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Abstract. Correlation function of fields is presented as a Fredholm minor, at finite
coupling constant in one-dimensional Bose gas.

1. Introduction

We discuss correlation function of fields in the quantum nonlinear Schrodinger
equation model (NS-model). The Hamiltonian of this model is equal to

L
# = / dx@cp™oxp + cptptpy — hypty). (L1)
0

Here ¢ > 0 is a coupling constant, h > 0: chemical potential; L: a length of a
box; y(x): a canonical Bose-field:

lwX), )] =0(x—y), (12)
w(x)[0) =0.

In the limit ¢ = oo (free fermions) the correlator was calculated by Lenard
[1] in terms of a Fredholm minor. This representation was used for writing
differential equations for the correlator [2,3]. In the present paper we consider
the case of the finite coupling constant ¢. Using the method of algebraic anzats
Bethe we present the correlator as a minor of an integral operator, which depends
on auxiliary quantum fields. Such a representation can be used for writing the

system of integro-differential equations for the correlation function.

2. Algebraic Anzats Bethe

The main object of algebraic anzats Bethe is the monodromy matrix T (4). In the
case of NS-model it is 2 x 2 matrix:

T() = (g% g%) . @.1)



634 V.E. Korepin and N. A. Slavnov

Matrix elements are quantum operators, which depend on the spectral parameter
A. Commutation relations between these operators are given by the formula:

R4, W) (T(A) @ T(w) = (T (W) ® T(A))R( 1. (2.2)
Here R(4, p) is a 4 x 4 matrix with c-number elements
flw 40 0 0
_ 0 gd) 1 0
REwW=1"o¢ 1 gwdH o |° @3)
0 0 0 flw4d)
where ; L )
_ A—pu+tic e
fhw="5500 W=y (24)
The functions
fhw A—-p+ic
h(l, p) = T T 2.5)
2
O PR L S 6

h(4, w (A= (A —p+ic)

will also be useful.
Let us write down some of the commutation relations (2.2) explicitly:

[B(4), B(w)] = [C(4), C(W] =0, 2.7
A(WB(4) = f(n, AB(A) AW + g4, B AA), (2.8)
C(WDA) = f(u, HD(A)C (1) + g4, WD(WC(4), (2.9)

[C(w), B()] = g(w, 4) {AWD(A) — AA)DW)} . (2.10)

Other important objects in algebraic anzats Bethe are the pseudovacuum |0)
and dual pseudovacuum (0|. In the NS-model these vectors coincide with vectors
(1.2), so we use the same notations for them. Properties of |0) and (0] are the
following:

A(2)10) = a(4)[0);  D(A)[0) =d(A)[0); C(4)[0) =0
(01 4(4) = a(4) (01;  (0ID(4) =d(4)(0; (0| B(4) =0.
iAL
7 >
(1.1) coincide with eigenfunctions of transfer-matrix 7(1) = A(4) + D(4). They can
be written in the form

(2.11)

Here a(l) = exp{ — d(X) = a '(4). Eigenfunctions of Hamiltonian

N
1y ({4)) = [ BG)10), (2.12)

j=1
where all parameters 4; are different and satisfy the system

alt)) N-1
d(/tj)l_[hlk, i) - (2.13)

The function

z

(Tv{ap = [T c@p. (2.14)
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where A; also satisfy (2.13), is a dual eigenfunction.

To describe commutation relations between fields yp*(x), yp(x) and the oper-
ators A, B, C, D we use a lattice approximation of the model. The monodromy
matrix (2.1) is given by a product of L-operators

T(A) = Lm(A)Ly—-1(A) ... L1(4), (2.15)
where .
N
L,() = 2 A | Hodd. (2.16)

4 is a step of the lattice. Operators y;", y, are lattice approximations of the
fields y*(x) and p(x).
Their commutator is equal to

(w51 = 0m. @17
Let us represent T'(4) by the following way:
T(A) = Tr(A)T1(4). (2.18)
Here
T2(A) = Lyy(A)...Lp(A);  Ti(A) = Ly—1(A) ... L1 (A). (2.19)
n is a fixed site of the lattice and
Ti()) = (‘égg g%) =12 (2.20)

Using (2.16) one can obtain

[T2(4), w1 =iveLy(A) ... Lay1(A) ((1) 8) .

In the continuous limit 4 — 0, M — c0, M4 = L we can rewrite this formula
. 00
(ma, v = iver (] §)- @)

Here the point x corresponds to the n® site of lattice. Finally we have
[C2(4), w* (X)] = iv/e Da(4). (2.22)

Commutators p*(x) with elements of the matrix Tj(4) are equal to zero.
Commutator between y(0) and T (1) can be calculated in a similar way. Namely

[w(0), BA)] = —ivc A(2). (2.23)

The properties (2.22), (2.23) are sufficient for calculation of the correlation
function of the fields. At the conclusion of the section we’ll give some properties
of the matrices T1(4) and T»(4). Each of them satisfies Eq. (2.2) with the R-matrix
(2.3), so commutation relations (2.7)—(2.10) for operators 4;, B;, C;, D;(i = 1, 2)
are valid. The elements of the different matrix commute. Matrix T;(A) has a
pseudovacuum |0); and dual vector ;{0]. The pseudovacuum [0) is equal to
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|0) = |0); ® |0);. The properties of vectors |0); and ;(0] are similar to properties
of |0) and (0|:

Ai(A)10); = ai(A)[0);;  Di(A)|0); = di(2) |0);;  Ci(4)[0); =0

(2.24)
(01 4i(A) = ai(A) (0; {0 Di(2) = di(4){0l;  +{0| Bi(4) = 0.
I.Xl N iA A —1
Here a;(1) = exp< — 5 az(A) = exp 3 (L—x) p; di(4) = a7 (4).
Note that
a(t) = ai(Max(A),  d(A) = di(A)dz(4). (2.25)
Finally we’ll give a representation for the function H B(4)) |0) in terms of the
elements of matrices Ty and T, (see [4]): J=1
N
[1Bep0y = > [IBiGwI0) ]‘[ Ba () [0)2
Jj=1 A=l 1
x H ay (4x) H dy (Gr) [ £ G, Ann)- (2.26)

LII

Here the sum is taken over all partitions of the set {4} into two disjoint

subsets {4} and {A;}. The symbol [] { or [[ | means the product over all
4 € {41} (correspondingly 4 € {i1}). !
An analogous formula can be written for the dual function:

N
o [Tcon="> O] 0 [T C20h)
j=1 I 11

{A={a}u{iu}
x [T d2G) [T a1 CGan) [ £ G, 20) - (2.27)
I I

IL1I

3. Matrix Element of Operators ¥ (x) i (0)
In this section we’ll calculate the matrix element of the operator w* (x)yw(0):
N N
Gy = O T[] co5Hw*xw©) [T B2 10). (3.1)
j=1 j=t

Here the parameters {1} and {AB} are arbitrary complex numbers. The only
condition is A7 # A%, 5 # A%, (j, K = 1,..., N). Consider the action of the

N
operator 1(0) on the vector [] B(4;)|0). Using (2.23) we have
j=1

N
0 [T BG4 10) = —ive ZB(M B(ik-1)A(ix)Blik41) ... B(n) 10). (32)
j=1
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One can rewrite this formula as follows [see 2.8), (2. 11)]'

v(0) HB(A,) 10) = —ive Z Axa(Ax) 1'[ B(1) [0}, (33)
i=1 K=1 m=1
m#K

where Ak is a rational function on A’s, depending on the functions f and g
(2.4). Let us calculate this coefficient. Due to (2.7) the right-hand side of (3.3) is
symmetric in all 4, so it is sufficient to calculate the coefficient 4;. Obviously this
term can be obtained only if K =1 in (3.2):

—iy/e A(M)B(A2)... B(y).

Now we must move the operator A(A;) to the right, using only the first term in
formula (2.8). We have

N
Ay =[] G Am),

m=2
and so

N
Ax = [] £Gx, Am). (34)

m=1
m#K

N

Consider now the action yp*(x) on the vector (0| [] C(4;). To do it, it is
j=1

necessary to represent this vector in terms of C; and C, (2.27). After that all

calculations are analogous to the case already considered. Formula (2.22) shows

that

N
o [[ctpwtrm =ive > aildo)da(h)

j=1 {A={Au{l}U{au}

x 1(0] H Ci1(41) 2{0| H Ca(4n) H dy (A1) f (Ao, A1)
x ]‘[ a1 (Zn)f (A, Ao) H £, A1) (3.5)

LII

Here the sum is taken over three subsets {4o}, {41}, {Au}. Subsets {Ai}, {Au}
are arbitrary, subset {4y} contains exactly one element.

Formula (3.3) also can be written in terms of B; and B;. Combining this
formula with (3.5) we find matrix element Gy :

¢'Gy = > 1o T @) H Bi(4) 10)1

{A}={25 Ju{artulag I
(P={g uiaruiag

X200 [T C2G5) [ B2(3h) 10)2a1(4§)d2 (3§ a1 (A8 a2 (AF)
II

X H {a(AB)dy (A5, }H {d1(AB)as A f1S 182
Xl_[{flll fii (3.6)

LI
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Here partitions of the sets {4} and {48} are independent except that
card{A{} = card{AP}, card{i§} = card{AB} = 1. In (3.6) we also use abbre-
viated notations:

BE=r0E ), f§E =104§, i0)
etc. Such notations as
Wi =hOf, ), g5 =8(f, %), ik = t(4), k)

and others we’ll use in the next section.
So we expressed the matrix element Gy in terms of scalar products

o JTcaS ] BEP) 10)

4. Dual Fields

To write formula (3.6) as a determinant of N x N matrix we’ll use the technique
of dual fields. This approach was developed in [5]. Let us introduce 10 new fields.
Each of them is the sum of operator “coordinate” and operator “momentum”:

Puy(4) = Quc(A) + Ppy(A);  Ppi(A) = Qp(A) + Pay(); K=1,2,
®4,(4) = q4,(4) + pp,(4); ®p, (1) = qp, (1) + pa,(4),
®4,(4) = q4,(4) + pp,(2); ®p,(4) = qp,(2) + pa,(4),
@ 4,(A) = g4, (4) + pp,(4); @0y (4A) = qp,(4) + pa,(4).
These are Bose fields.

The fields @ and ¢ act in auxiliary Fock space. Vacuum in this space also will
be denoted by |0). All “momenta” annihilate it:

4.1)

P(4)10) = p(4)|0) = 0. 4.2)
The dual vacuum (0] is the eigenvector for “coordinates”:
(01Qux (4) = (01 gae () =Inak (D (0], K=1,2, (4.3)
(01 Qp, () = (Ol qpi(A) =Indk (1) (0, K=1,2, (4.4)
(01q4,(%) = (0l gp,(4) =0, (4.5)
(0]0) =1.

Nonzero commutators are

[P, (D), Qag ()] = 0jx Inh(u, 4)
[Pp,(2), Qo ()] = 0k Inh(Z, 1)’

[P4;(2), qax (W] = 0k Inh(u, 4)
[pp, (A, dp, (W] = djx Inh(4, p)’

The remarkable property of the fields @, ¢ is that they all commute:
[Po(A), Pp(D)] = [Pu(A), pp(1)] = [@a(4), p(w)] = 0. (4.8)

Here o, § run throw all the possible indices.

JK=112, (4.6)

, K=1273. 4.7
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One of the results of paper [5] is the representation of scalar product in terms
of dual fields @:

m(0] H Cn(%5) H Bu(A3) 10)m

j=1 Jj=1

= ]'[ g5<gRs (0 detyS™(AC, AB)[0), m=1,2. (4.9)
J>K

Here S™(AC, 4B) is an N x N matrix with elements
S (1, 18) = 58 exp{®4,(35) + @p, (1R)}
+ti; exp{®@p, (A7) + P, (35)} - (4.10)

Recall that the notations chKc , t5¢ mean g(AF, A%), (4§, A) correspondingly.
Using (4.9) one can write (3.6) in such a way

N
oy =[] g€kt Y (et

>K (2¢)=ag uiaruiag
{(#®}={ag yu{aPuiag

x (0] dety, SV (AE, AB) dety, SP (1S, 48) 0)
x a1 (A§)d2(A§) a1 (A) a2(A) H {a2(AB)dy (A )RS MEE

X H {dy (A a1 (AT S hoit } H {hIII 111 (4.11)
LII

Here we write all functions f(A, u) as a product g(4, wh(4, p) [see (2.5)] and
use property of antisymmetry of functions g(4, ). Pc,p is permutation, which

transforms sequence {452}, {A°2}, {45 %} into sequence {A55, ..., 4GP,
N; = card{A{}, N, =card{A{}=N—N;—1.
Now everything is ready to prove the following theorem.
Theorem. The matrix element Gy of operator p*(x)w(0) is equal to
= [T e} . (01detn M (0)lcc. (4.12)
J>K
Here M is an N X N matrix:
Mk = SRS, 1%) exp{oa (45) + @p, (1)}
— SR0S, A7) exp{op, (1) + 0.4, (1) + 00, iR))

+caay (Ag) exp{(PA; (%) + ¢, (7%)
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Proof. One should write dety M as a determinant of the sum of three matrices.
Calculating the derivative of o we have

é% (0| dety M |0) = Z (—1)PetPsl+N:
e e ntie
x (0] dety, SV (A, 1P) dety, SW (15, AB) - ca; (48)
x exp{@.4, (1) + 0.4,(18) + 0.4,(AF) + @0, (A5)}
x [ expioa, (4) + o, (2} [ | expien, (1)
11 11
+ @4, (M) + @p, (A} 10) . (4.14)

Calculating the vacuum mean value of the products ¢? we obtain formula (4.11),
which completes the proof.

So the matrix element ™ (x)y(0) is represented as a determinant of the N x N
matrix.

5. Correlation Function of Fields

Now let us use (4.12) to calculate the correlator in the N-particle state. To do it
one should put 1¢ = /lf = J; in (4.12), (4.13) and demand the {4} satisfy system
(2.13). First of all we transform the determinant:

(0] dety M |0)
N
= (0] [] exp{®@4,(25) + @p,(A2) + 04, (A5) + @p, (A) dety M [0)
m=1
N N
=[] a5y d@l) T hS2 (0 dety M10), (5.1)
m=1 m,e=1
where
N
(0 = (0] T] exp{Pp,25) + P, (A5) + po,(A5) + pa,(A5)} (52)
m=1
Mk = Mg exp{—®4,(2$) — Op,(3) — 0.4, (A5) — 0p, (A%} . (5.3)

Then we'll construct new fields @,, &, which are equal to
@, (7) = ®,(2) — (0] @,(2) [0),
$a(4) = @2(2) — (0] 94(2) |0).

Each of the new fields can be, as before, expressed in terms of “coordinate”
and “momentum” by formulae (4.1), in which @, and ¢, must be replaced by &,
and §, correspondingly. Commutation relations (4.6), (4.7) are also valid. The

(5.4)
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only difference is that now all “coordinates” annihilate the dual vacuum (0]. In
terms of &, and @, the matrix M looks as follows:
Mk =158 + 175 exp{®4,(AR) — Bp,(AR) + Bp,(AT) — D4,(i5)} x Z(AR)Z 7' (4F)
- [th exp{®4, (/1,?) + ®p, (AR)}
a(Ag)di (A7)
di(Ag)a1(%5)
x Z(R)Z7(45) exp{Pp, (A7) — P, (A7) — B4, (25)
+ (7)A2 (AIB() + ¢D3 (Az) - c~§DZ (ig) - (~PD1 (,{ﬁ)}

+ e Zlgfizu 27105 exp{B0, () — B4, (5) — 94, 25)

+ &4, (%) + P, (AR) — B, (%) — P, (AR)} - (5.5

+ tKj eXp{¢A1 (AB + ¢D1 j'C)}

Here

ax(A hBB
z0) = dzgf)l‘[ g,
" (5.6)

a(A§) hSE

Z(6) = —1 L
=g g

The last step is to put A§ = A7 = 1; and use (2.13). In this case

dl()') ixA
ay(4) e

Z() =

and we have

0] 1'[ C(A)w* () (0) HB(A,) 10) = 1'[ f,K —(Oldety V10)| . (57
j=1 j=1 ;I;Kl a=0
J

Vik = cdjk (L + Z K,m> + tjk + tgj exp{ixig;

m=1
+ @ 4,(Ak) — Pp,(Ak) — P, (A)) — Dp, (1))}
— [tjx expf{ixig; + Da, (A)) + Dp, (Ak)} + txjexp{ P4, (Ak) + Dp,(4))}]
X exp{®p, (Aj) — P4, (4)) — B, (A)) + P4, (Ax)
+ &b, (Ax) — Pp, (Ak) — @b, (Ax)}
+ coexpy {—ixAj + Pa, (Ak) + P4, (Ak) — Pp, (Ak)
— &p,(Ak) + @0, (A)) — Du, (A))} (58)
where Ag; = Ak — 4; and
2c

—(l T (59

Kjm = K(4j, Jm) =
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Formula (5.8) gives us an expression for the correlator of fields in the N-particle
state.

Consider now the correlator of fields in the ground state of the Hamiltonian:
|®)

.
(v (o) = 21V <§C|)g)(o) ®) (5.10)

This correlator can be obtained from (5.7) in the thermodynamic limit:
N — o0, L - o, N/L = const. The eigenstate |Q) is a Dirac sea. Momenta of
particals /; are bounded by the Fermi momentum g : |4;| < q. They are described
by the distribution density ¢(4) which satisfies the equation

1., 1
(1—57—[K) o) =5 (5.11)

Here K is the integral operator, acting in the interval [—q, q] with the kernel
K (4, u) [see (5.9)]. The square of the norm of the eigenfunction |®) was calculated
in [7]:

N N

1 4

(@| D) (2mcLo(4; xdet| 1 — — K ). 5.12

91 =[] et T1 1 et(1- 55 &) 5.12)
#K

To write down the expression for the correlator in thermodynamic limit it is

sufficient to replace the sum Z Kn in (5.8) by the correspondent integral. Using
(5.11) one have

L+ Z Kjm — L (1 +/ KA, )Q(u)du> =2nLo(%;)), (5.13)
m=1 Zq
so we obtain

~ 1 4
(@ det(l b Vo) 10)
v (v ) = o 2 , (514
det(l - Z K) o

where Vg is the integral operator, acting in the interval [—q, g] with the kernel:

Voldy 1) = t(A, ) % %9 4 1(u, 4)

X exp {M + &jAz (’1) - @Dz (/1) + gNﬁDz (Au) - &3/‘12 (#)}

_ [t(/l, 1) exp {ﬂ‘-z‘—” + B4, (1) + Bp, (u)}

+ t(u, 4)exp {K(lz_—”) + B4, (1) + P, (/1)}]
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X exp{®p,(A) — P4, (A) — P4, (A) + P, ()
+ &b, (1) — &b, (1) — Pp, (W)}

+acoxp{ = 5 (40 + 90,00 = (D) + a0

+ 0000 = 20,00 = B0, }. (5.19)
In the case of finite temperature the correlation function of fields is equal to
8]
&r|pt(x)yw(0) |P
<1P+(X)1P(0)>T — ( le ( )lp( )l T) , (516)
(or | 21)

where |®@7) is one of the eigenfunctions, describing the state of thermodynamic
equilibrium. The distribution density is equal to

2me(A)0~'(2) =1+ / K4 wewdu, (5.17)
071() = 1+ exp [%’D] ) (5.18)

T is the temperature, and &(1) — density of energy:
[¢9)
e)=12—h+ % /K(l, 1) ln<1 +exp [— @] ) du. (5.19)
—0

It is easy to see that in the case of finite temperature the correlator is equal to

~ 1 A
] det(l + 5 VT> |0)

W Wy O)r = 5 ( V| (5:20)
a=0

1 A
1-—K
T

Here

Vr(4, u) = Vo(d, 1) v/0(A)0w), (5.21)
Vr(d, @) = K(4, 1) v/0(1)0(n). (5:22)

Note that in the point of free fermions (¢ = co) all dual fields can be put
equal to zero, because all “coordinates” and “momenta” commute. The kernel
Vo symplifies:

sin = (A — 1)
2 ) - o ix
-1 — 2 — 5 (+p)
Volemoo = —= —=—— + — ¢ 2 . 2
Wolemo = 2 —2 e (523)
In such a form this answer was obtained before in [1].

In conclusion let us notice that the method of dual fields, described in this
paper and before in [5, 6], can be easily generalized for calculation of multipoint
correlation functions. It also gives us the possibility to calculate correlators in
models with an R-matrix of XXZ type.
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