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Abstract. This is the first part of a two-part paper dedicated to the definition of
BRST quantization in the framework of geometric quantization. After recogniz-
ing prequantization as a manifestation of the Poisson module structure of the
sections of the prequantum line bundle, we define BRST prequantization and
show that it is the homological analog of the symplectic reduction of prequan-
tum data. We define a prequantum BRST cohomology theory and interpret it in
terms of geometric objects. We then show that all Poisson structures correspond
under homological reduction. This allows to prove, in the BRST context, that
prequantization and reduction commute.

1. Introduction

This is the first part of a two-part paper aimed at defining BRST quantization.
Although BRSTquantization has become the preferred method to quantize gauge
systems, almost no attention has been focused on the problem of defining this
procedure formally nor to justify its validity; the only justification for the validity
of the BRST quantization procedure being that it is analogous to its better-
understood classical counterpart. The BRST quantization of a gauge theory
consists roughly in the quantization of a larger system to which it corresponds
classically (after homological reduction). However only in very special systems
(e.g., free string theory) can one actually show that the quantum theories also
correspond (after homological reduction).

We shall work throughout this paper in the symplectic or hamiltonian frame-
work in which classical BRST appears in its more natural form. To fix the ideas,
let (M, Ω) be a symplectic manifold in which one has defined a set of irreducible
first class constraints. Then there is a geometric construction (outlined in Sect. 2)
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by which - if the constraints are sufficiently nice - one can reduce (M, Ω) to
a lower-dimensional symplectic manifold (M,(2). This geometric construction,
called symplectic reduction, provides the geometric underspinning for the clas-
sical BRST procedure; or, equivalently, classical BRST provides an algebraic
(more precisely, homological) realization of symplectic reduction.

The quantization of constained systems consists in the successful completion
of the following diagram:

canonical

(M,Ω)

I 1
~ ~ canonical

(M,Ω) — — > Jfphys
quantization

quantization

(1.1)

where by J f and Jf'phys we mean the hilbert spaces of the respective quantum
theories and by successful we mean that the rightmost arrow can be constructed in
such a way that the diagram commutes. That is, to go from the initial data (M, Ω)
to the physically meaningful quantum theory on J f phy s it does not matter which
route we take: we could either first symplectically reduce (M,Ω) to (M,Ω) and
then canonically quantize this latter symplectic manifold, or we would quantize
(M9Ω) directly and then recover algebraically the physical states1. In practice
the second route is preferred because either the symplectic reduction is hard to
do explicitly or, even when it can be done, one may lose desirable properties
of the redundant formalism: locality, covariance, ... . Nevertheless even when
in practice there is only one way to effectively construct the quantum theory it
is important to verify that the diagram is commutative. The only results of a
general nature that hint at the commutativity of (1.1) are the results of Guillemin
and Sternberg [1] which essentially state its commutativity for the special case
of M a (simply connected) compact Kahler manifold and M its reduction via
the Poisson action of a (simply connected) compact Lie group. However, the
conjecture of commutativity is further supported by our experience with certain
exactly solvable systems, for instance, free string theory where we can do BRST
quantization or go to the lightcone, and both theories have been shown to have
the same spectrum. See also the recent article by Duval, Elhadad, and Tuynman
[2], where the commutativity of the diagram is shown to hold for some special
systems. In this first part of the paper we prove the commutativity of the related
diagram to (1.1) in which the horizontal arrows correspond to prequantization:
the first step in the geometric quantization program.

In defining BRST quantization it seems natural to exploit the symplectic
nature of classical BRST. There are two quantization prescriptions which can
be defined intrinsically in terms of symplectic data: geometric quantization and
Poisson deformations. We will focus only in the former method; leaving the
Poisson deformation formulation of BRST quantization to a further publication.

1 Matters are further complicated by the fact that the horizontal arrows in (1.1) do not exist in
general. This is nothing but the statement that given a classical dynamical system there is no unique
way to quantize it, or sometimes it cannot be quantized at all ("first quantization is not a functor,"
"there is nothing canonical about canonical quantization"); but we should not let this thwart our
plans



Geometric BRST Quantization 211

Roughly speaking quantization consists of finding a representation for the Lie
algebra of real valued smooth functions on a symplectic manifold as self-adjoint
operators in a Hubert space subject to a finite reducibility condition forced by the
uncertainty relation. It is well known that such a representation does not exist:
either we relax the finite reducibility condition or we restrict the range of the
representation to a subalgebra of the smooth functions. Geometric quantization
is an attempt at developing a mathematically consistent quantization scheme. It
consists of two steps: prequantization and polarization. In prequantization the fi-
nite reducibility condition is relaxed and one simply constructs the representation.
Then polarization takes care of restricting the Hubert space and in the process
the functions that can be represented. The two steps are fairly independent and
therefore we treat only prequantization in this paper. In the second part of this
paper [3] we will discuss polarizations.

This paper is organized as follows. In Sect. 2 we briefly review the main
facts of classical BRST that we need in the sequel. We have tried to be as
brief as possible while still maintaining a reasonable level of comprehensiveness.
Consequently no proofs are given and we have limited ourselves to introducing
the objects and the main results. The section starts with a brief discussion of
symplectic reduction which, aside from being the geometric motivation behind
classical BRST, is a good picture to keep in mind throughout the algebraic
constructions which follow. The section then continues with a brief description
of classical BRST from the point of view that it is the algebraic realization of a
topological subquotient. Finally the section concludes with a description of the
Poisson structure of classical BRST: a structure which plays a fundamental role
in all our considerations. In Sect. 3 we introduce prequantization and show that
it is intimately related to the notion of a Poisson module. We have not seen
Poisson modules defined anywhere2 but we feel our definition is the natural one.
Reasoning by analogy we then define a prequantum BRST operator. In Sect. 4
the cohomology of the prequantum BRST operator is analyzed. We employ a
spectral sequence argument together with some bundle gymnastics to relate it to a
certain cohomology theory of vertical forms with coefficients in a line bundle. In
order to obtain these results we need a purely algebraic lemma which is relegated
to the appendix although promoted to a theorem. We then show that the zeroth
dimensional prequantum BRST cohomology corresponds to the sections of a
prequantum line bundle over the reduced symplectic manifold as we expected.
After the construction of an invariant pointwise inner product we are able to
show that all of the prequantum data gets induced via BRST. In other words, we
show that prequantization and reduction commute in general. Finally in Sect. 5
we offer some concluding remarks.

2. Classical BRST

In this section we will review the classical BRST construction. Since the motiva-
tion for the construction lies in symplectic reduction we briefly review this in the
first subsection. The next three subsections outline the BRST construction. The
final subsection places the BRST construction within the framework on Poisson
superalgebras.
2 Although in a very interesting recent paper by Huebschmann [4] they are seen to be special
cases of a modules over a much more general kind of algebra than Poisson algebras: Rinehart's
(A, R) -algebras
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Symplectic Reduction

Let us start by reviewing the reduction of a symplectic manifold by a coisotropic
submanifold. In particular we are interested in the case where the submanifold is
the zero locus of a set of first class constraints. The interested reader can consult
[5] for a very readable exposition of this subject.

Let (M, Ω) be a 2rc-dimensional symplectic manifold and i : Mo —• M a
coisotropic submanifold. That is, for all m e Mo, TmM^ £ TmM0, where TmMQ =
{X e TmM I Ω(X, Y) = OVΎ G TmM0}. Because dΩ = 0, the distribution
m I—• TmM.Q is involutive and it is known as the characteristic or null distribution
of i Ω. If its dimension is constant then, by Frobenius theorem, Mo is foliated
by maximal connected submanifolds having the characteristic distribution as its
tangent space. There is a natural surjective map π from Mo to the space of leaves
M sending each point in Mo to the unique leaf containing it. If the foliation
is fibrating the space of leaves inherits a smooth structure making π a smooth
surjection. If that is the case there is a symplectic structure Ω on M obeying

π*Q = j*Ω. The resulting symplecting manifold (M,Ω) is called the symplectic
reduction of M by Mo.

In this paper we will focus on a very specific kind of coisotropic submanifold.
Let {φί} be a set of k smooth functions (constraints) on M and let J denote the
ideal they generate in C°°(M). The constraints are said to the first class if J is
a Lie subalgebra of C^iM) under Poisson bracket. This is clearly equivalent to
the existence of smooth functions {/;/} such that {φu φj] = Σfijkφk> Assembling

k

the φi together into one smooth function Φ : M -> IR\ we define Mo = Φ~{(0).
If 0 is a regular value of Φ - i.e., the tangent map dΦ is surjective - the
constraints are called regular. In this case Mo is a closed embedded coisotropic
submanifold of M. Let X\ denote the hamiltonian vector field associated to φ\.
The characteristic distribution of Mo is spanned by the {Xi}. If the {φi} are
constraints of a dynamical system whose phase space is M then the leaves of the
foliation determined by the {Xi} are the "gauge orbits" and if the foliation fibers
the space of orbits M is the reduced phase space.

A very important special case of symplectic reduction comes about when the
constraints arise from a hamiltonian group action [6]. Let G be a connected Lie
group acting on M via symplectomorphisms. To each element X in the Lie algebra
g of G we associate a Killing vector field X on M which is symplectic. To each
symplectic vector field there is associated a closed 1-form on M : i(X)Ω. If this
form is exact then the vector field is hamiltonian. If all the Killing vector fields are
hamiltonian the G-action is called hamiltonian. In this case we can associate to
each vector l e g a hamiltonian functions φx such that dφχ+i(X)Ω = 0. Dual to
this construction is the moment map Φ : m —• g* defined by (Φ(m),X) = φχ{m),
for all m G M. If a certain cohomology obstruction is overcome the hamiltonian
functions {φx} close under Poisson bracket: {φχ,φγ} = Φ[x,γ]- If this is the case,
the moment map is equivariant: intertwining between the G-actions on M and
the coadjoint action on g*.

Assume that we have a hamiltonian G-action on M giving rise to an equivari-
ant moment map and furthermore suppose that 0 e g* is a regular value of the
moment map. Denote Φ " 1 ^ ) by Mo. Then Mo is a closed embedded coisotropic
submanifold and for m G Mo, TmMQ is precisely the subspace spanned by the
Killing vectors. In this case the leaves of the foliation are just the orbits of the
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G-action. If the G-action on Mo is free and proper then the space of orbits inherits
the structure of a smooth symplectic manifold in the way described above. If the
G-action on Mo is not free but only locally free (i.e., the isotropy is discrete) then
the space of orbits is a symplectic orbifold.

It is interesting to notice that the reduced symplectic manifold is always a
subquotient of M. That is, first we restrict to a submanifold (Mo) and then we
project onto the space of leaves of the null foliation. This is to be compared with
cohomology which is also a subquotient of the cochains: first we restrict to the
subspace of the cocycles and then we project by factoring out the coboundaries.
It is therefore not surprising that one can set up a cohomology theory on M
which recovers the symplectic quotient M; or, rather, which recovers C™{M) from
^(M). This is precisely what the classical BRST cohomology achieves [7,8]. In
fact, as we will see classical BRST consists of three different steps. The first two
take care of providing homological analogs for the passage from M to Mo and
for the passage from Mo to M. The final step integrates the first two into one
homomology theory: BRST.

Restriction: from M to M$

We first focus on the restriction part of symplectic reduction: the passage from M
to Mo; or, in our more algebraic description, from C^iM) to C^iMo). Since M o

is a closed embedded submanifold of M, any smooth function on Mo extends to a
smooth function on M and the difference of any two such extensions vanishes on
Mo. Hence if we let /(Mo) denote the (multiplicative) ideal of C^iM) consisting
of functions which vanish at Mo, we have the following isomorphism

C c o (M 0 )^C 0 0 (M)//(Mo), (2.1)

where, moreover, since the constraints are regular, /(Mo) is precisely the ideal J
generated by the constraints. However, we would rather work with the constraints
themselves than with ideal they generate. The solution to this problem relies on a
construction due to Koszul. There is a differential complex (the Koszul complex)

. . . -• K2 -• K1 -> C°°(M) -> 0 , (2.2)

whose homology in positive dimensions is zero and in zero dimension is precisely
C°°(Mo): a fact we shall refer to as the "quasi-acyclicity" of the Koszul complex.
This fact plays a fundamental role in all our constructions.

It is convenient to describe the Koszul complex in more generality. Let R be
a (commutative, unital) ring and let Φ = (φ\, ... , φ^) be a sequence of elements
of R. The immediate example we have in mind is R = C^iM) and {φi} the first
class constraints. A sequence (φ\9 ... , φk) of elements of R is called regular if for
all y = l , . . . , fc, φj is not a zero divisor in R/Ij-\, where / ; is the ideal generated
by φi, ... , φj and IQ = 0. In other words, if / e R and for any j = 1, ... , fc,
φjf £ Ij-ι than / e /7 _i to start out with. If the constraints are regular (in the
differential geometric sense) then the sequence they define in C^iM) is regular
(in the algebraic sense).

We define the Koszul complex K(Φ) as follows: K°(Φ) = R and for p > 0,
KP(Φ) is defined to be the free R module with basis {eix Λ.. . Λ eip \ 0 < i\ <
... < ίp < fc}. Define a map δκ : KP(Φ) -• Kp~γ{Φ) by bKe{ = φi and extending
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to all of K(Φ) as an .R-linear antiderivation. That is, όκ is identically zero on
X°(Φ) and

p

δκ(eh Λ ... Λ eip) = Σ(-\y-γφi}eh A ... Λ e?. Λ ... Λ eip, (2.3)

7 = 1

where a ^ adorning a symbol denotes its omission. It is trivial to verify that
δj, = 0, yielding a complex

0 -• Kk(Φ) -^ Kk-χ{Φ) -> ... -• Kι{Φ) -+R-+0. (2.4)

The following theorem is a classical result in homological algebra whose proof
is completely straightforward and can be found, for example, in [9].

Theorem 2.5. If (φu ... , φk) is a regular sequence in R then the homology of the
Koszul complex is given by

where J is the ideal generated by the φi.

Therefore the complex K(Φ) provides an acyclic resolution (known as the
Koszul resolution) for the ^-module R/J. This yields the following immediate
corollary:

Corollary 2.7. IfO is a regular value for Φ : M ->JR.k the Koszul complex K(Φ)
gives an acyclic resolution for C°°(Mo) In other words, the cohomology of the
Koszul complex is given by

where Mo =

Quotient: from MQ to M

Having taken care of the restriction process we now focus on the second part of
the classical BRST construction: the passage from C^iMo) to C™{M).

A smooth function on M pulls back to a smooth function on Mo which is
constant on the fibers. Conversely, any smooth function on Mo which is constant
on the fibers defines a smooth function on M. Since the fibers are connected (after
all they arise as integral submanifolds of a distribution) a function is constant on
the fibers if and only if it is locally constant. Since the hamiltonian vector fields
{Xi} associated to the constraints {φi} form a global basis of the tangent space
to the fibers, a function / on Mo is locally constant on the fibers if and only if
χtf = 0 for all i. In an effort to build a cohomology theory and in analogy to
the deRham theory, we pick a global basis {ω1} for the cotangent space to the
fibers such that they are dual to the {Xi}, i.e., ωι(Xj) — <5j. We then define the
vertical derivative dγ on functions as

(2.9)
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Let ΩV(MQ) denote the exterior algebra generated by the {ω1} over C°°(Mo). We
will refer to them as vertical forms. We can extend dγ to a derivation

dv : ΩP

V(MO) -> Ωp

v

+ι(M0) (2.10)

by defining

^^Σ/ωJΛω*, (2.11)

where the {///} are the functions appearing in the Lie bracket of the hamiltonian
vector fields associated to the constraints: [Xi9Xj] = Σfi/Xkl or, equivalently,

k

in the Poisson bracket of the constraints themselves: {φhφj} = Σ///φfc.
k

Notice that the choice of {ω1} corresponds to a choice of connection on the
fiber bundle Mo —> M. Let Y denote the subbundle of TMQ spanned by the
{Xi}. It can be characterized either as kerπ* or as TMQ. A connection is then a
choice of complementary subspace Jf such that TMQ = Ψ* <g> Jf. It is clear that
a choice of {ω1} implies a choice of Jf since we can define X e 2tf if and only
if ω[{X) = 0 for all i. If we let pr F denote the projection TMo —• "Γ it is then
clear that acting on vertical forms, dγ = pr* od, where d is the usual exterior
derivative on Mo.

It follows therefore that d\ = 0. We call its cohomology the vertical coho-
mology and we denote it as Hγ{Mo). It turns out that it can be computed [10] in

terms of the de Rham cohomology of the typical fiber in the fibration Mo -• M.
In particular, from its definition, we already have that

(2.12)

BRST Cohomology: from M to M

To complete the BRST construction we must integrate the two cohomology
theories into one. Corollary 2.7 suggests that we use the Koszul resolution.
Notice that Ωγ(Mo) is isomorphic to ARk ® C°°(Mo), where Rfc has basis {ω1}.
Since the Koszul complex gives a resolution for C^iMo), extending the Koszul
differential as the identity on ARk yields a resolution for Ωγ{Mo). We find it
convenient to think of lRfc as V*, whence the resolution of Ω^(Mo) is given by

+ 0 . (2.13)

This gives rise to a bigraded complex K = (g)Kcb, where
cjb

Kcb =/\cψ* Θ

under the Koszul differential όκ : Kc'^ —> K^" 1 , whose cohomology is zero for
b > 0, and for b = 0 it is isomorphic to the vertical forms, where the vertical
derivative is defined. To make contact with the usual notation, elements of /\ Ψ*
(respectively, Λ^O a r e known as ghosts (respectively, antighosts).

The purpose of the BRST construction is to lift the vertical derivative to K.
That is, to define a differential <5i on K which anticommutes with the Koszul
differential, which induces the vertical derivative upon taking Koszul cohomology,
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and which obeys δ2 = 0. This would mean that the total differential D = δκ + <5i
would obey D2 = 0 acting on K and its cohomology would be isomorphic to the
vertical cohomology. Actually this is only possible in very special cases (e.g., the
case of a group action). In general we will be forced to add further <Vs to D to
ensure D2 = 0.

We find it convenient to define δo(—l)cδκ on Kbc. We define δ\ on functions
and ghosts (i.e., {ω1}) as the vertical derivative3

δj = Yμ
i

= ΣiΦijW (2.15)
i

and

<W = ~ ΣfjJωi Λ αΛ (2.16)

We can then extend it as a derivation to all of Λ ^ * ® C^iM). Notice that it
trivially anticommutes with δo since it stabilizes Λ ^ * ® C™(M), where <5o acts
trivially. We now define it on antighosts (i.e., {e,}) in such a way that it commutes
with δo everywhere. This does not define it uniquely but a convenient choice is

(2.17)

Notice that δ2 φ 0 in general, although it does in the case where the fif are
constant. However since it anticommutes with δo is does induce a map in δo (i.e.,
Koszul) cohomology which precisely agrees with the vertical derivative dγ, which
does obey d\ = 0. Hence δ2 induces the zero map in Koszul cohomology. This
is enough to deduce the existence of a derivation δι : Kc>fc —• Kc + 2 ' f e + 1 such that
δ2 + {<5o,<52} = 0, where {,} denotes the anticommutator. This suggests that we
define D2 = δ0 + δγ + <52. We see that

D2 = δl Θ {(5o,<5i} ® {δl + {δo,δ2}) Θ {δuδ2} Θ <52

2, (2.18)

where we have separated it in terms of different bidegree and arranged them
in increasing odegree. The first three terms are zero but, in general, the other
two will not vanish. The idea behind the BRST construction is to keep defining
higher δt : Kc>b -> K c + ^ + i ~ 1 such that their partial sums Di = δo + ... + δt are
nilpotent up to terms of higher and higher c-degree until eventually D\ = 0. The
proof of this statement follows easily by induction from the quasi-acyclicity of
the Koszul complex. In fact, one has

k

Theorem 2.19. We can define a derivation D = ^ <5, on K, where δi are derivations
ΐ=0

of bidegree (i, i — 1), such that D2 = 0.

3 Notice that the vertical derivative is defined on Mo and hence has no unique extension to M. The
choice we make is the simplest and the one that, in the case of a group action, corresponds to the
Lie algebra coboundary operator



Geometric BRST Quantization 217

Defining the total complex K = (g) Kn, where Kn = (g) Kcb, we see that
n c-b=n

D : Kn -> Kn+\ Its cohomology is therefore graded, that is, HD =

D is known as the BRST operator and its cohomology is the classical BRST
cohomology. The total degree is known as the ghost number. A simple spectral
sequence argument yields the following theorem:

Theorem 2.20. The classical BRST cohomology is given by

0 for n < 0

Hy(Mo) for n>0.

In particular, H^ = C^iM).

Poisson Structure

This, however, is not the end of the story. The reader may have noticed that so
far in the construction of the BRST complex no essential use has been made of
the Poisson structure of the smooth functions on M. Happily, it turns out that the
complex K is a Poisson superalgebra and the BRST operator D can be made into
a Poisson derivation. In fact notice that C^CM) is a Poisson algebra. Moreover,
if Ψ is a finite dimensional vector space and V* its dual, then the exterior
algebra /\(V ® V*) possesses a Poisson superalgebra structure. The associative
multiplication is given by exterior multiplication (Λ) and the Poisson bracket is
defined for u9υ eΎ and α, β G V* by

[α, v] = (α, υ) [υ, w] = 0 = [α, β], (2.22)

where (,) is the dual pairing between Ψ and V*. We then extend it to all of
/\(Ψ ® V*) as an odd derivation. Therefore the classical ghosts/antighosts in
BRST possess a Poisson algebra structure. In [11] it is shown that this Poisson
bracket is induced from the supercommutator in the Clifford algebra C1(V® V*)
with respect to the non-degenerate inner product o n ¥ θ ¥ * induced by the dual
pairing.

Given two Poisson superalgebras P and g, their tensor product P <g> Q can
be given the structure of a Poisson superalgebra as follows. For a,b e P and
w, v G Q we define

(a ®u)(b®v) = {-ψmab ® uυ, (2.23)

[a <8> u)(b ®v] = (-l)|M||fc|([α,fo] <g) uv + ab <8> [u9v]). (2.24)

From this it follows that K = C^iM) <g> /\(V ® V*) becomes a Poisson super-
algebra.

Let P be a graded Poisson superalgebra. By a Poisson derivation of degree k
we will mean a linear map D : p

n -+ pn+k

 s u c h that

D(ab) = (Da)b + (-lfala(Db), (2.25)

= [Da,b] + (-lfal[a,Db]. (2.26)

The map αι—• [β,α] for some Q £ Pk automatically obeys (2.25) and (2.26). Such
Poisson derivations are called inner.
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The BRST operator D is clearly a derivation over the exterior product; but
nothing in the way it was defined guarantees that it is a Poisson derivation and,
in fact, it need not be so. However one can show that the <5ΐ's - which are, by far,
not unique - can be defined in such a way that the resulting D is inner Poisson
derivation. In other words, one can show the existence of the element Q € K1

such that D = [Q, •]. Alternatively one can construct β = Σ Qu where β, G K i+1>ί,
i>0

such that [Q, Q] = 0 and that the cohomology of the operator [β, •] is isomorphic
to that of D. This was first proven by Henneaux in [12] and later in a completely
algebraic way by Stasheff in [13]. The importance of this construction lies in the
following fact. Let D = [Q, •]. Then D2 = 0 and, since it is a Poisson derivation,
kerD is a Poisson subalgebra of K and imD is a Poisson ideal of kerD, whence
its cohomology inherits naturally the Poisson algebra structure. In summary, we
have the following theorem:

Theorem 2.27. The cohomology of D is given by

for n > 0 .

In particular, H% = C^ίM) as Poisson algebras.

From now on we will take D = [Q, •] to be the classical BRST operator and
call Q the classical BRST charge.

We conclude, therefore, that the classical BRST construction is completely
compatible with the Poisson structure. Roughly speaking, the BRST construction
feels right at home in the Poisson category.

3. Prequantization

Geometric quantization is an attempt to develop a mathematically consistent
and invariant quantization scheme, thus trying to overcome the problems of the
more traditional "canonical" quantization. Observing that the Poisson bracket
was the classical analogue of the quantum commutator, Dirac reformulated
the canonical quantization of a symplectic manifold M as the construction of
irreducible representations of the Lie algebra of real smooth functions on M as
self-adjoint operators in a Hubert space with the properties that the constant
function with value 1 shall be represented by the identity operator and that,
if (q,p) is local chart forming a canonically conjugate pair (i.e., they obey the
Heisenberg algebra), then they shall act irreducibly or at least, in case one wants
to include internal degrees of freedom, with finite reducibility. A celebrated
theorem of Van Hove [14], however, forbids the existence of such representation
unless one relaxes the finite reducibility condition. However this is demanded
by the uncertainty principle and hence physically desirable. The way out is to
restrict the range of functions that can be represented.

The geometric quantization program of Kostant [15] and Souriau [16] prov-
ides an invariant method of constructing such representations. The first part of the
method, called prequantization, consists of dropping the irreducibility condition
and constructing a representation of the Lie algebra of smooth functions as self
adjoint operators in a Hubert space, purely in terms of symplectic data. The
second part of the construction, called polarization, will take care of making this
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representation irreducible and in the process restricting the class of functions
which can be quantized. In this section we discuss prequentization and we see
how it is intimately tied in with the notion of a Poisson module.

Let (M,Ω) be a symplectic manifold. Since dΩ = 0, the symplectic form
defines a class in the real deRham cohomology group HjR(M;ΊR). We say Ω is
integral (and M an integral symplectic manifold) if this class lies in the image of
the map

H2(M;Z) -> H2(M;JR) s H2

dR(M;ΊR). (3.1)

If (M,Ω) is an integral symplectic manifold then there exists at least one
complex line bundle E —> M with a hermitian structure, i.e., a sesquilinear map

(,) :Γ(E)xΓ(E)-+C$(M), (3.2)

which is antilinear in the first factor and linear in the second; and with a
connection

V :Γ(E)^>Ωi(M)®Γ(E), (3.3)

such that

(PQ1) (,) is parallel with respect to V; that is, for all σ,τ € Γ(£),

(PQ2) the symplectic form and the curvature 2-form of the connection
are related by

curv(V) = - 2 π v / Z Ϊ Ω .

The triple (£,V, (,)) satisfying the above properties will be called pre-
quantum data for the integral symplectic manifold (M,Ω).

Let dμL denote the Liouville measure on M. This is the measure induced by
the volume form proportional to p Λ... Λ Ω} for M a 2n-dimensional manifold.

V
n

This allows us to define an inner product on Γ (E) by integrating the pointwise
inner product with respect to this measure:

= J(σ,τ)dμL. (3.4)
M

Let ΓL2 (E) denote the Hubert space completion of the subspace of Γ (E) consist-
ing of sections σ such that | |σ| |2 = (σ,σ) < oo. This will become the prequantum
Hubert space. The prequantization map assigning to a smooth function / an
operator O(f) in ΓLi(E) is the following

f»O(f) = Vχf + 2πv/=ϊ/, (3.5)

where Xf is the Hamiltonian vector field associated to /, that is, ί(Xf)Ω + df = 0.
The prequantization map obeys the following

O(f)O(g)σ - O(g)O(f)σ = 0({/,g})σ, (3.6)

, (3.7)

for all σ e Γ(E) and /,g G C^iM). Moreover each O(f) is a skew-symmetric
operator. That is, if σ,τ G ΓLi(E) are in the domain of 0{f) than

(O(/)σ,τ) + (σ,O(f)τ) = 0. (3.8)
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If, in addition, Xf is a complete vector field, O(f) has a skew-self-adjoint extension
and generates, by Stone's theorem, a one parameter family of unitary operators
in ΓL2(E).

The prequantization map has the property that the only operator of the
form O(f) for some / e ^(M) which commutes with all the other O(g)'s
are the scalars, corresponding to O(c) for c a constant function on M. Still
this representation is highly reducible: roughly speaking it consists of integrable
functions of both the momenta and the coordinates. Thus we need to cut down
the size of ΓLi(E). This process, known as polarization, will be the topic of
the second part of this paper [3]. In the rest of this section we first show how
prequentization is tied to the notion of a Poisson module and how this suggests
how to define the prequentum BRST operator.

The notion of a Poisson module is fairly simple. A Poisson superalgebra
consists of a vector space in which one has defined two algebraic structures
subject to a compatibility condition. On the one hand a Poisson superalgebra
is a supercommutative associative algebra but also a Lie superalgebra. The
compatibility condition consists in demanding that the adjoint action of the Lie
superalgebra on itself be a derivation over the associative structure. We can
analogously define a Poisson module over a Poisson superalgebra P as a Έ2-
graded vector space which is both a module over the associative part of P and
separately a module over the Lie part of P. We then impose a compatibility
condition deduced from the compatibility condition between the two algebraic
structure in P. More formally we say that a ^-graded vector space M is
a Poisson module over a Poisson superalgebra P, if there exist two bilinear
operations preserving the grading

P xM^M

(a,m) 1—> a m
and

P xM -^M

(α, m) 1—> a x m,

obeying the following properties

(Ml) makes M a module over the associative structure of P :

a- (b m) = (ab) m

(M2) x makes M into a module over the Lie superalgebra structure of P :

a x (b x m) - (-l) |α| |fo|fc x (α x m) = [a,b] x m

(M3) For all a9b e P and me M,

ax(b'm) = [a,b]'m + (-l)lamb -(axm).

In particular a Poisson algebra becomes a Poisson module over itself after
identifying a b with ab and a x b with [a,b]. Notice that Eqs. (3.6) and (3.7)
imply that Γ(E) becomes a Poisson module over C^iM) and in particular that
the prequantization may defined by (3.5) is nothing but the map a \—> a x .

This observation immediately suggests how to prequentize the classical BRST
operator. Just like the tensor product of two Poisson superalgebras can be made
into a Poisson superalgebra, if M and N are Poisson modules over P and Q,
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respectively, their tensor product M ® N becomes a P ® β-module under the
following operations:

(a <8> u) (m ® n) = ( - l ) N | w ( α m) <g> (u n), (3.9)

( a ® u ) x ( m ® n ) = ( - l ) N | m | ( α x m ® u n + a - m ® u x n ) , (3.10)

for all α € P, w G β, m e M, and n e N. Since /\(V ® v * ) i s a Poisson
module over itself and Γ(E) is a Poisson module over C°°(M), their tensor
product K(E) = Γ(E) ® ΛC^ ® V*) becomes a Poisson module over K Not let
β e K 1 be the classical BRST charge. Then the prequantum BRST operator is
the operator ID = Q x acting on K(£). Since [β, β] = 0, E>2 = 0 and we may
define its cohomology HJD, as the prequantum BRST cohomology, which we will
investigate in the next section. Notice that it follows from (M1)-(M3) that H^>,
inherits the structure of a graded Poisson module over HD. In particular, H^
is a Poisson module over H^. In the next section we will see that it is indeed
the module of sections of a prequantum line bundle over the reduced symplectic
manifold.

4. Prequantum BRST Cohomology

In this section we compute the cohomology # D of the prequantum BRST
operator and show that H^ is isomorphic as a Poisson module to the space
of smooth sections of a prequantum line bundle over the reduced symplectic
manifold M. We also contrast this result with the similar results of Guillemin
and Sternberg [1].

Recall that K(E) is bigraded by

K(£) = (g) Kc>b(E), Kc>b(E) = /\cΨ*®/\bΨ®Γ(E). (4.1)
b,c

Relative to this bigrading ID breaks up as ΊD = Σ V, , where V; : K c ' b(£) —•
ί>0

Kc+ί»*+I'-1(JE). The V, can be recovered from the β* in β = £ β/ by picking the
i>0

contributions of the right bidegree. From the expressions for δo and (5i given by
(2.3), (2.15), (2.16), and (2.17) we can work out β 0 and β i :

(4.3)

This, in turns, allows us to write Vo and Vi on generators. First of all Vo is
a trivial extension of the Koszul differential δκ. In fact, Vo = (— l)c<5χ®l on
K c ' 6(£). In other words, Vo is zero on sections and on ghosts and it is up to a
sign the Koszul differential on antighosts. Similarly we find that on generators
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Vi acts as follows:

Y (4.4)

^ Σ (4.5)

and

Σ/j (4.6)

In particular, splitting E>2 = 0 into different bidegrees, we find that

V§=0, (4.7)

[V0,Vi]=0, (4.8)

V? + [V2,Vo]=O. (4.9)

We now define FTK(E) = <g) <g) Kcb(E). Then K(E) = F°K(E) Ξ> F !K(E) 3

... and DFpK(E) c FPK(E). In other words, (FK(E),D) is a filtered complex.
Since the filtration is bounded there exists a spectral sequence converging finite
to HJD whose Ei term is the cohomology of the associated graded complex. The
differential is the induced one from D and it is clearly seen to be Vo, since V, for
i > 0 all have positive filtration degrees. Therefore (&Ec{b is the cohomology of
the generalized Koszul complex b

•>0. (4.10)

Observing that Γ(E), being the module of smooth sections of a vector bundle,
is a finitely generated projective module over ^(M) we can use the results of
Appendix A to conclude that

Ect^( ACΨ*®Γ(E)/JΓ(E) for b = 0
1 \ 0 for fr>0. l ' }

We now turn to the computation of Γ(E)/JΓ(E). Let i : Mo —> M denote
the natural inclusion. Then if we let i~xE —• Mo denote the pull-bach via i of
the prequantum line bundle £ Λ M, it will follow from the following theorem
that Γ(E)/JΓ(E) is isomorphic to Γ(i~ιE). But first we need some remarks of a
more general nature.

Let \p : M' —> M be a smooth map between differentiate manifolds. It
induces a ring homorphism

ψ* : C™{M) -• C™{M') (4.12)

defined by ψ*f = f o ψ for / e C^iM). This makes any C°°(M0-module
(in particular C^W) itself) into a C°°(M)-module, by restriction of scalars:
multiplication by C^iM) is effected by precomposing multiplication by C^iM')
with \p*.
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Now let E' ^> M' and £ - > M b e vector bundles of the same rank with the
property that there is a bundle map given by the following commutative diagram

φ

Ef ——-> E

V' |π (4 13)

W —Ψ—^ M

(i.e., φ is smooth fiber-preserving) with the property that φ restricts to a linear
isomorphism on the fibers. Then we may form the following C°°(M)-module

C"(M')®c«(M)Γ(E), (4.14)

which can be made into a (^(M^-module by extension of scalars: left multipli-
cation by C™{Mf). Define a map φ # : Γ(E) -+ Γ{Ef) by

(φ*σ)(nϊ) = ( ^ Γ 1 [σ(ψ(m'))], (4.15)

for all mf G M' and σ e Γ(£). Then the following can be easily proven [17]:

Theorem 4.16. With the above notation, there exists an isomorphism of C^iM')
modules

') ®Γ(E)-+Γ (Ef) (4.17)

defined by f Θ σ >—• / φ$σ and where the tensor product is over C^ζM). •

In our case we have the following commutative bundle diagram

ΓιE —'—> E

1*° I* (418)

Mo — — • M

By Theorem 4.16, we have that

Γ(Γ!£) a C°°(M0) ®c»(M) Γ(£). (4.19)

But C^iMo) = CCO{M)/J, whence

Γ{ΓιE) a CCO(M)/J ®C<»(M) Γ{E)

^Γ(E)/JΓ(E), (4.20)

where the last isomorphism is standard. In other words, letting £o = i~ιE, the
£i term of the spectral sequence is given by

£ f a ( A r β W foΓ b = ° (4.21)
1 \θ for fo>0, V }

and that, as a C°°(Mo) module, £1 is isomorphic to the module ΩV{EQ) of vertical
forms with coefficients in EQ, which is defined as

ΩV(EO) = ΩV(MO) ®c-(Mo) Γ(Eo). (4.22)
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Tracking down the definitions we see that the £2 term in the spectral sequence
is precisely the cohomology of £1 with respect to the differential (Vi)* induced
by Vi. (Notice that E\ is the cohomology of Vo and that by (4.8) and (4.9), Vi
induces a map on E\ which is square-zero.) Under the isomorphism E\ = Ωv(Eo)
we see that (Vi)* goes over to the operator Vj/ defined by

VFσ = Σiφi x σ)ωί (4.23)
i

and

w \Σ ί(°j Λ ω/c>
for all σ G Γ(EQ). This is then extended to all of ΩV(EQ) as a derivation. This
operator is an extension of the vertical derivative dγ and, just as for dv, it is easy
to verify that V2

V = 0. We denote its cohomology by HV(EQ). Moreover notice
that for all £o-valued vertical forms θ

(4.25)

whence, in particular, Hy(Eo) becomes a C°°(M)-module (under point wise mul-
tiplication) after the identification of (^(M) with Hy(Mo). To see this notice
that if dγf = 0 and Vvσ = 0, for some σ G Γ(£ o ), VV(/σ) = 0. Moreover, it
is easy to verify that this module is finitely generated and projective. Hence, by
general arguments [17], it is the module of sections of some vector bundle over
M. Moreover Guillemin and Sternberg show in (3.2)-(3.4) of [1] that the bundle
E is in fact a prequantum line bundle over M. It is, in fact, the bundle E —> M
whose pullback to Mo is isomorphic (as a complex line bundle with connection)
to the bundle Eo -> MQ.

Therefore we have proven that £2 = Hy(Eo). Furthermore since Ec{b = 0 for
b > 0, the spectral sequence collapses at the £2 term, whence

Theorem 4.26. The cohomology of ID is given by

0 for n<0

Hy(Eo) for n>0.

In particular, H^ = Γ(E), where the isomorphism is one of C^iM) modules.

As remarked earlier H^ inherits the structure of a Poisson module over H^
which, by Theorem 2.27, is isomorphic as a Poisson algebra to (^(M). We still
have to show that the isomorphism Γ(E) = J f^ is one of Poisson modules.
In other words, we must check that under the Poisson algebra isomorphism
Hp = C^iM) the actions correspond. This requires a better understanding of the
isomorphisms H^ = C^iM) and H^ = Γ(E). Space constraints force us to be
sketchy, and we refer the reader to [8] for a more thorough discussion.

A function / G ̂ (M) can be represented by a function /o G CCO(M) whose
Poisson brackets with the constraints vanish on Mo that is, they lie in the ideal
J generated by the constraints. Such functions celarly comprise N(J)/J, where
N(J) is the normalizer of J in (^(M). In other words, / 0 satisfied δofo = 0 and
<5i/o + δofi = 0 for some /1 G IK1'1. It is easy to show (by induction) that we
can complete / 0 and /1 to an element F = f0 θ /1 θ ... G K° with / f G KUί such
that DF = 0. Hence this assigns to an element of C^CM) a cocycle in IK0. It is
also easy to show that this map is well defined and that in fact it descends to an
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injective map in cohomology. Conversely, given a cohomology class in Hp with
representative cocycle go θ gi ® ... , go is a function on ^(M) whose Poisson
brackets with the constraints vanish on Mo.

We can now outline the proof of the Poisson algebra isomorphism between
Hp and C^iM). First notice that as Poisson algebras C^iM) is isomorphic to
N(J)/J. Now let / and g be representatives in N(J) of classes in N(J)/J and let
them be mapped into D-cocycles F = f ® ... and G = g ® ... respectively. Then
their product is a D -cocycle of the form FG = fg © ... - whence it corresponds
to fg - and their Poisson bracket is a D-cocycle {F, G} = {/, g} @... - whence
it corresponds to {/,g}. Therefore the Poisson structures correspond.

Similarly we can prove that H^ is isomorphic to Γ(E) as Poisson modules
over C°°(it?) under the isomorphism Hp = C^iM) just described. Given a section
σ e Γ(E) it can be represented by a section σo G Γ(E) obeying Viσo + Voσi = 0
for some cγ G K 1 ' 1 ^ ) . Just as for the case of functions it can be completed
into a ID-cocycle Σ = σo ® σ\ ® ... and again the correspondence descends to
cohomology. Conversely, given a cohomology class in H^ represented by the
cocycle σo ® σi ® ... , σo satisfies Viσo + Voσi = 0; and it therefore defines
a section in Γ(E). Now let / G N(J) represent a function in C^iM) and be
mapped into the D-cocycle F e K°. Then the D-cocycles FΣ = /σo ® ... and
F x Γ = / x σ o ® . . . correspond to the sections /σo and / x σo This proves the
isomorphism of H^ and Γ(E) as Poisson modules over C^iM).

There is one final step we must take in order to conclude that all prequantum
data gets induced via BRST and that is to make sure that the point-wise inner
product gets induced as well. In order to induce a pointwise inner product on H^
it will be first of all necessary to define a pointwise inner product on K(£). To
motivate this construction let us first understand in Poisson terms the invariance
of the pointwise inner product of two invariant sections. This invariance follows
from the following fact. Since (,) is R-linear in both slots it induces a map

which is a C^MJ-module homomorphism (a homomorphism of Poisson modules
over C^iM)). That is, if σ,τ G Γ(E) and / e C°°(M) then

LΛ(σ,τ)] = (/xσ,τ) + ( σ , / x τ ) . (4.28)

We would now like to extend (,) to a K-module homomorphism

((,)) : K ( £ ) ® K ( £ ) - ^ K C . (4.29)

This boils down, essentially, to defining a linear map

(,) : Λ ( V ® V * ) ® Λ C ^ ® V * ) ^ Λ C ^ ® ^ * ) ? (4.30)

satisfying, for all φ9ω, θ e f\(Y ® V*), the following relations

(φΛω,θ) = φΛ (ω,θ) = (-l)^N(ω,φΛθ), (4.31)

and

[φ,(ω,θ)] = ([φ,ω],θ) + (-l)^ω|(ω,[(/>,θ]). (4.32)

There is one obvious candidate:

(ω,0)=ωΛ0. (4.33)
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With this choice we can construct a sesquilinear map

((,» :K(E)xK(£)-Kc, (4.34)

which is invariant under the action of K. It is then clear that, if Z(E) and B(E)
stand for the ID cocycles and coboundaries respectively and Z and B stand for
the D cocycles and coboundaries respectively, the mapping ((,}) obeys

Z ( £ ) x Z ( £ ) - > Z , (4.35)

Z(E)xB(E)-+B, (4.36)

B(E)xZ(E)->Z (4.37)

from where it follows that it induces a well defined map in cohomology. In
particular, since it is graded, it induces a map

(7) rHfexi f t- f fSoC, (4.38)

which, under the relevant identifications, becomes a pointwise inner product

(7) :Γ(E)xΓ(E)^C$(M). (4.39)

It is interesting to notice, however, that there is no inner product on
which induces, by evaluating it on ID cocycles, the prequantum inner product
on M. The reason is the following. The inner product consists of integrating the
pointville inner product with respect to the Liouville measure. It is impossible
that one can evaluate the inner product of sections of the prequantum bundle
on M by merely picking representative sections on M and evaluating the inner
product there. The reason being that functions on M are represented by functions
on M whose restriction to Mo are constant on the leaves of the null foliation. But
Mo has Liouville measure zero in M and hence two functions which agree on Mo
but which disagree at will away from Mo have different integrals. Therefore the
inner product would not be independent of the representatives. By tensoring the
sections of the prequantum line bundle with half-forms (see [18]) the prequantum
BRST cohomology of this new complex yields objects whose pointwise inner
product can be integrated on M but, again, the integral does not lift to M.

5. Conclusions

In this paper we have proven that prequantization and reduction commute.
In other words, we have shown how the following diagram related to (1.1) is
commutative:

preq uantization

(M,Ω) -LI
(5.1)

prequantization

provided that by (£, V) we take the prequantum line bundle whose pullback to
Mo agrees (as a line bundle with connection) with the pullback to Mo of the
prequantum line bundle (E, V) on M. This is a first step towards the more difficult
question on the commutativity of (1.1).
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The proof of commutativity is also extremely natural once the relevant struc-
tures are phrased in Poisson terms. In fact, the coherence between the BRST
construction and the Poisson structures suggests that we can phrase this construc-
tion in purely algebraic terms in the category of "constrained" Poisson algebras
[13,19]. That is, given a Poisson algebra P with a distinguished set of elements
Φ = {φi} such that the ideal J they generate is a Lie subalgebra of P and such
that the sequence Φ is regular we can construct a BRST cohomology theory
which reduces P to another Poisson algebra. This is precisely the point of view
taken by Stasheff [13,19]. We can extend this further by homologically reducing
Poisson modules of P. In the same way we show that a BRST theory exists which
reduces the Poisson module into a Poisson module of the homological reduction
of P. Moreover properties such as finitely generated and projective are preserved
under reduction. Also the algebraic analog of point-wise inner product can be
also induced.

The power of the algebraic approach lies in the fact that all the objects in
the geometric quantization program can be defined purely algebraically without
the assumption that the Poisson algebra P or its homological reduction are the
algebras of functions on a symplectic manifold [20]. This is the case, for example,
in Yang-Mills, where the reduced phase space has singularities [21]. We think
that this particular formulation of BRST quantization can play a fundamental
role in the quantization of such physically relevant systems.

Finally there are several obvious extensions to these constructions: to the
case of supermanifolds in the sense of Kostant, to arbitrary symplectic Banach
manifolds, and, more importantly, to the case of nonregular constraints [22]. The
extensions to supermanifolds and to the non-regular case should be completely
straightforward; but the extension to infinite dimensional manifolds may pose
problems having to do with the convergence of the spectral sequence used in
Sect. 4.

Appendix A. Generalized Koszul Complex

Let R be a ring and E and K-module. We can then define a complex K(Φ;E)
associated to any sequence (φ\, ..., φk) by just tensoring the Koszul complex
K(Φ) with E, that is, KP(Φ;E) = KP(Φ) ®R E and extending δκ to δκ ® 1. Let
H{K(Φ);E) denote the cohomology of this complex. It is naturally an jR-module.
It is easy to show that if E and F are ^-modules, then there is an ^-module
isomorphism

H(K(Φ);E ® F) S H(K(Φ)',E) <S> H(K(Φ);F). (A.I)

Hence, if F = (g) R is a free iΐ-module then
α

(A.2)

In particular if Φ is a regular sequence then the generalized Koszul complex with
coefficients in a free i?-module is quasi-acyclic. Now let P be a projective module,
i.e., P is a summand of a free module. Then let N be an ^-module such that
p 0 N = F, F a free ^-module. Then

H(K(Φ) F) S H(K(Φ) P) ® H(K(Φ) N), (A.3)
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which, along with the quasi-acyclicity of H(K(Φ);F), implies the quasi-acyclicity
of H(K(Φ);P). How about H°(K(Φ);P)Ί By definition

H°(K(Φ);P)^R/j(g)P ^P/JP. (A.4)

Therefore we have the following algebraic result.

Theorem A.5. If Φ = (φu •> Φk) is a regular sequence in R, and P is a projective
R-module, then the homology of the Koszul complex with coefficients in P is given

H>{K(Φ);P)^{O

p/fp f P>°fl (A.6)
[ P/JP for p = 0,

where J is the ideal generated by the φi.

The relevance of this construction is that the smooth sections of any vector
bundle over M have the structure of a (finitely generated) projective C°°(M)-
module. More precisely, let E A M be a complex vector bundle of rank r over
M and let Γ (E) denote the space of smooth sections. It is clear that Γ (E) is a
module over ^(M), where multiplication is defined pointwise using the linear
structure on each fiber. It is straightforward to prove that Γ(E) is a free rank
r C°°(M)-module if and only if E is a trivial bundle. It can be shown [17] that
M has a finite cover trivializing E. Since on each set of the cover, E is trivial
we see that Γ(E) is finitely generated: just take as a set of generators the local
sections on each cover multiplied by the appropriate elements of a partition of
unity subordinate to the cover.

It can also be shown [17] that given a vector bundle E —> M there exists

another vector bundle F —• M such that their Whitney sume E ® F is trivial.
Therfore Γ(E ® F) ^ Γ(E) ®Γ(F) is a free ^(M) module and we that Γ(E)
is a direct summand of a free module. In summary, Γ (E) is a finitely generated
projective C°°(M)-module.
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