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Abstract. We consider a large number of particles diffusing on a circle interacting
through a drift resulting from the gradient of a pair potential whose support is
of the order of the interparticle distance. We derive a nonlinear bulk diffusion
equation for the density of the particle distribution on the circle. The diffusion
coefficient is determined as a function of density in terms of standard thermo-
dynamical objects.

1. Introduction

In this article we study the hydrodynamic limit for interacting Brownian motions
on the one-dimensional circle. The interaction is between pairs of particles and
is repulsive in nature. The scaling is such that the range of the interaction is of
the same order as interparticle distance and therefore each particle interacts with
only a finite number of nearby particles at any given time.

We obtain a nonlinear bulk diffusion equation and the diffusion coefficient
is naturally expressed in terms of the thermodynamic functions of our one di-
mensional system. The main limitations are the fmiteness of volume that is forced
because our basic space is the circle, the repulsive nature of the interactions that
is assumed and that we are in one space dimension.

In this context the fluctuations around equilibrium have been studied earlier
by H. Spohn [5] and the self diffusion in equilibrium by Guo and Papanicolaou
[1]. Their results have been derived for infinite volume and arbitrary space di-
mension. Of course these results deal essentially with equilibrium problems where
a lot of control through estimates is available.

Our method is similar to the one used in Guo, Papanicolaou and Varadhan
[2] and uses estimates based on entropy and its rate of change. Section 2 describes
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the results precisely and Sects. 3-9 contain detailed proofs. Section 10 contains
some results concerning the Gibbs measures of one dimensional systems. These
results are all well known to the experts although it is difficult to find precise
references to the results in the form we need. We have therefore included a quick
exposition with sketches of proofs.

Along with S. Olla in [3] we have modified the methods of this article to
extend these results to the case of interacting Ornstein-Uhlenbeck processes and
they will appear in the next article.

2. Summary

We denote by S the circle of unit circumference and consider a system of N
interacting Brownian motions with S as a state space satisfying the following
system of stochastic differential equations:

dx,(t)=-N Σ V'(N(xi(t)-xJ(t))dt + dβi(t) , ι= 1,2,...,7V . (2.1)
J J*i

Here, /?!,..., /J^ are TV independent Brownian motions and V( ) is an even function
on R satisfying the following assumptions:

(i) F^O, F(0) > 0 and V has compact support,
(ii) V is once continuously differentiable.

(iii) F( ) is repulsive in the sense that

ψ(z)=-zV'(z)^0 . (2.2)

Then the process [ x ι ( t ) , . . . , X μ ( t ) ] is a Markov process of diffusion type on
SN, the TV-fold copy of S, with an infinitesimal generator given by

-v.))—. (2.3)
*• —i oxf j^t dXj

It is easily verified that

L V " I I />"% /l\

^=o Σ (eM ^~e J'k Λ~) ' ^2 ̂  \ θ^ dxj

so that LΛΓ is formally symmetric with respect to the measure

dμN(x) =—-exp — T V(N(xt— Xj))\ dxγ...dxN . (2.5)

It is straightforward to verify that the Markov process x (t) with LN as generator
is in fact reversible with respect to the invariant measure μN given by (2.5). The
constant ZN is for normalization and is so defined to make μN into a probability
measure.

We start x(Q) with an initial distribution with density/^(X!,...,Λ:^) with
respect to the invariant density μN. The density at time t with respect to μN is
denoted by/jv(*!,..., x^) and is given as a solution of the forward equation

LNfN with /M,-o = /Sr (2 6)
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The empirical distribution of the process at time t is defined by

ξN(t,A) = ~ ΣχA(Xi(ty) for A<=S , (2.7)
yV ι = l

and ξN(t) is viewed as a random measure on S. If we denote by MI (S) the space
of probability measures on S, one can view ξN( ) as a stochastic process with
values in Mγ (S). In view of the continuity of the trajectories, we can pick a time
T< oo and consider the space C[[0,Γ], Ml(S)] of measure valued continuous
functions on [0, T]9 and our basic markov process with initial density fQ

N will
induce a measure QN on C[[0, T], MI (S)]. Our main result is to show that under
suitable assumptions on /^, the measures QN as N-> oo will concentrate on a
single measure valued trajectory which is the solution of a certain nonlinear
diffusion equation.

In order to describe this nonlinear diffusion equation we have to introduce
some thermodynamic functions of one dimensional systems with pair interaction
given by F( ). The partition function in a finite region [0, /] with activity A is
given by

00 enλ l l -Σy(χ-χ)
2(l,λ)=Σ — i - i * - dx^.dxn. (2.8)

n = 0 n" 0 0

It is known [4] that the free energy defined by

(2.9)

/->oo

exists and is a convex function of A for all A ,
ΊJ~<

, (2.10)
aλ

is the "density" corresponding to the activity A and is a continuous strictly
monotone function of A . This function of course can be inverted to yield A = A (p)
as a function of p. The free energy expressed as a function of/?, i.e.

= F ( λ ( p ) ) (2.11)

is called the pressure and is again a continuous strictly monotone function of the
density p .

Our main result can now be stated. Let us assume that the initial densities
[f£] have the following behavior as N-+ oo :

1 //? log fχdμN <; CN for some C < oo and all N (2.1 2)

0 as 7V-»oo (2.13)

for every smooth test function / on S. Here ANtJίB is the set of configurations
(xι,..., XN) such that

1
jy Zj l J

and p0(θ) is some fixed density on S such that p0(θ)^0 and \p0(θ)dθ = 1. In
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order for (2. 1 2) and (2.13) to be compatible p0 (0) will have to satisfy some minimal
regularity conditions. In any case (2.13) asserts that

in the sense of weak convergence, in probability with respect to the initial dis-
tribution f°NdμN.

Under these assumptions we establish that QN converges weakly to a limit
which is the degenerate distribution on a single trajectory in MI (S) described by
p(θ,t)dθ, where p(θ,t) is defined as the unique solution (satisfying mild regu-
larity conditions) of

ββ (2.14)
σ

with
(2.15)

3. Outline of Proof

The proof of our result is based on the following ideas. For the sequence [QN]
of probability measures on the space Ωτ=C[[Q,T],Ml(S)] of measure valued
trajectories we first establish compactness under weak convergence.

Theorem 3.1. The-sequence [QN] is tight on the space Ωτ.

In order to establish that the limit QN exists and is concentrated on a single
trajectory we establish properties satisfied by the support of any limit point β,
enough properties so that one is left with a single trajectory satisfying all of them.

Let us consider a smooth function u (0) on S and the corresponding functional

MO=^ Σ
By Itό's formula we see that

- Z V'(N(Xi(t))-Xj(t))u'(Xi(t))dt
U=ι

1 ?L
0 (3-1)

By the law of large numbers, as 7V-» oo, the third term goes to zero. As for the
second term
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V'(N(xl(t)-χJ(t)))u'(xl(t))

=-2Σv

(by skew symmetry of F')

~\Σv'(N(χM-χj(Wu*

by (mean value theorem)

If we are at some point (0, t) in space time and the local density of particles is
p(θ,t) then the system should be in local equilibrium there in a Gibbs state with
density p and it is not a difficult calculation to show that in an exact Gibbs state
of density p

lim - Z ψ(χϊ~xj) = P(p}~P - (3-2)
/— oo * XlX e[Q I\

One therefore hopes to estabish that if at a typical time /, — [δxι^ + ... + δXN(t^\

is close to p(t,θ)dθ, then —^ιψ(N(xi(t)-χJ(t))utr(xi(t)) + — Zw"(*/(0)

should be close to - j P(p(t,θ))u" (θ}dθ.

In this manner we establish

Theorem 3.2. ,4«y //mzϊ /?o/wί Q of QN satisfies

(0

(ii)

(iii)
o

Given Theorem 3.2, Q lives on the set of weak solutions of

with
(3.3)

One can establish the uniqueness of weak solutions of (3.3) under the as-
sumptions

I Ip3(t,θ)dtdθ < oo (3.4)
0 S
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and

<00 (3 5)

In order then to complete the proof we only need to establish

Theorem 3.3. Any limit point Q satisfies

Eβ\\ \p3(t,ff)dtdθ\<

and

V\ \p3(t,θ)dtdθ\
LO s -i

d . . _ _ .
< oo

Finally a word about the strategy to be used in establishing Theorems 3.1.,
3.2 and 3.3. Since N-><χ> we need to develop estimates that hold uniformly

1 τ

in N. We will need properties of the solutions /^, and fN = — \ f^ds, where
fN solves o

dt NN '

Our assumptions is that j ^log/^φ^^ CN. One knows that

is nonincreasing in t and

dt N N

The functionals

and

/ m l t i^i2,,IN(t) = - \ —-—dμN2 J /

are lower semicontinuous, non-negative and convex. Therefore one gets easily

o

0

Similarly,
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0

φ.
In some sense our procedures are based solely on the two estimates derived above.

4. Some Estimates Based on Entropy

Given a density fN relative to the invariant measure μN with entropy
HN(fN)= \ /N^gfNdμN, we shall obtain in this section some preliminary esti-

mates based on a bound of the type

Lemma 4.1. There exists a constant C such that for every N and every fN satisfying
(4.1) we have

EfN\-Σv(N(χi-*M^A+c >
^ ij

where A is the same constant as in (4.1).

Proof.

exp 2 F(7V(x, -*,.)) +A

~

+ A

From now on for the rest of the section we want to derive some consequences
of an estimate of the form

EfN ί -̂  2 V(N(xt - x,))j ̂  B for all ̂ V . (4.2)
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Let us divide the circle S into a large number / of small arcs length - . Let us

denote them by SΊ , S2 , . . . , Si . If we are given a configuration of N points xl9...9xN

we can form the frequency counts
TV

gi= Σ χ*(χj)
7=1

of the number of points among xl9...9xN that fall in a given arc S; for 1 ̂  / <^ /.

We wish to estimate ^ sf ^n terms of ̂  V(N(Xi — Xj)). Let us subdivide each
1=1 i ij i

arc Si into 2k arcs of length — — and we assume that the size — — is of the order
* 2 //ί 2,1k

— , where δ is small, independent of TV, and is so small that V(x) ^ η for | x \ ̂  δ

for some positive constant η > 0. For 1 <Ξ i^2lk, if we denote by ht the frequency
counts for the smaller arcs, then

21 k

If we translate the basic arcs St by half their lengths and denote them by *S/+1/2

with their frequency counts g, +ι/2, then we have just as well

2lk

If from among xl9...,xN, we have a pair xr9xs with \xr — xs\

^— , then they must belong either to the same S, or Si+l/2fo* some /. Therefore

I ^ 1 12 ( I (Xi ~ Xj ) I ) ̂  Σ Si + Σ

1

4A:
-xj)). (4.3)

If W(jc) is a function that is supported on — — , — and is bounded there by
a constant || W\\ then L 2/ 2/J

4A:
xy)) , (4.4)

N
provided only that —- = δ is sufficiently small.

2, IK,

Lemma 4.2. If W is a fixed compactly supported function then we can estimate

'-^2 Σ W(λ(xi-χi))< \\W\\ -B-C ,
Λ Ύ t χ_J v v ' J'' I ' I ' '
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where \\W\\ is a bound for W, B is any constant satisfying (4.2) and C is a universal
constant depending only on V and the size of the support of W( ). This estimate
holds uniformly for all λ in the range ε0^λ ̂

Proof. We need basically / to be cλ for fixed constant c in (4.4) and that forces
on us a choice of k = CN/λ for some other constant C. Now Lemma 4.2 is an
immediate consequence of (4.2) and (4.4).

5. Some Estimates Based on the Dirichlet Form

In this section we want to explore some of the consequences of assuming that
the density fN satisfies

and

\\\VfN\2τdμN = IN(fN)^DN . (5.2)
^ JN

The basic estimate uses integration by parts for any "suitable" test function
u = u(xί9...,xN)

= \\(LNu)fNdμN\

1/2

(DN)m . (5.3)

Of course such an estimate is only as good as the test functions u that we can
find to use in the estimate. The following class of test functions will be particularly
useful:

uN(xι,...9Xff) = Σ ^Nte^(xt-Xj) , (5.4)
ij

where &N>ε>λ (x) is a function on R that has sufficiently small support that it can
be viewed as a function on S. For each fixed A and ε we will have a choice of
UN made for all sufficiently large TV. The function &NtBιλ (x) is given by

&N,e,λ(x)= ί GNtβtλ(y)dy (5.5)
— oo

and
X

(5.6)

where gN>ε>λ( ) is a function R with support in a small interval around the origin,
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satisfying in addition

I gN.e,λ(y)dy = 0 (5.7)
— oo

and

o , (5.8)

so that G and 3? have the same support as g. The function gN,ε,λ(y) will be of
the form

(5.9)

where g is a nonnegative, smooth, symmetric function with compact support with
total integral 1,

\g(y)dy=\ . (5.10)

Clearly if λ is big enough and ε > 0 is arbitrary then for sufficiently large
N,UN(XI,..., XN) is well defined.

In order to use the integration by parts estimate (5.3) we have to compute
\VuN\2,

2?NuN = Nε£g (Nε (xf - xj)) - λ % g ( λ (x, - xj))

- 27V Σ (Z [G (N£ W) ~G(λ (Xi - xj))])
i \J '

•(ΣV'(N(χ-χk))\ , (5.11)
\ Λ /

/ y

One can use the fact that V is an odd function to rewrite (5.11) in the form

κi-χJ))-G(Nε(xk-Xj))

^G(λ(xk-χj))}V^(N(xί-χk)) . (5.12)

Let us take the special case of ε = 1 and λ = 1. We assume that the support
of g is small enough that λ = 1 works. Otherwise we can take any value A0

for A.
We can write inequality (5.3) in the form

1 Dm Γ f Π 2}~|1/2

N2 N N = N3/2 |_ (2 N j j

with ε = 1, the first term on the right-hand side of (5.11) is
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which is uniformly bounded because of (5.1) and Lemma 4.2. The second
term is

EfN

which is bounded by a bound for g. The term

-}- ^[G(xi-χJ)-G(xk-χj)]Vf(N(xi-χk))

by using a bound on the derivative of G. We can use the function ψ(x) = —xV (x)
and write this term as

which is bounded by (5.1) and Lemma 4.2. It is easy to estimate

by using a bound for G. Since in the inequality (5.3) every term has been bounded
except for a single term we obtain

Σ [G(N(xk-Xj))-G(N(xl-Xj))]Vf(N(xi-χk))^C , (5.14)
V i,M J

where C is a bound depending only on B and D. The function F(χ — y, y — z)
= V (χ — z)[G(z — y) — G(χ — y)] is nonnegative and one can check easily that it
is possible to pick g in such a manner that

F(χ-y,y-z)^ψ(χ-z)ψ(χ-y) . (5.15)

From (5.14) and (5.15) we obtain

^ Σ Σ

Σ
ϊ,7,A:

In other words (5.1) alone is sufficient to provide a bound for
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while (5.1) and (5.2) provide a bound for

EJN\-ΣΨ(N(X-X^

We have therefore proved Lemma 5.1.

Lemma 5.1. There is a constant C depending only on B and D such that

6. Compactness

In this section we will establish Theorem 3.1. Since the state space M{(S) is
compact we need only establish estimates of modulus of continuity to appeal to
Prohorov's theorem. It is therefore enough to prove

Lemma 6.1. For any smooth function J on S, and ε > 0,

lim lim sup QN sup ^))-TrZ^-W) =0 . (6.1)

Proof. Let us take s < t. Then

" (XiWfa + ΣJ' (Xi

~\ΣV' (N(xi(σ))-χj(σ))}Jf (Xi(σ))dσ

The first term is clearly bounded by

where C is a bound for J" .
The second term is a Martingale term and by Doob's inequality

(6.2)

(6.3)

E sup

<;C exp E
TV
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1 T

(6.4,

0

= N '

where Cλ is a bound for J'.
The third term can be estimated by estimating the integrand

= 2 V (N(Xl(σ)-Xj(σ)))(J' (*,(*))-/' (*,(σ)))
ϋ

^CΣ\V'(N(Xl(σ)-Xj(σ)))\ \Xi(σ)-Xj(σ)\ ,
W

where C is a bound for J" . Recalling that ψ(z)= —zV (z) we can estimate

One can then complete the proof of Lemma 4. 1 if we show the following estimate:

sup £^ j Γl y ψ(N(Xi(σ)-Xj(σ)))\
N o L*" J

2

do < oo .

This follows from Lemma 5.1.

7. Local Gibbs States

In establishing the hydrodynamic scaling limit one of the problems we
have to deal with is expressing average microscopic quantities like

— T ψ(N(Xj — yj)) U(xf) purely in terms of the macroscopic density function. This

is of course possible only if the configuration xl9...,xnis suitably organized and
we have to establish that during our stochastic dynamics most of the time the
configurations are suitably organized with a very high probability.

To make this precise let us fix a value of / and consider a functional H(ω)
which is a bounded and continuous functional of the configuration of points in
the interval ( — /,/). We can view H(ω) as a functional of a point process on R,
which depends however only on the configuration of points in ( — /,/). If we have
a set (*!,..., XN) of N points in S, for any given x, we can look at the points
Xf- \Xj — χ\ <\ and consider the points N(xt—χ) on the line (— oo, oo) obtained
from the original (xλ,..., XN) on S. The resulting- point process on R, while it is

N
somewhat arbitrary due to the cutoff at the edges namely around ± — for every

/ the configuration is natural and well defined on [ — /,/], provided TV is large
enough. We can evaluate our functional H(ω) at this configuration, which we
denote by ωx

N and obtain a value H(ωx

N).
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We are interested in the quantity

ξN(xl9...9xN)=\H(ωx

N)U(x)dx . (7.1)
s

Corresponding to the set xi9...9xN we have the empirical distribution

aN(dx) = -(δxl + ...+δXN) .

We pick a mollifier h(x) with compact support, i.e. a nonnegative function h(x)
with j h (x)dx = 1 , and assuming that the support of h is contained in [ — \ , ̂ ], we
can lift A as a function on S, and for λ Ξ> 1, λ h (λx) is a mollifier on S as well.
We can then pick for λ ^ 1, a natural version of local density for the configuration
(xί9...9xN)9 by

, where

(7.2)

For a one dimensional system, there are no phase transitions and we have a
unique Gibbs state Pp viewed as a stationary point process with density p that
corresponds to the given pair interaction V(x). Since we expect the arrangement
of points near x to be a random arrangement from Pp with p =pχ, by (7.1) we
expect to replace ξN(xι,...,xN) by ηN,λ(xι,...,xN), where

dx (7.3)
s

with
H(p} = Ep>[H(ω}} . (7.4)

The error between ξN and ηNtλ is expected to be small provided λ is large and
N is large and (xl , . . . , XN) is a typical configuration from a nice distribution

Let us denote by S^N^D the set of probability densities fN on SN that satisfy

Z F(^(*< - */)) ^ * ' (7 5)

I [
2 J

I vjN\ Λ.. ^ r\\τ (76)
f»

Because of translation invariance of the expressions (7.5) and (7.6), if we replace

due to linearity in the case of (7.5) and convexity in the case of (7.6), fN will
satisfy the inequalities (7.5) and (7.6). In other words, if fNe sέN B D so does
fN. Let us denote by ^N,B,D^ the translation invariant densities in ^NίB,
goal is to establish that for each fixed / and H( )
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Theorem 7.1.

lim lim sup sup EfN \ ξN — ηN λ \ = 0 .
A — »• oo N-+ oo fpj e J^v, B, D

Since Pp depends continuously onp,ίf(p)is continuous in p and we can establish
Theorem 7.1 in two steps.

Theorem 7.2.

lim lim sup sup EfN\ξN—ηN>Nε \ = 0 ,
e -»0 N-* oo jN e J&N.B, D

and

Theorem 7.3.

lim lim sup sup EfN j \pχ(x)— pεN(x)\ dx = 0 .

Remark. In view of the comment made earlier about translation invariance in
Theorems 7.1, 7.2 and 7.3 we can in the proof replace S$N,B,D by ^N,B,D

We can write

EfN \ J H(ωx

N} U(x)dx - \ H(pλ(x)) U(x)dx \

'̂Ί ί ; ί H* Max U(y)dy - \ H(pλ(x)) U(x)dx \
\y-χ\^a/N J

1^- ί \U(y)-u(x)\dydx .

To fixed a, H and any sequence A =λ^5

lim sup sup EfN \ \ H(ωx

N) U(x)dx - \ f(pλN (x)) U(x)dx \
N-+ oo

sup EfN \\dy £- \ H(ωx

ίf)dx-ti(pίH(y))\'\
J3?N,B,D L ^a -x^a/N I J

by assuming continuity of the function U(x).
If we now replace fN by fN then

- \ H(ωx

N)dx - H(pλN (y)
La \y-x\-ialN

- ί H(ω*N)dx - H(pλN(y)
a \y-χ\^alN

^ \ H(ωx

N)dχ-H(pλN(0))\] .
^a \x\^a/N I J

The proof of Theorem 7.2 can therefore be reduced to the proof of the following
theorem.
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lim lim sup su
ε->0 N^oo /

p
o

EfN Nε
H(ωx

N)dχ-H(pNεm = 0 .

The proof of Theorem 7.4 proceeds as follows.
The computation of \ H(ωx

N)dx and /?τvε(0) requires only a knowledge
|;c| ^1/Λfe

of the location of the particles from among xl9...,xΛί that belong to some interval

of the form \x\ ^ 1—, where [~~/o,/o] is such that H(ω) depends only on
Nε N

the configuration there. So if we project fNdμN onto the configurations in such
an interval and expand the interval by a factor of TV, we will get a set

^QN,B,D,B of point processes on the interval \x\ ^~ + /0. Theorem 7.4 reduces to
proving that ε

lim lim sup sup Ey

ε —> 0 N—> oo y e .
H(ωx)dχ-H(pε(0))

-1/ε

= 0 . (7.7)

Let us note that because of translation invariance and blowup by a factor of N,
the local density of particles is normalized at 1. Therefore the collection

°N B D ε of point processes on — ( - + /0 ) f ~ + /o ) is compact as TV-» oo and
L \e /'\ e /J

we denote by tne set of limit points. Verifying (7.7) reduces to verifying

lim sup
e->0 v

Γ I o 1/e

> ^[I ί
t,D,e L I ̂  - 1/ε

H(ω')dχ-fi(pM) = 0 . (7.8)

In the appendix we have introduced the collection of Gibbs measure with
boundary condition ω and particle number n on the interval [ — /,/]. Let us denote
the convex hull of these measures with n and ω varying by Γ. The subset with
the average particle density less than or equal to 1 will be denoted by Γfl\
According to Theorem 10.3 of the appendix,

lim sup Eγ\ — \ H(ωx)dχ-H(pl(ϋ)} =0 ,
/-oo ver/|)/o L 2/ _l \

and we will complete the proof of (7.8) by establishing

Lemma 7.5. For any B, D and ε > 0

l/ε+h

Proof. Since the density can only drop under the weak limit it is clear that it is
sufficient to prove <^B,D,ε<=Γh+l/ε.

Let us assume that Fis supported on some [ — c0,c0] and look at the set of
limit points of the point process on a slightly larger interval of the form

[ ~~ (~ + /o + Coi ~ + /o + <?o in the expanded scale. Let γ be any limit point.
\ε / ε J

We want to characterize the restriction of v as a point process on
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[~ (~ + ̂ o i \ + A ) ) which is a member of Γh + 1/ε. Let us consider a
\ε / \e / J

diffusion on the configuration space of point processes on the interval

[ ~~ ί ~~ + lo + Co 1, — + /o + c0 under which the particles in — ί — + /0 ) ,
\ε J ε J L \fi /

diffuse with reflecting boundary conditions at the end point and those

~ + IQ )> ί ~~ + IQ ) stay put. The generator is given by
ε / \β /J

outside
\ε

where *!,...,.*„are the particles inside and [yα],... are the particles outside. The
outside configuration ω and the number n of particles inside do not change and

for this diffusion L the family μ™r with /' = ( — + / 0 j is precisely the set of

extremal invariant measures. Therefore all we need to show is that v is invariant
for the diffusion L.

Let us take a function u(xl,...,xn,b) of the form u(xι9...9xn)φ(b) with a
smooth u, satisfying Neumann boundary conditions. Strictly speaking
u (xl,..., xn9 b) is not a continuous function viewed as a function on configurations

in — [— + l + k0]9— + l + k0\ because of the distinction between outside and
L \e / ε J

inside variables. Its discontinuity points are on the set where a particle sits exactly
on the boundary. These have probability zero because the homogeneity in space
makes any local density at most one in the limit. So we can calculate

j Ludv = lim j LudvN
An N-+°o An

= lim f LNύNfNdμN ,
W-» oo An N

where fNdμN is the measure on SN which produced the VN by restricting
in the set ^QN,B,D,S' f°r some choice of ε'. An is the set with n points

[ ~ ~ ( ~ + ^oK ~~^o and An N is the set with n points in
\e / [β \\

. An elementary calculation using integration by parts
N TV J

yields

where ^' is the summation over those variables xί9...9xn inside

, . The factor —5 comes from the stretching. —- are of
N N N dx,

n
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order N and therefore we only have to prove

We can calculate by translation invariance

/ΆΛ 2 1

ΐ) 7dμN
x// JN

and we are done.

This proves Theorem 7.2.
We now turn to the proof of Theorem 7.3. We have to carry out some

construction. Given any set (xl,..., XN) of TV points in S, we have earlier associated
the empirical distribution

=^,+...+<u
and a mollified density

For most configurations the density pεN(x) can be highly oscillatory and
I H(pεN(x)}dx and j H(pλ(x)}dx for fixed ε and A can be very far apart. To

rule this out we plan to calculate the Young measure associated with the functions
pεN( ) and show that for TV large and ε small, these are nearly degenerate.
Corresponding to a mollified density βχ(x) we can define a probability measure
π on SxR+ by the relation

π clearly enjoys the properties

lpπ(dx,dp)=\pλ(x)dx=\ , (7.9)

\ F(x)π(dx,dp)=\ F(x)dx , (7.10)

or π projects to Lebesgue measure on S. If we denote by ΛK the space of prob-
ability measures on SxR + , then through π and pλ we map xl,...,xNmto J£.
We already have a map J^ that maps (xι,...,xn) into MI (S) by

= — [δ X}+.
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We now take both the maps and map (xι,..., XN) into the pair aN, π, a point in
M1(S)x«/ίC With the choice of λ = Nε, this produces an induced probability
measure QNε on Mγ (S)x^for each fNfrom J^NjB Dand choice of ε. The range
of such QNε will be denoted by J#V,Z?,A£> their limit points as N-+QO by
3$B,D,ε and the limit points of these as ε->0 by S$B^D. Our goal is to prove
Theorem 7.3 and the main step is

Theorem 7.6. Let Q e J$B,D- Then for almost all (α, π) with respect to Q,

a(dx)=p(x)dx
and

for some function p(x) in Ll (S), i.e. the young measures are trivial.

We will reach Theorem 7.6 by a series of lemmas:

Lemma 7.7. Let Q E J$B,D> Then Q has the property

Q[θί'θί (dx) = p (x)dxfor some p] = 1 ,
and in fact

E±
\-s

where C is a universal constant.

Proof. From Lemma 4.2 we can conclude that

Eύ j λ W(λ(χ-y))θί(da)a(dy)^ \\ W\\ CB ,
s

where W is a nonnegative function of integral 1. Since the bound is uniform in
λ we can let λ -» <χ> and establish Lemma 7.7 by Fatou's lemma.

Lemma 7.8. For any Qε in 3$B,D,ε>

Qβ[(a9π)^pπ(dx9dp)=l]=l , (7.11)

(7.12)

(7.13)

Proof.
EQN>ε J p2π (dx, dp) = EfN \ p2

εN (x)dx

2

dx

^ \\W\\BC (by Lemma 4.2) ,

Now (7.11) is a consequence of the unitform integrability (7.9). Relation (7.12)
follows from (7.10). (7.13) is just the routine fact that the mean of the Young
measures defines the function which is the weak limit.
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We now try to use the bound on the Dirichlet form and use inequality (5.3).
The expression for £?N UN given by (5.11) can be written as

where

T* = Σ [G(λ(xk-χJ}}-G)λ(xi-χJ))]Vf(N(xi-χk)) .
^ i,j,k

The inequality (5.3) takes the form

•(EJNT5γ' , (7.15)

where

' ΣG(Nδ(χ-χj)}-G(λ(xi-χ])}\2 .
j

Because \G(Nδ(xl-xJ))-G(λ(xi-xJ))[ is bounded by 1 and G(Nδx)-G(λx)
is supported on some interval of size λ ~l we can bound

I G (Nδ (x, - x,.)) - G (A (x, - Xj)) \^χ(λ (x, - jc,)) ,

where χ (x) is a bounded nonnegative continuous function with compact support.
Therefore in (7.15), T5 can be replaced by

We next want to chase the inequality (7.15) through subsequences to get a
limit point of QNtB in J$B,D,£

 and then again through limits finally to a limit Q
in S&B9D.

We have

= δ \H(ωx

N)dx ,
s

where

If it were not for the fact that H(ω) is unbounded we could apply Theorem 7.2
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and we would have

lim EfNTλ = EQ \ dx[\ Hδ(p)nx(dp)}
N—* oo

with

= J δg(δ(χ-y))h (x)R?(dx9 dy) ,

where R(^\dx,dy) is the two point correlation function relative to the Gibbs
measure with density p. However since H(ω) is nonnegtive and continuous Fa-
tou's lemma can be used to conclude

^ lim EfNT, . (7.16)
s N-+OO

We next look at Γ3,

Γ3 = i Σ 1G (Nδ (** ~ */)) ~ G (Nδ (χ ~ XJΪΛ v' (N(χt

= I dx^[G(Nδ(xk-χJ)-G(Nδ(xi-χJ)]V'(N(xi-χk))h(N(x^
s

where

One can check that because of the monotonicity of G and the fact that
xV (X)^0 for all x, Hl (ω) is nonnegative. One can then obtain by exactly the
same reasoning as above

EQ J dx[\til90(p)πx(<m^ lim Ef*T3 , (7.17)
N-+CO

where

where R(*\dx, dy, dz) is the three point correlation.
We now turn to T2\

EQ\\λg(λ(χ- y))da (x)da (y) = EQ \ \ λ g (λ (x - y))p (x)p (y)dxdy

= lim EfNT2 . (7.18)
Λ^->oo

As for T4

T4 = ί Σ [G(λ(xk-χj))-G(λ(xl-χJ))}V\N(xl-χk)) .
7V ij,k

We know that V/(N(xi — xk)) = Q unless |xz — xk\ ^C/N. Therefore we can ex-
pand G (λ (xk — Xj)) — G(λ (x, — Xj)) by Taylor's formula with remainder and
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\G(λ(xk-χJ))-G(λ(xi-Xj))\ ^

where the error term depends only on A .
We can now write

i - \xk-χ,\ ,

EfN[ I Error | ]^EfN Σ Ψ(N(xi-χJ))

^ — by Lemma 4.2.
7v

We now try to evaluate

lim EfN

n—* oo

The function λg(λ(χ — y)) on SxS can be approximated by functions of the
form

Z <*r(x)b,(y)
r= 1

uniformly on Sx S and if we denote by

λg(λ(χ-y»- Σ ar(x)br(y) = c(x,y) ,

then

EfN £ \\C\\NE*

^ \\C\\ by Lemma 4.2.

So the error is controlled uniformly in TV. We can compute

lim EfN

= Jim Ef"

S i,k

N
Σ ψ(N(Xl-Xk))\[a(y)- (xk)]Nh(N(xk-y))dy



Scaling Limits for Interacting Diffusions 335

where εN depends only on the modulus of continuity of a and goes to zero with
N. Again by Lemma 4.2 we can control the error uniformly in N.

Now we can consider

lim EJ

N—*• oo

and working as before we should end up with

EQ \\ b(x)p(x)dx ί a 00 { H3(p)πy(dp)]
^S S R J

where

However a serious problem here is that we are operating on the right side of the
inequality and cannot afford the luxury of Fatou's lemma. We have to have an
actual identification of limit and therefore have to prove that the functional

are uniformly integrable and can be truncated to yield uniformly bounded ver-
sions with uniformly small errors. What we can use for this is an estimate of the
form

4/3

Σψ(N(xi-χk))h(N(xk-y))

a and b are uniformly bounded and cause no problems.

Lemma 7.9. If fNe sέN^BD, then

Σψ(N(xί-χk))H(N(xk-y))

where C depends only on B and D.

Proof. Let us denote ψ(N(xl-χk)) by ψjfc9 h(N(xk-y)) by /z^and Σ ^bY Tk
Then

Σ ψikh

ΣΨ*

ΣΨ*

4/3
x2/3

(E fN
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But

is bounded. Moreover
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, _ J7/N _L v

and this was shown to us uniformly bounded before in Lemma 5.1.

Turning to our original estimate now we have

lim EfNTΛ = EQ \\ J λg(λ(χ-y))p(x)dxdy \ H3(p)πy(dp)] . (7.19)
7V-> oo |_ J

We now look at the final term

lim Ef»T6 = 4EQ \^χ(λ(χ-y))p(x)p(y)dxdy\ .
\_ J

Combining (7.15) with (7.16) through (7.19) we obtain for any measure Q in

-\\λg(λ(χ- y))p (x)dxdy j A, (p) πy (dp}

-1/D Γ (7.20)

In the relation (7.20) the right-hand side is clearly bounded uniformly in terms
of our constants B and D for each fixed A . We first let δ ->0 in the left. From
the factoring properties of the correlation functions Rf\dx,dy) and
R{p} (dx, dy, dz) we can conclude by an application of Fatou's lemma

lim d

since by Theorem 10.4 P(p)~ p2 for large /?, it follows that

Lemma 7.10. For Q e S$B^D,

sup EQ N p\x)dx 1 ^EQ Γ j dx I P3πx(dp) 1
ej*B,v L J LS J

< oo .
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We are interested in letting λ -* oo on the right-hand side. Let us look at
each of the three terms on the right. Clearly j j λg(λ(χ — y))p(x)p(y)dxdy
^l p2 (x)dx, and since EQ j p2 (x)dx < oo we can use the dominated convergence
theorem to conclude that

lim EQ I j λg(λ(x-y))p(x)p(y)dxdy = EQ\p2(x)dx . (7.21)
λ-»oo

The second term involves

H3(p)πy(dp)y

and

lim jμg(A(*-;F))p(*)^ί#3ω^^ -
λ-» oo

We can bound

J J λg(χ-y))p(x}dxdy \ P(p)πy(dp)

\3~I1/3 Γ Γ I3'2 2/3

\λg(λ(x-y))p(x)dxj J μ |̂ i ί(/>)πy(φ)J

(x)dxdy + H [P (p)]3'2 πy (dp)dy

^A by Lemma 7.10.

The third term clearly goes to zero as λ -> oo. Therefore for every Q

EQ j dx\pP(p)πx(dp) ^EQ dx j/>πx(φ) J P(p)π,(φ) . (7.22)

Proof of Theorem 7.6. We can think of Eq. (7.22) as

. (7.23)
s

This means that on the average the covariance

\pP(p)nx(dp)-\pnx(dp)\P(p)πx(dp)

is nonnegative. However

πx (dp)

because P(p) is a nondecreasing function of/?. The strictly increasing nature of
P(p) dictates that we have strict positivity unless πx(dp) is degenerate. This
completes the proof of Theorem 7.6.

Having proved Theorem 7.6 the first application is an estimate on the regu-
larity of densities in the support of any Q e S&B^D.
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Theorem 7.11. For any Q e

Proof. Let us consider k functions ul(x),...9 uk(x) from C°° (S) and / functions
Fι(x),...9Fl(x) also from C°° (S). We consider as well the functions gi,...,^
from C™ (R ). Let us denote by x = (xγ , . . . , XN) a point of SN. Then we define
onSN

,...
7=1 7=1

We can perform integration by parts and write

Since

= η + Γ2 .

^— it follows by an elementary calculation that | Tλ \ ->0 as

(7.24)

We can estimate T2 by Schwartz's inequality to obtain

1 . ί \ N ί k \2 \1/2

\T2\^-]/2D(l- Σ Σ ur'(xj)Gr(xή fNdμN)
L \ yV y = l \ r = l / /

The left-hand side of (7.24) can be calculated to be approximately

\\ Σ ίi Σ «;(^)Gr(jc)(i + 2 ^(A^(χ,-χy)))]/^
Z r-1 ^V y = l \ 1=1 /^

For any β e J^β5/>, we can therefore obtain the inequality

EQ\ £ uΐ

Σur'(x)Gr({p,Fl),...,(p,Fl)) φ(x)dx

It is not difficult to pass from this estimate to

(7.25)

Here ω is the generic point and Q is the measure on random densities p( ).
The estimate (7.25) will hold if the test function ψ(x, ω) is uniformly bounded

along with y^and ψxx. Since we can replace y/^by ψ we can assume
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( Ί 1/2

^ ]/2D JEQ \ ψ2 (x, ω)p (x, ώ)dx\ (7.26)EQ \ ψx (x, ω)P (p (x, ω))dx

for all bounded ψ with Abounded and having j ψdx = Q for almost all ω.
Since EQ j p2 (x, ω)dx has a uniform bound in s$B j£> we will have a bound of

the form

EQ I ψx (x, ω)P(p (x, ώ))dx
/ \1/4

^ C ί Ee j ψ4 (x, ω)dx\ , (7.27)

provided j ψ(x,ω)dx = Q. This is enough to yield the estimate

EQ\ \(P(p(x,ω))]x\
4/3dX^C .

We can now rewrite (7.26) in the form

(7.28)

for all ^(.x, ω) such that EQ \ ψ4 (x, ω)dx < oo and satisfy j ψ (x, ω) dx = 0.
Let ψ(x,ω} be any function with EQ j ψ4(x, ω)dx < oo. We write
ψ(x, ω) = ψι (x, α>)-h/z(ω), where ^I(Λ:, ω) has the property ί\ψl(x,ω)dx = ̂ .
Then because (P (p (x, ω)))x is orthogonal to constants,

EQ\ψ(x9ώ)P(p(x9ώ))xdx

^ \/2D \EQ\[ψ(x, ω) - A (ω)]2P(jc, ω)έic]

r
^ l/2£> £δ j [^(x, ω) - A (ω)]2

, 1/2

ι/2

(7.29)

Since A (ω) = 0j ^(x, ω)Jx we can bound

EQh2(ω)^EQ\ψ2(x,ω)[l+p(x,ω)]dx .

Therefore

^e j ¥φ, ω)(P(/)(x, ω)))xώc ^ C Γ^ j ^(jc, ω)[l +/>(x, ω)]ΛJ

for all functions ψ(x, ω) with £"β f ψ4(x, ω)dx < oo. This is enough to conclude
that

1/2

< oo . (7.30)
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We now go back to (7.29) and use for ψ(x, ω) the function ^*»ω

has to be justified.) Then h(ω) = 0. ε+p(x9

We now obtain

Eo

^
ε +p(x, ω)

1/2

1/2

,ω)

Because of (7.30) we can let ε -»0 and obtain our theorem.
Now we have all the ingredients necessary to prove Theorem 7.3. If we cal-

culate

lim limsup limsup sup ^ | j \Pλ(x)~PNe(*)\ dx\

= lim sup EQn \hλ(χ-y)p(y)dy-p(x)

-0

because of the estimate in Theorem 7.11. Because P(p) is strictly monotone and

continuous in p any control
modulus of continuity of p ( ).
continuous in p any control on J - dθ will provide control on the Ll

8. Hydrodynamic Limit

Let QN be the family of probability measures induced on C[[0, 7]; Mt (5)] by
Si i ς

looking at the trajectory X l ( ' ) - ̂ ^ in the space of probability measures.
ε

We have already established Theorem 3.1 asserting the compactness of QN. Let
Q be any weak limit point. The results of Sect. 7 establish Theorems 3.2 and 3.3.
All we need is the following lemma.

Lemma 8.1. If we have the bounds

then for some other constant C,
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Proof. Let us consider
3/4

because of the bound P(p)^cp2 for large p. Since P(p)^ Cp2 we have
Cp3/2 for large p and we have S(p)^ Cp3/2 with another constant. In other words
we can control \S(p}dθ and \ (S(p))2

θdθ, and hence control \ S2(p)dθ.

Remark. Although the conclusion of the lemma is already implied by Lemma
7.10, it follows from the first two estimates assumed in the lemma.

9. Uniqueness

Let /?o(0) be a function on L2(S). Assume p(t, θ) is a weak solution of

with
P(0,θ)=p0(θ) .

Assume that the solution p (/, θ) has the property
T

j Ip3(t,θ)dθdt< oo (9.1)
S 0

and

o o . (9.2)

Theorem 9.1. ̂ 4 weα :̂ solution satisfying (9.1) αwJ (9.2) ώ unique.

Let if possible w (/, θ) and i; (/, 0) be two solutions corresponding to the same
initial data p0(θ). Let us define the function

ω(θ,ί) = \[[P (u (s, θ))]θ - [P (v (s, θ))]θ] ds . (9.3)
0

t

Using the fact that \\p(s, θ)dsdθ < oo , it follows from (9.2) that

Hence ω ( θ , f ) is well defined as a continuous function of t for almost all θ. An
elementary computation yields

dco
- = u-v (9.4)
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in the sense of distributions. Now

)j;

= ω(θ,t)[P(ύ)-P(v)]β.

We want to show that

j J \ω(θ,t)\ [|[P(«)]β| + \[P(Ό)]β}dθdt< co . (9.5)
0

Since ( f \\ P(μ^θ\ dθdt and f f \\ P(^e\ dθdt are finite, it is sufficient to prove
that u v

j I \ω(θ,i)\2u(θ,t)dθdt
o

and

\ \ \ω(θ,t)\2v(θ,t)dθdt
0

are finite. (9.1) and (9.4) are sufficient now to conclude (9.5). We therefore
conclude that

is a continuously differentiable map of [0, t] into Ll (S). Moreover ω(0,/)-»0
a.e. θ as t-*Q,

p / tflΛy '

= -l(u-Ό)(P(u)-P(Ό))dθ^Q .

Therefore \χ(θ,t)dθ = Q. This proves uniqueness.

10. Appendix

In this section we will establish some results concerning finite and infinite volume
Gibbs measures for our continuous system with finite range interaction. Although
these results are not new and are part of the folklore in the field, there does not
appear to be any source that we can refer to for a precise statement of the results
in the form we need them. We will therefore provide a proof.

Our main assumption is that we have a repulsive pair potential, i.e. a function
V(x), which is nonnegative, even, continuously differentiable and has compact
support. We denote by [ — c0, c0] the interval of support of the function F( ) and
we assume further that ψ(x) = — xV (x)^0 and that F(0) > 0.

For any / > 0, we consider the exterior [ — /, /f of the interval [ — /,/] relative
to the real line. A configuration ω is the realization of a point process and
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represents a locally finite collection of points. Since our interaction has range c0

we are only interested in the part of the realization that has to do with the border
[ — /— c0, — /] u [/, /+ c0] and therefore we can think of ω as an arbitrary but finite
configuration of points in the border.

We shall think of ω = jj;α], as a finite set of points located in
[ — /— c0, — /] u [/, /+ c0]. The canonical partition function Z(n, /, ω) is defined as
follows for n ̂  0, / > 0 and all ω ,

Z(/ι,/,ω)=l if « = 0 for a l l/ and ω , (10.1)

= ̂  f ... j expΓ- £
" -/ - L , φy=ι, φy

- 2 £ K(*, ~ jα)l did... <&„ . (10.2)
i,a -I

The canonical Gibbs measure ^Λ j/> ω is a point process on [ — /,/] with exactly n
points or equivalently a measure on [ — /, /]" with a density given by

- JΓj
L ιΦy=l

The normalizing constant cn is of course given by

c~l=n\Z(nJ9ώ) .

When ω is the empty set we denote Z(nJ,ω) by Z^/andμ^/^ byμ°n j.
The grand canonical partition function with activity A is defined for every

real A and
00

Z(A,/,ω)= 2 eλnZ(nJ,ω) ,

and the grand canonical Gibbs measure is a point process μA / ω on [ — /, /] which
is thought of as a probability measure on

oo

n U[-ur-
It is given by

^ , (10.3)

i.e. it is a convex combination of canonical Gibbs measures and the weights are
proportional to eλnZ(nJ,ώ).

Although we have only defined these Gibbs measures on intervals of the form
[ — /,/] it is clear that they enjoy translation invariance of sorts and can be defined
on any interval [a, b] and depend only on the configuration in the appropriate
border. Moreover, there is an internal consistency in the following two senses.

First, by definition, the canonical Gibbs measure is the conditional distri-
bution of the grand canonical Gibbs measure when it is conditioned by the
number of particles in the set.

Moreover if we take the grand canonical Gibbs distribution on [ — /, /] and
condition it with respect to the configuration in [a, b]c, where —l^a<b^l, then
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the conditional distribution is the grand canonical Gibbs measure on [a, b] with
the same activity λ .

The infinite volume Gibbs measure μλ corresponding to activity λ , is defined
as a stationary point process such that for every interval [a, b] the conditional
distribution of the configuration in [a, b] given the configuration in [a, b]c is the
grand canonical Gibbs measure μλj>ω with l = ̂ (b — a) and ω representing the
exterior configuration. We shall state the main theorems we will use in our article
and provide a sketch of the proof at the end, after establishing a few key estimates
as lemmas.

Theorem 10.1. The following thermodynamic functions exists:

F(λ)= lim ^~ΛogZ°λ 7 for A real ,
i^oo 21

Ψ(p) = lim ~\ogZ°n,k f o r p ^ O .
/-»oo 2 I

The function F(λ) is convex in A and the function Ψ(p) is concave in p . Moreover
they are related by the equation

F(λ) = sup[λp + Ψ(p)] . (10.4)
P

Theorem 10.2. For each value of the activity parameter A , there exists exactly one
Gibbs measure μλ with activity λ . The point process μλ depends continuously on
the parameter λ. As a point process its density is given by

.
aλ

In particular F(λ) is once continuously differentiate. The function p(λ) is contin-
uous and nondecreasing. Its inverse is

We have in addition

lim p(λ)=oo , lim
A — *• oo A —*• — oo

If I is a unit interval and N(Γ) denotes the number of points in the interval I, then

Eμλ[[N(I)}r]<oo for every r ^ l .

Theorem 10.3. Let «-> oo and /-> oo in such a manner that ~~*P- Let H(ω) be a

bounded continuous local function depending on the configuration in some fixed
finite interval [~/o,/o] Let us denote by Hx(ω) the same functional evaluated at
the configuration in [ — I0 + x, lQ + x\. We denote by H(λ) the expected value
Eμλ[H(ω)]. Then for every ε > 0,

[ 1 (/-/o) Ί

- J Hx(ω)dχ-H(λ) ^ε =0 , (10.5)
z/ -(/-/o) -I

where p=F'(λ).
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Moreover for every function H(x) on [— 1, 1] which is nonnegative, has compact
support with ] φ (x)dx = 1,

0 . (10.6)

Remark 1. It follows from (10.5) that if A 1 ? A 2 are two different activities such
that F' (AO = F' (A2) = P , then #(AO = H(λ2) for all functions H(ω). This in turn
implies μ\=μλλ and A I = A 2. Therefore /?(A) is a strictly increasing function of A
and its inverse — Ψ'(p) is a strictly increasing continuous function of/?.

We define the function

(10.7)

Theorem 10.4. There exists constants 0 < cλ < c2 < °o swc/z

for p large .

Since £'//Λ[[7V(/)}r} < oo for every μA, we consider for every function
f ( x ι , . . . , X k ) of ^-variables which is smooth and has compact support on Rk, the
variable

where the summation is over all fc-tuples of k distinct points in the configuration.
ξf has a finite expectation and

The measure Rλ

k (dx{ , . . . , dxk) is the /c-point correlation measure. It has translation
invariance relative to xl,...9xk->xl+a,...9xk + a. The one point measure
Rλ

k (dxι)=p(λ)dxι9 where p(λ) is the density.

We need the following identity between P(p) and R2(dxl,dx2).

Theorem 10.5. If λ and p are related by A =λ(p), then

dxl,dx2) , (10.8)

where φ (x) is any function on R that is smooth, has compact support, is nonnegative
and has ^ φ(x)dx= 1 .

Finally the ergodicity of μλ implies some asymptotic factorization of the cor-
relation measures.

Theorem 10.6. Let gι,g2 be functions on R that are smooth and have compact
support. Let g3 be a smooth function on R2 having compact support. Then for
any A ,

lim k \ g, (k(Xl-X2))g2(X2)Rλ

2 (dXl,dx2)=p2(\gl (χ)dx)(lg2(x)dx) , (10.9)
£-»0

lim k j g (k (xl - x2))g2 (x2, x^R* (dx1 , dx2, dx3)
k^Q

= p(\g,(x)dx)(\g2(x^x,)Rλ

2(d^dx2}} . (10.10)

We adopt the following conventions regarding constants. Constants will al-
ways be independent of «, / and ω . A, B, C will denote constants and will be
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used at different times of denote different constants. We will use γ to denote
constants that are strictly positive. The constant c0 is the range of the interaction

K( ). The quantity — will be denoted by p.

Lemma 10.7. For every I > c0 and ω we have

. (10.11)

Proof. For n = Q, there is nothing to prove. The upper bound is obtained by
dropping the interaction terms involving the points in the border. For the lower
bound we limit the integration to the situation where all the points
*!,..., xrt lie inside [ - (/ - c0), (/ - c0)].

Lemma 10.8. There is a constant C such that

φc£. (10.12)

Proof. By differentiation we can write

rflogZ°/ n 1 Γ

- - =

[Change variables xl = Iyi9 differentiate and change back.] From formula (4.4) we
have an estimate

for some C{ . Since

dβn,ι = Cn exp [ - Σ v(χι ~ xjΆ dθ i

where dθ is volume on [ — /, f\N, it follows that

J Σ V(xt - *,)φ° , ̂ \ΣV(*i- xj)dβ '

where dθ is normalized volume. We can now calculate \ΣV(χΐ~ χj)d@ and
obtain (10.12).

Lemma 10.9. For every n and I > 0,

z2+ l ι /^^ZS f /. (10.13)

Proof. If we ignore any interaction involving xn + l and integrate out xn + l we
obtain (10.13).

Lemma 10.10. Let I=lλ + l2 + \cs with lλ >QJ2> 0. Then

ZO \ VΊ ryQ ryQ

»,/= 2j Zf«,/lZ'»2,/2

In particular for any nl9 n2 with nl+n2 = n,

Z°nJ^Z°mJlZ°n2j2 . (10.14)
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Proof. Let us divide the interval [ — /,/] into three parts Iλ , I and 72 with lengths
2/ l 5 CQ and 2/2 arranged in order. We limit the integration to the domain where
/! and 72 contain all the points (xl,...,xn). Here n{ and n2 represent the number
of particles in 7j and 72 respectively. The combinatorial factors adjust themselves
and we get Lemma 10.10.

Lemma 10.11. There exist constants A and B such that

μnJίCO<,AeBp2μ0

nJ, provided /^2c0 .

Proof. The density fnjt(a would be dominated by f°nj if it were not for the nor-
malizing constant. We therefore need only estimate the ratio

Lemmas 10.7 and 10.8 will establish a bound for this if we can keep / away
from CQ.

Lemma 10.12. There are positive constants γ,Cι and c2 such that

ίfexp[-Csf]Sz;,S<fexp[-,fc,»]. (,0,5)

Proof.

n\7° 1 / / Γ n 1

"έ/r =c/r -V" -lexp L „.?, v(x~Xj}\ dxι-dx"
The lower bound follows from Jensen's inequality. On the other hand there are
constants γ > 0 and c{ such that

for every configuration (xl9...,xn).

Lemma 10.13. Let /c[ — /, /] be an arbitrary interval of length 1. Let Ek denote the
event that the set I contains exactly k of the points from (xl9...,xn). Then there
are constants A, B, C and v > 0 such that

μn,ι(Ek) <,Aexp[-vk2 + Bkp+ cp2} (10. 16)

for all n and l>\.

Proof. Let i=[a,a+l] for some - / ̂  a ̂  I - 1 . Let I, - [ - /, a] and 72 = [a + 1 , /] .

We let /!= - and/2 = ̂  (I — a— I). Suppose that 71? 72 contain w l 9 n2 points

respectively and nι + n2 + k = n. If we ignore all interactions between points in
different intervals and use the bound

we obtain

v^ + c^ -i- Σ ^ι,/ι^,/2 - (10-17)
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From Lemma 10.10,

Σ ryO ryQ ^ ryQ

^mJι^n2,l2 = Zjn-k,lι+l2 + co/2
n\ +n2 = n~k

- z°— ^n ~k,l- (1/2) + (co/2)

We can now apply (10.14) to get

T-O > 7-° 7°
^n,l+co + (kiln) = ̂  n - k, I - ( 1/2) + (co/2) " ̂  k, ( 1/2) + (£//«)

(10.17) then becomes

<,(£,) ̂  j- exp [ - v,k2 + Clk] Z"° '+;° + ̂ > . ̂ -J - . (10.18)
K ^n,l ^k,(\/2) + (kl/ri)

We can use bounds from Lemma 10.8 and the lower bound of Lemma 10.12
to complete the proof.

Lemma 10.14. IfNjis the number of particles in the interval I then for some v t > 0
and l>\,

where A and B are some constants.

Proof. We pick V! < v and sum

IXX^K'*2 ,

using the bounds in Lemma 10.13.

Lemma 10.15. For every m, there exists a constant cm such that

for all n and I

Proof. For any random variable X there is a constant cm independent of X such
that

If we now combine Lemma 10.11 with Lemmas 10.14 and 10.15 we get

Lemma 10.16. For all I > 2 and n,

sup EΛ [exp [vNΪ]] ^ A exp [Bp2] , (10.19)
ω

sup E"ω" ' [[N,]m] ^ Cm(l + pΓ . (10.20)
CO

We now turn to the grand canonical Gibbs distribution and estimates on
them.

Lemma 10.17. Let β χ j ί ( 0 be the grand canonical Gibbs measure. Then for any given

AO > 0 for all λ ^ A0, / > \ and ω we have the following bounds:

A0)
2] , (10.21)

iΓ] ^ Cm (1 + A0Γ (10.22)
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Proof. According to Lemma 10.17 there exists α > 0 such that

Eμω"'![exp [a N2]] ^ A exp [Bp2] .

We can replace a. by εa. and then B can be replaced by εβ by Holder's inequality.
v

We pick ε so small that εB is less than — where v is as in Lemma 10.13. We

will continue to denote εa by a. We now have

Eμn,l,a> [eχp ̂  ̂ 2jj <: Λ eχp *

To estimate EμλJ'ω [exp [N2] we must bound

Z(A,/,<

We use the trivial bound Z(A, /, ω) ̂  1. Then

n\

(2l)n

— — 21One can estimate — — by e21 and obtain (10.21) by direct estimation of the sum

(more or less Gaussian sum). The inequality (10.22) follows from (10.21). The
fact that the summation is over nonnegative n makes the estimates uniform for
A in (-oo,A0].

Now we turn our attention to a proof of our theorems.

Proof of Theorem 10.1. The existence of the free energy F(λ) and the specific
energy or entropy functional Ψ(p) follows from standard subadditivity argu-
ments. Lemma 10.10 provides the required subadditivity as well as the concavity.
The formula for Z in terms of Z can be used with a standard Laplace asymptotic
formula to calculate the free energy in terms of the function Ψ(p) i.e. to prove
formula (10.4).

Proof of Theorem 10.2. For any real A , we consider the family μ?λ>l of grand
canonical Gibbs measures as point processes on [ — /,/]. We let /->oo. Lemma
10.17 allows us to take a subsequence and prove the existence of a Gibbs measure
which may perhaps be nonstationary. A standard averaging argument over trans-
lations and another limit produces a stationary candidate.

For uniqueness let Λ,P2 be two grand canonical Gibbs measures for the
same activity A . Let [ — a,ά\ be any arbitrary finite interval and we denote by

I I Λ ~~ I*2\\a the variation norm on the σ field configurations on [ — a, a].
We have to show that | |Λ~~ ̂ 2|U = 0 for every a. Let us take

jk = \x (k— 1)^0= |*| ~kco\ and define the conditional expectation operator,

taking functions on the configuration space of Jk into those of Jk + γ. Proving
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uniqueness can easily be reduced to proving

for some θ < 1 for all k and F. Here

H I F||| = { sup \F(ωv)-F(ω2)\
CO l,C02

= infsup \F(ώ) — c\ ,
C CO

where the infimum is taken over constants. This however needs only the following
lemmas.

Lemma 10.18. Let Ek be the event that the interval Jk contains no points of the
configuration. Then there is a 0 > 0 depending only on λ such that

for all k ί> 1 and ω .

Proof. All we need is to estimate the ratio

1 00

\ vπ λ n r-rO
t — ~ / & Zn(k—i)c

Σ
λn rrO

e ZΛt(k- l)co

Σ r-rQ
eλnZn,kc0

We use the estimate

•̂  κ,(£— l)cp ^> — Ap2 — B

from Lemma 10.8 and we write

Σ°° t>λnr7Q

V ^n,k

Σ λnryQ
e Zn>k

1

00

We have used Z eλn^n,kCQ^ l

Now we use the estimates of Lemma 10.12 to complete the proof.
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Continuous dependence is an easy consequence of uniform bounds and
uniqueness.

Uniqueness of the Gibbs measure yields the differentiability of F(λ) and the
continuity of p(λ). The bounds on the moments of 7V(7) are contained in Lemma
10.17. The relation between F' (A) and Ψr (p) is a consequence of the Legendre
transform (10.4). To see the limits of p(λ) as λ -> ± oo, the behavior as A -> — oo
will follow from the easily established relation lim F(λ) = 0. The behavior for

λ-* -αo

A ->oo is obtained by proving cίλ
2^F(λ)^c2λ

2 as λ ->oo. These are deduced
from Lemma 10.12.

Proof of Theorem 10.3. This theorem, known often as the theorem on the equiv-
alence of ensembles, is an easy consequence of large deviation theory. We note
first that the uniqueness of Gibbs measures implies that each μλ is ergodic, and
in fact, for nice local functions H(ω),

Πm~ Hx(ω)dχ-H(λ} (10.23)

If EI is the event that the set [ — / — 1, — /] u [/, / + 1] has no points in it, then from
Lemma 10.18 it follows easily that

(10.24)

(10.25)

μλ [Ef] ^ δ > 0 uniformly as /-> oo .

Combining (10.23) and (10.24)

Em ^log/22 f /ί |^ i Hx(ω)dχ-yZH(λ)

One has a similar result for the number of points N(l) in the interval [ — /,/],

1
lim —
/-oo 21 21

-p(λ) ^ε {<> -η(έ)<0 . (10.26)

In particular

lim μ°,) i
/-» (.1 21

-p(λ) <ε =1 . (10.27)

If we look at the ratios

in the range where 5Ϊε, then Lemma 10.9 provides an upper bound

for the ratio and Lemmas 10.10 and 10.8 provide a lower bound for it. Since
p(λ) > 0 we can make the bounds uniform over k in the range we are interested
in. In turn this means

<ε <ecfe 2fe inf A*Λ.;[^(0 = > (10.28)
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It follows now from (10.28) that

lim ±-\ogμ0

λJ[N(l} = k] = Q . (10.29)
/^oo 21

If we combine (10.23) with (10.29) we obtain the first half of Theorem 10.3. The
second half is similar. We start with the estimate from large deviations.

Πm — log A
/-.oo 21 ̂ μλ

^ε ^ -//(ε)<0 (10.30)

if 0 is nonnegative, is supported on [— 1, 1], and has j φ(x)dx = 1. This covers
Theorem 10.3 except when w/2/->0. But this case is trivial anyway since most
intervals in [ — /, /] would have to be empty.

Proof of Theorem 10.4. It follows from the bounds in Lemma 10.2 that for
A -» + oo there exist constants 0 < c{ < c2 < °o such that

c2λ
2 . (10.31)

Since F(A) is convex, this implies for some 0 < c{ < c2 < oo,

clλ^p(λ) = F'(λ)^c2λ . (10.32)

Now because P(p) = F(λ(p)), (10.31) and (10.32) imply our theorem.

Proof of Theorem 10.5. We have the identity from Lemma 10.8,

dlogZ°mj n 1- ~ = ~~

n 1

+ a small error .
Clearly

--^ = 2p+2\ Ψ(xl-χ2)φ(x2)Rλ

2 (dxl,dx2) . (10.33)

Since Zlj~

dl

Therefore

lim =2Ψ(p)-2pΨ' (p)
/-.oo dl

= 2F(λ) . (10.34)
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Combining (10.33) and (10.34)

P(p) = F(λ)=p + J Ψ(xl-χ2)φ(x2)Rλ

2 (dxl9ώc2) .

Proof of Theorem 10.6. Consider

where fk (xl9 x2) = kgί (k (xλ - x2))g2 (x2),

lim ξks=P 2 £2 (*2) a e by the ergodic theorem .
k ->oo

If we take expectations with respect to μλ we obtain (10.9). Relation (10.10)
is similar. Lemma 10.17 provides enough uniform integrability to justify inter-
changing limits and integration.
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