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Abstract. We consider a class of Hamiltonian systems describing an infinite array
of coupled anharmonic oscillators, and we study the bifurcation of periodic orbits
off the equilibrium point. The family of orbits we construct can be parametrized
by their periods which belong to Cantor sets of large measure containing certain
periods of the linearized problem as accumulation points. The infinitely many
holes forming a dense set on which the existence of a periodic orbit cannot be
proven originate from a dense set of resonances that are present in the system.
We also have a result concerning the existence of solutions of arbitrarily large
amplitude.

1. Introduction

LI. The purpose of this article is to study periodic solutions of infinite-dimen-
sional Hamiltonian systems describing anharmonic oscillators with random spring
constants located on the sites of the v-dimensional cubic lattice, Έv. The equations
of motion are

^ u(x, t) + [{-Δ + V(x))u] (x, ί) + λW(u) (x, t)u{x, ί) = 0, (1.1)

where u is a real-valued function, u : ΈJ1 x 1R —> ]R and A is the discrete laplacian
defined by

(Au)(x9ή= £ (u(y9ή-u(x,ή). (1.2)

\y-x\=l

The spring constants V(x) are i.i.d. random variables taking only positive values,
with a probability distribution of V = V(x) given e.g. by

(i) dρ(V) = NΘ(V)e-ιV]a/cd V, (1.3)
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where α > 0, Θ(V) = 1 if V > 0, and Θ(V) = 0 otherwise, and N is a normalization
constant chosen such that f dρ(V) = 1 or

(ϋ) dQ(V) = lχ[Oχ(V)dV, (1.30
4

where γj is the characteristic function of an interval /.
The operator W in (1.1) is defined as the operator of multiplication by

W(u) (x,t) = £ W(\y - x\) \u(y,t)\2, (1.4)

where the kernel W(\y — x\) decays exponentially fast, with rate rnw > 0, as
\y — x\ t oo. Finally, the constant λ in (1.1) is the perturbation parameter that we
vary, while a suitable norm of u(x, t) is held fixed.

We prove two results about periodic solutions of (1.1): The first one is a
perturbative result, valid for small /, and concerns the existence of a bifurcation
branch of solutions of (1.1) around the solutions of the linear problem, ((1.1),
with λ = 0), corresponding to eigenfunctions of H° = —A + V with large
eigenvalue. Due to an infinite number of resonances densely distributed around
all eigenvalues of H°, we construct branches of periodic solutions whose periods
do not sweep out intervals, but only Cantor sets of large Lebesgue measure. As a
second result, we can prove the existence of certain periodic solutions of Eq. (1.1)
for arbitrarily large λ, using the methods in [AFS]. However, since the extension
of the proof of [AFS] requires only some of the ideas used in the proof of the
first result of this paper, along with the methods developed in [AFS], we do not
present any details of the proof of our second result. We remark that, since the
spring constants are random, we are interested in proving statements which are
true for all choices of V(x), x e TD\ in a full-measure set of F's.

This paper is organized as follows. In the present, introductory section, we
review some of the earlier work on problems related to the ones just described,
and then we state the two results mentioned above in the form of theorems,
(Theorems 1 and 2). In Sect. 2, we describe the strategy of the proof of our first
result, (Theorem 1). Some details of the proof are deferred to Sect. 3. Not all
details are explicitly worked out, because some of them are essentially contained
in our two previous articles, [AF] and [AFS]. The results proven in this paper
have been announded in [AF] as part III.
1.2. We consider the random Schrodinger operator H° — —A + V, with the
parameter ζ in (1.3) and (1.3') interpreted as a measure of the disorder in the
distribution of V. It is known that the part

spec(#°)n[£i(v,0,oo) (1.5)

of the spectrum of H° is pure-point, consisting of a dense set of simple eigenvalues,
and that the constant E\(v,ζ) > 0 vanishes for large enough ζ. We shall only
consider periodic vibrations of frequency ω == Λ/E > ^/E\(vX). The results on
random Schrodinger operators needed in our analysis are proven in [FMSS, SW
and DLS]. The proofs of [SW and DLS] combine a functional analytic argument
with estimates on the decay of Green's functions derived in [FS]. The methods
of [FMSS] are more involved, but since they are constructive, they provide some
further insights into the problem which are useful in our analysis.
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In [AF and AFS], we study stationary solutions of the non-linear Schrodinger
equation

d^ , (1.6)
at

i.e., periodic solutions of the form u(x, t) = e~iEtv(x), where v(x) solves the
non-linear eigenvalue problem (n.l.e.p.)

(-A + V)υ + λW(v)v = Ev, (v(x) G R). (1.7)

We impose the normalization condition

and let the parameter λ vary. In [AF], we study the problem for small λ pertur-
batively. Namely, we fix an eigenvalue Eo of (—A + V), with eigenfunction vo(x)9

and ask whether the n.l.e.p. (1.7) with λ small, has a solution (Eχ9vχ) close to
(EO9VQ). We prove the following result.

Theorem NRS1. (i) There exist a full-measure set of potentials, Ω, and a constant
E2(v9ζ) > 0 with E2(v,ζ) = Oforζ large, such that if Eo > E2(v,ζ) and V e Ω,
then there is a family ofeίgensolutions, (Eχ,vχ)χeA of (1.1). Here, A is a (non-empty)
set of λ's having the origin as an accumulation point, and we have that

(λ,λ) = (Eo,uo). (1.9)

λeΛ

"NRS" stands for "Nonlinear Random Schrodinger problem." The methods on
which our proof is based do not allow us to study the geometrical properties of
the set A. However, we can show that the set

« = {Eλ}λeΛ (1.10)

of non-linear eigenvalues is a Cantor set of large Lebesgue measure. More
precisely, we have

Theorem NRS 1. (ii) The set £ is a Cantor set and

2sk - l(S Π [Eo - ε*, Eo + εk]) = 0(εp

k) (1.11)

for any power p > 0, where Sk is some sequence converging to 0, as k —> oo. Here,
I denotes Lebesgue measure.

The reason why S is a Cantor set, and not a interval, is that the eigenvalue Eo
is not isolated but is surrounded by a dense set of other eigenvalues of —A + V.

In our joint paper with Thomas Spencer, [AFS], we prove the following result
that is complementary to Theorem NRS 1 in several respects.

Theorem NRS2. There is a constant Eφ,ζ) > 0, with E3(v,ζ) = 0 for ζ large,
such that the following statement is true: For all λ > 0, there is a full-measure
set of potentials, Ω(λ), such that if V e Ω(λ) the n.l.e.p. (1.7), (1.8) has an infinite
number of solutions corresponding to eigenvalues which form a dense subset of the
set{E>Eφ,ζ)}

1.3. In this article, we extend the two theorems above to the system of anharmonic
oscillators described by Eq. (1.1). Since we are interested in periodic solutions,
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we can restate our problem as a nonlinear eigenvalue problem. We look for a
solution u(x, t) of the form

M(x,ί) = (|3ί

2Γ1/2t;)(A;,ωί)5 (1.12)

where ω > 0, and v(x,t) is a (real) function in L2(ZV x [—π, π]) that is odd and
periodic in ί, i.e.,

v(x,-t) = -v(x,ή, v(x,-π) = υ(x9π) (1.13)

and is subject to the normalization condition

π

IMl2= fdtfΣυ(x,t)2\ = 1. (1.14)

The operator |<32| in (1.12) is the modulus of the second order time derivative dj
acting on the subspace of L2([—π,π]) consisting of smooth functions satisfying
(1.13). The eigenfunctions of \dj\ are sin(wί), n= 1,2,3, ..., and the corresponding
eigenvalues are n2. The ansatz (1.12) is a periodic solution of (1.1) with period

— , provided v solves the equation
ω

τ[-A + V + λW(τv)]τv = ω2v, (1.15)

where

τ = |3 2 Γ 1 / 2 . (1.16)

The basic difference between problem (1.15) and the non-linear Schrόdinger
equation (1.7) resides in the spectrum of their linear parts. For arbitrary regions,
R, in the lattice Z v , let us consider the restriction

H°R = (-A + V)R (1.17)

of -A + V to 12(R) with zero Dirichlet data at the boundary OR. If σ(H%) and
σ(τ//^τ) denote the spectra of the operators H^ and τH^τ, respectively, we have
that

•X

σ(τH τ̂) = U r M ^ ) . 0-18)

Here and in the following, we use the convention that if A a IR is a set of real
numbers and α G IR, α ^ denotes the set {oca \ a e A}. Two eigenvalues E\ and
E2 in σ(τiίflτ) resonate, i.e., are very close, if there are two frequencies ωi and
0)2, with ω 2 and ω\ in σ(H^), and two integers pi,p2 such that

2 = y £2 (1-19)

In particular, if ω 2 G σ(i/^) then ω is a resonant principal harmonic if y 2ω 2 e
σ(ί/^), for some j > 1, or if ω2 is degenerate.

The main theorem we prove here is the following extension of Theorem NRS 1.

Theorem 1. (i) There is a constant £4(1;, £) such that for almost every V and for
every simple eigenvalue £ 0 > E4(v,ζ) with the property that n2Eo is not an eigen-
value of —A + V, for all n — 2, 3, ..., there are a set Λ cz ]R containing 0 as an
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accumulation point and a family (vχ9ωχ)χeA of solutions of (1.13), (1.14) and (1.15),
such that

lim I I U A - U O I ^ O , (1.20)
λeA

where vo(x9t) = uo(x)sint and UQ is an eigenfunctίon of —A + V with eigenvalue
EQ = COQ. If ζ is large enough, we have that Eόt{y9ζ) = 0.

(ii) The set Θ = {ωχ}χEA is a Cantor set, and there exists a sequence βk I 0, as
k ΐ oo, such that

2εk - 1(0 Π [ωo - εk, ω0 + εk]) = 0(εp

k) (1.21)

for all powers p < oo.

Remark 1. The assumption that Eo is a simple eigenvalue such that the points
n2Eo are not eigenvalues, for all n = 2,3, ..., is probably not necessary. In fact,
we expect that these conditions are fulfilled with probability one. They are known
to hold for dρ as in (1.3') and £o large enough.

Remark 2. Walter Craig and C. Eugene Wayne have announced to have proven
a result very similar to Theorem 1 for the wave equation

{d2 -dl + V(x)) u{x, t) + W(u) (x, ί) = 0, (1.22)

where u : S{ x R —• R, V(x) is a potential on the circle S1 satisfying suitable
nonresonance conditions, and W(u)(x,t) is a nonlinear term. Their method
appears to be rather different from ours.

Finally, let us state the extension of Theorem NRS 2 holding for Eq. (1.1).

Theorem 2. There is a constant Es(v9ζ) > 0, with Es(v,ζ) = 0,for ζ large enough,
such that the following is true: For all λ > 0, there exists a full-measure set Ω(λ)
of potentials such that ifVE Ω(λ) then Eq. (1.1) has an infinite number of periodic
solutions, u(x,t), with

| | | δ t

2 | 1 / 2 u | | 2 = Λ/λ, (1.23)

the frequencies of which form a dense subset of {ω : ω2 > Es(v9ζ)}.

2. Strategy of the Proof of Theorem 1

In this section we describe our strategy for the proof of Theorem 1. We replace
the original lattice Zv by an arbitrarily large but finite subset, L, of V. By —A
we mean the finite-difference Laplacian on 12(L) with zero Dirichlet data at dL.
We shall prove estimates that are uniform in L, so that, in the end, we can pass
to the limit L\Έ\

Following [AF], we consider the eigenvalue problems

τ[-A + V + (λ + iδ) W{\τvλδ\)] τvλδ = Eλδvλδ ,
with

π

dt(γj\υλδ{x,t)\2\=l, (2.1)

π w /
where λ are δ and real parameters. Let £o = o>o ^ e a n eigenvalue of

-A + V (2.2)
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with Eo > Eι(ζ), where E\(ζ) is the constant appearing in (1.5). Our aim is to
construct an open set P(EQ, V) a (C, and a smooth family (vλs,Eχs) of solutions
of (2.1) parametrized by (/, δ) with

λ + iδ eP(E0,V).

The first step to take is to locate the eigenfunction uo(x) of — A + V in the lattice
L. Following [AF], let us define cubes Aj9Aj such that

Λj = {x : |x| < dj}9 Λj = {x : |x| < 4dj}, (2.4)

where |x| = max |x°Ί, and
l~**v dj = exp(β(5μ)J), (2.5)

for j = 1,2, ..., where /? > 0 is a constant to be fixed in the following. Let
Aj be the annulus AJ+{\Aj. By using the decay estimates on Green's functions
contained in [FMSS], we prove, in Sect. 3, that there is an integer k, depending
on V and on Eo, such that the following statements hold true:

(i) The eigenfunction UQ of H° = — A + V has uniform exponential decay outside
Λh i.e.,

|wo(x)| < exp(-m(£0) |x|), x£Λk9 (2.6)

where m(E0) ~ In £ 0 , as Eo t oo.

(ii) Eigenvalues, E9 of H° corresponding to eigenfunctίons, M, localized outside
Afo have the following property: If \n~2E — EQ\ < e~vdj, for some n = 1,2, ...,
and some j > fe, then u is localized outside J5; , i.e., the region where u is localized
is separated from the region where uo is localized by a distance ;> dj — Ad^ « d; ,
(for jS sufficiently large).

Due to the large separation between the localization regions of uo and of those
eigenfunctions corresponding to eigenvalues, E, such that n~2E is very close to
Eo, for some n — 1,2, ..., resonances arising in this way, after the non-linear
term is introduced, can be circumvented by letting the coupling constant λ + iδ
make excursions into the complex plane. Resonances associated with eigenvalues
corresponding to eigenfunctions localized close to UQ cannot be circumvented
by excursions of λ + iδ into the complex plane. However, such eigenvalues are
finite in number, and, therefore, Eo is separated from them with probability one
(w.p.l). In the remainder of this section, we present some details concerning the
construction of solutions to (2.1).

Let us consider a solution, vχs, of the nonlinear eigenvalue problem (2.1)
bifurcating off an eigenfunction uo of the corresponding linear problem with
eigenvalue Eo. The function v s remains in the set

I ί
Ψ\ = < v(x,ή e 12(ZV) ® L 2 (-π,π) : / dtmax \v(x91) -uo{x)sint\2 < ε0,

and / dt \v(x91)\2 < e~Mlx{

9 Vx £ AΛ , (2.7)

where εo is a constant chosen sufficiently small, and

^ \mw} 9 (2.8)

with mw the decay rate of W(\y — x\).
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b

Fίg.l

The boundary of P(E0, V) intersects the real axis on a set A with the property
that, for all λ e A, the limits

ljmuλ{δ)δ=uλ, (2.9)

and

ljmEλ{δ)δ=Eλ, (2.10)

exist; (λ(δ),δ) is a path inside P(Eo, V), with the property that limλ(δ) = λ, which

is determined by the condition that 9iEχ^)δ stays constant. The set Θ = {y/Eϊ}λeΛ
of frequencies of the solutions we can construct is a Cantor set of large Lebesgue
measure, as described in the statement of Theorem 1.

As in [AF], we construct solutions of (2.1) along paths 71U72U73 contained in
P(EQ, V) such that Eχδ has piecewise constant real or imaginary parts; cf. Fig. 1.
On the one hand, one must impose an upper bound on the length of the curve
7i U72U73 which depends on V and on the spread of the eigenfunction uo(x) that
we perturb about. On the other hand, we require a lower bound on the height of
the horizontal portion of the curve in the complex £-plane; cf. Fig. 1. However,
the closer the path yt U 72 U 73 is to the origin, the smaller is that lower bound,
and it turns out that the two conditions are compatible, provided the diameter
of P (Eo, V) is small enough, for all functions V in a full-measure set and for all
sufficiently large eigenvalues Eo.

The set δ = {Eλ}χeΛ of positive, real non-linear eigenvalues that can be
reached has the form

" 1 7 ) n [ E o - e , E o + ε], (2.11)

where ε is a small positive number depending on V and Eo, and the set ^(/c, V),
called "gap set," is defined as follows:

<g{k9 V) := {E e R : E > E4(ζ\ and VC e V, W > k9 V; e N,

we have that dist(σ(HCΠAk,)J2E) > 2j2 e~dl'-^} . (2.12)
Here

(2.13)

m=\

where ^m is the collection of all lattice cubes with faces parallel to lattice planes
and edges of length 2m which are centered at the sites of 2m~{Zv. Moreover, k is
a sufficiently large integer, depending on Eo and on V, that will be specified in
Lemma 3.4. Finally, y is a positive constant.

For each point E e δ> we can construct solutions υχδ of (2.1), for all (λ,δ) on
a path 71 U 72 U 73 described in Fig. 1, with

lim Eλδ=E. (2.14)
δ[0
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The eigenvalues E-λδ of these solutions are simple eigenvalues of the operator

τ[-Λ + V + (/ + iδ)W(\τvλδ\)]τ. (2.15)

Since the non-linear term is small, in an appropriate sense, there is an open
neighbourhood around each point (/, δ) G y\ U72 U73 in which we can still find a
solution of (2.1). The union of such neighbourhoods is the set P(Eo, V) mentioned
above.

There are several equivalent ways of controlling the deformation of eigen-
functions along paths like those in Fig. 1. We choose the one that allows for
the simplest treatment (known to us) of the small divisor problems that arise in
such constructions. Our method is based on the integration of certain differential
equations that can be derived as follows: Let (̂ o?^o) be a point of P(EQ, V), and
let U be a small neighbourhood of (/o^o) contained in P(£o, V). If (λ,δ) E U,
then (υλs,Eχs) solves (2.1) if and only if vλδ is a fixed point of the nonlinear map.

Tλδ(v) = ^ φ lδ) ίάz\z - τ(-A + V + (/ + iδ) W{\w\))z]~lv^Q, (2.16)

r
where c(v;λ, δ) is a normalization factor, Γ is a small circle in the complex
£-plane enclosing Eχoso'-> Tλδ(v) is defined for v in a small neighbourhood, N, of
υχoso on the unit sphere,

S := {v e 12(ZV) ® L 2 (-π,π) : ||i;||2 = 1}. (2.17)

Since E>^Q is a simple eigenvalue of (2.15), for (/, δ) = (/o,<5o), we can choose Γ,
N and U so small that Γ encloses one and only one eigenvalue of

τ[-Δ + V + (λ + ίδ)W(\τv\)] τ, (2.18)

for all v e N and all (/ + iδ) e U. By differentiating the fixed point'equation

v;δ = Tλδ(vλδ)

with respect to δ, we find the differential equation

= iQKλδ(E;δ)τW(\τvλδ\)τvλδ

+ (/ + ίδ)QKλδ(Eλδ)τDW(\τυλδ\) | ^ f | τv)δ , (2.20)

where

with
P®v = (M, V)U, PUV = (υ,u)u (2.22)

and

(u,υ)= / ί X M(X,0υ(x,ί)l dί. (2.23)

J
The operator Q arises from the differentiation of the normalization constant, c.
The operator Kλίi(EλS) is called the "pole-subtracted Green's function" and is
defined as the analytic continuation to z = E;_g of the operator

K/ί5(z) = [z - τ(-d + K + (/ + iδ)W(\τv,j\))τ]-1 - (z - E^P* . (2.24)
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Finally, DW denotes the (R-linear!) derivative

| ] . (2.25)

We refer the reader to the Appendix of [AF] for a detailed derivation of (2.20)
in a similar case.

In order to control the solutions of the deformation equations (2.20), we need
to have suitable bounds on the pole-subtracted Green's functions Kλδ(Eχs). In
[AF], we find bounds valid under the conditions that vχs e ^ , \λ + iδ\ small
enough,

mEλδ e (Eo - \ e-yfa, Eo + \ e-yfa), (2.26)

and either

3Eu > e-V*, (2.27)

or
9l£^G»(fc,7), (2.28)

where ^(k,V) is the gap set encountered in (2.12); see also Sect. 3. Roughly
speaking, &(k,V) is obtained by excising from the set {E : E > £4(v,C)} of
energies a small interval around every eigenvalue of τ(—A + V)τ; see (2.12) and
Sect. 3. The result is a Cantor set of fairly large Lebesgue measure. The idea is
that, on one hand, when we integrate Eq. (2.20) along the horizontal portion,
72, of the path in Fig. 1, the condition (2.27) is fulfilled. On the other hand, if
we choose the paths y\ and 73 in such a way that WlEχδ remains constant and
belongs to ^(fc, F), condition (2.28) holds on 71 and 73. More precisely, on 71 and
73, we integrate the following system of differential equations

γδ υλ{δ)δ = [1 - (λ(δ) + iδ)QKτDW[']τvλ{δ)δΓ
1QK (i + ^\τWτυmδ, (2.29)

jj9lEλ{δ)δ=0. (2.30)

In this paper we give a full discussion of only one aspect of our construction,
namely the probabilistic estimates needed to localize an eigenfunction and to
construct the gap set. The probabilistic estimates we need are stronger than those
contained in [AF]. The other parts of the proof are quite similar to the arguments
in [AF], and we shall refer the reader to that paper.

3. Probabilistic Estimates

In the small divisor estimates that go into the proof of Theorem 1, Sect. 1.3, and
other related results (Theorems NRS 1, 2, see [AF], [AFS]) and in the analysis
of random Schrodinger operators [FS], one requires the following notion of
singular sets: For all potentials V and energies E, we define a decreasing family
of singular sets

So(E9 V) 2 Si(£, V) => S2(E, V) 3 ... (3.1)

as follows: We set

So(E, V) := {x e Zv : | V(x) - j2<UE\ < f(2v + 2m(E))9 for some j e N} (3.2)

where m(E) is a constant, with m(E) ~ l n £ , as E j 00.
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The sets Sk(E, F), for k > 1, are defined inductively:

Sk+ι(E,V) = Sk(E,V)\{Jσk, (3.3)

where {C%} is a maximal family of disjoint subsets of Sk(E,V) satisfying the
following conditions:

Condition k

a) diam(C£) < dk, (3.4)

b) dist{Cl Sk\Cl) > 2d5

k

/4 = 24+1, (3.5)

c) dist(σ(tf£«), j2SRE) > 2j2e-Λ, for all j e N . (3.6)

Here C\ is a cube in m̂(/<) covering Cζ where m(fc) is determined by the inequalities

2m{k) > \0dk>2m{k)-\ (3.7)

and the collections cβm of lattice cubes have been defined in Sect. 2, after Eq. (2.13).
In the following, we also need singular sets involving only one higher harmonic

of the frequency ω = y/9ΪE. For j e N, we define

S^(E9V) :={xeZv : \V(x) - j2KE\ < f(2v + 2m(E))} 9 (3.8)

and

Sj/\E,V)= U Cl. (3.9)
k'>k

α|q,nS^(£,7)^0

The deterministic decay estimates on Green's functions proven in [FS] can be
easily extended to the present case, so we shall omit the proofs.

Definition. A set R a 7D is said (7,/c,£)-admissible iff

δKfΊC£, = 0 , (3.10)

for all k' = 0,1, ..., k9 and all α such that C£, Π S^(E, V) φ 0. A set which is
(y,fc,£)-admissible for all j e N is simply said to be (/c, E)-admissible.

We have the following deterministic result.
Theorem [FS]. Let j be a positive integer. If the constant β in the definition (2.5)
of {dk} is chosen large enough, independently of j , and if Sk~ (E, V) Π A = 0, then
there is a constant m > \ m(j2E), independent of k, such that, for all ε > 0, we
have that

|(_Λ + V-f(E + iε)ΓW)l < e~mlχ-yl (3.11)

provided \x-y\ > \ 4+i. IfS{

k

j)(E, V)nA = 0 for all j e N, we ftαi e that, for all
ε > 0 ,

[τ(-J + F - / ( £ + iε))τYι{x,n\ ;y,n2) < n\e-m\χ^bnχni, (3.12)

provided \x — y\ > \dk+\, where the kernel is expressed in the basis

{(5( -x)sin(nί)} (3.13)
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Let us fix an open interval, /, contained in {E > £4(0}, where E$(ζ) is a
sufficiently large constant, depending on the disorder ζ, which will be fixed later
on. For any subset A a Zv and any finite interval / c R, we introduce the set

J) = {V : Sk-ι(E9 V)ΠAφφ, for some Eel, and dist(σ(H°CnA)J2E)

> jV^-i, VC e % V/ e N}. (3.14)

Lemma 3.1. For γ e (0, \] sufficiently small, we have that

\ (3.15)

The proof of Lemma 3.1 is similar to the one of Lemma 3.3 in [FMSS].
Moreover, by applying the first Borel-Cantelli lemma, as in the proof of Lemma
2.4 of [AF], one can prove the following result.

Lemma 3.2. For a.e. V, there exists an integer k\{V) < 00 such that

φ, (3.16)

for all k > k\ and all E such that 5R£ e @(kuV), where the annuli Ak are defined
as in Sect. 2 after (2.5), and the gap sets &(k, V) are defined in (2.12).

We also require the following lemma.

Lemma 3.3. For almost every V and for all eigenvalues EQ of H° = — A + V
with EQ > £4(0, for some constant E${ζ) that vanishes for large ζ, there exists
a finite integer /C2CE0, V) such that, for γ e (0, \] sufficiently small, and for all
k! > k2(Eo, V), the following statements hold:

(i) d i s t ( σ ( i ί ^ ) , £ o ) < ^ - (3.17)

for some C e <€\

(ii) distt/2 (σ(H°CnΆkf) Π /),σ(H°CnAkf)) > 5j2 e^l-i, (3.18)

for all j e N, all C,Cf G ̂  and all finite intervals I c R;

(iii) dist(/£0,σ(H°CnAk/)) > 4 / e-*i-i (3.19)

for all j e N;

(iv) E0e9(k29V). (3.20)
Proof. Statement (i) is proven in Sect. 3 of [FMSS]. Statement (ii) is a general-
ization of (2.19) in [AF] and can be proven in the same way by combining the
first Borel-Cantelli lemma and the Wegner estimate. Statement (iii) follows from
(i) and (ii) and extends Lemma 2.5 of [AF]. Finally, (iv) follows from (iii) and
definition (2.12) of the gap set &(k2, V). It generalizes Corollary 2.6 of [AF]. •

Lemma 3.4. For a.e. V, and for all

Eo e σ(-A + V)Π{E> E4(ζ)}, (3.21)

there exist a constant k(Eo, V) < 00 and a sequence Rn a Έv of (k—2-\-ή)-admissible
sets such that

(i) A-2+n <= Rn <= Λ-k_2+n (3.22)
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and

ls d-k_2+n < d i s t i l , dλ-k_2+n) < \ d-k_2+n, (3.23)

(ii) #{E e σ(H°Rn) I dist(£,/£0) < . / W ^ } = j J " 2 ̂  > J' (3 2 4)

(iii) dist(EOjσ(#/?n)) ^ < H m ί S for some constant m > \ m(E0). (3.25)

Proof. This lemma extends Lemma 2.8 of [AF]. In particular, statements (i) and
(iii) can be inferred from this paper. The only claim that needs to be proven
is (3.24), for j > 1. Appealing to the first Borel-Cantelli lemma, and making
use of the fast decay of the probability distribution of V, we see that there is a
/c3(£o, V) < oo such that, for all k > k^{E^ V), we have that

for all j so large that
j2E0 > dk.

Moreover, due to Lemma 3.2, it is also true that

SJJ)(Eθ9V)nAk = φ, (3.26)

for all j G N and all k > k\(V). In particular, if j2E0 > dk4, where /c4 :=
A:i,/c3), then it follows that

(3.27)

for all k > k$. Thanks to Lemma 7.3 of [AFS], we have that

dist(/£0, σ(H°Rn)) > j2 e-^^% (3.28)

for all n, where k = max(/ci,/c2,/c3).
Hence (3.24) holds for all J G N with the property that j2EQ > 4 4 . i.e., (3.24)

could fail only for j < dk E^ . However, if we choose k large enough this
cannot happen. To see this, let us assume the contrary. Then there must be a

jo < d\ EQ 1 / 2, and a subsequence Rn^, I e N, such

and all / e N. In this case, there must be a sequence

pp
jo < d\ EQ 1 / 2, and a subsequence Rn^, I e N, such that (3.28) fails for j = jo

d ll / N I hi h b

un(i) e l2(Rn{l)) (3.29)

of eigenfunctions of HRn / with eigenvalue En^ in the interval

Ufa - il e-V1^,, ilE0 + & e-y/1^), n = n(l), / = 1,2,3, ... . (3.30)

By Lemmas 3.2 and 3.3 and the results of [FMSS], the eigenfunctions un(i)
have uniform exponential decay outside Ak_2' Thus the /2-limit, as / f oo, of
a subsequence of un{i) exists and is an eigenfunction of — A + V on I2(A) with
eigenvalue JQEO. But this is excluded in the hypotheses of Theorem 1. •

The next problem to be addressed concerns the modification of the definition
of the singular sets S£δv(E9 V) in [AF]. Let v 6 ^ , where i^-k is defined in (2.7).
Since τ = \d2\~x^2 is a bounded operator from L2

oάά(—π,π) to LJd d(—π,π), and
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since W(\y — x\) decays exponentially fast with rate mw > 0, as \x — y\ ΐ oo, we
have that, as a multiplication operator (in the time variable) on L2(—π,π),

W(τυ)(x,t) :=^W(\y-x\)\(w){y9t)\2 (3.31)

y

is bounded in norm by const^ e~M^, where

M = min{± mw, \ rn(E0)} . (3.32)

Thanks to this norm-bound, the perturbation τW(τv)τ of τ(—A + V)τ is small
relative to the sizes of local gaps in the spectrum of τ(—A + V)τ. More precisely,
we introduce singular sets S£δv(E9 V), as for the operator τ(—A + V)τ, with the
only modification that the spectral condition (3.6) is replaced by

dist(σ((-A + V + (λ + ίδ)W(\τυ\))ci)J2mE) > \j2e~^ (3.33)

for all j e N. Lemma 2.9 of [AF] still holds with our new definition of singular
sets, as the reader easily checks. The rest of the proof of [AF] can be extended
to the present case with no essential modifications.

Remarks. (1) Writing out a self-contained proof of Theorem 1 would obviously
be a rather lengthy enterprize. Since such a proof would repeat many arguments
explained in detail in [AF] and in [FMSS], we decided to report, in the present
paper, only those parts that contain some novel elements. (We realize that this
makes the technical sections of our paper somewhat unreadable.)
(2) We expect to be able to construct solutions of the non-linear wave equation
(1.1) which are quasi-periodic in the time variable t. More precisely, we expect it is
possible to construct infinitely many finite-dimensional (and infinite-dimensional,
compact) invariant tori in the phase space of the Hamiltonian system associated
with Eq. (1.1), provided the non-linearity is kept small and the random function
V is chosen judiciously so as to escape from resonances. Those tori will be close
to certain tori of the linear system (λ = 0).
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