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Abstract. We prove that the natural hyper-Kahler metrics on the moduli space
of charge k instantons over Euclidean four-space and on the space of ADHM
matrices coincide. We use this to deduce formulae relating expressions in the
curvature of a connection to invariant polynomials in the ADHM matrices
corresponding to this connection. These arise from consideration of the group of
symmetries acting on the moduli spaces.

Introduction

The ADHM construction of instantons identifies the moduli space of charge k
SU(r) instantons over the 4-sphere with a space of complex matrices arising from
monads. If we consider framed instantons over R4 instead, these spaces Jίktr and
Jίr^ respectively, have dimension 4r/c and are well known to admit hyper-Kahler
metrics, and it has been supposed, as a sort of folk result, that the ADHM corres-
pondence is actually a hyper-Kahler isometry. It is one of the aims of this paper
to prove this result.

Our proof boils down to identifying suitable hyper-Kahler potentials for the
metrics on M^r and *MY^ and proving the apparently stronger result that these
potentials agree. In fact, we can view the hyper-Kahler potential on Jίktf as a
potential for the dilation action of 1R4 lifted to the moduli space. This links our
isometry with the work of Groisser and Parker [9,10]. As an extension of this
we shall prove a general result which describes potential functions for subgroups
of the conformal group acting on Jtk^ in terms of the potential functions for the
same groups acting on R4. We observe that the hyper-Kahler potential is also the
moment map for a circle action on Jtk^ (also lifted from R4) and deduce a formula
for other moment maps of other groups of isometries of JtktΓ. Since we have
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proved that Jίk^r and Jtr^ are isometric, we can immediately deduce equivalent
formulae for these potential functions and moment maps in terms of the ADHM
matrices.

For the sake of completeness we also provide formulae for the action of SU(r)
acting on Jί^r via the framing at infinity. This does not arise as the lift of an
action on R4 but we can use other methods to find its moment map, see 4.14 and
4.15.

We can view the isometry of Jίk^r and Jtr^ in a more general way by extending
the ADHM construction to give an equivalence of //-invariant instantons over
R4 and ^-invariant instantons over R4*. Here H is a group of isometries of R4

and H is a dual group of isometries of R4*. Again we obtain hyper-Kahler moduli
spaces. In [4] Braam and van Baal prove that such spaces, where H is a four
dimensional lattice in R4, are isometric. The same result for // = R has been
conjectured by Atiyah and Hitchin, see [2, chapter 16].

In fact there are several ways of proving the existence of the above isometry
for the case where H is a four dimensional lattice, and one expects some of these
to generalize to other possible groups. One can identify the tangent spaces to the
moduli spaces with suitable Ext groups and the fact that the ADHM map is an
isometry can be deduced from the fact that it is functorial. This shows that the
isometry arises from the formalism of the ADHM map and not from some deeper
structures of the moduli spaces. It will be the aim of a future paper to describe
this approach in detail.

Another way to view the agreement of the hyper-Kaher potentials when R4///
is algebraic is to observe that the potentials for more general groups H are no
longer just functions but norms of sections of a natural polarisation of the moduli
spaces via the determinant line bundles, see [7]. Then the fact that the potentials
coincide goes over to saying that the Quillen norms on the determinant lines agree.
Indeed, this can be proved for the case where H is a four dimensional lattice. In
this way one can view Theorem 3.1 below as a degenerate version of a statement
about Quillen norms on determinant line bundles or, in other words, about the
spectra of twisted Laplacians acting on bundles over R4.

The paper is organised as follows. In Sect. 1 we review the ADHM construction
and recall some useful formulae. The Kahler metrics on the moduli spaces are
described in Sect. 2 and we prove that in the k = 1 case these metrics agree. We
also notice that the hyper-Kahler potentials extend to the Donaldson compacti-
fications of the moduli spaces. This is used in Sect. 4 to deduce equalities of moment
maps for the actions of various subgroups of the conformal group of R4 on the
instanton space and the associated space of ADHM matrices. This will allow us
to deduce formulae relating invariant expressions in the ADHM matrices to
generalised moments of the curvature viewed as measures. This can be done by
first proving directly that the two potentials agree and this is the content of Sect. 3.

1. A Review of the ADHM Construction

We shall review the ADHM construction in the form given in [5]. We do this
partly to help the reader and partly to fix the notation and conventions to be used
in subsequent sections.

We fix a principal SL/(r)-bundle P over R4 and consider the space stf of
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connections A on P with L2 integrable curvatures FA and which tend to a pure
gauge at infinity, together with a trivialisation at infinity, we call these framed
connections. Associate to (P, A) the complex r-plane bundle-with-connection (E, A)
given by the standard representation of SU (r) on (Cr. We choose the Killing form
— Ύτ(XY) on the Lie algebra $u(r), and the standard Euclidean metric on R4.
Then there is an action JIFJ 2 = — JTr FA Λ *FA which is conformally invariant.
There is also a well defined charge kεTL given by the homotopy class in π3(SU(r)) of
the pure gauge connection at infinity. We shall denote the space of charge k
connections by j/fc.

The gauge group 0 acts freely on s$k and the quotient <%k is a Banach manifold.
We are interested in the subspace Jik^r of &k which consists of gauge equivalence
classes of framed connections which satisfy the antiself-dual (ASD) equation FA = 0,
where we decompose ί22(R4) into its self-dual and antiself-dual parts Ω+@Ω_.
We call such connections ίnstantons. In this case we can extend the principal bundle
P to the 4-sphere S4 and use the Chern-Weil formula to compute the charge:

The ASD equation is a first order elliptic partial differential equation and is
difficult to solve. The ADHM construction makes this easier by converting the
problem into one of linear algebra. We shall fix a complex structure / on R4 with
complex coordinates (z l sz2). The ADHM correspondence can then be stated in
the following form, see [5, Prop. 2] :

Theorem 1.1. There is a one-one correspondence between framed SU(r) ASD
bundles-with- connection of charge k modulo gauge transformations, and matrices

(α ι,α2,α,6)6Mk x ] k(O x Mkxfc((C) x M fcXr(C) x MrX,(<C)

satisfying:

(i) [α l 9α2] + fcα = 0,
(ii) [α1,α*] + [α2,α*]-|-bb*-α*α = 0,

f*!+λ\

(iii) α2 + λ \ injects as a map <Ck->(C2k+r far all /leC,

V a I

(iv) ( — α2 — μ «ι +μ b) surjects as a map <C2k + r^(£k far all μeC.
Modulo the action of U(k) given by

(«! , α2, Λ, b) - (g^g'1, ga29~l> a9~l> 9b\

We will denote this space of matrices modulo U(k) by Mrk.
If we arrange the data in the form of a monad

where d im^X^/c and dimcL = r, then we can recover E fibrewise via the
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cohomology of the monad, viz:

_ ker(-α2 + w oc.-z b)
Lx = .

The connection A is given by projecting the flat connection on 1R4 x K © K 0 L
to E. The trivialisation at infinity is given by the summand L in the limit | x \ -> oo .

Conversely K can be identified with the following vector space

where S ~ is the negative spin bundle over R4 and DA is the twisted Dirac operator.
We can even give explicit forms for various quantities, particularly in the case

fc=l.

Lemma 1.2. [8, p 104] If k=l then there is a family of ASD connections A
determined by a scale /leR+ and a centre yeR4 for which

Tr .r =

Λ (A + | x - y | )

Lemma 1.3. [1, chapter 2] The curvature of a connection A given by the ADHM
matrices (α l5 α2, a, b) ίfFA = Pdxp2dxP, where P(x) is the projection onto the ortho-
gonal complement of Ex in K® K® L and

p2(x) = [(αt - z)*(«! - z) + (α2 - w)*(α2 - w) + fl*«] ~^λά2.

Notice that, in general, we have trα*α = tr bb* from (ii) of Theorem 1.1.
In particular, for the connections in Lemma 1, (α l5 α2) corresponds to the centre

3; of the instanton and the scale λ2 is α*α = fefe*, so that p2(x) = ( | y — x 2 + λ2) ~ 1.
We shall now consider the Donaldson compactification Mk^ of the moduli

space Jίktf. Note first that the moduli spaces we are considering are known to be
connected (see [5]). It is also well known that the boundary SJίk^r can be
decomposed into a union of lower moduli spaces, so that

where S'R4 denote the ith symmetric product of points of R4.
Formally, we can write down the L2 density of the curvature of an "ideal"

instanton in S*R4 x Jίk-ι as

where AΈJίk^h yeS1^4 are the centres of the instantons and δ denotes the Dirac
delta function. The topology of Jtk^r is such that the action densities | FA

 2 =
ΎΐFa Λ FA all converge as measures (see [6, 3.13]).

There is a corresponding completion of the dual moduli space Jtr^ of ADHM
matrices. This is given by Jtr^-ι x S^R4 ->• ̂ r>fc via the maps

°
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where ( y ? , y l ) are the complex coordinates of j^eR4. If we take the union over
these inclusions one can prove that there is a one-one correspondence between

t̂ v and Jtr t.

2. Metrics on the Moduli Spaces

Recall from Taubes [14] that the L2 tangent space to Jίk^r at a gauge equivalence
class of a connection in the orbifold {unframed connections}/^ is isomorphic to
a subspace VA of L2nker(d + ®d*) cβ^adP), where ά\ and dA are the
differentials in the Atiyah-Hitchin-Singer deformation complex

^ Ω2

+(adP).

The remaining part of ker(dA 0 d%) is generated by the elements

dAφ^ for α= l , . . . ,d imG — h°,

where h° denotes the 0th cohomology of the AHS complex,

i.e. ker(3Λ : Ω°(S4, s* ad P) -> Ω 1 (S4, s* ad P)).

We shall abuse notation by using s to denote stereographic projection of S4 to
R4 and its "inverse." Taubes proves (in [14, Lemma 8.4]) that

dim(ker(d + ® d*) n L2) = dim(ker(d + θ d*) n L2) - 4rk.

The extra generators dAφoteΩ1(adP) are determined by σαes*adP|s(oo) and
then A + ΣλαdAφα is a pure gauge connection corresponding to the gauge action
at infinity, and hence

Proposition 2.1. (Taubes)

where Jί denotes Jί framed ίnstαntons modulo gauge.
We shall now review the construction of the Kahler metrics on the instanton

moduli spaces.
Fix a complex structure / on R4. Let ω denote the flat Kahler form on R4

defined by /. This is given by ω(a, b) = g(Ia, b\ where g is the flat Euclidean metric on
R4. Then this induces a symplectic form Ω on stfk via Ω(u, v) = $ Ίτ(u /\v)/\ ω/2π2,
where u,veTAj/k. Here we have identified the tangent space of j/ at A with the
space of one forms on R4 with coefficients in the adjoint bundle ad P. Similarly
we have an induced complex structure ϊ on stf . This can be done either by observing
that 7W has a natural quaternionic structure, as Taubes does, or one can proceed
directly as follows

Proposition 2.2. The symplectic form Ω and complex structure I descend to the
moduli space defining an almost Kahler structure there. By almost Kahler, we mean
that Ω( — , — ) = g(I — , — ) for an almost complex structure I

This is an example of the symplectic quotient construction in [11].
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Proof. Let αeβ^adP). Then if d + α = 0 and d*α = 0 the Kahler identities imply
that L*dAIΛ= ±/~ 1 d*/ 2 α= ±/" 1 r f*α = 0. Here L* denotes the adjoint of the
operator Lβ = /J Λ ω. Moreover d^/α has type (1,1) if d^α does. Hence dAIa — 0.
Similarly, d*/α = IL*dAa = 0 so that d^/α = 0, and hence 7 descends to Jtk,r.

The form ί2 is well defined on TJίktT since if α = dAy, then Ω(^y, β) = 0 by
Stokes' theorem and the closure of ω. The boundary term in Ω(dAy, β) is
lim J yβ ΛCO, but yeL2 and βeL2 (strictly, we should have yeL?, and βeL2). Hence

R-oo S3^

β~R~2~ε and y~,R~ 2 ~ θ , for some ε>0, and so the limit vanishes. It will also
remain closed on Jί^r by Proposition 2.4 below and non-degenerate so that Ω
defines an almost Kahler structure on Jί^r with respect to 7. Π

In fact 7 is integrable, so that Ω is a Kahler form on J(ktf. Its integrability
follows by identifying 7 with the natural holomorphic structure on the moduli
space of holomorphic bundles over CP2 which are trivial over the line at infinity
with a fixed trivialisation there, see [5].

We have Kahler potential for ω given by the function ||x|2. By this we mean
that ω = — idd \ x 12/4. We can use this to construct a Kahler potential for Ω as well.

Definition 2.3. For any connection A, the first and second moments mγ(A) and
m2(A) are defined by the formulae

mι^) = Λ ί *

16ττ j^4

These descend to the moduli spaces Jtkj.

Proposition 2.4. The second moment is a Kahler potential for the Kahler form Ω
on Jίk^r

Proof. Endow E with a holomorphic structure compatible with A. Pick
α , ΰ ε T [ A } J ί k t r ® C so that dAa = Q = dAόί. Note that, if ί>0 is real, then
FA + ta = FA + 2tFA Λ dAu + 0(t2} and hence

Γ - I 2 T P p— i -- ra2 = — - — — be TrF, Λ dAa
2 δαδα 4π 2 dα J 4

= ^ί-^l^l2Tr[(^4ά Λ ̂ α) + FA Λ α Λ ά].

Recall also that FA Λ α Λ α = dAdAa A α and so, using Stokes' theorem twice, we
have

1 β β 1 f T , -^— i -- mΊ = — - ω Λ Trία Λ α).
2 j VΊ

2 dadx 2 2π2

Hence - ±iddm2(a, β) = Ω(a, β). Π

Remark. The above result generalises to arbitrary Kahler manifolds X with Kahler
potentials / to say that there is a Kahler potential proportional to J / Tr F2

A for
x

the natural L2 Kahler metric on the moduli spaces of anti-selfdual connections
on bundles over X, at least for those X for which Stokes' theorem still gives the
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desired conclusion in the above proof, e.g. all compact Kahler varieties. Typically,
/ = log || s || 2, where s is a nontrivial section of a polarisation of X, see [7].

We can extend this to a hyper-Kahler structure on Jtk^r using the natural
hyper-Kahler structure on R4 given by symplectic forms ω = ω l 5ω 2,ω 3 and
complex structures / = /15 /2, !?,• These all define forms Q{ and complex structures
Ίi on Jίk^ and, by Proposition 2.4, form a hyper-Kahler structure on Jt^r.

Combining the above results we have proved:

Theorem 2.5. The moduli space Jίktf is a hyper-Kahler manifold of dimension 4rk
with complex structures Il9 I2, 13 inherited from ί2*(R4) and Kahler forms Ωl9 Ω2,
Ω3, where Ωt = JTr(w Λ ι;) Λ ωί /2π2. Moreover Mk,r admits m2 as a hyper-Kahler
potential

This can also be viewed in terms of the hyper-Kahler quotients in [11]
The hyper-Kahler structure on Jί^k is simpler since the flat Kahler structure

on the space of matrices Mfcxfc(<C) x Mkxfc(<C) x MrX/c((C) x Mfcxr(<C) is invariant
under the U(k) action given in Sect. 1. For different choices of complex structure
/ on R4 we obtain isomorphic spaces Mrk(l\ so we can identify these but with
different complex structures /. In particular we obtain a hyper-Kahler structure
Ωp ΐj on Jlr£ when we take the usual Marsden-Weinstein quotient μ~1(ΰ)/U(k),
where μ is the moment map for the action of U(k). This is done in [3] where the
hyper-Kahler structure on Jίktf is induced by pullback from Mr^. We shall prove
in the following lemma and in the next section that this hyper-Kahler structure
coincides with the one given in Theorem 2.5.

We note in passing that the holomorphic interpretation of Jίktr shows that
the ADHM map preserves the complex structures and so the equivalence of the

Kahler structures will imply that the moduli spaces Jίktf and Jlfίk are isometric
as Riemannian manifolds.

There is an obvious Kahler potential for these Kahler forms given by the norm
squared of the matrices, viz \ ( || a1 1| 2 + || α2 ||

 2 + || a \\ 2 + || b || 2).
In the next section we shall prove the general result

where we shall use p to denote the ADHM correspondence. In the case k = 1 the
direct computation is easy:

Lemma 2.6. If A is a k= 1 ίnstanton as in Lemma 1.2 with scale λ and centre y,
then ^\\p(A)\\2 = m2(A). Hence Jίv^r is isometrically isomorphic to *MY^ under p.

Proof. From 1.2 we have a formula for TrF2, so we can compute both sides of
(*) explicitly.
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The last line follows since \\p(A)\\2 = \y\2 + α*α + bb* = \y\2 + 2λ2. Π
There is a corresponding result for the first moment of a connection:

Lemma 2.7. For a connection A as above, m^(A) = (trα1,trα2)e(C2, where

Proof. When k — 1 the right-hand side is just y, the centre. The first moment can
be explicitly computed as above to give y, as desired. Π

We shall use Lemma 2.7 as the first step in an induction proof that the formula
m^A) = (tr α1 ? trα 2) holds for all values of k.

3. On a Formula of Osborn

In principle, we could evaluate J |x | 2 TrF^ directly, as in Lemma 2.6, for general
values of k to verify the formula m2(A) = \ || p(A) || 2 without any assumptions about
the metrics (and hence prove that the metrics coincide), but in practice this is
impossible. Our only hope would be to integrate by parts and for this we would
like to express TrF2 as a total differential. Fortunately there is a formula of
Osborn [12, 5.5] which does just this. In our conventions the formula reads

*Tr F2

A = - \AA log det L(x),

where L(x) = (oq - z1)*(α1 - zj + (α2 - z2)*(α2 - z2) + a* a for (α1? α2, α, b) = p(A\
and Δ is the Euclidean Laplacian on R4.

There is an obvious interpretation of L(x) as a family of 1R4 indexed Laplacian
operators on the "Dolbeault complex" K-*K@K®L^>Km degree 0. Since this
complex is a monad for all xeR4, L(x) must be invertible for all x. Osborn's proof
of this can be viewed in this way and the evaluation follows certain renormali-
sations interpreted in this linear algebraic context. This is the best way of
understanding the formula but it can, however, be verified directly from the
formulae of Sect. 1. In particular, it is easy to verify for k = 1 instantons directly.

The derivatives of log det L are:

d ίlogdetL=trML|.,

Δ log det L = 8 tr M - £ tr(ML .ML ),
ί

djΔ log det L - - 12 tr M2L] - 2£ tr(ML}ML'.ML'.)

- \AA log det L = tr 48M2 - £ 24M2L'jMLf

j

+ Σ PML .ML .ML ML;. + ML .ML ML .ML;)

where M = L~1. On the other hand the formula of Atiyah given in Lemma 1.2
can be used to directly compute TrF 2:

*Tr F2 - - 16 trfC^M, A*M] [A*M, A2M~\ + \AJΛAJA + A2MA2M - M)2},

where Aί = oίi — zi and the brackets denote the commutator \β, C] = BC — CB. If
we now substitute for Lt in the formula for z!2logdetL we obtain the above
formula for *TrF2. Thus proving Osborn's formula.
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We can now integrate

m2(A) = —- J I x 2Δ2 logdetL(x)d 4 x

by parts, to obtain

m2(A) = - lim f [jR4x.dzi log det L - 2#M log det L + 8#2x.cΠog det L]dS,
32π2 Λ - > O O S3

(*)

where R3dS is the measure on S3

R.
It is convenient to introduce the vector of matrices y where

7ι =-(«!+«?)> 7 2 =^(αι-αf) >

73 = 2(«2 + «*)> 74 = -0*2 ~ «*)'

Then the derivatives of L are LJ = 2(xl — y,-). If we substitute these and the derivatives
of log det L into the integrand of (*) we obtain

+ 2R4(L + 2R2 -

Here we must take care with non-commuting matrices, but we can cyclically
commute using the properties of trace.

In the limit as R tends to infinity the matrix M tends to R2.Ik, where Ik denotes
the fe x fe identity matrix. Hence we can neglect terms which have order smaller
than 1. Now substitute for L = α*αt + α^α2 + ̂ 2 — 2<y, x> + a*a in the integrand
to obtain

tr[(-

y, x>2)M

The contribution from the last term in the large R limit is 48π2(||α1 1|2 + ||α2 ||
2).

From the XK^ — x symmetry the potentially divergent term #6<y, x> can be
computed as follows:

- J
24

-6 I

^ /γ χ \2

- 6 f tr^^V-ί/S in the large R limit
J p2

= 6 f t Γ ι i . ι 2 2
J o n2 Λ^ \_ 2 K 2

-3π 2 ( | |α 1 | | 2 +| |α 2 | | 2 ) .
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Hence we finally obtain

48)π2

Thus we have proved:

Theorem 3.1. For any [ A ] G J f k t f 9 m2(A) = \ || p(A) || 2.
This, together with Theorem 2.5, implies:

Theorem 3.2. The ADHM correspondence is a hyper-Kάhler isometry of Jίk r and

rtk.

4. Homothetic Isometries and Moment Maps

We start by recalling a result of Groisser and Parker [9, Eq. 4.3] which can be
stated in the following form.

Proposition 4.1. Let H be a subgroup of the conformal group of a four-manifold M
with a lift of its action to a principal bundle P -> M. Let the infinitesimal action be
given by Xh for /ze§(— Lie(/ί)). Then the infinitesimal action ofH on stfk is given by

where weί2°(adP) represents Xh J ωAeΩ°(P; g), and ωA is the connection form.

In [9] they use the example of P->S4 which is the SL7(2) bundle which double
covers the bundle of orthonormal frames in A + T*S4 and so comes with a lift of
the conformal group action on S4.

Definition 4.2. If H is a group acting on a Riemannian manifold M, then call the
action exact if Xh = - Vfh for some /εβ°(§*).

An important example of these is the subgroup of the group of homothetic
isometries of Euclidean 4-space given by the semidirect product H = R4 xιIR + .
The action of (y, λ)eH is the linear one x\—>λx + y. We shall be interested in the
groups R4 and R+ separately. These are exact with fλ = λ\\x ||2/2 and fy = (x, y).
We shall use 7ί5 i = 1, 2, to denote the separated actions on the space of connections.
It is easy to see that these are all the possible exact conformal actions on R4.

We can regard the two moments ml and w2 defined in Sect. 2 as taking values
in the dual of the Lie algebras of R4 and R+. We would like to prove that the
actions Yt descend to JtkιV and that — Vmt = Yt.

Theorem 4.3. If H is a subgroup of R4 xιR+ acting on R4, then the induced action
on stfk descends to Jίktf. Moreover, this action is exact with associated function

oπ R4

Proof. To show that Yh descends to Jίk^r it suffices to prove that d A Y = 0. Now
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d + d = 0 as A is ASD. So

= H°f FA see [10, Lemma 3.1].

Here H° denotes the trace-free part of the Hessian. For the group H of the theorem
this vanishes. This is because H is conformally Killing so that the Hessian of / is
proportional to the metric which has no trace-free part.

Noting the identity f α J *β = *(α Λ β) for a 1-form α and 2-form β, we have

δAm(b} =
oπ

4π2

= - Y(A)(b)
We can justify the use of Stokes' theorem in the first line as the integral

J f Ύ r ( b / \ F A ) over large spheres S^ vanish in the limit K->oo, as fbFA =
s*
0(R~4). Π

The notion of exact action is similar to that of Hamiltonian action when the
action is symplectic. The associated function is then the moment map. We can
prove an analogous result to the one above in this context too.

Theorem 4.4. Let Hbeα subgroup of the conformαl group of R4 acting symplectίcally

on R4 such that the action is Hamiltonian with moment map μ. Suppose further that

VIVμ has skew trace-free part. Then the action defined above descends to J(ktf and
is Hamiltonian there with moment map

provided μ = 0(\x\2) as |x|->oo.

Proof. Observe that Xh = — IVμh generates the § action. Then replacing Hf in
the proof of Theorem 4.3 with VIVμ implies that the action descends to Jίktr. To
prove that we have the correct moment map note that

~
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= -- -JTr[(J*Γ J F j Λ f e ] Λ ω since FA Λ ω = 0

= - Ω(X J FA, b). Π

Recalling that the measures Tr F2

A converge on M^r then the integrals in the

above theorems will extend to continuous maps on M^r and hence:

Corollary 4.5. The formulae of Theorems 4.3 and 4.4 hold on TJik^r.

We can now deduce the main theorem of this section:

Theorem 4.6. Let H be any group acting on IR4 whose action is exact (respectively,
Hamiltonian), with associated maps on Jtk^r and Jϊ^k given by m(A) and m(M)
(respectively, μ(A) and μ(M)). Suppose further that m(A) = m(p(A)) on Jtk^r (respec-
tively, μ(A) = μ(p(A))), for k = 1. Then these equalities hold for all values of k.

Proof. Since Y = p* Y, where Y and Ϋ are infinitesimal generators of the H action
on Mkj and Mr^ respectively, and from the definition of moment maps and
associated functions, there is a constant κeIR+ such that_ Vφκ = 0, where
φκ(A) = κm(A) — m(p(A)\ or φκ(A) = κμ(A) — μ(p(A)) for [_A~\εJίktr, depending on
whether the action of our group is exact or Hamiltonian. Observe that Jίk^γ are
all connected and that Sk~ ^Ί^4 x JίltΓ c Jlkjf. Then the hypothesis of the theorem
shows that φκ = 0 and K = 1. Π

We now apply the above to the homothetic actions on Jtr£. These are given
by (α l 5α2,0, b)\-^(λ(xl +z1,λu2 + z2,λa,λb) and we can complexify the action to
that of C2 x <C* via the complex structure on R4.

Lemma 4.7. The above actions are exact with associated functions

Proof.

while
|| α| | 2

It is easy to see that these equal |ίt and \X2 respectively. Π

Recalling Lemma 2.7 we have:

Corollary 4.8. For all k and \_A~\e Jίkr, set (α1? α2, a, b) = p(A). Then

Remark 4.9. Applying this to the dilation action we see that the moduli spaces
Jίkίf and Jtr£ are isometric if and only if their Kahler potentials agree.

Consider the S1 action on IR4 which permutes / 2> ^3- A moment map for this
is \x\2/2. This is because V\x\2 generates dilations and hence IvV\x\2 generates
rotations permuting I2 and /3, but fixing / x . This is the construction of the
hyper-Kahler potential given in [11, pages 550-554]. Indeed this implies the
existence of a hyper-Kahler potential on M^r as in Theorem 2.5 and provides us
with an alternative proof of that theorem. Hence we have proved
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Proposition 4.10. The second moment m2 is a moment map for each of the complex
structures I{ with respect to the S1 action which fixes I{ and permutes the other two
complex structures.

These S1?s generate the nonsymplectic S0(3) action.

Corollary 4.11. The manifold m~1(x)/SO(3) c Jέk^/S0(3), for any nondegenerate
point xεlmm2, is a quaternionic Kάhler manifold for each k and r.

This provides us with a large selection of quaternionic Kahler manifolds.
If we now turn to the other SΌ(3) in the rotation group 50(4) of R4, we see

that this action is given, on the Lie algebra level, by /, J, K. These cover the actions
on R4 given by (counter) rotations of pairs of CciR4. The respective moment
maps are

for the complex structure K

x1x3> + x2-
x4 f°r the complex structure /

x2

χ3 f°r tπe complex structure J.

The matrices VX for generators X of these actions are skew symmetric and hence
satisfy the conditions of Theorem 4.4.

The action on the ADHM matrices is also by rotation on (α1,α2), so the

moment maps are given by Re<M(α1,α2),(α1,α2)>, where M = /, J or K I for

example / = diag ( I J, I J J J. If we compute these we find moment maps

(up to scalar multiples of 2m)

ί Im tr(ax a\ + a2a2) for the complex structure K

S Re tr (a ! a* ) for the complex structure /

V Im tr (a x a 2 ) for the complex structure J,

where t denotes transpose of the matrix. Notice that the moment map corres-
ponding to the complex structure / is distinguished. This is because the matrices
themselves arose from fixing the complex structure / on R4.

It is easy to see that J(xι-x3 + x2

χ4) Tr F^/8π2 = Re tro^α* for the fc = 1 case,
since

J (l2 + |x-j;|2)4 J (A 2 + x|2)4 '

Hence, by Theorem 4.4, this equality holds for all fc. The other cases follow similarly,
and so we have:

Theorem 4.12. For all fc,r, let (α l 5α2,α,&) - p(A)for A^Jίk r. Then

4π2 J - ± « - -' A

2 tφiαΊ + α2α2),
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and

— KX^ + x2x3)ΊτF2

A = Im tφ^).
oTT

Finally, we shall consider a group action on the moduli spaces which does not
arise from an action on R4, namely the SU(r)/Zr action on the framings of elements
of <£/. This acts on Jίkr with quotient Jt\r consisting of (unframed) ASD
connections modulo the whole gauge group. It acts freely on the irreducible
elements Jί1r of Jίk r and defines a fibration

This is true for any manifold M and for the moment we shall generalize our
discussion to the case when M is a Kahler manifold of complex dimension n, with
base point x0, and let G be any compact connected semisimple Lie group. Then
it is well known (see [6], pages 237, 238) that there is a moment map for the action
of the gauge group ^ on the space j/w of (unframed) ASD connections on some
G-bundle P given by FA Λ ωπ"V^eί22"(adP) ̂  Lie(0)*, where K = 23~"π2.

It is also well known that the space of framed connections modulo gauge can
be identified with the space j/Y^0> where ^0 = [φe^\φ(x0) = id}, and 0/^0 ̂  G.
The centre Z(G) acts trivially on J/M so consider the quotient H = G/Z(G) which
acts freely on irreducible elements. We want to find a moment map for the H
action on the framings Pxo ^ G. This can be done by considering the identification
j*/0 ̂  j/V^o as follows.

Fix a basis {σ1 ?...,σα} for (&dP)xo = Q and extend each element σt to σt by
parallel transport along radial lines in a small neighbourhood Nλ(x0) of x0, by 0
outside N2λ(x0) and smoothly interpolated in the annulus Ann(/l, 2λ; x0) by a bump
function. We choose λ sufficiently small to allow solutions of dAat = 0 to exist
along radial lines in N2λ(xo) such that {d^σj generates the framing part of T[A]jtf/&.
This provides us with a model for TeH = {σj, by which we mean an embedding
of TeH into Ω° (adP). Using this identification we define η:Gc^^ so that the
model § ^ TeH ^ TeG <=^Ω°(adP)^ Lie(^) is just η^.TH^Tg. Denote the
pullback Ω2n(adP)-+T*H by η* and then we can define μ :<£/"->§* by
μ(A) = η*(FA Λ ωn~1)/κ. This is //-equivariant since FA Λ ω""1 was ^-equivariant
and for 9εTeH and αefl^adP) we have

- (dAθ J

Hence μ is a moment map for the H action. Now observe that μ is ^0-equivariant
and that the coadjoint action of ^0 on §* is trivial, and so μ descends to
μ j//^-^* and hence, by restriction, to μ:^-»§*, where Jt denotes the framed
Yang-Mills moduli space. If we use the identification of (σj with {σj now in
reverse we can identify η*(FA Λ ω"'1) with (FA Λ ω"~1)(x0)6/i2"TJoM® § ̂  §*.

We have now proved

Theorem 4.13. Let (M, ω) be a Kahler manifold of complex dimension n and let G
be a compact connected semisimple Lie group. Then a moment map for the action
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ofG/Z(G) on the framing of Hermίtίan- Yang -Mills G-connections modulo gauge and
framed at xeM is given by

where ηx:G CL+& is the map defined above so that ?7*:ί22n(adP)-»Lie(G/Z(G))* is
evaluation at the point x.

In the case where M = R4 and we are framing connections at infinity,
but we can use Uhlenbeck's removability of singularities theorem [15, Cor. 4.3]
to make sense of (FA Λ ω)(oo). Let s:S4\{oo} ->R4 denote stereographic projection.
Then there is a gauge transformation ge$ such that A = g(A) can be extended
across ooeS4. Moreover, the limit of η*(FA A s^ω) as x-> oo exists on S4\{oo} and
must equal the limit of τ/*s*(F^ Λ s^ω) as x -> oo on 1R4. Hence we have

Corollary 4.14. A moment map for the action of SU(r)/%r on Jik r which acts on the
framing of a framed ASD connection \_A~\ is

~^~2 lim ^(FA Λ ω\2π *^oo

We would like to relate this to the action of H on dual space Jtγ k. Recall that
the fibre of P "at infinity" is given by the vector space L in the monad
K-*K@K@L-^>Km the limit x -> oo. The group H acts on L in the fundamental
representation and hence, if we fix L, on the matrices α, b by b®a*\-^by®a*g,
and H fixes α x and α2. The moment map μ for this action can be computed using
the fact that μ = 0 minimises points of Mr^k in a given Hc orbit, (see [5], page 458).
Using the same calculation with SU(r) instead of GL(/c,(C) we find
M[α1,α2, a,b~]} = b*b — αα*E<5u(r); we identify a Lie algebra with its dual via the
Killing form.

As before, the infinitesimal action of H on Jίk r is just the pull-back of the
action on Jίr k and the metrics agree by Theorem 3.2. Moreover the group H is
semisimple and hence moment maps are unique, so we can deduce:

Theorem 4.15. For all \^A\^Jίkr ana [α1?α2,α, b~\ = p(A),

— - lim *η*(FA Λ ώ) = b*b — aa*.
2π X-+GO

We now have explicit formulae for the moment maps and associated functions
for the whole symmetry group of Jίkιr and Jtr^
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