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Abstract. Correlation function of fields is presented as a Fredholm minor, at finite
coupling constant in one-dimensional Bose gas.

1. Introduction

We discuss correlation function of fields in the quantum nonlinear Schrodinger
equation model (NS-model). The Hamiltonian of this model is equal to

L

J f = / dx{dx\p+dx\p + cψ+ψ+ψψ — hψ+ψ). (1.1)

o

Here c > 0 is a coupling constant, h > 0: chemical potential; L: a length of a
box; ψ(x): a canonical Bose-field:

[ψ(x),ψ+(y)]=δ(x-y),

V(x) |0>=0. l }

In the limit c = oo (free fermions) the correlator was calculated by Lenard
[1] in terms of a Fredholm minor. This representation was used for writing
differential equations for the correlator [2,3]. In the present paper we consider
the case of the finite coupling constant c. Using the method of algebraic anzats
Bethe we present the correlator as a minor of an integral operator, which depends
on auxiliary quantum fields. Such a representation can be used for writing the
system of integro-differential equations for the correlation function.

2. Algebraic Anzats Bethe

c anz
2 ma

_(A(λ) B(λ)\

y )

The main object of algebraic anzats Bethe is the monodromy matrix T(λ). In the
case of NS-model it is 2 x 2 matrix:

A(λ) B(λ)\
(2Λ>
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Matrix elements are quantum operators, which depend on the spectral parameter
λ. Commutation relations between these operators are given by the formula:

R(λ, μ) (T(λ) Θ T{μ)) = (T(μ) ® T(λ))R(λ, μ). (2.2)

Here R(λ, μ) is a 4 x 4 matrix with c-number elements

f{μ,λ) 0 0 0

R{λ> μ) ~ 0 1 g(μ λ) 0 ' ( 2 3 )

where

0
0
0

1
0

λ) 1

0

σ(2 π

λ)

Λ

0
0

f(μ,<

/(A, μ) = λ-Z±±± . g ( 1, μ ) = *1_. (2.4)
Λ — /I Λ — \X

The functions

M;,) = ί M = ^ U E , (2.5)
g(λ, μ) ic

ί ( i ' μ) h(λ, μ) (λ-μ)(λ-μ + ic) ( Z 6 )

will also be useful.
Let us write down some of the commutation relations (2.2) explicitly:

= [C(λ),C(μ)]=O9 (2.7)

A(μ)B(λ) = f(μ9 λ)B(λ)A(μ) + g(λ, μ)5(μ)^(A), (2.8)

(λ, μ)D(μ)C(λ), (2.9)

- A(λ)D(μ)} . (2.10)

Other important objects in algebraic anzats Bethe are the pseudovacuum |0)
and dual pseudovacuum (0|. In the NS-model these vectors coincide with vectors
(1.2), so we use the same notations for them. Properties of |0) and (0| are the
following:

A(λ) |0) = a(λ) |0); D(λ) |0) = d(λ) |0); C(λ) |0) = 0,

(0\A(λ)=a(λ)(0\; (0\D(λ) = d(λ)(O\; (0\B(λ)=0. ( ' j

Here a(λ) = exp < — >, d(λ) = a~ι{λ). Eigenfunctions of Hamiltonian

(1.1) coincide with eigenfunctions of transfer-matrix τ(λ) = A(λ) +D(λ). They can
be written in the form

N

Yl\0), (2.12)

where all parameters λj are different and satisfy the system

ajλj) Λ hjλj, λk) _ N _!

The function

H9 (2.14)
7 = 1
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where λj also satisfy (2.13), is a dual eigenfunction.
To describe commutation relations between fields tp+(x), ψ(x) and the oper-

ators A, B, C, D we use a lattice approximation of the model. The monodromy
matrix (2.1) is given by a product of L-operators

T{λ) = LM(λ)LM-i(λ) ...L{(λ), (2.15)

where

Ln(λ)=\ 2 a Λ )+0(Δ2). (2.16)

A is a step of the lattice. Operators ψ+, ψn are lattice approximations of the
fields ψ+(x) and ψ(x).

Their commutator is equal to

[ψn,Ψ+] = ^δnm. (2.17)

Let us represent T(λ) by the following way:

T(λ) = T2(λ)Tι(λ). (2.18)

Here

T2(λ) = LM(λ)...Ln(λ); Γ1(A) = Ln_1(A)...L1(A). (2.19)

n is a fixed site of the lattice and

Using (2.16) one can obtain

[T2(λ\ ψϊ] = ίy/ΪLM(λ)...Ln+i(λ) (Q °Λ

In the continuous limit A -> 0, M —> oo, Mzl = L we can rewrite this formula

[T2(A), φ+(x)] = i7cT2(λ)

Here the point x corresponds to the nth site of lattice. Finally we have

[C2{λ\xp+{x)]=i^cD2{λ). (2.22)

Commutators ψ+{x) with elements of the matrix Tγ{λ) are equal to zero.
Commutator between ψ(0) and T(λ) can be calculated in a similar way. Namely

[ψ(0)9B(λ)] = -ί^Λ(λ). (2.23)

The properties (2.22), (2.23) are sufficient for calculation of the correlation
function of the fields. At the conclusion of the section we'll give some properties
of the matrices T\(λ) and Tι{λ). Each of them satisfies Eq. (2.2) with the ̂ -matrix
(2.3), so commutation relations (2.7)-(2.10) for operators Au Bu Q, Dt(i = 1, 2)
are valid. The elements of the different matrix commute. Matrix Ti(λ) has a
pseudovacuum |0)z- and dual vector f(0|. The pseudovacuum |0) is equal to
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|0) = |0)2 ® |0> 1. The properties of vectors |0)j and z (0| are similar to properties
of |0) and (0|:

Mλ) \0)t = θi{λ) 10), Dt{λ) |0)f = d^λ) 10),; Q(λ) |0)f = 0,

i(0\Ai(λ) = ai(λ)i(0\; f(0| A W = di(λ) f(0|; i(0\Bi(λ)=0. ( * j

Here fll(λ) = exp | - ^ j , α2(λ) = exp | ^ (L - x ) | * μ ) = ^Γ1 W

Note that

a(λ) = aι(λ)a2{λ), <*μ) = dΐ(λ)d2(λ). (2.25)

iV

Finally we'll give a representation for the function f| #(^7) |0) in terms of the
elements of matrices T\ and T2 (see [4]): J={

N

Y[B(λj) |0> = X Π Bi(^i) l°)i Π

x f] α2μi) Π <Ίθω Π
I II I, II

Here the sum is taken over all partitions of the set {λ} into two disjoint

subsets {λ\} and {/In}. The symbol Π ( o r Π ) means the product over all
λ e {λι} (correspondingly λ e {λu}). ι ^ π /

An analogous formula can be written for the dual function:

N

(0| Y[C(λj) = ^ i<0| Π Ci(Λi)2<0| Π C2OI11)

x Π d2(λι) Π fli(λπ) Π /(^π, λi) (2.27)
I II I, II

3. Matrix Element of Operators ψ+ (x) ψ (0)

In this section we'll calculate the matrix element of the operator ψ+(x)ψ(0):

N N

λf)xp+(x)ψ(0) Π B(Xf)GN = (0| Π C(λf)xp+(x)ψ(0) Π B(Xf) |0). (3.1)

Here the parameters {λc} and {/lβ} are arbitrary complex numbers. The only
condition is λ^ ^ A|, λj ^ λ%, (j, K = 1, ..., N). Consider the action of the

operator ψ(0) on the vector JJ B(λj) |0). Using (2.23) we have
7 = 1

N N

ψ(0) J ] B(A;) |0) = -iyfi Σ B^) • • • B(λK-l)A(λκ)B(λκ+1)... B(λN) |0). (3.2)

7 = 1 ^ = 1
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One can rewrite this formula as follows [see (2.8), (2.11)]:

N N N

ψ(0) Π B(λj) |0> = -ivG Σ AκΦκ) Π B^) 1°) > ( 3 3 )
i = l K = l m = l

where Λ^ is a rational function on λ's, depending on the functions / and g
(2.4). Let us calculate this coefficient. Due to (2.7) the right-hand side of (3.3) is
symmetric in all λ, so it is sufficient to calculate the coefficient A\. Obviously this
term can be obtained only if K = 1 in (3.2):

-iy/3A(λ1)B(λ2)...B(λN).

Now we must move the operator A(λ\) to the right, using only the first term in
formula (2.8). We have

N

m=2

and so
N

f(λκ,λm). (3.4)
m = l
mφK

N

Consider now the action ψ+(x) on the vector (0| J | C(λj). To do it, it is
7 = 1

necessary to represent this vector in terms of C\ and C2 (2.27). After that all
calculations are analogous to the case already considered. Formula (2.22) shows
that

N

(0| Π C[λj)φ+(x) = iV~c X βiβo)d2(λo)

x i<0| Π Ci(λi)2<0| Π C2(^ii) Π rf2(Ai)/(20, λτ)
I II I

/(An, λi). (3.5)
II I, II

Here the sum is taken over three subsets {λ0}, {λι}9 {λu}. Subsets {λi}, {λu}
are arbitrary, subset {λo} contains exactly one element.

Formula (3.3) also can be written in terms of B\ and B2. Combining this
formula with (3.5) we find matrix element GN '

c-χGN = Σ i<0| Π Ci(λf) Π Bdλf) |0)i
1 1

x2(0|

{a2(λϊ)d2(λϊ)fCcf™}__
π

(3.6)
I, II
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Here partitions of the sets {λc} and {λB} are independent except that
card{Λ,f} = card{/lf}, cardj/l^} = csirά{λB} = 1. In (3.6) we also use abbre-
viated notations:

/I,II — /(^i> ^II)> /oi = /(^o> K )

etc. Such notations as

h™ = h(λf9 Ag), g;

c

x

c - g(A;

c, λ£), tjK = t(λj9 λκ)

and others we'll use in the next section.
So we expressed the matrix element GN in terms of scalar products

(0\Y[C(λc)l\B(λB)\0)

4. Dual Fields

To write formula (3.6) as a determinant oΐ N x N matrix we'll use the technique
of dual fields. This approach was developed in [5]. Let us introduce 10 new fields.
Each of them is the sum of operator "coordinate" and operator "momentum":

ΦΛK (λ) = QAκ (λ) + PDκ (λ) ΦDκ (λ) = QDκ (λ) + PΛκW> K = 1929

φΛι (λ) = qAι (λ) + po2 (λ) φDι (λ) = qDι (λ) + pAl (λ),

φAl (λ) = qAl (λ) + pDι (λ) φDl (λ) = qDl (λ) + pAι (λ),

(pΆ3 (λ) = qAι (λ) + PD2 (λ) φD3 (λ) = qDj (λ) + pM (λ).

These are Bose fields.
The fields Φ and φ act in auxiliary Fock space. Vacuum in this space also will

be denoted by |0). All "momenta" annihilate it:

P(λ)\0)=p(λ)\0)=0. (4.2)

The dual vacuum (0| is the eigenvector for "coordinates":

(0| QΛκW = <0| qΛκW = inαxW (0|, K = 1, 2, (4.3)

<0| QDK(λ) = <0| qDκ(λ) =lndκ(λ)(0\, ϋC = 1, 2, (4.4)

(O\qA2(λ) = (O\qD3(λ)=O, (4.5)

<01 0> = 1.

Nonzero commutators are

[PAj (λ), QAκ (μ)) = δJK In h(μ, A) . =

/ ) ' 7 '

/ , λ) . „ , , , , r y l - .
r / n /• \ i s 1 7 / 1 \> 7> ̂  = 1 , 2 , 3 . ( 4 . 7 )

IPDJW, qDκ{μ)l = OjKinh(λ, μ)

The remarkable property of the fields Φ, φ is that they all commute:

[Φa(λ), Φβ(λ)] = [Φa(λ), φβ(μ)] = [ΨM, <Pβ(μ)] = 0. (4.8)

Here α, β run throw all the possible indices.
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One of the results of paper [5] is the representation of scalar product in terms
of dual fields Φ:

; = 1 7 = 1

JV

= Π SjKgK* Φ\ detNS^(λc

9 λB) |0), m = 1, 2. (4.9)

j>K

Here S{m)(λc, λB) is an JV x JV matrix with elements

S$(λc, λB) = ήBcxp{ΦΛm(λf) + ΦDm(λB

κ)}
+ ήβ exp{ΦDm (λf) + ΦAm (λB

κ)}. (4.10)

Recall that the notations gf£, tjB mean g(λf, λζ), t(λj9 A|) correspondingly.
Using (4.9) one can write (3.6) in such a way

f, λf) d e t W 2 S ( 2>μ r

c

l 5 Ag)

I

x Π {di(ΛS)α,(Ag)fcgf Λfi?} Π (fc.Ci,Wi} (4-11)
II I, II

Here we write all functions f(λ, μ) as a product g(λ9 μ)h(λ, μ) [see (2.5)] and

use property of antisymmetry of functions g(λ9 μ). PQ,B is permutation, which

transforms sequence {λ^B}, {/lf'S}, {^π'β} i n t 0 sequence {Λ-f's,..., λ^B},

N{ = c a r d μ f } , N2 = cardfAg} = JV - JVi - 1.

Now everything is ready to prove the following theorem.

Theorem. The matrix element G^ of operator ψ+(x)ψ(0) is equal to

(0| detiv M | 0 ) | α = 0 . (4.12)
j>K

Here M is an N x JV matrix:

fl(λf, λi)&φ{φAl(λf) + φDι(λ%)}

S$(λf, λB

κ) expl^μf) + φA2(4) + ΨDMI)}

ca aλ (λB

κ) exp{φ^3 (λB

κ) + φAl (λB

κ)

φAι(λf) + φD2(λf)}. (4.13)
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Proof. One should write det/v M as a determinant of the sum of three matrices.
Calculating the derivative of α we have

- - (0| det̂ v M |0> = V (_I)[^C+PB]+NI
doc ^-^

{λcMλc

o}u{λf}u{λ^}

{λη={λB

0}u{λf}u{λ^}

x (0| detjv, sM(λf, λf) άetN2

x Gxp{φA3(λg) + φΛ2(λg) +

x J^explφ^μfj) + φ
(4.14)

Calculating the vacuum mean value of the products eφ we obtain formula (4.11),
which completes the proof.

So the matrix element ψ+(x)ψ(0) is represented as a determinant of the TV x N
matrix.

5. Correlation Function of Fields

Now let us use (4.12) to calculate the correlator in the iV-particle state. To do it
one should put λC; = λ1- = λj in (4.12), (4.13) and demand the {λ} satisfy system
(2.13). First of all we transform the determinant:

(0| detN M |0)

N

m = l

N N

= f ] a(λcj d(λB

m) [ ] hcj (0| detN M |0), (5.1)
m=l m,e=l

where
N

<0| = (0| f ] exp{PD2(A^) + PAM + pD2(λS) + PA2(%)} , (5.2)
m = l

M7 κ = MjK txp{-ΦAι(λj) - ΦD2(λB

κ) - φΛι{λj) - (PDMK)} • (5-3)

Then we'll construct new fields Φα, φα which are equal to

Φαμ) = Φαμ)-(δ|Φαμ)|θ>,

ΦαW=φαW-(δ|φα(λ)|0>.

Each of the new fields can be, as before, expressed in terms of "coordinate"
and "momentum" by formulae (4.1), in which Φα and φα must be replaced by Φα

and φα correspondingly. Commutation relations (4.6), (4.7) are also valid. The
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only difference is that now all "coordinates" annihilate the dual vacuum (0|. In
terms of Φα and φa the matrix M looks as follows:

MJK = ήi + φ exp{Φ^2(A|) - ΦDl(λB

κ) + ΦD2(λf) - ΦA2(λf)} x Z(λB

κ)Z~ι(λf)

X Z(λl)Z~\λf) exp{φD2(^) - ΦAl(λf) ~ ΨM

+ m ψ^-Z(λB

κ)Z-ι(λf)cxp{φD2(λf) - ΦΛ2(λf) - ψAί(λf)

+ φA2(λB

κ) + φDi(λB

κ) - ΦD2(λB

κ) - φDi(λBκ)} • (5-5)

Here

The last step is to put λ^ = λJ = λj and use (2.13). In this case

and we have

JV N N ~

C(λj)ψ+(x)ψ(O) Π B(λj) |0) = ΓT fjK — <0| dew V |0) , (5.7)
0CC α=0

/ * \

VjK = cδjK I L + 2^ K ; m I + ί7 x + ίK; Qxp{ίxλKj

\ m=l /

+ ΦA2(λK) - ΦDl(λK) - ΦAl(λj) - ΦD2(λj)}

- [tjK Qxp{ίxλKj + ΦAι (λj) + ΦDι (λκ)} + tKj expjΦ^! (/lκ) + ΦDX (λj)

x exp{φ/)2μ; ) - ΦAl(λj) - φAι(λj) + φAl(λκ)

+ ΦD 3(^K) — ̂ D2(^x) ~~ Φϋι(λκ)}

+ cαexpiί-ίxλ; + φAs(λκ) + φAl(λκ) - φDι(λκ)

- ΦD2 (λκ) + ΦD2 (λj) - ΦAl (λj)}, (5.8)

where λKj = λκ — λj and

(5.9)
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Formula (5.8) gives us an expression for the correlator of fields in the N-particle
state.

Consider now the correlator of fields in the ground state of the Hamiltonian:

I*)

'̂ ff* (5.10)

This correlator can be obtained from (5.7) in the thermodynamic limit:
N -> oo, L —• oo, N/L = const. The eigenstate \Ω) is a Dirac sea. Momenta of
particals λj are bounded by the Fermi momentum q : \λj\ < q. They are described
by the distribution density ρ(λ) which satisfies the equation

{5Λ1)

Here K is the integral operator, acting in the interval [—q, q] with the kernel
K(λ, μ) [see (5.9)]. The square of the norm of the eigenfunction \Φ) was calculated
in [7]:

A A / l A\

(Φ I Φ> = Π PπcLρμy)) f ] /y* det ί 1 - — K J . (5.12)

To write down the expression for the correlator in thermodynamic limit it is
N

sufficient to replace the sum Σ Kjm in (5.8) by the correspondent integral. Using
(5.11) one have m=ι

A / qr \
L + X Kjm -> L 1 + / K(λj9 μ)ρ(μ)dμ = 2πLρ(λj), (5.13)

so we obtain

<0|detfl + - ^ F o V )
(ψ+(x)ψ(0)) =

d χ ' I 2πc
(5.14)

2π

where VQ is the integral operator, acting in the interval [—q9 q] with the kernel:

ix(μ — λ)
x exp ^ κμ

2

- I t(λ9 μ) exp

+ t(μ, λ) exp I lX{λ

2

 μ) + ΦAι (μ) + ΦDι (A)
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X exp{φD2(λ) - φAι(λ) - ΦA2(λ) + ΦAM

+ φD,(μ) - φDl(μ) - ΦD2(μ)}

+ OLC exp I - ^ (λ + μ) + φDl (λ) - ΦAl (λ) + φA, (λ)

(5-15)

In the case of finite temperature the correlation function of fields is equal to
[8]

where \Φτ) is one of the eigenfunctions, describing the state of thermodynamic
equilibrium. The distribution density is equal to

00

2πρ{λ)θ-χ(λ) = 1 + J K{λ,μ)Q(μ)dμ, (5.17)

(5.18)

T is the temperature, and ε(λ) - density of energy:

ε(λ) = λ2~h + ̂ j κ(λ> ») l n ( ! + e xP [ - ^ ] ) d» ( 5 1 9 )
— 0 0

It is easy to see that in the case of finite temperature the correlator is equal to

(ψ+(x)ψ(O))τ = T-

2 π * α=0

(5.20)

Here

(5.21)

(5.22)

Note that in the point of free fermions (c = oo) all dual fields can be put
equal to zero, because all "coordinates" and "momenta" commute. The kernel
Vo symplifies:

2 sin-(A-μ)

π λ — μ 2π

In such a form this answer was obtained before in [1].
In conclusion let us notice that the method of dual fields, described in this

paper and before in [5,6], can be easily generalized for calculation of multipoint
correlation functions. It also gives us the possibility to calculate correlators in
models with an ^-matrix of XXZ type.
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