nilpotent. That implies the two
nilpotent operators Qprst and Q, are related to each other by conjugation,

- dz
Oprst =€ RQoeRa R‘—‘fﬂbfl)’z- (31)

The next step is to relate the reduced Hilbert space .4 to the cohomology
space Hsp3)(Hpursy) TO do that one needs to interchange the order of the
cohomologies. For the case of SL(2,#) the sufficient condition for this was
formulated in ref. 2. Making the reasonable assumption that this condition is also
satisfied for the SL(3, #) case one can interchange the order of the cohomologies,

Hred = HSL(3)(HBRST(®i3fphyl ® 3{’15@ «%x,p ® %ghost))' (32)

Now let us relate the Qgrsr cohomologies to the Q, cohomologies. But Qgper and
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Q,, differ by conjugation (see (31)) and therefore their cohomologies are isomorphic.
Therefore one can simply replace the Qgprsr cohomologies by Q, cohomologies.
The latter can be éasily computed. Making a linear transformation of the field
variables one finds that (8, +y,—y, —x*) and (£,,7,), (B, —x*,y,+ B,) and
(£,,1,) and (f,75) and (b, ¢) compose the Kugo Ojima [17] quartets and simply
decouple from the physical subspace. Therefore the Qgpsr cohomologies are
isomorphic to

Ho, =(®;#p,,,, @ HGR H y y+ ® H ghos) = H 5@ H 44+ 5 (33)
where (¢, ¢ ") =(B1,7, + b).

Now let us define the reduced screening operators,
Viea™ = (#(2))"* exp (a1 €, 9(2)),
Ve = (¢ (2))"* exp (a1 €, B(2)). (34)

The SL(3, %) screening operators are BRST equivalent to the reduced screening
operators up to conjugation

et 'Psu3)e_R —Viea=[Qo,*]. (35)
This is sufficient to demonstrate that
%red = Hred(‘#$® ‘%d),d)* ) (36)

We denote by H,.4 the cohomologies defined “a la Felder” [16, 11] for the reduced
screening operators. As one should expect from classical considerations one can
realize the physical space of the reduced system in terms of two scalar fields
@ =(¢,, ;) and two bosonic fields (¢, ¢ *) with weights (1/2,1/2). Now we come
to the main issue. What is the symmetry of the reduced system and how can one
construct it? There is a very nice description of the chiral algebras as the com-
mutant of the screening operators. Therefore we just need to construct operators
that commute with screening operators. This procedure leads directly to the
bosonization rules and therefore the algebra constructed in such a way will be
automatically associative.

It is easy to construct the U(1)-current and two fields G*(z) and G~ (z) with
weights 3/2 and U(1) charge +1,

H(z) =40, (¢, —€,)06 + $(2)¢* (2),
G*(2)=(k+1)0¢" + o, (€,00)p*(2) — (¢ " (2)*P(2), (37)
G™(2) = (k + 1)0¢ + 0, (€,09)p(2) + ¢ T (2)p*(2),
where o, = \/m Commuting G*(z) and G (z) one gets H(z), H?*(z) and the
stress-energy tensor T(z),
T(2) = 21@09)° + (2,09) + (€:59)(@:79)]

(k+1)

oy

e DG +?z)a2‘¢+§(a¢+¢~a¢¢+>. (38)

Let us also remind the reader of the normalization of the roots e? =2. The
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constructed fields do not form a closed OPE algebra, but an algebra with quadratic
relations. The central charge is given by the expression (9)

24
The U(1)-current H(z) is a conformal field with dimension 1 and satisfies the OPE,
H(Hw) ~ 23 (40)
(z—w)

The fields G*(z) are conformal fields with dimension 3/2 and therefore satisfy the
OPE,

3/2

TEIGH0) ~ 5 GH0) + 506 1)
and
. _ k+ 1DH2k+3) 3(k+1)
G (2)G~(w)~ Z—wp + Z—wp H(w)
P |:3H2(w) ke yTowy + K 1)ahril. 42)
(z—w) 2

The OPE between G*(z) and G*(z) (or G™(z) and G (z)) does not possess any
singular terms. The composite field H*(z) is not conformal, but one may always
represent it as the linear combination of a new conformal field with dimension 2
and the stress-energy tensor.

The coefficient k is an arbitrary parameter not equal to — 3. It coincides with the
level of the initial SL(3, %) current algebra.

The constructed algebra W3 looks similar to the N = 2 superconformal algebra
[18]. In representation theory one finds different sectors. The twisted sector with
half integer modes of U(1)-current is related to the twisted SL(3, %) current algebra.
The boundary conditions on G*(z) are labeled by one parameter 1. When z goes
around the field |@) the bosonic supercurrents get multiplied by phase

Gi(2)| D) — e ?™GE(2)| D). 43)

These cases # =0 and 7 =4 correspond to Neveu-Schwarz and Ramond sectors
with half integer modes and integer modes of G*(z) respectively. As in the N =2
superconformal case [19] the representations labeled by different  are isomorphic
to each other due to the U(1) gauge invariance,

Gt (z)» e ®@G*(z), G (2)=e“@G (2),

Hz) > H(z) — i 3+ 3 oa, (44)
T(2)> T(z) — (o) H(z) — (2"; 3) 0wy,

This gauge invariance is the residual one that survives the reduction.
One can easily deduce the expression for the anomalous dimensions for Neveu-
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Schwarz and Ramond sectors. The representations in question are related to
representations of the untwisted SL(3, %) current algebra. For the rational levels
k + 3 =2p/q there is a finite set of smallest weight states for the SL(3, #) current
algebra with weights

Ars=2((1—rt)(k+3)_(1_sl))—(6n 1§5§2P“‘1, 1§V§q, (45)

whose characters transform into each other under modular transformation [20].
Let @5 be the smallest weight state from this set. Under reduction it reduces to a
primary field with respect to W3 algebra with conformal dimension

(p__q)Z 1 o R
4pq(2(pr— ) =gt (1, (46)
and charge
1
@, =§<§(ﬁ —F2) = (51— s») £41=(=1), @7

where R=0, 7 =2r — 1 for the Neveu—-Schwarz sector and R =1, #=2r for the
Ramond sector. The negative shift in the vacuum energy in the Ramond sector is
due to the bosonic structure of W3 algebra. The values of A, and g, correspond
to highly reducible representations of W3. There is considerable evidence that the
fields @,  with 7 and s in the region 1 <s<2p—1, 1 £7<2q— 1 make a closed
Operator Product Algebra. It seems unlikely that the W algebra possesses unitary
representations. But if it does they should be in the Kac table of the Virasoro
algebra. As the W, algebra the constructed algebra possesses SL(3, #) symmetry
which is gauged and hidden. It will be very interesting to understand if there is
direct relation between W, and W3 algebras.

4. Discussion

The description of extended Virasoro algebras as constrained current algebras
seems to be very fruitful. Moreover it provides a classification scheme. One just
needs to classify the different type of constraints. The constraints of degree !
mentioned in the Introduction are the natural generalizations of the constraints
considered in literature. To impose them in a way consistent with the conformal
invariance, one has to modify the stress-energy tensor,

1 — =
Timproved(z) = TSL(n)(z) - 7 0 aHs (48)

where 8 is the sum of the fundamental weights of SL(n, %). As with the constrained
SL(3, #) current algebra one has to introduce an appropriate number of auxiliary
fields with fractional spins m/l. For the general case the formulas become very
complicated; therefore we restrict ourselves to the case [ =2. For this case the
constraints are

Jia=11 Jasz=ta+2is 0 I =de-2
Jis=doa==Jp,=1 J ;=0 j2i+2, 49)

where (y;, x;") are auxiliary fields of dimension (1,%).
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The discussion follows precisely the SL(3, %) case. The constrained WZW-model
is gauge invariant under an n(n — 1)/2 parameter group. Therefore one should
expect that the reduced theory possesses 3n — 5 degrees of freedom. Again choosing
appropriate gauge fixing conditions one can eliminate the auxiliary fields (x;, /).
The geometric action coincides with the WZW action evaluated under the
constraints. Its right sector is invariant with respect to chiral algebra. In principle
it is possible to work out the classical symmetry of the reduced theory in each
particular case. The classical bosonization rules for the W, algebra are given by
the Miura [5] transformation which is nothing else but the relation between two
different choices of gauge slice. It would be very nice to have some analog of the
Miura transformation for the general case.

It is easy to evaluate the conformal anomaly for the reduced theory,

n2—1k 1
Creduced = ((kT’l)j‘ - ‘4—(7!3 - n)k - (n - 2) + cghosl' (50)

The ghost contribution ¢y, can be easily computed. Substituting it into (50) and
parameterizing the level k as k + n = 2p/q we obtain

(p—q)z‘

(51)
pq

1
Creduced = - 5(713 - n)
Surprisingly all values are less than one.

The total Hilbert space is the product of SL(n, %) representation space, the
Fock space of the auxiliary fields and the ghost Fock space. Again there is a
nilpotent BRST operator which can be made linear in constraints by conjugation.
To obtain the reduced Hilbert space we impose the constraints using the BRST
formalism. Following the arguments of the previous section one can immediately
guess the reduced screening operators!?,

Vi =(d1(2)'* exp(a €, 6(2)),
Vi =(2(2) + ¢1 (2))"* exp(2+ €, 3(2)),
: (52)
2= (B 2(2) + B 3(2))"* exp(a s €, 2 G(2)),
Vi =(9,-,(2)"* exp (a1 €, 9(2)),

when n_ =1,n, = —(k + n), k is the level of the initial current algebra. The (n — 1)
dimensional scalar field ¢ bosonizes the Cartan subalgebra of the SL(n, #). The
bosonic fields (¢,, ¢;") are expressed as some particular linear combinations of
(B;,7;)fields that bosonize the Borel subalgebra of SL(n, ). Again one can construct
the chiral algebra as the commutant of the screening operators. One can easily
check that the U(1) current and the stress-energy tensor are

H(z) = o, (G, -, —61)‘3—5+Z¢i¢i+,

T(2) = Trreel2) + 20 0%, (53)

! Compare with screening operators for W, [4]
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where a, =./2k+2n, ag=(k+n—1)/a,. The bosonization rules for other
operators are quite complicated. One can verify that the conformal anomaly for
this stress-energy tensor is given by Eq. (51). It would be very interesting to construct
these algebras explicitly.
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