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Abstract. A new type of vortices called Chern-Simons vortices is considered and
the existence is established.

1. Introduction

Various vortex theories have been discussed in recent years, among them the
classical, electrically charged and other ones. The discussions on vortices have
proved important in quantum physics, solid state physics as well as in mathemat-
ics. A detailed account on classical (kinetic) vortex theory can be found in [14] by
Jaffe and Taubes. When the Chern-Simons term is added to the action, this is
(2 + l)-dimensional massive electrodynamics, the vortex fields still exist and carry a
fractional electric charge proportional to the coefficient of the Chern-Simons term.
Such particles are called anyons, see Frόhlich and Marchetti [6].

The paper concerns the existence of Chern-Simons vortices recently found by
physicists Jackiw and Weinberg, also Hong, Kim, and Pac who consider the
problem of charged vortices with the gauge field governed solely by the Chern-
Simons term. This truncation is physically sensible at large distances and low
energies, where the Chern-Simons term dominates the higher-derivative Maxwell
term. With the symmetry breaking realization, it is interesting that with a special
choice of the Higgs potential the vortex solutions satisfy a Bogomolny type "self-
dual" equation. We call the solutions Chern-Simons vortices, see [10] also [18].

Chern-Simons vortex solutions can be compared to the classical vortex
solutions and anyons. Chern-Simons vortices satisfy a similar "self-dual" equation
as classical vortices but the equation contains a more complicated nonlinear term.
The existence of axial solutions to the equation have been given in [10] and with a
special choice of metric on the plane the equation is completely solvable [16]. In
this paper, along the course of [14], a complex analytical and variational method is
used to establish the general existence of solutions to the Chern-Simons vortex
equation. Denote by C or R2 the standard 2-ρlane.
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Theorem. For any (zί,...,zn)eCn, a charge n smooth solution to the Chern-Simons
vortex equation exists with zeros exactly at z1 ? ...,zπ.

The main part of the paper is the analytical and variational problems raised
from the Chern-Simons equation. The analysis in the problem in some sense is
rather interesting; indeed, the Chern-Simons vortex equation as well as the
classical vortex equation which is a complicated system of differential equations
can be reduced by gauge transformation to a second order, variational, elliptic
equation. In the Chern-Simons case, the variational problem can be compared to
the prominent problem of Berger of prescribed scalar curvature on the 2-sphere;
compared to the classical case the variational problem is more complicated and
actually quite different but both can be regarded as examples of weak conver-
gence method in the theory of partial differential equations. And due to the
complexity of the variational problem, whether the solution to the Chern-Simons
vortex equation is uniquely determined by its zeros remains unknown.

The paper is organized as follows. Section 2 is a brief review on the Chern-
Simons vortex equation and some fundamental properties of Chern-Simons
vortices. In Sect. 3 the existence problem is converted into a variational problem
and in Sect. 4 the variational problem is discussed.

The author would like to thank Professor Taubes for introducing him to the problem.

2. The Chern-Simons Vortex Equation

In this section we briefly recall the Chern-Simons vortex solutions and collect
some fundamental properties of the solutions such as the counting of the zeros of a
Chern-Simons vortex and the maximal principle of the Higgs field. The first half of
the section is essentially based on [10] and the second part is a parallelism to the
classical case. The interested reader may refer to [10, 14, 15].

The Lagrangian density of the model (after a scaling of constants) is given by

<£ = \(d- iA)φ\2 +^^FxβAy-i\φ\2 (1 - \φ\2)2, (2.1)

where φ is a complex scalar field, A a real gauge field, i.e.,

A = Aμdxμ, with AμeR,

and field strength F = Faβdxadxβ and the Chern-Simons term is

with the Levi-Civita tensor εaβy is fixed by ε o l 2 = l.
Consider the motion defined by the Lagrangian (2.1), for time-independent

configuration (φ, A) the critical condition gives

The action of the time-independent configuration (φ, A) with Ao as (2.2) is given by
the formula

E(φ,A)= j d2x(-J?) = ί\(d-iA)φ\2 + ^ + i

J\φ\2(ί-\φ\2)2. (2.3)
o 2 \φ\ 4
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Assuming that the time-independent configuration satisfies the following
boundary condition:

lim sup |1- |0 | | = O,

\z\1+δ\(d-iA)φ\^const

for some positive constant <5, the energy functional E(φ, A) can be rewritten by a
process of completing the square and integration by parts. As a matter of fact,

1 12

Φ
+ Fί2(l-\φ\2)

and

ί \{d - iA)φ\2=I |(D1 + iD2)φ\2 + i(D1 φD2 φ - ; φ)

with the boundary term vanishing by the boundary condition. Thus with the
boundary condition the energy functional can be rewritten as follows:

E(φ,A)=$\(D1±iD2)φ\2 1
1 2 -

With the boundary condition assumed as above, the vortex number of a
configuration

can be shown to be an integer as in the classical case; indeed, the number N
coincides with the degree defined by the map

Φ
\z\=R

for R sufficiently large.
As the classical case, finite energy configurations with the boundary condition

fall into different path components labelled by the vortex number. On each path
component, the energy functional E has a lower bound:

and the lower bound is achieved if and only if the configuration satisfies the
following Chern-Simons vortex equation:

+ iD2)φ =
2)

(2.4A)
(2.4B)

in the case N > 0. The case N < 0 is given by (2.4) after a sign change.
Chern-Simons vortex equation (2.4) can be regarded as a combination of a

"complex" equation (2.4A) and a nonlinear equation (2.4B). To consider Eq. (2.4A),
it is convenient to introduce the complex variables

A = adz + adz,
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where

a=^(A1-iA2).

Under this convention, Eq. (2.4A) becomes a ^-equation

d~zφ = iaφ. (2.5)

The ^-Poincare Lemma can be used to investigate the zeros of scalar field φ.
Theorem 2.1. Let (φ, A) be a smooth Chern-Simons vortex with finite action, then
i) φ has finite number of zeros zu...,zm.

ii) Around each zh φ can be written as

Φ=(Z-zkrhk(Z)

with hk a smooth function, hk(zk) + 0.
m

iii) The vortex number N, is £ nk.
fc=l

Proof. This is similar to the classical case, see III. 5 of [14].

The other important property on Chern-Simons vortices is the fact that the
Higgs field satisfies the maximum principle on the plane.

Theorem 2.2. Let (φ,A) be a smooth Chern-Simons vortex with the boundary
condition, then \φ\ < 1 on the whole plane.

Proof It is convenient to consider the function

w=Ui~\Φ\2)-
Taking the derivative,

dw=-(φ,VAφ),

Δ w = -1 VAφ\2 + (φ, Vf VAφ) ^ (φ, VX PAφ).

Using the vortex equations and note that

Vf = D*A=-*DA*
on 1-forms on R2,

VΪVAφ=^\φ\2(ί-\φ\2)φ.
The substitution yields

4

and the maximum principle implies the fact that |</>|<1.
The maximum principle will be seen more clearly as the vortex equation is

reduced to a second order elliptic equation in Sect. 4.

3. The Reduction of Chern-Simons Vortex Equation

Chern-Simons vortex equation (2.4) is a system of differential equations with the
complex scalar field φ and the gauge field A as unknowns. In this section we reduce
the equation to a variational problem of real functions. The reduction is divided as
two steps: First the equation is reduced to a singular second order elliptic
differential equation using a gauge transformation. The second step is to reduce
the singular second order elliptic equation to a second order elliptic equation by
choosing a reference solution. We see that the equation can be regarded as the
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Euler-Lagrange equation of a variational problem. The whole process is also
parallel to the classical case.

First notice the fact that (2.5) can be rewritten as a 5-equation

oc = ίdzlnφ (3.1)

on the area φ is nonzero. However, since α is smooth, it can be extended over the
zeros of φ and we see that the gauge field A is determined by the Higgs field φ.

Writing the Higgs field as φ = eHu+iΘ\ Theorems 2.1 and 2.2 say that u is then a
negative function with negative infinity as the value at the zeros of the Higgs field φ9

where θ is not defined. Furthermore, the gauge group acts on θ by adding to it a
smooth function on R2, or in another word, θ is defined by modulo a smooth
function. Motivated by Theorem 2.1, denote

0 = 2 £ arg(z-zfe).
k = l

The Chern-Simons vortex equation is equivalent to the following singular second
order elliptic equation:

Au = eu(eu-ί) + 4π £ δ(z-zk) (3.2)
fc=l

with the boundary condition lim u = 0. Here, δ is the Dirac function.
|z|-co

Let u0 be the following reference solution

uo=- Σ ln( l+μ |z-z k Γ 2 ) . (3.3)
fc=l

With the real parameter μ varies u0 is actually a family of reference solutions. For
each μ > 0, u0 is a negative function on the plane and euo vanishes with the same
order as \φ\2. A calculation gives

^ o = - 4 Σ ..." 7{2,2 + 4 π £ δ(z-zk). (3.4)
fc=i(μ + |z-z f e | ) fc = i

By combining (3.2) and (3.4), in terms of v = u — u0, Eq. (3.2) has the following
equivalent form:

J / z / ) 2 . (3.5)

Equation (3.5) is a second order elliptic partial differential equation with a
nonlinearity term eUo+v(eUo+v — 1) and the boundary condition lim v = 0. Denote

|z|->oo

with μ>0 the real parameter, the second order equation (3.5) is then the Euler-
Lagrange equation of the following functional:

. (3.6)

This is our starting point of Sect. 4.
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4. The Variational Problem and the Solution

In this section we will concentrate on the variational problem (3.6). The solution of
the variational problem (3.6) needs a set up of Banach spaces. It turns out that it is
appropriate to consider the variational problem of the functional (3.6) on the space
Hl9 where H1 is the completion of C^-functions on the plane with the norm given
by

Denote also ||ι;||p the Lp-norm of a function v.

Lemma 4.1. The function g0 is L2-integrable with

^ (4.1)

for some positive constant Co independent of μ and (eUo — l)is LP-integrable

Proof

is a smooth function on the plane, euo — 1 approaches zero at infinity in an order of

N

-μ Σ I*-**Γ2

which is equivalent to ~-. Thus eUo — 1 is LMntegrable (p^2). The L2-
r

integrability of g 0 is clear with

J ( l + r 2 ) 4

Thus,

Return to the functional

2 + " - 1 )2

F(ι>) is a functional on H x with exponential nonlinearity and thus an estimate on
the nonlinearity is necessary.

Leιnma4.2. On R2, any function veHx satisfies the following:

2

Proof The proof can be found in cf. Sect. VI.3 of [12].
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Lemma 4.3. On R2, any VEH1 satisfies the following:

W2) (4.2)

for some positive constant Cv

Proof

( oo ,,fc \ 2 / oo | , i | k \ 2 N Jk

Applying Lemma 4.2 and Stirlings Formula, there are positive constants C2 and
C 3 such that

sum up each term in (4.3) and get Lemma 4.3.
Restricted to a compact area on the plane, a slightly stronger result shows that

the map v->(ev — 1) from Hί to L2(K) is a compact map where K is a compact set on
the plane. We will not give the proof here; the interested reader may refer to
Chap. 2, Sect. 15 of [1].

Thus the functional F(v) is a continuous functional on H1 by the fact that

^2C 1 exp(C 1 | | ι ;

for some constant C 4 > 0.
In our problem it is important to consider the weak (semi)-continuity of the

functional F(v).

Proposition 4.4. F(v) is a weakly lower semi-continuous functional on Hv

Proof First note that the map ι>-HM|2 ^s a weakly lower semi-continuous
functional on Hv For any weakly convergent sequence {vn} to v in H1

Restricted on any compact area K on the plane, lim j (eVn — I) 2 exists and equals to

ί(ev-l)2. Thus κ

K | | ( " l ) |

F(v) is a weakly lower semi-continuous functional on Hv

A classical theorem on weakly lower semi-continuous functional is the
following

Theorem 4.5. A weakly lower semi-continuous functional on a closed ball in a
reflexive Banach space achieves the minimum of the functional on the ball.

Of course the minimum may be achieved on the boundary of the ball. A
classical way to exclude this case is to consider the coercivity of the functional.

Theorem 4.6. // a weakly lower semi-continuous functional on a reflexive Banach
space is coercive, i.e.,

lim min F(v) = + oo .
r̂ oo |H|£r

Then the minimum of the functional is achieved.
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Proposition 4.7. The functional F(v) in (3.6) on the space Hx is differentiable with

DhF(v) =— F(v + th) ={VυVh + eUo+v(eUo+v-l)h + goh. (4.4)

dtt=0

Proof The proof is similar to the classical case and is omitted.

Return to the functional

(4.5)
on the Sobolev space Hv We have shown that F(υ) is weakly lower semi-
continuous and differentiable. We will show that F(v) on H1 is a coercive functional
and hence F(v) achieves the minimum of F(v) on Hx and the minima is a critical
point of the functional and a solution to Eq. (3.5) in Hv To show F(v) on H1 is
coercive however needs a detailed analysis on the functional F(v) and which will
essentially occupy the rest of the paper.

Consider the functional (4.5), the functional contains three terms, with the
nonlinear term having an estimate

and we will concentrate on the integral

\e2u\ev-\)2. (4.6)

First note that e2uo is a potential function which approaches 1 at infinity and
vanishes at the zeros of the Higgs field φ with the same order as |φ| 4. This diversity
requires different estimates on the integral (4.6) over different areas on the plane.

Consider

as a decomposition of the plane with

The function (ev — I)2 is also subject to different behaviors in different cases
and v^O. In the case

while in the case v^O by denoting ι;_ =max{0, —υ},

In both cases the function (ev — I)2 obeys the following:

\v\2

With the fact that the potential e2uo is small on the area Ωo and approaches zero
in a certain order in a neighborhood of a zero of the Higgs field, the method we will
use to estimate the integral (4.6) is to apply the inverse Holder inequality. We here
introduce the inequality and apply the inequality to estimate the potential integral.
The proof of the inverse Holder is simply by applying the Holder inequality.
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Theorem 4.8 (Inverse Holder Inequality). For any measurable functions /, g on an
area Ω,

with α, β are two real numbers, 0 < α < l , β<0 and - + — = 1.
α β

Return to the integral f e2u°{ev - I ) 2 . On the area Ωo, the potential e2uo is small

and approaching zero in an order at most 4ΛΓ around a zero of the Higgs field. Thus

for any constant β with — —— <β<0, f e2uoβ exists. By applying the inverse

Holder inequality

l

(4.7)

for some positive constant C6 and α with 0<α<l/(2iV + l).
On the other hand, on the area Ωx with e2uo^,

Ωo 2

Compare the estimates in two different cases: since

inequality (4.7) implies

\2 ί *

The constant C6 depends on the parameter, however, by applying the inequality

for x^O and for some positive constant C7, the integral J e2u°(ev — I)2 obeys the
Ωo

following estimate:

e2uo{ev-ί)2 ( ^e2uo{ev-ί)2> f ( T ^ Γ T ) - C 7 .

Thus the integrals on both areas Ωo and Ωx share the following common estimate:

Return to the functional
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by the estimates given above,

1
/ = 2 " " -llgoll:

for some positive constant C8. To show the coercivity of the functional F(v), we
notice that L2-norm ||ι;||2 can be controlled by HF0H2 and a lower norm by
interpolation.

Consider on the space Hί9

and the integral j v4 can be estimated by the following lemma.

Lemma 4.9. On H^R2) the following inequality holds:

Proof, On R2, any L\ function w satisfies

(see cf. Chap. 2 of [1 ]). Let w = v2 then the substitution and Holder inequality imply
the lemma.

Hence , 2

( i + ί l N 2 )

(1 + 11 Ml;
(4.8)

Using Lemma 4.1, the functional F(D) on fί t enjoys the following estimate:

1
! -2

1

2 I /-

for some positive constants Cg and C1 0. Therefore when the parameter μ is chosen
to be large, there are positive constants C u , C 1 2 such that

2 - C 1 0 . (4.9)

Applying inequality (4.8),

||Vv\\2

2

for positive constants C 1 3 to C 1 7.
\-c17 (4.10)
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As a consequence of the estimate (4.8), the infimum of F(v) is finite and F(v) is
coercive on the Banach space Hv

Theorem 4.10. The functional F(υ) achieves the minimum on the Banach space H1.

Proof. This is an immediate corollary of Theorem 4.5.

The differentiability of the functional F(v) on Hγ assures that the minima of F(υ)
satisfies the Euler-Lagrange equation (3.5) and the standard elliptic regularity
theory can be used to show that the solution fin Hx is smooth. Back to Eq. (2.5),
combining Theorem 2Λ,φ = e*(u+ίθ\ α = idz Inφ is a smooth Chern-Simons vortex
solution with zeros exactly at zu ..., zn. The Theorem in the Introduction is proved.

The last word we will say is the fact that it is easy to see that the solution to the
Euler-Lagrange equation (3.5) obeys an a priori estimate v + uo<0 by the
maximum principle which is equivalent to Theorem 2.2.
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